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A Bayesian Rule Generation Framework for ‘Omic’ Biomedical Data Analysis 

Jonathan Llyle Lustgarten, M.S. 

University of Pittsburgh 2009 

High-dimensional biomedical ‘omic’ datasets are accumulating rapidly from studies aimed at 

early detection and better management of human disease. These datasets pose tremendous 

challenges for analysis due to their large number of variables that represent measurements of 

biochemical molecules, such as proteins and mRNA, from bodily fluids or tissues extracted from 

a rather small cohort of samples. Machine learning methods have been applied to modeling these 

datasets including rule learning methods, which have been successful in generating models that 

are easily interpretable by the scientists. Rule learning methods have typically relied on a 

frequentist measure of certainty within IF-THEN (propositional) rules. In this dissertation, a 

Bayesian Rule Generation Framework (BRGF) is developed and tested that can produce rules 

with probabilities, thereby enabling a mathematically rigorous representation of uncertainty in 

rule models. 

The BRGF includes a novel Bayesian Discretization method combined with one or more 

search strategies for building constrained Bayesian Networks from data and converting them into 

probabilistic rules. Both global and local structures are built using different Bayesian Network 

generation algorithms and the rule models generated from the network are tested on public and 

private ‘omic’ datasets.  We show that using a specific type of structure (Bayesian decision 

graphs) in tandem with a specific type of search method (parallel greedy) allows us to achieve 

statistically significant higher overall performance over current state of the art rule learning 

methods.  Not only does using the BRGF boost performance on average on ‘omic’ biomedical 
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data to a statistically significant point, but also provides the ability to incorporate prior 

information in a mathematically rigorous fashion for modeling purposes.  
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 GLOSSARY 

Bayesian Network– A Directed Acyclic Graph that contains a set of random variables 

that are connected by directed links (arcs or arrows) between nodes such that there is no 

cycle, and each node has a conditional probability distribution associated with it that is 

defined by those nodes with arrows going into it (parents) with the following equation: 

P(X|parents(X)) where this represents the probability of the states within node X given its 

parents. 

Bayesian Network Structure Search – A method for creating an optimal Bayesian 

Network by searching over possible arcs (connection between two variables that is 

directed).  Optimality is determined by calculating the probability of the structure and the 

data and selecting the structure which maximizes this probability. There are many 

methods for searching over possible arcs which include greedy search, best-first search, 

and parallel greedy search all of which seek to increase the probability of the model and 

the data (the joint probability). 

Best-First Search – Expands the model that is closest to the goal (highest scoring), but 

contains the ability to backtrack if the expansion produces a worse mode. It is similar to 

depth-first in that you are not guaranteed to reach a global optimum. 

Constrained Bayesian Network Structure – A specific type of Bayesian network that 

represents the semantics involved in a propositional logic rule. Particularly, the only 

relationships allowed in the network are from observed variables (as parents) to a target 

class (as child) 

Data preprocessing – Steps performed for a specific data type, prior to learning models, 

to help remove known variance (mechanical or biological) from the data that occurs 

during acquisition. e.g., log 2 transformations, spectral alignment, etc. 

 xx 



Directed Acyclic Graph (DAG) – A graph containing nodes and edges that have a 

direction associated with every edge and there are no cycles (loops) within the graph. 

Discretization – The process of transforming a continuous variable into a discrete one 

through the division of a number line into discrete intervals (e.g., (-∞ - 0), [0 - ∞) where 

there is a cut-point or split point at the value of 0) 

D-separation – A set of rules for deriving conditional independence among random 

variables from a directed acyclic graph (DAG) where nodes in the DAG correspond to 

variables. 

Greedy Search – A method that always chooses the best model for expansion without 

the ability to back-track. Once a model cannot be improved (generate a higher score), it 

terminates. It is known to be an effective search method due to its speed, but it is prone to 

reaching local maxima. 

Inference – The application of a model (e.g., rule model) to a set of samples (e.g., 

patients) for the purpose of assigning a target value (the consequent) to each sample 

(prediction). 

Local Bayesian Structure – A Bayesian network which, given a set of variables, can 

have a reduced number of parameters within the network by considering local contextual 

independencies (e.g., variable-value independencies). 

Markov Blanket – A set of variables, that given the target variable, and that set of 

variables, all other variables in the network are d-separated from the target. Those 

variables included within the Markov Blanket of a target node are: The parents of the 

target, the children of the target, and the parents of the children of the target. 

Markov Condition - A node is conditionally independent from its non-descendents 

given its parents within a Directed Acyclic Graph (DAG). 

‘Omic’ biomedical data – While there are many other types of ‘Omic’ data, for the 

purposes of this thesis, when we reference ‘Omic’ data, we are specifically referring to 

proteomic and genomic data, which will be comprised of Whole Sample Mass 

Spectrometry and Gene Expression Data respectively. All samples within each dataset are 

from human subjects and have, as their target class (to be predicted), either a type of 

disease or normal.  

 xxi 



Parallel Greedy Search – Uses greedy search to efficiently search a larger number of 

possible structures.  By forcing multiple seed structures that are each unique (as suppose 

to only the highest scoring one of greedy search), it explores a larger set of possible 

structures than greedy search while utilizing the speed of greedy search for each seed 

model. 

Rule – A propositional rule of the structure, IF <Condition> THEN <Assertion>.  The 

condition contains variables with their respective values joined together using a 

conjunction (AND, OR, NOR, etc.).  The assertion consists of a single variable (the 

target) and a specific value. 

Rule Model – A set of rules grouped (OR’d) together to be used for prediction on a set of 

samples. 

Sufficient – The ability to satisfy a requirement.  This also means it does not have to be 

the only method possible, just one that can fulfill the requirement. 

Variable – A feature within a dataset corresponding to a specific measurement. For 

‘Omic’ data, this can be either a mass-to-charge (M/Z) for proteomic data, or a specific 

gene for Genomic data. 
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1.0  INTRODUCTION 

The human body has some of the most complicated mechanisms for homeostasis and disease, 

among all flora and fauna. Doctors and scientists routinely analyze various components of the 

body to diagnose and/or give a prognosis based on clinical observations (variables). Within the 

past decade, genomics — the study of gene activation, and proteomics — the study of protein 

expression, have been utilized extensively to discover common patterns between people who 

have the same disease. This has been difficult due to the large number of variables and the 

orders-of-magnitude smaller number of samples being used in analysis [1, 2]. However, even 

with these challenges, the discoveries made have advanced our understanding of protein 

structure, disease progression and pathways, and have provided newer non-traditional diagnostic 

tests [2-10]. These advances have developed into potent applications like screening tests for 

prostate cancer, understanding the genetic differences between breast cancer types, and the 

tracing of hereditary genes influencing cancer [10-13]. 

 These complex genomic and proteomic data, which are often referred to as ‘Omic’ 

biomedical data, present many unique challenges toward building predictive models for disease 

that are not only robust in terms of classification performance such as accuracy, but also 

understandable to their users, the biomedical scientist and the clinician. The latter, 

understandability of a model, can be easily accomplished by the use of rule-based models, which 

are a collection of conjunctive statements of the form IF <antecedent>-THEN <consequent> 
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with appropriate measures of confidence attached [14-16]. Each conjunctive rule has a set of 

variable-value pairs conjoined using an AND, as the antecedent, and a single target value as the 

consequent. Such rule models have been used previously in the analysis of proteomic data from 

Amyotrophic Lateral Sclerosis, a degenerative neurological disease [2, 6], as well as in 

knowledge discovery efforts in the domains of protein crystallization and blood pathogen 

prediction [17-20].  

The crucial notion of “understandability” of rule-based models has promoted extensive 

research in the field over the past decades, leading to development of sophisticated rule-

generation methods, such as inductive Decision Trees [21] and Rule Learners [2, 22, 23].  These 

computational methods have not only increased the accuracy of the learned models, but also 

have also helped detect significant variables that are indicative of disease states [2, 18, 23-25].     

1.1 PROBLEM DESCRIPTION 

The development of robust and at the same time understandable classification models is non-

trivial. It can be highly rewarding since knowledge extraction is easier when using 

understandable models like IF-THEN rules as compared to more complex models like Support 

Vector Machines which have been previously translated into conjunctive rules for interpretability 

[14, 26]. Researchers have focused on many different aspects of rule learning, including 

efficiency of rule generation [27], increasing performance via addition of different preprocessing 

techniques [28], and encapsulating knowledge by the creation of knowledge bases which store 

rule models [29-35]. However, in all these efforts, the use of a non-probabilistic measure of 

uncertainty complicates inference [2, 14, 18, 25, 36-40]. 
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For inference, a rule model, a collection of rules grouped together for a classification task, 

assigns a prediction (e.g., a disease state) to a set of descriptors for a sample (patient) by 

matching these to the proposition within an antecedent of a rule and assigning the consequent. 

However, this can result in a conflicting prediction (e.g., two rules with different consequents 

may apply to the same sample), and must be resolved. Since the measures of uncertainty for the 

rules are non-probabilistic, conflict resolution (deciding which of the conflicting rule(s) are to be 

applied) is often heuristic-based [2, 14, 38]. 

Rule learning from data also requires discrete variables. Specifically, both the antecedent and 

the consequent utilize discrete variable-value pairs. However, the observed variables within 

‘Omic’ biomedical data are continuous. A method is required to transform the continuous 

variables into discrete variables. This process, known as discretization, is a requirement for any 

method that attempts to perform rule learning on ‘Omic’ biomedical data. Often, discretization is 

treated as a preprocessing step and thus ignored by rule learning algorithms; however, it has been 

shown that discretization interacts with classification algorithms, and thus is important to 

consider when developing a rule learning method [28, 41-49]. 

The goal of producing a robust classification rule model (models for predicting the class, 

such as disease state, of samples or patients) from ‘Omic’ biomedical data involves considering 

the following four rule characteristics which will be referred to as the 4 R’s: 

1) a Rule’s discrete value within the antecedent. This means that the rule learning method 
must be able to convert continuous values of variables into discrete values, either using a 
preprocessing method, or within the rule generation method itself. 
 

2) Rule conflict resolution mechanism, which needs to be robust; rules might conflict in 
their prediction and the resolution of these conflicts must be a well defined mechanism 
using proper measures of confidence in the correctness of a rule (certainty factor) [14, 16, 
18, 19, 24, 37, 38, 40, 50]. 
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3) Rule over-fitting; given a specific set of samples, rule generation might focus on a 
specific class of samples due to an imbalance and thus generate rules with high coverage 
of one class of samples, while not covering (matching the condition) for the other classes 
[1, 17, 19, 51]. 
 

4) Rule sparseness, which is the variable to sample size imbalance; this can cause difficulty 
in learning a generalizable model [16, 52-54]. 

 

Given the 4 Rs mentioned above, the central question is: can we develop a framework for 

rule learning that addresses each of the Rs when analyzing ‘Omic’ biomedical data?  

1.2 THE APPROACH 

To develop a framework that addresses the 4 Rs, two components must be developed in tandem: 

discretization and rule learning. Researchers have approached the latter component by combining 

rule learning with other classification algorithms through either the expansion and revision of 

rule models [16, 55], or an alternative rule generation mechanism [56]. The former has been 

developed as a separate preprocessing step from the classification algorithm [43, 46-49, 57-61].  

For the rule learning component of the framework, researchers have utilized expansion 

and revision of the rule models to improve classification performance; however, it still suffers 

from the need for a seed or starting rule model [16, 40, 54, 55]. 

The development of an alternative rule generation method either utilizes an additional 

method that assists the standard rule learning method or changes the methodology for rule 

generation completely [16, 56]. These two approaches to alternative rule generation are defined 

as hybridization.  
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The overall goal of this dissertation is to create a hybrid method that addresses some 

characteristics of rule learning for ‘Omic’ biomedical data, which include: the sparseness of 

‘Omic’ biomedical data, over-fitting caused by the sample to variable imbalance, and the use of 

probabilities as certainty factors for rule inference and conflict resolution [56, 62-64]. Though 

hybrid rule-learning algorithms have been previously developed, there remain significant 

difficulties in translating the alternative method into rules, which limits their application. 

Specifically:  

a) does the new classification model directly translate to the semantics of a rule? 

b) does the uncertainty of a rule (certainty factor) reflect the model from which the rule 

was generated?  

This research describes a framework called the Bayesian Rule Generation Framework 

(BRGF), which attempts to combine a probabilistic method, specifically Bayesian networks (a 

probabilistic representation of variables as a directed acyclic graph where the directed arcs 

represent probabilistic dependencies between variables), with both discretization and rule 

generation. The outcome of this combination will be an ability to generate a model that is 

probabilistically optimized for rules and the ability to address the 4 Rs listed above. For the 

development of a Bayesian network, we will focus on two specific types of structures: a 

constrained global structure, which is a model that only allows observed variables to be parents 

of the target (directed arcs connecting a variable to the target) and combining the variable-values 

of the parents combinatorially, and local structure, which is a general form of the Global 

structure since it allows for contextual (variable-value) independencies in the parameterization 

though allowing variables to be only parents of the target [56, 63, 65-70].   

 5 



This work is organized in two parts: first, we determine if using the BRGF is sufficient 

for generating probabilistic rules, and second, we evaluate the performance of the BRGF and 

compare it to the performance of other non-hybrid rule learning methods. 

1.2.1 Thesis 

First, it is my hypothesis that using the BRGF is sufficient to generate probabilistic rules. 

Second, it is my hypothesis that using the BRGF leads to increased classification 

performance over standard rule learning methods. 

  Based upon the above theses, four specific claims are made, all of which are strong. 

1. Bayesian Discretization and Bayesian Rule Generation is sufficient to generate 

probabilistic rules. 

2. Under controlled conditions (constrained Bayesian networks), Bayesian local 

structure increases classification performance (on average) over Bayesian global 

structure for rule generation. 

3. Under controlled conditions (constrained Bayesian networks) when  combined with 

Bayesian rule generation methods, Bayesian discretization produces equivalent or 

greater performance (on average) than Fayyad and Irani [49] discretization (the de 

facto standard for discretization). 

4. Under controlled conditions (constrained Bayesian networks), the BRGF leads to 

increased (on average) classifier performance over traditional rule learning methods. 
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1.3 SIGNIFICANCE 

Although development of rule-base systems has led to biomarker discovery in many diseases 

such as lung cancer, hepatocellular carcinoma, and amyotrophic lateral sclerosis, the use of non-

probabilistic rules (rules developed deterministically with non-probabilistic certainty factors) 

have hindered the ability to address the 4 Rs.  In this work, I demonstrate that it is possible to use 

the BRGF to generate probabilistic rules that address the 4 Rs. 

 Using the BRGF, it is now possible to develop a specific type of Bayesian network that is 

optimized for the purposes of rule generation. It also affords additional advantages in terms of 

increased performance over standard rule generation techniques while using fewer overall 

variables, thus providing a more parsimonious list for further investigation by the scientist.  

The incorporation of a probabilistic model for rule generation allows for evidence 

chaining and hence, generalizes the applicability of BRGF for modeling data from any domain of 

interest.  Furthermore, it facilitates the incorporation of priors into the modeling framework. For 

example, using a probabilistic model, it is possible to use expert opinion to give priors of genes 

associated with a target disease and learn a model that accounts for these priors.  

Probabilistic rule learning is a general technique that has the advantages of a probabilistic 

model with the understandability of rules. This allows for the application of probabilistic rule 

learning to other fields such as economics and protein crystallization, which also have issues 

with complex data and where prior information is available but under-utilized for modeling 

purposes. 
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1.4 DISSERTATION OVERVIEW 

Chapter 2 provides background information on discretization, machine learning methods used in 

this work, and relevant prior work on the use of discretization and machine learning on 

biomedical data. Chapter 3 describes the Bayesian Rule Generation Framework including the 

different discretization methods, Bayesian network structures, and search strategies that are 

available, and how the BRGF is going to be evaluated. It also gives an example of how the 

framework can be applied to a biomedical dataset. Chapter 4 shows that the BRGF is capable of 

producing probabilistic rules (claim1). Chapter 5 shows the performance of the BRGF on 

biomedical genomic and proteomic datasets, comparing it not only to different algorithms within 

the BRGF, but also to two state-of-the-art rule learning algorithms (claims 2, 3, and 4). Chapter 6 

presents conclusions with discussions on further development of the methods presented in this 

thesis. 
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2.0  BACKGROUND 

This chapter provides the background and concepts required for generating probabilistic rules from 

Bayesian networks learned from biomedical data. Section 2.1 explains the types of biomedical data 

that will be used and some of the intricacies involved in acquisition and analysis. Section 2.2 reviews 

many of the critical machine learning concepts that were used to formulate the hypotheses tested in 

this research.  

2.1 HIGH-DIMENSIONAL ‘OMIC’ BIOMEDICAL DATA 

High-dimensional ‘Omic’ biomedical data offer the opportunity to investigate many aspects of 

biology concurrently.  This allows for exploratory studies to query multiple types of variables 

(e.g., genes or proteins) in a single experiment allowing for a large increase in speed of 

knowledge discovery.  They also offer the ability to investigate many variables in a cost-

sensitive manner.  

Both types of ‘Omic’ biomedical data used within this thesis share three similar 

challenges: the sparseness of the data, the ratio of variable size to sample size (which is several 

times greater than one), and the variability of measurements across samples caused by both 

experimental and biological variation. Given these challenges, however, both genomics and 

proteomics offer the ability to screen many samples for multiple biological indicators (e.g., in 
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genomics, gene activation level and in proteomics, relative protein expression level) in a high-

throughput fashion producing a wealth of data that can be used for prospective or exploratory 

analysis. The commonalities between genomics and proteomics continue beyond challenges and 

advantages; there are also similarities in the processing and acquisition of data [29, 30, 71-76].  

 

1) Sample Acquisition 

Sample 1 

Sample n 

Sample 2 

Sample n-1 

… 
2)Sample 
Processing 

3)Data 
Acquisition 

4)Data 
Processing 

Data Ready to 
be Analyzed 

 

Figure 2-1. Generic workflow for the generation of biomedical 'Omic' data. 

As seen in Figure 2-1 there are four areas that, while common in terms of the overall 

process, differ depending upon whether the goal is to produce data from genomic or proteomic 

platforms. The next two sub-sections (Section 2.1.1 and Section 2.1.2) discuss some of these 

steps within each area of the workflow with respect to genomic and proteomic data generation. 

 10 



2.1.1 Genomic Data Generation 

Within genomics, there are multiple types of data that can be generated, including “knock-out” 

data (silencing of a specific gene then measuring outcome) and gene microarray expression data 

[77]. For the study of disease, particularly to discover those genes that are correlated with the 

expression of disease, generation of gene microarray expression data is the preferred method due 

to its ability to measure many variables in parallel in a high throughput fashion [33, 74, 76, 78-

88]. Focusing the analysis on this highly used data-type can be advantageous; however, there are 

many different methodologies for data acquisition including serial analysis of gene expression 

(SAGE), oligonucleotide arrays, and cDNA arrays, all of which provide the opportunity to 

survey many different genes in a single experiment [29, 30, 71, 73, 74]. Depending on the 

methodology used to acquire the data, certain processing procedures are required before analysis 

(e.g., logarithmic transformation to account for fold change within cDNA arrays). We will 

discuss cDNA fluorescence microscopy in the following paragraphs as an exemplary technique 

for genomic data generation. 

The sample acquisition component of a genomic experiment usually involves the biopsy 

of a patient’s tissue (e.g., breast, liver, brain, etc.), which is then processed for the mRNA it 

contains. Location in the body and time at which the biopsy is taken play a critical role in the 

results obtained from downstream analysis. Depending on the disease, e.g., cancer, the area of 

biopsy, whether it is near the margin (change point between cancerous and non-cancerous cells) 

or in the center can affect which genes are active. In general, two biopsies are taken from a 

patient—one diseased and one non-diseased—and both are used in later steps [8, 9, 73, 74, 84, 

86, 87, 89]. 
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After the sample has been acquired properly (e.g., the cancer biopsy acquired is actually 

from cancer tissue, and the normal biopsy is from normal tissue), the next stage is sample 

processing, where the mRNA is extracted, isolated, purified, and then reverse transcribed to 

create cDNA with fluorescent tags. For DNA microarray analysis, specifically those that use 

comparative fluorescent microscopy, the diseased biopsy sample mRNA usually has one color 

fluorescent tag (e.g., red) associated, while the other mRNA from the non-diseased biopsy 

sample has a different color associated with the cDNA (e.g., green) [7, 29, 30, 71-75, 79, 81, 87, 

88, 90-94]. Once the respective samples are tagged with fluorescent markers, which in this case 

is green for healthy and red for diseased, the samples are ready for data acquisition. 

This process is repeated for many patients and thus often requires automation; however, 

data acquisition is not complex in the sense of the mechanical process. Robotic machines can 

spot thousands of samples at a single time; however, one component of data acquisition is critical 

to the success of future analysis: the choice of which genes to probe for activity. The choice of 

the probes (selected genes) for the experiment represents a significant strength of high-

dimensional analysis [30, 71-73, 75, 90]. In Figure 2-2, we see the result of the data generation 

step. Within Figure 2-2, we see the relative intensities (red lower expression, green higher 

expression than baseline) and the differentiation between the low and the high. The next step is 

data processing.  
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Figure 2-2. An example of the fluorescence of a genome microarray experiment result adapted from [88]. 

Data processing for cDNA fluorescence microscopy involves two main steps: 

normalization of intensities and the validation of the data. The latter refers to the process of 

comparing genes between the biopsies that are non-correlated with the disease (e.g., house-

keeping genes). Since these genes should be similar across diseased and non-diseased tissues, 

they should be very close in fluorescence intensity, and they can be used to measure the variation 

within the experimental procedures. If there is a detected difference within the validation genes, 

the data is discarded, and the data generation process starts from the sample acquisition step 

again. Given that the samples have been validated, a correction is necessary for the fold-change 

which can occur during the comparison of intensities. If we have Sample A with an intensity of 4 

units while Sample B has an intensity of 2 units, the fold change is either 2 or ½ depending upon 

which direction is measuring. This fold change can be difficult to handle especially when 

comparing many different samples. One method that is commonly employed is to take the log2 of 

ratios that way the numbers of the ratio would be 1 or -1 respectively thus normalizing the scale 

and allowing simpler comparisons [74].  
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While what has been listed in the previous paragraphs is representative of the 

methodology used, there are many different variations that can be employed. For the purposes of 

this thesis, we will assume that all genomic data is from cDNA microarrays and have been 

processed through to step 5 in Figure 2-1. 

2.1.2 Whole-Sample Proteomic Mass Spectra 

While genomics offers insight into which genes are activated within a cell, often it is difficult to 

obtain samples due to the invasiveness of the biopsy procedures (e.g., brain tissue). The final 

product of the genes (proteins), will also not necessarily be known given that most proteins have 

post-translational modifications that affect the structure beyond what can be predicted from the 

gene sequence [4]. Ultimately, proteomics studies the form (structure), function, and expression 

of proteins [95]. It allows a scientist to understand the interaction of a gene on the mechanistic 

level and further understand the complexities that can be associated with disease [10]. There are 

many different forms of proteomic analysis, e.g., Whole-sample, Fractionated Sample, and 

tandem Mass Spectrometry (MS/MS). They all follow the same high-level steps in Figure 2-1. 

For the purpose of this thesis, we will focus on whole-sample mass spectrometry, which is a very 

useful technique for survey because it can be performed on easily acquired body fluids (blood 

serum, nipple aspirate fluid, cerebrospinal fluid, etc.) [12, 96].  

 Although whole-sample mass spectrometry offers many advantages, including higher 

throughput (faster sample acquisition and preprocessing for data acquisition [12, 96]), it has 

other challenges that occur throughout the steps in Figure 2-1 including sample preparation and 

preprocessing that can make the overall analysis more difficult [1, 6, 10, 97-99]. These 

challenges include an increase in noise due to location in the body from where the sample is 
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taken (Step 1, e.g., disease is in organ yet samples are from blood serum), complex processing of 

whole sample (Step 2, e.g., desalting and removal of most abundant protein, etc), complex 

molecular interactions when acquiring spectra (Step 3, e.g., matrix thickness, protein/protein 

interaction, partial ionization, more than one peak one protein relationship), and complex post-

processing (Step 4, e.g., spectra alignment, total ion current normalization, baseline subtraction, 

etc.) [1, 97, 100].  

 For sample acquisition in whole-sample mass spectrometry, one can use a surrogate fluid 

(CSF, blood serum) instead of a tissue biopsy; however, it must first be proven through analyses 

(Western blotting, immuochromatography, etc.) that surrogates such as these contain markers for 

the diseases being investigated, as done in [4, 6, 9, 101-104]. Once the surrogate fluid has been 

extracted for analysis, the next step (Step 2 in Figure 2-1) requires processing of these samples. 

Biological samples often contain impurities (e.g., salt) and non-disease specific proteins 

(e.g., hemoglobin), as well as having massive concentrations of other proteins like albumin. 

Procedures such as desalting, and removal of high-concentration peptides/proteins is essential for 

detecting the less-concentrated proteins. Depending on the method used for producing the mass 

spectra, Surface Enhanced Laser/Desorption Ionization Time-of-Flight Mass Spectrometry 

(SELDI-TOF MS) and Matrix Assisted Laser/Desorption Ionization Time of Flight Mass 

Spectrometry (MALDI-TOF MS), certain preprocessing steps are more important than others. 

MALDI-TOF requires more sample preprocessing including desalting and removal of the most 

concentrated proteins [105], while SELDI-TOF allows for less sample processing [96, 102, 106, 

107]. For the purposes of this thesis, we will analyze both SELDI- and MALDI-TOF data, and 

we will assume that all of the aforementioned procedures (desalting, removal of the most 

concentrated protein) that are relevant to the specific platforms have already been performed.  
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Data acquisition, which is the next step (Step 3 in Figure 2-1), involves preparing the 

sample for the mass spectrometer as well as optimization of the mass spectrometer experimental 

settings; it has multiple requirements. The experimenter must choose not only the optimal 

substrate to mix with the protein in order for transferring the laser power to the molecule for 

ionization (matrix), which can be very different depending on the method (e.g., SELDI or 

MALDI), but also the type of machine (e.g., Ciphergen Chip Reader, MALDI-TOF mass 

spectrometer). Within these machines, there is also the choice of laser power, which is critical in 

the ionization step. If the laser power is too high, the proteins will be shattered apart by the 

energy in the laser, but if it is too low, the amount of energy transferred upon impact of the laser 

would not be enough to ionize a large portion of the proteins. For the purposes of this thesis, we 

will assume that all mass spectrometry data was generated, which consists of a set of mass-to-

charge (m/z) ratios along with the intensity of that peak, from an optimized protocol for the data 

SELDI-TOF MS 

MALDI-TOF MS 

Figure 2-3. Two sample mass spectrometry equipment for SELDI-TOF and MALDI-TOF MS. 
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acquisition including experimental choices of matrix type, laser power, etc.  

An important aspect of mass-to-charge ratios is the many-to-many relationship between 

m/z and protein (one protein can produce many m/zs and one m/z can represent many proteins).  

This is due to the ionization of a protein by the laser. When ionized, it is possible that a protein 

can take multiple charges (1, 2, 3) of which depending on the charge, it causes the ionized 

protein to behave differently when acquiring the spectra.  A protein that has a molecular weight 

of 10,000 daltons with a double charge can appear at 5,000 m/z while if it has a single charge, it 

would appear at the 10,000 m/z peak. From this behavior, it is possible to have a peak represent 

multiple proteins by having two proteins, one with a molecular weight of 10,000 daltons and 

carrying a double charge while another with a molecular weight of 5000 daltons and carrying 

single charge.  Both proteins would appear at the m/z peak of 5,000.   

 Given that we have acquired the spectra through an optimal protocol (Step 3), we proceed 

to data preprocessing (Step 4) which is essential for further analysis. This step can include 

various mathematical techniques such as total ion current normalization, baseline subtraction, 

spectra alignment, peak height correction via square root transformation [4, 105]. Baseline 

correction and spectra alignment are critical to the analysis of this data and are generally a 

requirement. Baseline correction is necessary since the base concentration of protein can be 

different per sample, and makes comparison across samples, specifically the relative intensities, 

error-prone unless made roughly equivalent. Spectra alignment allows for the correction of the 

random drift that occurs in all time-of-flight spectroscopy experiments [108, 109]. If there were 

no random drift, technical replicates would look the same across spectra (the intensities might 

vary, but each m/z would align). The goal of alignment is to correct for this drift, such that the 

m/z values measured across different samples correlate [108-110]. A program that conveniently 
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allows for all of these data processing techniques, SpecAlign©, was used to process all of the 

spectra. We performed baseline correction and spectra alignment using SpecAlign©, with the 

default parameters for baseline subtraction, and the default parameters for the Recursive 

Alignment via Fast-Fourier Transform (RAFFT). Proteomics offers a significant opportunity: if 

one can analyze these spectra for significant peaks (i.e., m/zs), it can help direct further 

investigation (eventual sequencing if necessary [111]) and speed up the proteomic biomarker 

discovery process.  

 

 

Figure 2-4. Sample Spectra of both SELDI and MALDI-TOF techniques prior to baseline correction. 

 In this thesis, all data will either be Genomic Microarray Expression data or whole 

sample MALDI-/SELDI-TOF Proteomic Mass Spectra, which having been processed through 

steps 1-4 in Figure 2-1, are ready for analysis. There are many methodologies one can employ in 

the analysis of these data, including machine learning techniques that aim to model the data. If 

one can model ‘Omic’ data effectively, new diagnostics, molecular understanding, and disease 
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differentiation are possible. The next section, Section 2.2, reviews the pertinent techniques used 

to generate models from these ‘Omic’ biomedical datasets within this thesis. 

2.2 MODELING OF BIOMEDICAL DATA 

Some of the earliest modeling systems applied to biomedical data used propositional rules, IF 

antecedent THEN consequent, derived directly from expert knowledge. The antecedent consists 

of one or more variable-value pairs (e.g., variable A >= 10) joined via some conjunction (e.g., 

AND, NOR, XOR, etc), while the consequent usually has a single variable-value pair denoting 

the target value (e.g., CLASS = SICK). These early rule-based systems related different experts’ 

opinions (a rule/hypothesis) along with some measure of how sure the expert was of the 

knowledge (certainty factor)[112, 113]. As more knowledge/expert opinions (additional evidence 

on existing rules) are added to the system, the certainty factors are updated. Some of the earliest 

implementations of these rule base systems used a certainty factor that had a range from -1 to 1 

where -1 related to the belief of the expert that the rule proposed is certainly false, while 1 

represented the expert’s belief that the rule is certainly true [1-3].  

A system developed at Stanford University, called DENDRAL, often acknowledged as 

the progenitor of many rule-base systems including MYCIN and Prospector (discussed later), has 

two main parts, Heuristic Dendral [114] and Meta-Dendral [112]. Heuristic Dendral uses a 

knowledge base of chemistry and data from a system that measures chemicals (e.g., NMR, IR, 

Liquid Chromatography) to propose possible chemical structures that explain the data. Meta-

Dendral takes possible chemical structures and the data, and tries to generate hypotheses that 

represent the relation between the chemical structure and the data (e.g., the structure causes the 
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data to exhibit a specific pattern) [112, 114]. Both of these systems work together to refine the 

knowledge base after every hypothesis generation, producing better possible chemical structures 

in future analyses.  This is just one example system that utilized rule generation and rule 

inference for knowledge acquisition. 

The system MYCIN [115] performs diagnoses of bacterial infection and recommends the 

antibiotic along with the dosage. The expert uses a simple interface answering yes/no questions 

through text prompts to receive the treatment recommendations. If an expert feels the diagnosis 

is wrong, they can modify the knowledge base by modifying the stored certainty factor. There is 

also the capability to add rules to the knowledge base. One of the main components of MYCIN is 

the chaining of rules that allows for inference on the final target given the input using certainty 

factor combination, a complex process that has a series of equations depending on the 

relationship between the rules and the antecedents in each rule. Research has shown that the 

MYCIN certainty factor implementation violates some of the tenets of probability including 

some independence assumptions, and Heckerman [38] showed that a transformation into a more 

probabilistic measure (e.g., likelihood ratio), allows for more flexible updating of certainty factor 

as well as combination of multiple rules without violation of the laws of probability. 

Within a few years of the deployment of MYCIN, a probabilistic rule-based system was 

developed at SRI International called PROSPECTOR [116] to act as a consultation system to 

assist geologists working in mineral exploration [117]. It created semantic networks (where each 

connection between concepts and resultant conclusions had a specific meaning) using the 

probabilities assigned by the expert. It was mainly used in prospecting for ore deposits by 

comparing the current data with the stored knowledge base. It had the ability to ask for more 

information if needed and suggested which model is best suited and where the best drilling sites 
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might be within the geological data given to the system. These systems, along with other expert 

based systems such as CASNET, had difficulty keeping the model coherent since these expert-

derived concepts were entered individually by experts [118]. 

Expert Derived Model 

New Data Inference 
Engine 

Refine 
Model 

 

   Figure 2-5. A sample methodology of how inference and refinement proceed for Expert derived models. 

In all of the previously mentioned systems, a critical component is the inference engine 

that applies the rules in the model to a new unseen data to make predictions. In the case of rule-

based systems, this requires the matching of the variables and their values to the rule’s 

antecedents. If any variable in the rule’s antecedent is not in the new data, then the rule would 

not be applied. Given that a set of rules applies to a given test case, a conflict resolution 

mechanism is employed to “choose” which assertion from the set of assertions contained within 

the rule set would be appropriate to apply. For example, let us assume that a test case has two 

rules that apply to it, one where the consequent is Class=Sick, while the other rule has the 

consequent Class=Healthy. The rules’ certainty factors (CF) are 0.51 and 0.49 respectively. 

Using a majority conflict resolver, it would select the consequent Class=Sick as the correct one 

for that particular sample. There are also other ways to perform inference wherein a weighted 

voting mechanism can be employed for each prediction of a test case.  The rules whose 

antecedent matches the test case have their consequent weights calculated combining the CFs of 

those rules whose consequent match. Then majority vote is utilized for class prediction. 
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While some of these systems that are still in use today have been shown to be very 

effective, they were acknowledged to be limited by the requirement of expert input in the 

development of the knowledge base [113, 119]. Therefore, the use of machine learning 

techniques to generate the model for classification has become more popular, particularly in the 

case of exploratory studies, where it is incredibly difficult to extract expert opinions about the 

thousands of variables that can be measured. The next section, Section 2.2.1, discusses some of 

the common components of machine learning for model generation. 

2.2.1 Machine Learning for Rule Model Generation 

Some important common components of machine learning for rule model generation are as 

follows: 

1) Variable Selection and Transformation 
2) Model (Hypothesis) Generation  
3) Application of Model (Inference) 

 
The next sections (Sections 2.2.1- 2.2.5) describe these components with respect to the rule 

models discussed previously.  

2.2.1.1 Variable Selection and Transformation via Discretization 

Although many possible methods exist for the selection and transformation of variables, one 

transformation that is required for the learning of propositional rules is the conversion of 

continuous variables into discrete variables, which can be performed by discretization. The 

process of discretization transforms a continuous-valued variable into a discrete one by creating 

a set of contiguous intervals (or equivalently a set of cut-points) that together span the range of 

the variable’s values. The set of intervals produced by a discretization algorithm is called a 
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discretization model or simply, a discretization. Discretization algorithms can be broadly 

categorized into two types: unsupervised methods, which do not use any information about the 

target variable (class values of samples), and supervised methods, which do. Examples of 

unsupervised methods include equal-width discretization which divides the range of values of a 

variable into a user specified number of intervals, and an equal-frequency method that takes as 

an input a user-specified number of intervals and divides the samples up such that there are an 

equal number of samples in each interval. Compared to unsupervised methods, supervised 

methods tend to be more sophisticated and usually yield better discretization from the data 

automatically. Most supervised discretization methods utilize a score to measure the goodness of 

a set of intervals (where goodness means how well the discretized variable predicts the target 

variable). 

Unlike unsupervised discretization, supervised discretization has the capability of 

determining that a variable has no relation to the target. This transforms a continuous-valued 

variable into a discrete one by creating a single interval from (-∞ to ∞). These variables, which 

do not receive even a single cut point, are eliminated since all information is “smoothed” out by 

representing it as a single interval. This enables irrelevant variables, and hence noise in the data, 

as determined by the scoring metric, to be removed [46, 59]. This is especially critical in 

genomics and proteomics where many of the variables (e.g., genes and mass-to-charge ratios) are 

irrelevant to the classification problem. Therefore, the application of discretization to biomedical 

data can have multiple benefits (transformation and selection), and choosing a specific 

discretization method impacts the development of a classification model directly. 

A second way to categorize discretization methods is as univariate and multivariate 

methods. Univariate methods discretize a continuous-valued variable independently of all other 
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predictor variables (observed variables that are not the target) in the dataset, while multivariate 

methods take into consideration the possible interactions of the variable being discretized with 

respect to the remaining predictor variables in the dataset. Univariate techniques have a distinct 

advantage of running time when compared to multivariate techniques (one variable at a time vs. 

multivariate combinatorics), and given that the ‘Omic’ biomedical datasets we are using have 

large numbers of predictor variables (> 5000), we have restricted this work to only univariate 

discretization methods. The net effect of these considerations is that, for the purposes of this 

thesis, we consider only supervised, univariate discretization algorithms. 

2.2.1.2 Model Generation  

When generating a rule model for classification, many permutations and combinations of 

variable-values are possible (e.g., if selecting a subset of variables, many different subsets can be 

possible). In order to build a classifier (a model used for classification), often an intelligent 

search algorithm (a basic definition of artificial intelligence [120]), which looks for the “best” 

model (according to some score or heuristic), is necessary to find an optimal model given the 

conditions specified by the algorithm (called the algorithm’s bias [121]). This search for a single 

best model is called Model Selection. For the experiments listed in this thesis, we have used only 

algorithms that perform model selection.  

2.2.1.3 Performance and Heuristic Measures 

The methodology of choosing an “optimal” model typically involves some measurement of 

“fitness,” which tries to encapsulate how well the model fits the underlying distributions of the 

data. This concept can be captured in a myriad of ways. A common and practical method is to 

choose the parameters of model such that the model predicts well on test data. These 
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performance measures, such as Accuracy, Balanced Accuracy, Relative Classifier Information 

[122] all require inference to be performed. This means that the learned model has to be applied 

to a test set of data to gather the unbiased estimates of the performance measures mentioned 

above.  

While the previously mentioned measures require inference on a test set (a set of samples 

generally different from those that the model was learned on selected for testing the accuracy of 

the model) it is possible to utilize a measure that calculates how well the model fits the data 

without performing classification. A very popular method called K2 [70] calculates a score based 

on Bayesian principles that allows the user to estimate how well the model explains the data. K2 

makes several assumptions to compute the score efficiently (which I shall describe in later 

sections), but it allows one to select models with minimal computational cost and without the 

need to split datasets into training and test subsets.  The K2 score has been used by many 

researchers for measuring the goodness of a model [43, 63, 67, 68, 70, 119, 123-126]. 

In this thesis, we will use both the performance measures and the K2 score, for model 

selection. Further details are given in Sections 2.2.4 and 3.3.4. 

2.2.2 Discretization 

There has been significant research into discretization methodologies leading to the development 

of such algorithms as Fayyad and Irani’s Supervised Minimum Description Length Principle 

Criterion (MDLPC) [49], which has become the de facto method [46, 127]. Although there have 

been subsequent developments, MDLPC remains the standard method. The data for a predictor 

variable (observed variable) X and target variable Z consist of a list of instances (samples) 

described by pairs of values: the value of the continuous predictor variable and the corresponding 
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value of the target variable. For example, suppose the target variable takes discrete values of 

either T or F as values, and the predictor variable is continuous. Then the data might be the 

following: ((2.3, T), (4.6, F), (1.5, T)). If we sort the list by the first term of each pair, we obtain 

a sorted list which, for this particular example, is the following: ((1.5, T), (2.3, T), (4.6, F)). The 

sequence S of the target values in the sorted list is “TTF”. The discretization algorithms typically 

partition S into a list of mutually exclusive and exhaustive subsequences of S. Thus, these 

algorithms consider only the order of the continuous variable’s values and not the distance 

between the values. 

MDLPC is a supervised discretization algorithm that uses the entropy minimization 

heuristic for recursively selecting cut-points in the range of a continuous-valued variable. For a 

variable X, given a sequence S and a cut-point C, the entropy E(C; S) of the partition induced by 

C is given by: 

 

1 2
1 2( ; ) ( ) ( )

S S
E C S Ent S Ent S

S S
= +

              
(1) 

 

where, S1 and S2 are the partitions of S induced by C, |S| is the cardinality of S and Ent(S) is the 

entropy of S. The MDLPC algorithm selects a cut-point C from all possible cutpoints that 

minimizes E(C; S) and then recursively selects a cut-point in each newly created interval in a 

similar fashion [49]. 

A criterion based on the Minimal Description Length Principle (MDL) is applied to 

terminate the recursion that creates the intervals. Recursive partitioning of a sequence S 

terminates if and only if: 
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Gain(C; S) is the information gain of partitioning S at the cut-point C and ki is the number of 

distinct values present in subsequence Si. Thus, in Equation 2, if the Gain on the left hand side is 

greater than the MDL value on the right hand side, cut-point C is accepted; otherwise 

discretization terminates for the subsequence under consideration. The MDLPC algorithm is one 

of the most widely used discretization algorithms in machine learning. 

There are also other discretization methods available including three unsupervised 

techniques (Gaussian, Equal Width, and Equal Frequency), however this thesis focuses on 

comparison of the three supervised techniques (those that utilize class information) since they 

have been proven to perform better especially on high-dimensional datasets [28, 46, 47, 49]. 

2.2.3 Rule Model Generation and Classification 

To discuss rule model generation and classification, first we introduce some terminology. A 

target variable (sometimes called the target) within the dataset is the variable that the researcher 

wishes to predict, e.g., the diagnosis of cancer would be considered the target variable. Rules are 

IF Antecedent THEN Consequent structures (IF-THEN) where the antecedent consists of 

variables and their associated values and the consequent is the target with a specific variable-
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value. A knowledge base is a set of rules (or a set of models) that have been validated or agreed 

upon and are used to further assist inference. A rule has an associated confidence measure called 

a certainty factor that represents how much support exists for that specific rule. The coverage of 

a rule is the number of samples from a dataset that match the variable values that occur within 

the antecedent of the rule. The inductive strength of a rule is the number of samples from a 

dataset that have not previously been covered by any other rule. A True Positive (TP) of a rule is 

a sample that matches both the antecedent and the consequent, while a false positive matches 

only the antecedent. A False Negative (FN) is a sample that matches the consequent but not the 

antecedent, while a True Negative (TN) matches neither the antecedent nor the consequent. 

Given these definitions, we will discuss some pertinent classification algorithms that have 

been developed from the need to analyze datasets that were either too large in terms of the 

observed variable size to acquire expert opinion, or exploratory, such that the expert may not 

have an opinion on what rules should exist. The following sections (2.2.3.1 and 2.2.3.2) describe 

two different rule learning algorithms, one that subsets the samples (patients) without 

replacement, and another that does sampling with replacement.  Sampling without replacement 

corresponds to a decreasing sample space (fewer samples) after every subset generation. 

Sampling with replacement allows a sample to be in multiple subsets creating an overlap in 

terms of samples within the subsets (coverage). 

2.2.3.1 Decision Tree for Rule Model Generation 

Decision tree algorithms use a sub-setting technique that splits the data by variable-values that 

optimize the tree according to different measures that are characteristic of the particular methods 

implemented (see Figure 2-6). Commonly, the entropy measure (Equation 3) is used such that 

every split (differing values of a variable) within a decision tree decreases the overall entropy of 
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the dataset with the goal of creating a tree that has the lowest entropy (smallest number of unique 

classes) [21, 118, 128, 129] given by the following equation: 

 

2( ) logt t
t

Entropy D p p=∑
  (3) 

where D is the data, t are the values of the target within the data and pt is the probability of the 

target having the value t. 

Rule Representation 
Rule 1: IF V1=C Then T=t 
Rule 2: IF V1=C Then T=f 
Rule 3: IF V1=D AND V2 = E Then T=t 
Rule 4: IF V1=D AND V2 = E Then T=f 
Rule 5: IF V1=D AND V2 = G Then T=t 
Rule 6: IF V1=D AND V2 = G Then T=f 

V1 

T T 

V1 

T V2 

T T

Rule Representation with T = {t,f} 
Rule 1: IF V1=C Then T=t 
Rule 2: IF V1=C Then T=f 
Rule 3: IF V1=D Then T=t 
Rule 4: IF V1=D Then T=f 

D 

D 

C 

C 

G E 

 
Figure 2-6. Decision tree and it’s rule representation. 

 

In Figure 2-6, we show two different decision tress and their rule representation with variables 

V1 that has values C and D, V2 with values E and G and target variable T which takes variable-

values of t and f. 

When building a decision tree, a histogram (or distribution) is created at each leaf node. 

This histogram is populated using the samples that match the variable-values contained in the 

path (from root to parent of the leaf) of the decision tree. It is then used to assign a probability 
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(or uncertainty) that a sample has a particular target value given the variables and their values on 

the path.  

A characteristic of decision tree algorithms is the ability to easily transform the decision 

tree model into a rule model. This is accomplished by traveling every path of the decision tree 

model going from root to leaf (where leaf is the target node) as seen in Figure 2-6. Most methods 

for transforming a decision tree into a rule model will choose one rule out of the many that have 

the same antecedent but different consequents for simplification of the rule model, e.g., either 

Rule 3 or Rule 4 in Figure 2-6 depending on which rule has more instances correctly predicted 

which is reflected in the histogram [128]. 

2.2.3.2 Rule Learner (RL) 

Sampling without replacement allows for sample space reduction, and for sparse datasets this can 

reduce the sample size to a point that any rules discovered might not have enough samples to 

have confidence in the statistics calculated [16]. One solution to this problem is sampling with 

replacement, where instead of removing the sample from the dataset once covered by a generated 

rule, one can mark a flag on the sample to denote that it has been covered. When calculating the 

number of samples that support a rule (inductive strength), if a sample that matches the 

antecedent of the rule has been previously covered, it is not included in the calculation, but it is 

used in the other statistics, such as positive predictive value, which can increase the statistic 

since previously covered samples are included in the cohort for calculation. Algorithms like 

MetaDendral [112, 113], and RISE [19] used this technique as well as some more complex 

learners such as Genetic Algorithms [54]. The MetaDendral algorithm and its descendant rule 

learning algorithm RL4 [20] have been used for knowledge discovery because of its applicability 

to both large datasets and small datasets [23]. 
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RL4, and its successor, RL [2, 6], which implements a method for decreasing database 

look-up for matching rules called breadth first marker propagation [27], have been implemented 

into a system called Heuristic Autonomous Model Building (HAMB) [17, 130, 131].  HAMB 

generates and test hypotheses automatically for knowledge acquisition and discovery. It was 

shown that this system’s use of rules allowed for ease of understandability by experts [17, 18, 20, 

23, 130, 131]. 

RL has a specific advantage with respect to rule learning due to its use of the Breadth 

First Marker Propagation (BFMP) algorithm [27]. This algorithm stores the data in a way that 

allows for fast and efficient look-up reducing the overall search time when adding conjuncts to 

the antecedent. To achieve this end, BFMP links a sample to its respective variable-values, and 

the variable-value to those samples that have it. This bi-directional look-up allows a linear 

increase in processing time as the number of samples increase as detailed by Aronis et. al. [27]. 

2.2.4 Bayesian networks 

Bayesian networks are Directed Acyclic Graphs that capture probabilistic relationships among 

variables, which can be used to perform probabilistic inference. The expression of uncertainty 

within these relationships has been proven beneficial in resisting over-fitting to the dataset 

(increasing generalizability) as well as uncertainty propagation [62, 63, 70, 132, 133]. In the next 

subsections we discuss how different Bayesian network models are represented and a principle 

used for calculating the probability of a particular model. We discuss Global Structure, Markov, 

and Local Structure (a generalization of the Global Structure) models (Sections 2.2.4.1-0). Then 

we discuss how a Bayesian network model is generated (Section 2.2.4.5). Finally we discuss how 

inference is performed with a Bayesian network once it has been created (Section 2.2.4.6). 
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2.2.4.1 Components of a Bayesian network 

 A Bayesian network uses a directed acyclic graph (DAG) and a parameter representation 

that represents the joint distribution over a set of random variables [63, 134]. A formal definition 

of a Bayesian network is a DAG constituting nodes and edges that when combined with 

parameters, represents the joint distribution over all the variables contained within the network. 

Specifically, Model B (Mb - a Bayesian network) contains a pair (Mb
G , Mb

Θ) that is a DAG, 

which represents all the variables and edges within X and a set of parameters that represent the 

Figure 2-7. A Hypothetical Bayesian Network [63, 124, 132]. 
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relationship between connected nodes. There is a node for every variable within X and there are 

edges (arcs) connecting them [63, 70, 124]. 

Terminology associated with Mb is defined as follows: any originating node that has one 

directed edge leading into another node is known as a parent (Xi  Xj, Xi is the parent of node 

Xj), while any node that is at the terminating end of an edge is known as a child (Xj is the child of 

Xi); all nodes disseminating from Xi (local – one edge, and remote – more than one) are also 

known as the successors or descendants of Xi.  

As seen in Figure 2-7, Bayesian network (BN), the variable History of Smoking is the 

parent of Chronic Bronchitis (CB) and Lung Cancer (LC), while Fatigue is the child of both CB 

and LC. In terms of descendants, Fatigue is a descendant of History of Smoking due to a direct 

path that exists between them (through CB or LC). A formal definition is: Xj is a descendant of Xi 

if, using the directionality of the edge, there is a direct path from Xi to Xj. 

The BN in Figure 2-7 utilizes independencies and dependencies between nodes to create 

a DAG. The graph, Mb
G utilizes the Markov Condition, which allows for the reduction of the 

complex joint distribution into components otherwise known as factorization. 

 

1 2 3 4 5 1 2 1 3 1 4 2 3 5 2( , , , , ) ( ) ( | ) ( | ) ( | , ) ( | )P X X X X X P X P X X P X X P X X X P X X=   (4) 

 

Equation 4 represents a factorization of the example BN in Figure 2-3. A more general form 

exists as, for any model with variables Y = {Y1,Y2,Y3,…,Yn}, the joint probability distribution can 

be factorized as [133-135]: 
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In Equation 5, the function parents(Yi) refers to the set of nodes which are the parents of Yi (arcs 

terminating at the Yi node). If Yi has no parents, i.e., the set of parents is null (Ø) and P(Yi | 

parents(Yi)) = P(Yi). A conditional probability table (CPT) is defined from each specific product 

in Equation 5, where for each variable Yi, each row would be a value of Yi and each column 

would be each unique state of parents(Yi) as seen in Table 2-1 for the variable Fatigue from 

Figure 2-7.  

2.2.4.2 D-Separation 

 

X Z Y Z 

Depending on how the BN is used, sometimes it is necessary to know which nodes (variables) 

are independent from each other. D-separation helps determine which nodes are dependent and 

which are independent. It can be defined as a set of rules that are used to determine conditional 

independence using three structures in a DAG: a collider (Figure 2-8C) or V structure, a non-

X Y 

X Y 

Z 

X Y 

Z 

A 

B 

C 
D 

Figure 2-8. Some of the different graphs possible between three nodes X, Y, and Z. 
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collider (Figure 2-8A) or linear structure, a Descendant (Figure 2-8B) where X and Y are 

descendents of Z, and a unconnected DAG where Z, X, and Y have no connection and can thus be 

said to be independent (Figure 2-8D). We can also define D-separation using the Markov 

condition, which states that a node is conditionally independent from its non-descendents given 

its parents within a DAG. We will use Figure 2-8 to illustrate some principles of D-separation. 

Using Figure 2-8A-C, the rules of D-separation are as follows: If we consider all paths from X to 

Y, X is D-separated from Y given Z (X and Y are conditionally independent given Z): if and only 

if (iff) the paths that connect X to Y meet head to tail at Z (Figure 2-8A), iff all paths are blocked 

by Z if the edges meet tail to tail at Z (Figure 2-8B), or iff Z and all of Z’s descendents are not in 

any path between X and Y where edges are head to head at Z (Figure 2-8C). Figure 2-8D shows 

one case of how X and Y are always conditionally independent regardless of what path is taken 

and what nodes are on that path since there are no edges [63]. Use of D-separation allows for the 

formation of a parsimonious graph representing all the dependencies derived from either experts 

or from data using the least amount of directed edges. 

2.2.4.3 Markov Blanket Model 

Using D-separation a Markov blanket is described as follows: given X, where X is a list of nodes 

{1,…,n}, all nodes not in X are D-separated from the target node and therefore do not affect the 

distribution of the target. Three basic rules can be used to define the Markov blanket for a target 

node: (1) all parents with edges connecting to the target node, (2) all children with edges 

deriving from the target node, and (3) all parents with edges connect to children of the target 

node. After construction of a global BN, isolating the Markov blanket of any node is easily 

accomplished using these rules. For example, in the BN in Figure 2-7, using the above three 

rules, the Markov blanket of Fatigue would consist of Chronic Bronchitis and Lung Cancer with 
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their edges connecting to Fatigue (the parents of the target) with no other edges or nodes being a 

part of the blanket as shown in Figure 2-9.  

Table 2-1. An example of a conditional probability table of the Fatigue node from Figure 2-9. LC is Lung 
Cancer and CB is Chronic Bronchitis, and F is Fatigue 

 LC = Yes 
CB = Yes 

LC = No 
CB = Yes 

LC = Yes 
CB = No 

LC = No 
CB = No 

F = Yes P(F=Yes|LC=Yes&CB=Yes) P(F=Yes|LC=No&CB=Yes) P(F=Yes|LC=Yes&CB=No) P(F=Yes|LC=No&CB=No) 

F = No P(F=No|LC=Yes&CB=Yes) P(F=No|LC=No&CB=Yes) P(F=No|LC=Yes&CB=No) P(F=No|LC=No&CB=No) 

2.2.4.4 Bayesian Local Structure 

When constructing a BN, most algorithms focus on the global structure of the network, which 

focuses on all combinatoric values when building the conditional probability table.  Due to the 

requirement of global structures to parameterize all combinatoric values of all the parents for the 

CPT, dependencies/independencies between the variable-values of the parents of a node and the 

child node are not considered. A group of algorithms model this local structure capturing the 

relationships of the values of Xi in relation to the values of the parents(Xi). Local structure can 

capture additional independencies within the variable-values reducing the number of parameters 

required by Mb
Θ to properly calculate the joint distribution. Since local structure allows for 

 

Figure 2-9. A Markov-Blanket with target node Fatigue derived from Figure 2-7’s
Bayesian Network.



context-specific (variable-value) independencies, it can be viewed as a more general form of the 

global structure [65, 66]. 

If we use the example BN above in Figure 2-7 and specifically focus on the parents of 

Fatigue, which are CB and LC, we can demonstrate the previously mentioned characteristics. 

First, we have to define the possible values for each parent variable of Fatigue. Let us assume 

CB and LC are binary variables with possible values of yes or no. Let us also assume that only 

some combinations of values of CB and LC (e.g., CB = yes and LC = no) affect the distribution 

of Fatigue, while if LC = yes, the distribution of Fatigue is the same regardless of the values of 

CB. 

This example shows how utilizing the independencies of the variable values one can 

reduce the parameterization (decrease the complexity) from four parameters to three parameters 

due to the relaxation of the requirement of all combinatoric variable-values be explicitly defined 

within the conditional probability table (Figure 2-10, Figure 2-11 and Table 2-2). 

 

 

X3 X2

X4

Chronic 
Bronchitis

Fatigue

Lung 
Cancer

 

Figure 2-10. Global and Local Structure Representation of part of a Bayesian Network. This Figure represents a 
global structure of Fatigue and its parents(left) and one possible local structure (right) of Fatigue. This representation 
shows how once Lung Cancer = yes, then the distribution remains the same for all values of Chronic Bronchitis.
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 Lung Cancer = no Lung Cancer = yes 
Chronic 
Bronchitis = no 

Chronic  
Bronchitis = yes 

Chronic 
Bronchitis = no 

Chronic  
Bronchitis = yes 

Fatigue = yes θ1  θ2 θ3 θ4 
Fatigue = no 1 - θ1 1- θ2 1- θ3 1-θ4 

Table 2-2. The parameters of the conditional probability table associated with the local structure 
for Figure 2-9, Figure 2-10, and Figure 2-11. 

Figure 2-11. Two Bayesian Local Structures. Examples of a Decision Tree (Left) and a Decision Graph 
(Right). Here both the Decision Tree and Decision Graph can represent the same constraints. As shown 
above, Decision Tree cannot always represent the same constraints as the Decision Graph 

While a local structure algorithm defines the interactions between the parents of a node 

and the node’s distribution, one can generate a global structure directly from the local structure 

of each node. That is, if a variable appears in the local structure, then in the global structure that 

variable is a parent and has an edge leading into the node while maintaining the distribution 

within the CPT . In Figure 2-10 on the Right, we show one single representation of the local 

structure of the BN in Figure 2-9.  

There are multiple algorithms for generating this local structure. Two popular algorithms 

are the Bayesian Decision Tree algorithm [68] and the Bayesian Decision Graph algorithm [67]. 

In the Bayesian Decision Tree algorithm, each branch denotes variable-values of each parent and 

each leaf is the distribution of the predictor variable given all the values of the parents on the 
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path from root to leaf  in Figure 2-11 (Left), while for the Bayesian Decision Graph algorithm, a 

node, except for the root node, can have multiple parents as seen in Figure 2-11 (Right) where 

each circle denotes a variable, each arc denotes a specific variable-value and each square denotes 

the final distribution of the target node along that path. There are some advantages that a 

decision graph has that will be explained later. From Figure 2-10, if we were looking at the 

rightmost path, the distribution for X4 would be the distribution of that variable given X2 = no 

and X3 = no, P(X4 | X2 = no, X3 = no). In Figure 2-11 , we show a representation of a possible 

decision tree and decision graph with their respective parameterization in Table 2-2. 

All equalities (constraints) represented by a Decision Tree can be represented by a 

Decision Graph, but the converse is not true. In Figure 2-11 (Right), we show an example of how 

a Decision Graph can be used to represent the previously mentioned equality that a Decision 

Tree is incapable of representing. So using the equality stated before: P(Fatigue = yes | LC= yes, 

CB = no) = P(Fatigue = yes | LC = no, CB = yes). The advantage of a larger space of possible local 

structures can make Decision Graphs an attractive method for modeling Bayesian local structure 

as expressed in Chickering, et al[67].  

As described above, the number of possible models (model space) is much richer when 

utilizing Bayesian local structure with the added advantage of possibly fewer parameters needed. 

This richer space involves how a variable is “split” or branched when building the local structure 

as seen in Figure 2-10 and Figure 2-11. There are two methods of splitting that are used, binary 

and complete for variable-values. For a binary split, given a variable V has three or more values 

depicted as V = {A,B,C}, two branches are created such as one branch for V=A and a second 

branch for V=Not A = {B,C}. This allows the grouping of variable-values, in this case B and C, 

which individually might not have large discriminative power compared to that of value A. A 
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complete split, in the case of the variable V, has three branches with each branch representing a 

unique variable-value. For global BNs, every variable is added using a complete split. This 

reduction in complexity (number of parameters) within the conditional probability table makes 

calculation of the parameters easier and has in fact been shown to increase the performance and 

accuracy of the network from simulated data over traditional global structure [68]. Recently 

Visweswaran et al. [136] utilized Bayesian local structure to improve prediction using local 

structure vs. global structure for a patient-specific model generation algorithm. 

Uncertainty in BNs, whether in global or local structures, is encapsulated by the 

parameterization of the model, Mb
Θ. Multiple methods exist for learning the parameterization 

including K2 [70] and BDeu [62], which can learn the structure while learning the parameters. 

Each method, K2 and BDeu, uses different priors to build and parameterize the model Mb to 

maximize the join probability P(Mb, Data). The result from either method is a BN that has 

conditional probability tables with each cell’s θ calculated by counting the number of samples 

that have a specific variable value and adding it to the prior counts as reflected by the Dirichlet 

priors. Often when calculating the posterior probability of a target value given a set of observed 

variable-values, P(Y=t|X1=a,X2=b,...), the probability of the model and the data are ignored by 

assuming that their probability is uniform.  This can often result in a calibration issue, (e.g., 

probabilities over target values do not sum to 1) which is often resolved by normalizing the 

probabilities such that the target value probabilities sum to 1 [137]. 

 

2.2.4.5 Model Generation using the K2 algorithm 

Many BN generation algorithms, both global and local, try to maximize the probability of the 

model in a greedy fashion. Many structure learning algorithms, such as K2, which combines both 
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structure and parameter learning together, maximize the probability of the model and the 

parameters concurrently using a closed form solution for the join of the model and the data or 

P(Bs,D) where the model Bs = (Mb
G,Mb

Θ) and the data is D. K2 Scoring is a greedy search 

algorithm that maximizes the likelihood by adding directed edges between nodes [70]. It has the 

following assumptions: 1) all variables in dataset D are discrete, 2) given a Belief Model 

(Bayesian network), each case or instance in D occurs independently, 3) there are no missing 

values in dataset D, and 4) the density function for each distribution in Bs is uniformly 

distributed, that is parameterization of the distribution within each node prior to the addition of 

data are all equally likely apriori.  Cooper and Herskovits then showed how to relax the 4th 

assumption by using Dirichlet priors in lieu of the uniform priors on the parameterization within 

the CPT for the nodes within Bs. P(Bs, D) is used as an approximation to the posterior probability 

given that all models are uniformly probable: P(Bi) = P(Bj) for all i ≠j. Therefore P(Bs, D) = P(D 

|Bs)*P(Bs) ≈ P(D|Bs). The equation used to calculate the likelihood is seen in: 
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where is the gamma function, n represents all the nodes in the BN and i is a specific node 

within the network, qi is the number of possible parent states of node ni and j is a specific state of 

the set of possible parent states, ri is the number of states or values of node ni and k is a specific 

value of node ni, and Nijk is the number of instances that match state j of the parents of node i and 

k is the specific node value of node i. The αijk are the hyperparameters of the Dirichlet which 

)(•Γ
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define the prior probability. Equation 7 below represents the reduced from of Equation 6 when 

the αijk is set the uninformative value of 1. 

 1 1 1
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The running time for this algorithm is O(mu2n2r) where r is the maximum number of 

states any variable I can take on, u is the maximum number of parents per a variable, m is the 

number of instances within dataset D, and n is the number of variables in dataset d.  

The algorithm for building a BN using K2 algorithm uses the node order as a guide and 

only allows nodes that preceded it to be the parents of that node. That is, the parents of node i 

can only be a subset of nodes 1 and i-1 in the order specified. This algorithm is a greedy hill 

climbing search, maximizing the likelihood P(D|Bs), as well as using a user specified parameter 

u, which represents the maximum number of parents. Thus, if the node i has u parents, then no 

more nodes are considered to be added as a parent of node i. Ultimately, what is generated is a 

list of nodes with each node having a list of parents. This can easily be transformed into the 

representation seen in Figure 2-7. If u = n, where n is the total number of variables, the time 

complexity is O(mn4r). 

While the original implementation of K2 requires an variable order to help guide the 

structure building phase, many algorithms utilize different heuristics such as randomization and 

restarts to help alleviate the order dependencies [63, 138].  The next section describes inference 

using a model derived from a BN structure search algorithm such as K2. 
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2.2.4.6  Inference using Bayesian networks 

For inference using BNs, the result is a distribution over the target variable given a set of 

observed variable-values. Inference using BNs can be performed in multiple ways, but since 

performing exact inference in a DAG is NP-Hard [139], the algorithms mentioned will all be 

approximate. The Message-Passing Algorithm (MPA) uses local independencies to propagate 

uncertainty when performing approximate inference for singly connected (each node has only 

one parent) DAGs [134], and it has been extended through the use of clustering based on d-

separation to multiply connected DAGs (where nodes can have more than one parent). An 

alternative to MPA is the Junction Tree algorithm which also passes messages, but through 

derived junction trees instead of the original DAG [140]. Another approximate solution is the use 

of symbolic probabilistic inference, which uses factoring (reduction of the joint to reflect the 

conditional independencies within the DAG) [141]. Once the posterior distribution is calculated 

for the target variable, a threshold is generally used for deciding what to target value to assign 

given that the prediction is actually a probability and not discrete.  For binary targets, the 

threshold for deciding the assigned target value given a probability without an Receiver Operator 

Curve (ROC) analysis [142] is usually set to 0.5, which is similar to majority voting. For a multi-

valued target variable, a majority vote is usually the preferred method since calculation of an 

ROC curve can be difficult especially in multi-class problems. 

2.2.5 Hybrid Rule Learning 

As mentioned earlier, the usefulness of rules is apparent in the understandability by experts. This 

has led researchers to try to generate rules from hybrid algorithms that combine two or more 

different algorithms together, thus combining the benefits of understandability and modularity of 
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rules with the benefits of other algorithms by using them to address the 4Rs (Section 1.1) [16, 26, 

56, 143]. 

 

Knowledge Based Artificial Neural Networks (KBANN) [40, 144] and RAPTURE [64] 

are both examples of algorithms use an additional algorithm to revise a prior rule set (Figure 

2-12 top). This methodology however requires a prior rule set and thus is still constrained by the 

algorithm that was used to generate the seed rule model. An alternative method of rule 

generation uses hybrid rule learners that try to combine the strengths of multiple algorithms to 

generate rules (Figure 2-12 bottom). As we see, the primary algorithm and the secondary 

algorithm interact to produce a rule set. Two recent examples described below utilize Genetic 

Algorithms and BNs to generate the rule sets. 

 

Rule Algorithm Rules Second Algorithm Revised Rule 
Sets

Rule Sets

Data

Data
Rule Algorithm Second Algorithm

Figure 2-12. A general characterization of a rule revision algorithm (top) and a hybrid rule
algorithm (bottom). On the top, there is a re-evaluation of the data by the second algorithm because this
second algorithm takes both generated rules and data as arguments. 
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2.2.5.1 Hybrid Decision Tree/Genetic Algorithm 

One research group has combined Genetic Algorithms and Decision Trees to produce a rule set 

that performs better on high-dimensional datasets [16]. They utilize the strength of decision trees 

to define rules (as seen in Figure 2-6) allowing decision tree growth, as explained in Section 

2.2.3.1, until the coverage of the leaf node is below a threshold representing the minimum 

number of samples (e.g., in Figure 2-13 the threshold is 16 samples). Once this threshold is 

reached, those instances along the path that fell below the threshold are condensed into a new 

dataset.  This dataset is then analyzed by a Genetic Algorithm, which treats variable-values as 

genes on a chromosome (the set of variable-values on a single chromosome can be considered a 

single antecedent) and then simulates cross-over (switching one variable-value for another) and 

Figure 2-13. Two different DT/GA implementations with GA-SMALL being on the left and GA-
large-SN on the right. Circles represent a decision node and squares represent a run of the genetic
algorithm. The rules generated from the Decision Tree and the Genetic Algorithms are combined to
create a new rule set. The numbers in the circles represent the number of samples that are covered by
that specific path, and the numbers in the square represents the dataset size used for the GA. 



measures how fit the new chromosome is where fitness is a statistical measure and can be 

something as simple as accuracy. It is usually run for a pre-defined number of simulations.  A 

rule model is then returned as those chromosomes are converted into rules.  The rules from the 

decision tree are then simply merged with the rules generated by the Genetic Algorithm to create 

a single rule model. Carvalho, et al. showed that the rule set derived from both the decision tree 

and genetic algorithms was more optimal (had a higher performance) than rules derived solely 

from a decision tree algorithm. While their results are impressive, it has been shown that 

conquering without separating (sampling with replacement described in Section 2.2.3.2) 

produces a superior rule set [19, 121]. Another recent hybrid rule learner discussed next 

combines BNs with Rule Generation to produce hybrid rules that have the certainty measured by 

the BN. 

2.2.5.2 Markov Blanket Bayesian network Hybrid Rule Learner 

Hruschka, et al. used the K2 to generate the Markov blanket model (see Section 2.2.4.5), 

restricting the model space to connections that are parents, children, or parents of the children of 

the target variable [56]. This provides a definitive speed up over standard BNs due to the 

consideration of a small subset of network structures. Once learned through Model Selection, 

this model is converted into rules by transforming the blanket into another BN where all of the 

variables within the blanket are made into the parents of the target; this is done regardless of 

whether the variable was a parent, child, or parent of the child of the target variable.  
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Bayesian Model: Mb Rule Model: Mr 

 

Rule 1: 
IF X = x1 THEN T = t  
     CF = 4, P(X = x1) = .7 
 
Rule 2: 
IF X = x1 THEN T = f 
     CF = .25, P(X=x1) = .7 
 P(X=x1) = .7          P(T = t | X = x1) = .8 Rule 3: P(X=x2) = .3          P(T = f | X = x1) = .2 IF X = x2 THEN T = t                                P(T = t | X = x2) = .4      CF = .667, P(X=x2) = .3                                P(T = f | X = x2) = .6  
Rule 4: 
IF X = x2 THEN T = f 
     CF = 1.5, P(X=x2) = .3 
 

Figure 2-14. Conversion of a Bayesian Network Model (left) to a Rule Model (right) where 
the certainty factor is expressed as the likelihood ratio of the conditional probability of the 
target given the variable value. As seen in Rule 1, the CF is the conditional probability of 
P(T=t | X=x1)/(1- P(T=t | X=x1)) = .8/.2 = 4.  Within the rule there is also the probability of 
observing that variable value, e.g., P(X = x1) = .7. 

A simple example is shown in Figure 2-14. If we were to introduce additional variables 

as parents of variable T, the number of rules would grow exponentially. To calculate the 

certainty factor for a rule, Hruschka, et al. set the Markov blanket to the variable-values within 

the antecedent and then calculated the resulting distribution on the target variable. They showed 

that their method for generating rules, in all but a few cases, generated a substantially smaller 

subset of rules that had equal to or greater predictive power than those generated by simple rule 

learners or Decision Trees.  

Using the Markov blanket and transforming the network into one where all the variables 

in the Markov blanket are parents of the target results in a structure that is not optimized for a 

single CPT where all the variables are the parents of the target, which is what is used for rule 

generation. While they showed that you could extract rules using their network transformation 
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method, the certainty factor value is incorrect due to the distribution on the target variable. Since 

there is no such transformation from a Markov blanket to a model that only has parents of the 

target that maintains the independencies within a collision structure (e.g., the target, a child of 

the target, and a parent of the child), one cannot generate an equivalent probability BN with all 

of the nodes as parents of the target node. Thus the structure used to generate rules is 

fundamentally different than the Markov blanket structure. Hruschka, et al. even acknowledged 

that there might also be a semantic component to rules which is not captured by their method of 

rule generation due to the use of a Markov blanket. 

 48 



3.0  BAYESIAN RULE GENERATION FRAMEWORK 

This chapter describes the Bayesian Rule Generation Framework (BRGF) and the different methods 

currently implemented for generating probabilistic rules from BNs learned from biomedical data. In 

Figure 3-1, we show the BRGF (Figure 3-1 Right) next to the current non-probabilistic rule 

generation method (Figure 3-1 Left). Specifically we show how with the BRGF, the user selects a 

specific type of Bayesian Structure and then within the framework, they can select specific search 

strategies to generate probabilistic rules. Section 3.1 explains the various aspects of the BRGF 

including all the algorithm pseudo code, while Section 3.2 analyzes the computational complexity of 

the algorithms within the BRGF. The methods for evaluating the BRGF including the testing of the 

BRGF on simulated data as well as the performance measures used are detailed in Section 3.3.  
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Figure 3-1. The Bayesian Rule Generation Framework. On the left is the traditional model of rule generation and 
on the right is the new framework. 

3.1 DESCRIPTION OF BRGF 

The BRGF is a framework established for ease of interchangeability of rule generation methods, 

combining both probabilistic and deterministic search strategies with probabilistic discretization 

methods. In Figure 3-1, we see a linear framework that allows modularity as well as ease of 

interpretation and addition for future search techniques/rule generation methods. There are three 
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important components to the BRGF: a) the choice of Bayesian discretization, b) the choice of 

Bayesian structure, and c) the choice of the search strategy. These will be explained in Sections 

3.1.1 through 3.1.4.  

3.1.1 Discretization 

Since all the algorithms that I have used to test my hypotheses require discrete data, it is 

imperative that I test different discretization methods in an attempt to identify which technique 

produces the highest performance. I have implemented three discretization techniques in Java: a) 

Fayyad and Irani’s MDLPC [49] as described in Section 2.2.2 and b) a new Bayesian technique 

called Efficient Bayesian Discretization (EBD). All have been integrated to be used with the 

Naïve Bayes implementation within the Waikato Environment for Knowledge Acquisition 

(WEKA) version 3.5.6 [127].  

3.1.1.1 Efficient Bayesian Discretization (EBD) 

The Efficient Bayesian Discretization (EBD) algorithm uses a Bayesian score to evaluate a 

discretization policy. Assume that we have a dataset of n instances that form a vector of values 

for a continuous variable X and target variable Z in the form of (X,Z) pairs, the data might be as 

follows: <(1.2,T), (3.2,F), (2.3,T), (4.3,F)> for an n of 4. Given this dataset of n instances the 

string S can be constructed from the target values where S = “TTFF” when the vector is sorted 

for continuous variable X. EBD scores all possible discretizations up to I intervals (all 

combinations of splitting up string S into I substrings or intervals) and selects the one with the 

highest Bayesian score. We now derive the Bayesian score used by EBD. The posterior 

probability P(M | S) of a discretization M is given by Bayes rule as follows: 
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where P(M) is the prior probability of discretization M, P(S | M) is the marginal likelihood of the 

data S given discretization M, and P(S) is the probability of the data. Since P(S) is the same for 

all discretizations, the Bayesian score evaluates only the numerator on the right hand side of 

Equation 8, as follows:  

)|()( MSPMPscoreEBD ⋅=        
(9) 

The marginal likelihood in Equation 9 can be derived using the following equation: 

                  
(10) 

( | ) ( | , ) ( | )M M MP S M P S M P M dθ θ θ= ⋅∫

where Mθ are the parameters of the conditional distribution of the target variable Z given the 

continuous variable X, namely, P(Z | X). Equation 9 has a closed-form solution under the 

following assumptions: (1) the values of the target variable were generated according to iid 

sampling from P(Z | X), which is modeled as a multinomial distribution, (2) prior belief about the 

distribution P(Z | X = xi) is independent of prior belief about the distribution P(Z | X = xj) for all 

values xi and xj of X, such that i ≠ j, and (3) for all values xj of X, prior belief about the 

distribution P(Z | X = x) is modeled using a Dirichlet distribution with hyperparameters αi and αij. 

The closed-form solution to the conditional marginal likelihood is given by simplifying equation 

10 to the following expression [69, 70]: 
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where, is the gamma function, ni is the number of instances in the interval i, nij is the 

number of instances in the interval i that have target-value j, 

)(•Γ

ijα are the hyperparameters in a 
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Dirichlet distribution which define the prior probability over the Mθ  parameters, and ∑= j iji αα . 

I refers to all the cardinality of the unique parent states for the target variable, and J refers to all 

possible states of the target (child) variable. The hyperparameters can be viewed as prior counts, 

as for example from a previous (or a hypothetical) dataset of instances in the interval i that 

belong to the value j.  

The prior probability P(M) is modeled as a product of two terms: 
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where the first term is the prior probability of observing I intervals under the assumption that I is 

uniformly distributed between 1 and n where n is the number of samples currently seen. The 

second term is the prior probability of observing a specific discretization given that it contains I 

intervals and under the assumption that all possible I-interval discretizations are equiprobable. 

Substituting Equation 11 and 12 into Equation 9, the EBD score is defined as: 
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where the symbols have the same meaning as in Equation 6. When αij and nij are positive 

integers, the gamma function can be expressed in factorial form and Equation 10 can be written 

as: 
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We maximize the score of Equation 14 by maximizing the conditional marginal 
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believe a priori that every distribution P(Z | X = x) is equally likely; thus, this prior is sometimes 

said to be non-informative.  

Figure 3-2. Pseudocode for the EBD algorithm. 

Let Si,j be the subsequence of S consisting of the instances from i to j. S1,n = S.  
Let Disc(Si,j) be the discretization of Si,j with up to length(Si,j) intervals. 

 
Disc(S1,1) = {S1,1} 
For 1 ≤ j ≤ n 

Disc(S1, j) := 
For 1 ≤ i < j return the best scoring discretization from  

ARGMAX(Disc(S1,i) U {Si+1,j}, { S1,j}) 
 

 

 

 The pseudocode for the EBD algorithm is given in Figure 3-2 and the recurrence relation 

used by EBD to compute the Bayesian score at any given stage is shown in Equation 14. 

  
 This algorithm has a time complexity of O(n2) as implied by the two nested for loops. 

EBD eliminates the consideration of empty intervals as well as using sub-problem solutions 

instead of considering all possible discretizations. For example, if EBD has solved the sub 

problem that samples 1 – 4 should be in a single interval, this means that SCORE(S1-4) > than 

any combination of up to 4 intervals splitting string S1-4 into smaller substrings. Any future 

discretizations that contain the interval of S1-4, e.g., S1-4, S5-8 which represents a discretization 

policy that splits variable X between samples 4 and 5, will never consider any subintervals of 

string S1-4. This is because EBD has already considered those subintervals and that their score 

will always be lower than the score of string S1-4.  
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3.1.2 Bayesian Global Structure  

As described in Section 2.2.4, the algorithm depicted in Figure 3-3, maximizes the conditional 

marginal likelihood which is calculated using the K2 score by assuming i is always equal to the 

target variable:  

  (15) 
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where the variables are the same as in Equation 11. This differs from the algorithm developed in 

[70] in that there is no explicit variable order required and that it tries every possible variable as 

an additional parent of the target node (Line 4). Also, we only accept the addition if the score 

Input: A list of variables V = {v1, v2, v3, vm} where vi is variable i 
 Variable T which is the target variable 
Output: A Bayesian Global Structure M 
O = Set of operators Add(M,vi) which adds vi as a parent of T in model M 
Var(M) = All vi that are in model M 
 
1 M’={T} 
2 DO 
3   M = M’ 

4   ∆Score = - Score(M) ( )max ( ( , ))
iv V Var M iScore Add M v∈ −

5   IF ∆Score > 0 

6  M’ =  ( )arg max ( ( , ))
iv V Var M iScore Add M v∈ −

7  END IF 
8 WHILE (∆Score > 0) 
9 Return M’ 

 

Figure 3-3. A pseudocode representation of Greedy Constrained Bayesian Global Structure search. 
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change is greater than 0 (Line 5 and 6 of Figure 3-3).  

3.1.3 Bayesian Local Structure 

Bayesian Local structure can be an efficient representation of the conditional probability table 

allowing a generalization over global structure which requires a combinatorial combination of all 

variable-values. However, construction of an optimal local structure requires exhaustive search, 

which is nearly intractable due to the size of the search space involved. Greedy Search, as was 

used by [67, 124, 145], is a tractable search method over possible local structures, but the 

gathering of statistics to parameterize the structure is a time consuming procedure. To speed up 

this process, the BRGF utilizes the Breadth First Marker Propagation (BFMP) methodology [27] 

to reduce look up time for the parameterization (see Figure 3-5). This critical component allowed 

the different search paradigms to be explored that are in Section 3.1.4 and the description of how 

it was used are provided in Sections 3.1.3.1 and 3.1.3.2. 

3.1.3.1 Bayesian Local Structure - Decision Tree (BLS-DT) 

We adapted the method developed by Friedman et al. which can be used for developing an entire 

global network based on local structure [68]. We constrained our model, as seen in Figure 2-10, 

to only those models with variables being a direct parent of the target variable so some of the 

algorithmic complexities associated with global model construction using local structure can be 

removed. Using breadth-first marker propagation for this algorithm also provides significant 

speed up since database look-up is an expensive operation [27]. 
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Input: A list of variables V = {v1, v2, v3, vm} where vi is variable i 
 Variable T which is the target variable 
Output: A Bayesian Local Structure M 
L = All leaves of Model M where Lj is leaf j  
O = Set of operators BinarySplit(M, Lj,vi) and CompleteSplit(M, Lj,vi) 
Var(Lj) = All vi that are on path from Lj to root 
 
1 M’={T} 
2 DO 
3   M = M’ 

4   ∆Score = - Score(M) , ( ),max ( ( , , ))
il L v V Var l o O iScore o M l v∈ ∈ − ∈

5   IF ∆Score > 0 

6  M’ =  , ( ),arg max ( ( , , ))
il L v V Var l o O iScore o M l v∈ ∈ − ∈

7  END IF 
8 WHILE (∆Score > 0) 
9 Return M’ 

Figure 3-4. The pseudocode for a Bayesian Local Structure Decision Tree. 
 

Figure 3-4 is the algorithm used for greedy search when building a Bayesian Local 

Structure Decision Tree. As is detailed in the algorithm, the search method is only concerned 

with finding those parents of the target variable (Line 4), which should result in a large speedup 

as compared to the general model detailed in [68, 124] since the algorithm is only searching over 

a constrained global structure. Similar to the pseudocode in Figure 3-3, we accept an additional 

node into the model if and only if the score increases (Lines 5 and 6). This eliminates equivalent 

models, which is acceptable given the greedy nature of our search strategy. We also used the 

heuristic of maximum number of parents to prevent overspecialization as well as to reduce the 

running time (default was set to 10 variables per path). An advantage of using BFMP is that with 

each split the samples that match that variable-value are the only ones that are tracked. Figure 

3-5 (A-C) shows how the samples are tracked as the nodes are split. Once a node is split, only 

those samples that are on the path need to be considered when calculating the score. 
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The Bayesian local structure decision tree is a generalized model of the global structure 

previously discussed in Section 3.1.2 since it relaxes the constraint of combinatorial combination 

of all variable-values of the parents of the target node.  It is possible, using the decision tree local 

structure, to achieve the same model (same number of parameters and parameter values within 

the CPT of the target variable) as those achieved by the original global structure algorithm by 

using the complete split operator. 

3.1.3.2 Bayesian Local Structure – Decision Graph (BLS-DG) 

The decision tree, while beneficial as seen in [68], does not allow for the correction of 

specialization (splitting on a particular variable). Specifically, as seen in [67, 124] and in Figure 

2-11 (Right), a decision graph allows combination of leaves joining together distributions that 

are similar. 

On line 3 of Figure 3-5, the function finds the maximum scoring model by either adding a 

variable to a leaf (using complete split or binary split), or merging any two leaves. This involves 

multiple internal iterations over leaves, variables, and operations and thus is computationally 

complex. 

Comparing Figure 3-4 to Figure 3-6, we see the only real modification is at line 3 and 

line 6 where we add the function of combining leaves (columns in the CPT). This is a place 

where marker propagation can have a significant speed impact [27].  When merging two separate 

paths, the samples have to be tracked from both paths. Using marker propagation, the samples 

that are both leaves can be combined for tracking, thus streamlining counting and further 

specialization.  The next figure, Figure 3-5, shows how when combining leaf nodes (Figures C 

and D in Figure 3-6), the samples are added to the same nodes, Future specialization can now 

only impact those samples that have variable-values that match either of the paths. 
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V2

S1, s2, s3 s4, s5, s6

V1

S10, s11, s12, 
s13, s14

V2

S1, s2, s3 s4, s5, s6

V1

V3

S13, s14 S10, s11, 
s12

A B

C 

D 

Figure 3-5. How Breadth First Marker Propagation (BFMP) allows for sample tracking in 
both decision trees and decision graphs. A-D represent the different stages of BFMP combined 
with Decision Graphs. 
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Input: A list of variables V = {v1, v2, v3, vm} where vi is variable i 
 Variable T which is the target variable 
Output: A Bayesian Local Structure M 
L = All leaves of Model M where Lj is leaf j  
O = Set of operators BinarySplit(M, Lj,vi) and CompleteSplit(M, Lj,vi) 
Var(Lj) = All vi that are on path from Lj to root 
Merge(M,Lj,Lj’) = Merges Leaves Lj and Lj’ in model M 
 
1 M’={T} 
2 DO 
2   M = M’ 
3 ∆Score = 

, ( ), , ,max(max ( ( , , )),max ( ( , , )))
i i j i jl L v V Var l o O i l l L l l i jScore o M l v Score Merge M l l∈ ∈ − ∈ ∈ ≠ - 

Score(M) 
5   IF ∆Score > 0 
6  M’ =  

, ( ), , ,

argmax(
max(max ( ( , , )),max ( ( , , ))))

i i j i jl L v V Var l o O i l l L l l i jScore o M l v Score Merge M l l∈ ∈ − ∈ ∈ ≠
 

7  END IF 
8 WHILE (∆Score > 0) 
9 Return M’  

Figure 3-6. The pseudocode for Constrained Greedy Bayesian Local Structure Decision Graph 
algorithm. 

3.1.4 Search Paradigms 

Using the global or local structure as the rule-generating model requires an investigation into the 

search strategy for generating models. While Greedy search is effective [68, 124], there are many 

other possible search strategies that one can employ when building a Bayesian model. We will 

explore two alternative methods besides greedy search, which include beam and parallel greedy 

search. The nomenclature that we used to represent the learning is as follows: 
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Table 3-1. Nomenclature for labeling Greedy, Beam, and Parallel Greedy Searches. 

Structure Type Type of Local Greedy Beam Parallel Greedy 
Global N/A BGRL_G BGRL_B BGRL_PG 

Local 
Decision Tree BLSRL_DT_G BLSRL_DT_B BLSRL_DT_PG 

Decision Graph BLSRL_DG_G BLSRL_DG_B BLSRL_DG_PG 
 

3.1.4.1 Beam Search 

Beam search is a heuristic search algorithm that attempts to constrain best-first search to 

reduce its memory requirements.  It reduces this by constraining the number of best prior models 

kept by ranking them and only keeping a specific number of them. The heuristic component is 

how the models are ranked in order to select the most profitable model for exploration. These 

heuristics, for example positive predictive value, signal-to-noise, F-measure, K2 [70], BDEu 

[126], try to estimate how well the model captures the information in the data. Definitions of a 

model also vary depending on the problem. For example, in [20] each rule is considered a model 

with PPV as the heuristic used. For models such as those developed in [67, 68, 124], the score 

called K2 is used for determining how well a Bayesian model fits the data. Irrespective of the 

choice of ranking or model class, beam search allows one to store the best B models, where B is 

the size of the beam. The hope is that one of the models on the beam will allow you to avoid 

local optima.  

While beam search can be an effective method of search, it has similarities with breadth-

first and depth first in that it could theoretically search ad infinitum. Stopping criteria are often 

required in order for beam search to be effective, which limits the optima that can be reached. 

For BNs, often the maximum number of parents is an example of a heuristic that is used as 

stopping condition.  
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Figure 3-7 describes the standard beam search algorithm as was implemented in [1, 20], 

to which we also added Line 13, which prevents the repetition of models as explained by the 

following scenario. If adding variable B to the model A T (where A is a parent of T) increases 

the score, then we wish to remove the possibility of revisiting that structure by considering 

adding variable A to the Model B T (where B is a parent of T).  

Unfortunately, for Bayesian Local Structure, even with this stopping condition of max 

number of variables on a path, one cannot utilize the added heuristic of line 13 in Figure 3-7. Just 

because you have seen the variable along one path, does not eliminate the possibility of seeing 

B = Priority Queue of Size m that sorts Bayesian Networks by their K2 Score  
V = {v1,v2,…vd, C} All the attributes within the dataset D and Target attribute C 
VBi = All the variables in in Bayesian Network i 
I = {s1,s2,…,sd} All instances within the dataset D 
FB = Final Beam of Bayesian Network Models of size M 
Init: Create all single Bayesian Network Models vi  C and add them to B 
 
1) While Bm is not Ø 
2)    Bi   First Model on B 
3)    B  B‐Bi 
4)    NBi  Bi 
5)    For vi in V ‐ V∩VBi 
6)      NBi  Add Vi as parent of C in Bi 
7)      IF NBi K2 score is greater than Bi 
8)         B   B U NBi 
9)      ENDIF 
10)    ENDFOR 
11)    IF No vi not in Bi improves Bi 
12)      FB = FB U Bi 
13)      V = V ‐ VBi 
14)    ENDIF 
15) ENDWHILE 
16) Return First Model on FB 

Figure 3-7. Beam Search for Constrained Bayesian Global Networks for rule generation. 
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that same variable along an additional path. The search space is too large making beam search 

intractable for local search. This richness in possible structures, which could all be equivalent 

makes beam search almost intractable in practice, and therefore I excluded it as a search strategy 

for Bayesian local structure. Therefore, in the results’ section, I don’t provide performance 

statistics for BLSRL_DT_B or BLSRL_DG_B. 

3.1.4.2 Parallel Greedy Search 

Parallel Algorithms utilize seed models to generate many different models in parallel and then 

compare the final results.  This is particularly effective in greedy search since each seed model 

search is independent of the other seed models [80, 146]. I use this same idea of multiple seed 

points to help greedy search avoid as many local maxima as possible both in the global and local 

structure search. However, given the large dimensionality, 10,000 or greater variables per a 

dataset, I used a fixed number (1000) of top univariate models (V T) by K2 score as seed 

models for either local or global structure greedy searches. To search for the top 1000 models, I 

used the beam search algorithm that was implemented for Bayesian Global Beam Search 

(Section 3.1.4.1). 

The search algorithm differs in implementation for both global and local structure 

changes. For Bayesian global network search, instead of starting with a simple model of just the 

Target variable (Line 1 in Figure 3-8), we utilize the initialized single variable models as seen in 

Line 3. This forces the algorithm to explore an expanded set of initial parents for the target 

variable. Since we are performing multiple greedy searches, the time complexity and space 

complexity of the algorithm is only extended by a constant, yet, as we will see in the results, 

there are some interesting effects that occur when one forces the algorithm to have a parent a 

 63 



priori to structure learning. This is similar to setting the prior weight of (Vi T) to be 1 if 

structure priors were to be incorporated explicitly into this algorithm. 

Input: A list of variables V = {v1, v2, v3, …, vm} where vi is variable i 
 Variable T which is the target variable 
Output: A Bayesian Local Structure M 
O = Set of operators Add(M,vi) which adds vi as a parent of T in model M 
Var(M) = All vi that are in model M 
B = Priority Queue of Size m that sorts Bayesian Networks by their K2 Score  
Init: Create all single Bayesian Network Models vi  C and add them to B 
 
 
1 MF = M’={T} 
2 WHILE (B != Ø) 
3  M’= First Model on B 
4  B = B – M’ 
5  DO 
6    M = M’ 

7    ∆Score = - Score(M) ( )max ( ( , ))
iv V Var M iScore Add M v∈ −

8    IF ∆Score > 0 

9   M’ =  ( )arg max ( ( , ))
iv V Var M iScore Add M v∈ −

10   END IF 
11  WHILE (∆Score > 0) 
12  IF Score(M’) > Score(MF) 
13 MF = M’ 
14 ENDWHILE 
15 Return MF 

Figure 3-8. The pseudocode for Parallel Greedy Constrained Global Bayesian Network 
algorithm.  

The Bayesian local structure parallel algorithms differ from global parallel algorithms 

significantly. Lines 1-8 in Figure 3-9 and Figure 3-10 show how we initialize all the possible 

start states. First, we have the beam of size B that restricts our starting space. Then we utilize the 

operators available, which in this case are the same for both the decision tree and the decision 

graph. This algorithm can be transformed into greedy search by changing the beam size to one.  
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As with the Parallel Genetic algorithms, this multi-seed approach is used in the hope of 

avoiding local maxima. Since I don’t do exhaustive seeding, the use of beam B in Lines 1-12 in 

Figure 3-9 and Figure 3-10, increases the computational complexity by only a constant. Parallel 

greedy search paradigms also present the opportunity to parallelize the search thus decreasing 

overall run time. Each greedy search run (Lines 13-19) is logically separated from all the other 

runs and therefore can be sent to different processers. 
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Input: A list of variables V = {v1, v2, v3, vm} where vi is variable i 
 Variable T which is the target variable 
Output: A Bayesian Local Structure M 
O = Set of operators BinarySplit(M, l,vi) and CompleteSplit(M, l,vi) 
L = All leaves of Model M 
Var(l) = All vi that are on path from l to root 
B = Priority Queue of Size m that sorts Bayesian Networks by their K2 Score  
 
 
1 B = {}  
2 For all vi in V 
3   For all o in O 
4 For all l in L({t}) 
5        B = B U o ({T},l,vi) 
6      ENDFOR 
7   ENDFOR 
8 ENDFOR 
9 MF = M’={T} 
10 WHILE (B != Ø) 
11   M’= First Model on B 
12   B = B – M’ 
13   DO 
14     M = M’ 

15     ∆Score = - Score(M) , ( ),max ( ( , , ))
il L v V Var l o O iScore o M l v∈ ∈ − ∈

16     IF ∆Score > 0 

17   M’ =  , ( ),arg max ( ( , , ))
il L v V Var l o O iScore o M l v∈ ∈ − ∈

18    END IF 
19  WHILE (∆Score > 0) 
20  IF Score(M’) > Score(MF) 
21 MF = M’ 
22 ENDWHILE 
23 Return MF 

Figure 3-9. The pseudocode for the Parallel Greedy Bayesian Local Structure Decision Tree 
Algorithm. 
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Input: A list of variables V = {v1, v2, v3, vm} where vi is variable i 
 Variable T which is the target variable 
Output: A Bayesian Local Structure M 
O = Set of operators BinarySplit(M, l,vi) and CompleteSplit(M, l,vi) 
Merge(M,li,lj) = Merges the counts of leaves i and leaves j and connects all parents 
L = All leaves of Model M 
Var(l) = All vi that are on path from l to root 
B = Priority Queue of Size m that sorts Bayesian Networks by their K2 Score  
 
1 B = {}  
2 For all vi in V 
3   For all o in O 
4 For all l in L({t}) 
5        B = B U o ({T},l,vi) 
6      ENDFOR 
7   ENDFOR 
8 ENDFOR 
9 MF = M’={T} 
10 WHILE (B != Ø) 
11   M’= First Model on B 
12   B = B – M’ 
13   DO 
14     M = M’ 
15     ∆Score = 

, ( ), , ,max(max ( ( , , )),max ( ( , , )))
i i j i jl L v V Var l o O i l l L l l i jScore o M l v Score Merge M l l∈ ∈ − ∈ ∈ ≠  

- Score(M) 
16     IF ∆Score > 0 
17   M’ =  

, ( ), , ,

argmax(
max(max ( ( , , )),max ( ( , , ))))

i i j i jl L v V Var l o O i l l L l l i jScore o M l v Score Merge M l l∈ ∈ − ∈ ∈ ≠
 

18     END IF 
19   WHILE (∆Score > 0) 
20  IF Score(M’) > Score(MF) 
21 MF = M’ 
22 ENDWHILE 
23 Return MF 
 

Figure 3-10. The pseudocode for the Parallel Greedy Bayesian Local Structure Decision Graph 
algorithm. 
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3.2 COMPUTATIONAL COMPLEXITY FOR THE ALGORITHMS 

3.2.1 Greedy Search 

3.2.1.1 BGRL 

As shown in Figure 3-3, if we do not limit the number of possible parents so the maximum 

number of loops is u = n where u is the maximum number of parents and n is the number of 

variables. Following the time complexity from Cooper and Herskovits [70], we can derive our 

implementation’s time complexity with modification for elimination of the outer loop. Therefore 

the unrestricted time complexity for the constrained Bayesian global structure search algorithm is 

O(m+r-1)+O(mn2r)O(n) which is equivalent to O(mn3r). We can reduce the machine run time if 

we use factorial caching, logarithmic calculations, and the database look up by using breadth first 

marker propagation. Practically, however, setting u = n is not feasible due to the dimensionality. 

This means that ultimately that the computational complexity is only O(mu2nr) where u is 

maximum specified parent. The space of the greedy search is O(mn). 

3.2.1.2 BLSRL_DT and BLSRL_DG 

As shown in [67, 68, 124], learning the possible combinations is exponential or O(2n), however 

given that this is a constrained space and using the algorithm in Figure 3-4 and Figure 3-6, we 

have the worst case scenario of O(mn2n) for time complexity when there is no maximum number 

of parents set. The machine run time is reduced by the use of breadth first marker propagation 

and by limiting the maximum number of parents. The space complexity is equivalent to the 

BGRL space complexity in that it only has to store a single model and hence its complexity is 

only O(mn). 
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3.2.2 Beam Search 

Given the computational complexity expressed in section 3.2.1.2, it is not feasible to perform 

beam search for Bayesian local structure. Therefore the only Bayesian rule generation (BRG) 

algorithm that currently utilizes a beam search with a beam greater than size 1 (greedy search can 

be considered beam search of size 1) uses a constrained BN model with global structure 

(Bayesian local structure decision tree with the constraint of a complete tree). 

3.2.2.1 BGRL 

If we assume each model can generate at most p possible successors, a beam of size b, and the 

computational complexity derived in the greedy search, we arrive at a time complexity of 

O(bnp)O(mu2nr) = O(bpmu2n2r). This time complexity includes repetitive models, and so actual 

run time can be significantly less due to the incorporation of Line 13 in Figure 3-7. This removes 

a lot of the overlap thus reducing p. The space complexity, due to implementation using the 

priority queue, increases from O(mn) to O(bmn). 

3.2.3 Parallel Greedy Search 

3.2.3.1 BGRL 

This method allows the usage of multiple seeds to start, so the time complexity is only 

O(bmu2nr), where b is the number of seeds. If done serially, the total space complexity at any 

one time is O(mn). However, when performing it in parallel, the space complexity is O(bmn). 
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3.2.3.2 BLSRL-DT and BLSRL-DG 

Similarly to the BGRL parallel greedy search, these algorithms use multiple seeds to start so the 

time complexity is O(bmn2n) where b is the number of seeds used to start. We can reduce the 

machine run time by using breadth first marker propagation, limiting the maximum number of 

parents, and caching the factorials. If done serially, the total space complexity at any one time is 

O(mn). However, when performing it in parallel, the space complexity is O(bmn). 

3.3 METHODOLOGY FOR EVALUATION OF BRGF 

This section explains the methodology of testing the Bayesian global and Bayesian local 

structure algorithms that have been modified to only search over parents of the target variable.  

We first show in section 3.3.1 the simulated data that will be used to test the correctness of the 

algorithm.  That is, we know the generating model for the data and we want to verify that the 

algorithms produce this model.  Then in section 3.3.2, we show the biomedical ‘omic’ datasets 

that we will analyze with the various algorithms.  In section 3.3.3, we show the experimental 

workflow that was used including the pseudo-code to run the experiments.  Section 3.3.4, 

describes the performance measures used to evaluate the model. The final section in the chapter, 

section 3.3.5, explains the statistical analysis used for comparing the performance measures of 

the experiment. 
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3.3.1 Simulated Data 

Verification of the ability of the algorithms to produce known generating structure was done 

ted by Visweswaran [124]. We utilized his simulated data since it was 

developed for the use of testing Bayesian local and global structures. The simulated data was 

Test set Training set 
 
   

A,B,C,D,Z 
T , F , F , F , T  
T , F , T , F , T  
T , T , F , T , T  
T , T , T , F , T  
T , T , T , T , T  
F , F , F , F , F  
F , F , F , T , F  
F , F , T , F , F  
F , F , T , T , F  
F , T , F , F , F  
F , T , F , T , F  
F , T , T , F , F  
F , T , T , T , T  

 
   

A,B,C,D,Z 
T , F , F , F , T  
T , F , T , F , T  
T , T , F , T , T
T , T , T , F , T
T , T , T , T , T
F , F , F , F , F  
F , F , F , T , F  
F , F , T , F , F  
F , F , T , T , F  

Repeated 8 times F , T , F , F , F  
F , T , F , T , F  
F , T , T , F , F  
F , T , T , T , T

 Figure 3-11. The simulated data used to verify the Bayesian Structure Search algorithms. 
Originally developed by Dr. Visweswaran in [124]. 

using simulated data crea

derived from the deterministic function expressed in the equation below. 

   ( )Z A B C D= ∨ ∧ ∧     (16) 

This equation, where Z is the target variable, A, B, C, and D are the observed variables and all 

variables are binary, was used to generate the following data in Figure 3-11. Using the simulated 

data, th at are generated by the es. ere are multiple structures th  global and local structure search

All of the various search strategies (greedy, beam, and parallel greedy) return very similar 

structures as seen in Figure 3-12. 
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Table 3-2. The counts from the model in Figure 3-12 (1) which is the Bayesian Global Structure. 

specific parent state. A = {A=T}, 
{D=T}, ‘D = {D=F}. 

Some of the parameters are 0.5 since in the training data, there is no training case that exemplifies that 
‘A = {A=F}, B = {B=T}, ‘B = {B=F}, C = {C=T}, ‘C = {C=F}, D = 

 

Table 3-3. The cou from t odel in gure 3 ) which is the sian Local Struc  Decision 
Tree. The combin n l g e la f  t l n u  f r  in the 
table decrea  t u er eters needed. 

Z A = T 

A = F 

A ‘A 
B ‘B B ‘B Z 

C ‘C C ‘C C ‘C C ‘C 
D ‘D D ‘D D ‘D D ‘D D ‘D D ‘D D ‘D D ‘D 

T 2 2 2 1 1 2 1 2 1 1 1 1 1 1 1 1 
F 1 1 1 1  1 1 1 9 9 9 9 9 9 9 1 9 

nts he m  Fi -12 (2 Baye ture
atio  of multiple cel s, e. ., th  col pse o  all he ce ls u der A res lts in ewe  cells

sing he n mb of param

B = T
B = F 

 
C = T C = F D = T D = F 

T 6 9 1 1 1 
F 1 1 9 17 33 

 

Table 3-4. The counts f ure 3-12 h is the Bayesian Local Structure Decision 
Graph. The d ference b e dec phs and the d ision tree is that the graphs co bine the counts. 

rom the
etween th

 model in Fig
ision gra

(3) whic
if ec m

Z A

A = F 

 = T B = T 
B = F C = T C = F D = T D = F 

T 15 15 1 1 1 
F 1 1 59 59 59 
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As seen by Figure 3-12 and their respective counts in Table 3-2, Table 3-3, and Table 3-

4, there are distinctive differences in the parameterization between the global structures and the 

local structures after learning the model on the training data. Specifically, in Table 3-2, there are 

cells, which only have the prior counts of 1 in them. These cells are empty due to the sparseness 

within the data. When performing inference and constructing rules, those rules are defaulted to 

 B  C   A  D 

 Z (1)

(3) 

(2)

Figure 3-12. Examples of the structures generated from the simulated data. (1) is the global structure, (2) is 
the Bayesian Local Structure Decision Tree model, and (3) is the Bayesian Local Structure Decision Graph 
model. Z represents the target variable while A, B, C, and D are the observed variables. 
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Z=T. As we see in Table 3-5, the choice of the default can dramatically affect the classification 

results. 

Table 3-5. The performance results of application of Bayesian Rule Generation using various structures. 
These results were achieved using the default classification of P(Z=T | E) when P(Z=T | E) = P(Z = F | E). 

Structure type Accuracy Robustness RCI 

Bayesian Global Rule Learning 100% 100% 100% 

Bayesian Local Structure Decision Tree Rule Learning 100% 100% 100% 

Bayesian Local Structure Decision Graph Rule Learning 100% 100% 100% 
 

 As we see, all the algorithms perform equally well when using the model derived from 

the training data to perform inference on the test data. However, this result could be from the 

default prediction of the first target value encountered in the data when building the model. If the 

algorithm set the default when choosing between two equivalent probabilities for two target 

values to the second value, the Bayesian Global Rule Learning would have an incorrectly 

predicted on all of the test cases leading to an accuracy of 0% and a Robustness of 0%; however, 

both Bayesian Local Structure rule learning methods would have the same performance on this 

dataset regardless of the default choice when given equivalent probabilities. This highlights the 

importance of context-specific independencies due to the ability to differentiate the generating 

model using them.  

3.3.2 Biological Data 

To test the BRGF, I have utilized 24 publicly available datasets that span the spectrum of 

genomic and proteomic data. There are many more datasets available within the genomic area; 

however, there are few publicly available proteomic datasets. To increase the number of 

proteomic datasets, I utilized six non-public datasets generated at the University of Pittsburgh. 
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These datasets are detailed in Table 3-6 and Table 3-7. It also lists the number of variables and 

the percentage of the samples that occupy the majority class. In Table 3-6, at least 17 out of the 

24 listed datasets have majority class samples and are significantly skewed. 

Table 3-6. Publicly Available Biological Datasets that will be used in the evaluation of the BRGF Framework.  
Type refers to the type of data where G is genomic and P is proteomic.  P/D is used to express whether the data is 
Prognostic (survival) or Diagnostic.  M is the percentage of the data that is represented by the majority class. An M 
of 0.75 would represent that 75% of the data is of one class. 

Dataset Type P/D # Classes # Variables # Samples M Ref # 
Alon et al. G D 2 6584 61 0.651 [147] 
Armstrong et al. G D 3 12582 72 0.387 [7] 
Beer et al. G P 2 5372 86 0.795 [92] 
Bhattacharjee et al. G D 5 12600 203 0.657 [85] 
Bhattacharjee et al. G P 2 5372 69 0.746 [85] 
Golub et al. G D 4 7129 72 0.513 [83] 
Hedenfalk et al. G D 2 7464 36 0.500 [84] 
Iizuka et al. G P 2 7129 60 0.661 [91] 
Khan et al. G D 4 2308 83 0.345 [86] 
Nutt et al. G D 4 12625 50 0.296 [148] 
Pomeroy et al. G D 5 7129 90 0.642 [149] 
Pomeroy et al. G P 2 7129 60 0.645 [149] 
Ramaswamy et al. G D 26 16063 280 0.574 [89] 
Rosenwald et al. G P 2 7399 240 0.145 [79] 
Staunton et al. G D 9 7129 60 0.506 [150] 
Shipp et al. G D 2 7129 77 0.746 [8] 
Singh et al. G D 2 10510 102 0.510 [9] 
Su et al. G D 11 12533 174 0.150 [87] 
Veer et al. G P 2 24481 78 0.562 [93] 
Welsch et al. G D 2 7039 39 0.878 [81] 
Yeoh et al. G P 2 12625 249 0.805 [94] 
Petricoin et al. P D 2 11003 322 0.784 [103] 
Pusztai et al. P D 3 11170 159 0.364 [151] 
Ranganathan et al. P D 2 36778 52 0.556 [152] 
 

Table 3-7. Additional proteomic datasets that are not publicly available. #C is the cardinality of the target 
variable and #V is the number of variables within the dataset. JLL refers to Jonathan L. Lustgarten. For the MALDI-
TOF dataset, I was the one who created the dataset using samples from the Bowser lab. 
Dataset Type P/D # C # V # Samples M Lab 
SELDI-TOF ALS Plasma P D 2 42543 67 0.507 Bowser 
MALDI-TOF ALS CSF P D 2 34400 22 0.545 JLL/Bowser 
SELDI-TOF Lung Cancer P D 2 19581 239 0.560 Lung SPORE 
SELDI-TOF ALS CSF P D 2 17914 168 0.667 Bowser 



3.3.3 Experimental Design 

To test the different algorithms and different discretization methods, I utilized an experimenter 

that had the following logical flow where a run refers to a new random stratification and a fold is 

a specific split of the data between training and testing: 

Di = The ith dataset of all datasets  
Mj = The jth discretization method of M where M = {MDLPC, EBD} 
Ck = The kth classifier that consists of a classification algorithm and search type 
ResCkMjDirf = Stores the predictions made by the kth classifier, jth discretization method, and the 
specific train test pair of the Dirf datasets (ith dataset, rth run, f fold) 
 
1 For all Di in D 
2  For r = 1 to R runs 
3    For f = 1 to F folds 
4      For all Mj in M 
5        For all Ck in C 
6  ResCiMiDirf = Run Classifier Ci using discretization Method Mi on Dataset Dirf 
7  Store ResCiMiDirf 
8   END FOR 
9     END FOR 
10  END FOR 
11 END FOR 
12 Calculate all the performance measures for all Results 
13 Output Summary Results 

Figure 3-13. The pseudocode for the Experimenter used in testing the different algorithmic and 
discretization method combinations. 

As we see this is an exhaustive combination iterating over every possible combination of 

classifier, discretization method, and dataset which are passed as parameters. For the purpose of 

this experiment, we used 10 runs of 10 fold cross-validation over 24 datasets using 9 different 

classifiers and 2 different discretization methods explained in Sections 2.2.2, 3.1.1.1 and 3.1.2-4. 

This results in 50,400 models generated using the flow shown in Figure 3-13.  
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3.3.4 Performance Measures 

The following measures represent a chosen subset of possible measures [153, 154]. Since there 

are both probabilistic and discrete classifiers within the chosen classification algorithms, the 

performance measures need to be chosen accordingly. All of these measures will be tested using 

different statistical tests that are explained in Section 3.3.5. The discrimination measures used 

include accuracy (ACC), balanced accuracy (BACC), and Relative Classifier Information (RCI). 

The discrimination measures evaluate how well the classifier differentiates between the values of 

the target variable (classes). The Timing (TIME) and Model Complexity (MC) measures are 

more descriptive than discriminative since these measure look at characteristics of the algorithm 

instead of prediction results. 

3.3.4.1 Accuracy 

Accuracy measures how many correct predictions a particular classifier makes. This measure, 

while descriptive, does not account for skewed distributions (more of one type of class within the 

data), which as seen in Table 3-6, can result in high predictive accuracies. This resulted in our 

use of alternative measures such as balanced accuracy and Relative Classifier Information. An 

ACC score of 100% represents perfect discrimination. 

Table 3-8. A brief description of the performance measures used. For the Timing measure, the closer it is to 0 
mins, the better. For Model Complexity it is preferable to have a less complex model though there is no absolutely 
best score. For all other measure, 100 is the best score. N represents the number of variables within a dataset. 

 
Measures of Performance Abbreviation Range Best Score 
accuracy ACC [0 - 100] 100 
balanced accuracy BACC [0 - 100] 100 
Relative Classifier Information RCI [0 - 100] 100 
Timing TIME [0 - ∞] 0 
Model Complexity MC [0 – 2n] NA 



3.3.4.2 Balanced Accuracy 

Balanced accuracy (BACC) compensates for skewed distribution of classes in a dataset. 

Balanced accuracy is defined as follows: 
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where the |C| is the cardinality of the target variable and Sensitivity(c) and Specificity(c) 

refer to the sensitivity of target value c versus all other values of the target. TP(c|c) is the number 

of samples predicted to be c given that its observed target value is c, ܨ ሺܰ֋௖|௖ሻ is the number of 

samples predicted to be another target value that is not c given that it’s observed value is c, 

ܶ ሺܰ֋௖|֋௖ሻ  is the number of samples predicted to be another target value besides c given that its 

observed value is not c, and ܲܨሺ௖|֋௖ሻ  is the number of samples predicted to be target value c 

given that it’s observed value is not c. One characteristic of this score is that it measures 

sensitivity and specificity as a one vs. rest problem, which means the positive class is c and the 

negative class is ֋ ܿ for all c within the dataset. Unlike accuracy however, BACC is not easily 

translatable into the number of predictions correct due to the described one vs. rest approach. A 

BACC score of 100% represents perfect discrimination. 

3.3.4.3 Relative Classifier Information 

Relative Classifier Information (RCI) is an entropy-based performance measure of a classifier 

that quantifies the amount by which the uncertainty of a decision problem is reduced by a 
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classifier compared to predicting the majority class for the target for every instance [122]. For a 

confusion matrix (a table of showing the distribution of predictions over the various classes) of J 

columns and I rows representing the predictions of the classifier compared to the observed value 

(this includes the ability to have “No prediction”), let qij = the number of times Class i was called 

Class j by the classifier and I be a previously unseen case. 
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and the uncertainty of the classification of that case is: 
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The probability that the new sample is an Element of Ci given that the Output from the classifier 

is Cj is: 
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Therefore the uncertainty of the unseen case I given that the Output is Cj is: 

  

( | ) ( | ) ( ( | )) log(
jO j i j i j ij

i i
H I O C P I C O C Log P I C O C p p∈ = − ∈ ∈ ∈ ∈ ∈= −∑ ∑

(21) 

)ij

The probability of the output O being of Class j: 
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Combining Equation 22 and Equation 23, we calculate the uncertainty of the classifier output as: 
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Using Equation 20 and subtracting the results of Equation 24, one gets how much uncertainty is 

captured by the classifier. 

   
classifier d OH H H= −

    
(24) 

To get the RCI, Equation 25 is divided by equation 20 and multiplied by 100%.  

Equation 22 can be interpreted as information gain and thus RCI can be reworded to say 

it measures the information gain of using the classifier over a majority classification algorithm 

which always predicts the most abundant class. Its range is from 0%, denoting the worst 

performance, to 100%, denoting perfect discrimination. It is similar to the Area Under the 

Receiver Operator Characteristic curve (AUROC) in that it measures the discriminating power of 

the classifier while minimizing the effect of the class distribution.  

3.3.4.4 Running Time 

The time for classification is an interesting measure that incorporates multiple aspects of the 

classification algorithm. It not only incorporates running time, e.g., how long it takes in minutes 

the algorithm to build a model from the input data, but also inference.  
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3.3.4.5 Model Complexity (Number of Variables and Rules) 

Model complexity, like TIME, is also a qualitative measure. Ideally, the simpler the model, the 

more general it is; however, given noise, variability, and the complexity of the information 

within the data, sometimes the simpler model does worse because it does not capture the correct 

interactions between the variables of the data [155]. For the purposes of this experiment, the MC 

is expressed by two numbers: the number of variables and the total number of rules used in the 

model. This is a qualitative measure given that we limit the total number of possible parents in 

the Bayesian global methods to 8 and the maximum number of variables per a path to 8 for 

Bayesian local methods, which means it is possible to have more than 8 variables used in the 

model.  

3.3.5 Statistical Analysis 

For this thesis I used two common statistical tests, the Wilcoxon paired samples signed rank test 

and the paired samples t-test. The Wilcoxon paired samples signed rank test is a non-parametric 

procedure used to test whether there is sufficient evidence that the median of two probability 

distributions differ in location. In evaluating algorithms, it is used to test whether two algorithms 

differ significantly in performance on a specified measure. Being a non-parametric test, it does 

not make any assumptions about the form of the underlying probability distribution of the 

sampled population. The paired samples t-test is a parametric procedure used to determine 

whether there is a significant difference between the average values of the same performance 

measure for two different algorithms. The test assumes that the paired differences are 

independent and identically normally distributed. Although the measurements themselves may 

not be normally distributed, the pair-wise differences often are. 
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 These two tests cover two different approaches (normal, and no-distributional) to testing 

for significance.  The normal assumption is often used since it is well characterized.  If the 

results are not normally distributed, instead of trying to match the most likely distribution, most 

scientists utilize a test that requires no normality assumption, such as the Wilcoxon paired 

samples signed rank test. 
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4.0  SUFFICIENCY OF THE BAYESIAN RULE GENERATION FRAMEWORK 

For the purposes of demonstrating sufficiency of the BRGF for ‘omic’ data mining, I will give 

examples of the two most important components, discretization and probabilistic rule learning.  

The first example will be showing the sufficiency of Bayesian discretization using the EBD 

method defined in Section 3.1.1.1.  The second example will be on a proteomic dataset showing 

the results both in rule form and the BN form from the analysis of a publicly available prognostic 

genomic dataset [85]. 

4.1 BAYESIAN DISCRETIZATION 

We compared the performance of the EBD method (see Section 3.1.1.1) with the performance of 

the MDLPC (see Section 2.2.2) method on 23 biomedical genomic and proteomic datasets (see 

Table 4-1) using two measures: accuracy and relative classifier information (RCI). The two 

selected measures evaluate the performance of classifiers that are learned from the discretized 

variables. For classification, we used the naïve Bayes classifier which is simple, efficient and 

robust and accepts both continuous and discrete variables. Although the naïve Bayes classifier 

accepts continuous predictor variables, the performance of the classifier tends to be better when 

the predictors are discretized than when the predictors are modeled with a normal distribution 

[45] .  
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Table 4-1. The datasets used for the discretization comparison between MDLPC and EBD to prove 
sufficiency. In the Type column, G denotes transcriptomic and P denotes proteomic. In the P/D column, P denotes 
prognostic and D denotes diagnostic. # c is the number of values of the target variable and # n is the number of 
instances in the dataset. # V is the number of predictor variables. M is the proportion of the data that has the 
majority target-value. 

Dataset Dataset name Type P/D # c # n # V M 
1 Alon et al. G D 2 61 6584 0.651 
2 Armstrong et al. G D 3 72 12582 0.387 
3 Beer et al. G P 2 86 5372 0.795 
4 Bhattacharjee et al. G D 7 203 12600 0.657 
5 Bhattacharjee et al. G P 2 69 5372 0.746 
6 Golub et al. G D 4 72 7129 0.513 
7 Hedenfalk et al. G D 2 36 7464 0.500 
8 Iizuka et al. G P 2 60 7129 0.661 
9 Khan et al. G D 4 83 2308 0.345 
10 Nutt et al. G D 4 50 12625 0.296 
11 Pomeroy et al. G D 5 90 7129 0.642 
12 Pomeroy et al. G P 2 60 7129 0.645 
13 Ramaswamy et al. G D 29 280 16063 0.100 
14 Rosenwald et al. G P 2 240 7399 0.574 
15 Staunton et al. G D 9 60 7129 0.145 
16 Shipp et al. G D 2 77 7129 0.747 
17 Su et al. G D 13 174 12533 0.150 
18 Veer et al. G P 2 78 24481 0.562 
19 Welsch et al. G D 2 39 7039 0.878 
20 Yeoh et al. G P 2 249 12625 0.805 
21 Petricoin et al. P D 2 322 11003 0.784 
22 Pusztai et al. P D 3 159 11170 0.364 
23 Ranganathan et al. P D 2 52 36778 0.556 

 

The naïve Bayes classifier assumes that the variables are conditionally independent of 

each other given the target-value. Given an instance, it applies Bayes theorem to compute the 

probability distribution over the target-values. This classifier is very effective when the 

independence assumptions hold in the domain; however, even if this assumption is violated the 

classification performance is often excellent when compared to more sophisticated classifiers 

[156]. 
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Table 4-2. The accuracies of EBD, MDLPC, and No Discretization using a Naïve Bayes classifier. The last 
column reports the mean accuracies obtained from the application of the naïve Bayes classifier to the continuous-
valued variables without discretization where each continuous-valued variable is represented by a Gaussian 
distribution. The mean and the standard error of the mean (SEM) for the percent accuracy for each dataset is 
obtained by averaging over a total of 20 training and test datasets. For each dataset, the highest single accuracy is 
shown in bold font. 

Dataset Average Accuracy 
EBD (SEM) MDLPC (SEM) No Discretization (SEM) 

1 97.95% (2.20) 98.12% (2.18) 95.00% (2.13) 
2 97.99% (3.24) 97.99% (3.20) 95.89% (1.83) 
3 96.40% (4.48) 95.47% (4.43) 73.75% (4.20) 
4 80.86% (1.92) 78.65% (2.22) 79.79% (1.61) 
5 96.96% (4.82) 96.74% (5.13) 68.57% (4.73) 
6 97.92% (3.15) 98.19% (3.08) 80.18% (4.34) 
7 99.72% (1.72) 99.72% (1.72) 97.50% (2.48) 
8 95.83% (3.55) 96.25% (3.26) 65.00% (4.67) 
9 98.43% (1.57) 98.80% (0.76) 96.39% (1.05) 
10 94.50% (3.80) 92.10% (3.58) 70.00% (4.69) 
11 95.72% (2.61) 97.44% (2.61) 64.33% (1.66) 
12 93.58% (4.44) 93.83% (3.68) 84.44% (3.75) 
13 85.61% (4.43) 73.86% (4.46) 58.33% (4.27) 
14 83.81% (2.68) 84.40% (2.96) 44.71% (3.00) 
15 97.25% (4.20) 94.17% (4.59) 60.00% (3.46) 
16 92.53% (2.91) 91.69% (2.91) 55.83% (2.05) 
17 97.81% (2.76) 98.33% (2.51) 36.67% (4.81) 
18 97.44% (2.32) 97.18% (2.54) 71.33% (4.84) 
19 100.00% (0.00) 100.00% (0.00) 83.21% (3.70) 
20 95.82% (3.94) 95.08% (4.25) 78.20% (3.72) 
21 84.69% (1.62) 84.12% (0.02) 60.71% (4.02) 
22 58.52% (3.23) 59.18% (0.06) 90.00% (4.59) 
23 98.71% (2.53) 97.98% (2.40) 70.33% (4.07) 
Overall Avg. 92.96% (1.93) 92.14% (2.08) 72.73% (3.42) 
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The mean accuracies for EBD and MDLPC using the Naïve Bayes classifier are given in 

Table 4-2. For each dataset, the mean accuracy is obtained from 10-fold cross-validation done 

twice for a total of 20 folds. EBD has higher mean accuracy on 11 datasets, MDLPC has higher 

mean accuracy on 9 datasets, and both have the same mean accuracy on 3 datasets. Overall, EBD 

shows an increase in accuracy of 0.88% over MDLPC and this increase in accuracy is 

Dataset Average RCI 
EBD FI  No Discretization 

1 85.95% 80.95% 69.54% 
2 86.40% 86.40% 82.26% 
3 33.44% 34.97% 1.04% 
4 75.69% 75.55% 53.03% 
5 12.24% 7.92% 4.24% 
6 82.25% 83.59% 55.26% 
7 100.00% 100.00% 79.12% 
8 32.57% 27.83% 2.98% 
9 98.44% 93.48% 92.63% 
10 83.51% 83.12% 44.71% 
11 74.70% 72.36% 50.13% 
12 22.13% 35.69% 1.93% 
13 84.16% 83.35% 62.90% 
14 3.25% 3.37% 1.38% 
15 86.62% 82.29% 28.42% 
16 59.54% 56.31% 20.03% 
17 100.00% 98.89% 68.18% 
18 64.20% 66.56% 0.96% 
19 100.00% 100.00% 0.00% 
20 5.94% 3.77% 0.09% 
21 22.02% 23.43% 7.40% 
22 26.98% 22.48% 3.65% 
23 45.19% 36.95% 10.28% 
Overall Average 60.22%  59.10%  32.18% 

 

Table 4-3. The average RCI for EBD, MDLPC and No Discretization using a Naïve Bayes 
classifier. The last column reports the mean RCI when the variables are not discretized. The mean for 
the percent RCI for each dataset is obtained by averaging over two runs where each run contains 10 
training and test datasets. Since the mean is obtained from only two runs the standard error of the 
mean was not be computed. For each dataset, the highest RCI is shown in bold font. 
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statistically significant at the 5% significance level on the Wilcoxon signed rank test (see Table 

4-4). Table 4-2 also gives the mean accuracies of the Naïve Bayes classifier that uses the 

continuous predictors directly without discretizing them. The results show that its accuracy of the 

classifier using the continuous variables is inferior to the accuracy obtained by the application of 

the either discretization methods. 

The RCI is a measure of the discriminative performance of a classifier that is similar to 

the area under the Receiver Operating Characteristic curve (see Section 3.3.4.3). The mean RCIs 

for EBD and MDLPC using the naïve Bayes classifier are given in Table 4-3. For each dataset, 

the mean RCI is obtained from 10-fold cross-validation done twice for a total of 20 folds. EBD 

has higher RCI on 14 datasets, MDLPC has higher RCI on 6 datasets, and both have the same 

RCI on 3 datasets. Overall, EBD shows an improvement of 1.12% in RCI over MDLPC, and this 

increase in RCI is statistically significant at the 5% level on the Wilcoxon signed rank test (see 

Table 4-4). Table 4-3 also gives the mean RCIs of the Naïve Bayes classifier without variable 

discretization which show that the RCIs obtained using the continuous variables are inferior to 

the RCIs obtained by the application of the discretization methods. 

Measure  Mean (SEM) Mean 
Diff. 

Wilcoxon 
p-value 
 (Z-Score) 

Accuracy 
[0, 100] 

EBD 92.96 (9.17) 0.82 0.026  
(2.219) FI 92.14 (9.86) 

RCI 
[0, 100] 

EBD 60.22 (33.10) 1.13 0.020  
(2.320) FI 59.10 (32.93) 

 

Table 4-4. Statisical comparison of EBD and MDLPC across accuracy and RCI. Results of the 
Wilcoxon paired samples signed rank test for accuracy and RCI over all datasets. All tests are two 
sided. A positive Z-score indicates a result that is favourable to EBD. Bolded p-values are below 0.05. 
The range of a measure is given in square brackets where n is the number of instances in the dataset. 



As seen from the performance of EBD when compared to no discretization and the de 

facto standard discretization method MDLPC, not only is EBD sufficient for discretization, but 

also it gives a performance boost that is statistically significant.   

4.2 BAYESIAN RULE GENERATION 

To prove sufficiency of Bayesian rule generation, we have to show that we can 1) produce a 

Bayesian structure that can be interpreted into rules, and 2) show that the rules have a 

probabilistic certainty factor.  For this we will utilize the Bhattacharjee, et al. [85] prognostic 

genomic dataset.  We will also use two different search algorithms: Bayesian global structure 

with a beam search (BGRL-B), and Bayesian local structure decision graph with a parallel 

greedy search (BLSRL-DG-PG).  These examples will both highlight the fact that you can 

generate probabilistic rules from the constrained BNs, and that using local structure reduces the 

number of rules generated. 

 As seen in both Figure 4-1 and Figure 4-2, extracting rules allows understandability while 

expressing the probabilistic information contained within the CPT.  It is also shown, when 

comparing Figure 4-1 and Figure 4-2, that using the special case of the Bayesian local structure 

decision tree which forces a complete tree (Bayes global structure) produces significantly more 

rules than using the most general local structure – the Bayesian decision graph. Appendix A 

contains all of the rules generated from both models. We have therefore demonstrated that it is 

possible to use a BN to generate rules, which are probabilistic, when constrained to only parents 

of the target class model. 
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@ Class A4474 = [695.750.. ∞) & 
A2987 = [-31.750.. ∞) & 
A671 = (-∞..51.500) & 
A459 = [-40.000.. ∞) & 
A1754 = [124.750.. ∞) 

A4474 = [549.500..695.750) & 
A2987 = [-31.750.. ∞) & 
A671 = [51.500..∞) & 
A459 = [-40.000.. ∞)  & 
A1754 = [124.750.. ∞) 

… 

Survive = 1 0 2 … 

Died = 2 19 0 … 

 

Rule 1: ((A4474 = 695.750..Infinity) (A2987 = -31.750..Infinity) (A671 = Negative 
Infinity..51.500) (A459 = -40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class = 2) 
 CF=0.952, Av.Cost=1.0, CF/Cost=0.952, P=0.002, TP=19, FP=0, Pos=52, Neg=17 
 
Rule 2: ((A4474 = 549.500..695.750) (A2987 = -31.750..Infinity) (A671 = 51.500..Infinity) 
(A459 = -40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.75, Av.Cost=1.0, CF/Cost=0.75, P=0.058, TP=2, FP=0, Pos=17, Neg=52 
… 

Figure 4-1. The Bayesian global structure learned, the parameterization, and the rule generated by 
the BGRF when combined with EBD discretization.  The top is the Bayesian network constructed, the 
table in the middle represents part of the CPT for the target variable @class, and the rule list below the table 
represents sum of the 48 rules generated by the global structure. The complete set of rules is available in 
Appendix A. 
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@ Class A2900 = (-∞ - 1,808.75) & 
A2002 = [2.75 -  ∞) 

A2900 = (-∞ - 1,808.75) & 
A4474 = [695.75 - ∞) & 
A1627 = (-∞ - 717.00)  

… 

Survive = 1 17 0 … 

Died = 2 0 52 … 

Rule 1: ((A2900 = Negative Infinity..1,808.750) (A2002 = 2.750..Infinity)) ==> (@Class = 1) 
 CF=0.947, Av.Cost=1.0, CF/Cost=0.947, P=0.0, TP=17, FP=0, Pos=17, Neg=52 
 
Rule 2: ((A2900 = 1,808.750..Infinity) (A4474 = 695.750..Infinity) (A1627 = Negative 
Infinity..717.000)) ==> (@Class = 2)  
 CF=0.981, Av.Cost=1.0, CF/Cost=0.981, P=0.0, TP=52, FP=0, Pos=52, Neg=17 
… 

Figure 4-2. The Bayesian local structure decision graph learned, the parameterization, and the rule 
generated by the BGRF when combined with EBD discretization.  The top is the Bayesian local 
structure constructed, the table in the middle represents part of the CPT for the target variable @class, and 
the rule list below the table represents some of the 9 rules generated by the local structure. The complete set 
of rules is available in Appendix A. 



5.0  EVALUATION OF THE BAYESIAN RULE GENERATION FRAMEWORK 

For evaluating the BRGF, we will take the following approach to experimental design.  Since 

there are many possible combinations between non-probabilistic, Bayesian global structure, and 

Bayesian local structure each with different search paradigms, we will first focus on comparing 

the two most general methods for generating a BN for rule generation: Bayesian local structure 

decision tree and Bayesian local structure decision graph.  We will compare these two algorithms 

across the multiple search strategies defined within Section 3.1.4 in Section 5.1. Upon 

experimentation, whichever method (structure type and search method) is shown to be 

statistically significant (or both if they are equivalent) will be selected for comparison against the 

Bayesian global structure, which is viewed as a very specific case of local structure as explained 

in Section 2.2.4.  These comparisons will be discussed in Section 5.2. We will then compare in  

Section 5.3 each combination of the local structure and search paradigm, global structure and 

search paradigm that prove to be the highest performing to two non-probabilistic rule learning 

methods: C4.5 and RL.  Once a pattern for which type of rule generation produces the highest 

performance has been established in Section 5.4, we will test it on 4 proteomic datasets that are 

not publicly available to determine if the pattern observed on the publicly available biomedical 

genomic and proteomic data is still apparent. 
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5.1 BAYESIAN LOCAL STRUCTURE COMPARISON DECISION TREE VS. 

DECISION GRAPH 

5.1.1 MDLPC 

5.1.1.1 Results 

 
Table 5-1 through Table 5-3 report the means of the accuracy, the balanced accuracy, and the 

RCI respectively for using Fayyad and Irani’s MDLPC discretization method on the four 

different Bayesian local structure rule learning algorithms: Bayesian Local Structure Rule 

Learning – Greedy Decision Tree (BLSRL_DT_G), Bayesian Local Structure Rule Learning – 

Parallel Greedy Decision Tree (BLSRL_DT_PG), Bayesian Local Structure Rule Learning – 

Greedy Decision Graph (BLSRL_DG_G), Bayesian Local Structure Rule Learning – Parallel 

Greedy Decision Graph (BLSRL_DG_PG). In each table, each row is a dataset, and each column 

is a learning method. The last row in each table represents the overall mean of the specified 

performance measure across the datasets. 

In Table 5-1, we see that BLSRL_DG_PG has greater accuracy than BLSRL_DG_G on 

13 datasets. Ten of those thirteen datasets show highest accuracy (among local structure 

methods) with the combination of parallel greedy search method with decision graph. 

BLSRL_DG_G achieves higher accuracy than BLSRL_DG_PG on eight datasets. On three of 

those eight datasets, BLSRL_DG_G produces the highest accuracy out of all tested Bayesian 

local structure methods. For Bayesian local structure decision trees, BLSRL_DT_PG achieves 

higher accuracy than BLSRL_DT_G on ten datasets; in 3 cases among those, BLS_DT_PG 

achieves the largest value across all tested Bayesian local structure methods. In thirteen datasets, 
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BLSRL_DT_G achieves greater accuracy than BLSRL_DT_PG with 6 of them having the 

greatest performance across all tested Bayesian local structure methods. 

In Table 5-2, which shows the performance results with respect to balanced accuracy, we 

see that BLSRL_DG_PG achieves greater BACC than BLSRL_DG_G on 14 datasets; in 9 of 

those 14 datasets the parallel greedy search method for decision graph produces the highest 

accuracy out of all local structure methods. BLSRL_DG_G is greater than BLSRL_DG_PG on 7 

datasets. On 4 of those 7 datasets, BLSRL_DG_G produces the highest accuracy out of all tested 

Bayesian local structure methods. There were three ties for the BLSRL_DG algorithms. For 

Bayesian local structure decision trees, BLSRL_DT_PG has higher BACC values than 

BLSRL_DT_G on 12 datasets; in 2 of those cases, BLS_DT_PG has the largest value across all 

tested Bayesian local structure methods. In 11 datasets BLSRL_DT_G achieves higher BACC 

than BLSRL_DT_PG, with 6 of them having the greatest performance across all tested Bayesian 

local structure methods. There was one tie between the BLSRL_DT algorithms. 

In Table 5-3, which shows the performance results with respect to Relative Classifier 

Information (RCI), we see that BLSRL_DG_PG is greater than BLSRL_DG_G on 15 datasets; 

in 14 of those 15 datasets, the parallel greedy search method for decision graph produces the 

highest accuracy out of all local structure methods. BLSRL_DG_G is greater than 

BLSRL_DG_PG on 6 datasets, among which BLSRL_DG_G produces the highest accuracy on 1 

dataset out of all tested Bayesian local structure methods. For Bayesian local structure decision 

trees, BLSRL_DT_PG has higher values than BLSRL_DT_G on 10 datasets; in 3 of those cases, 

BLS_DT_PG has the largest value across all tested Bayesian local structure methods. 

BLSRL_DT_G has 12 datasets in which it achieves greater RCI than BLSRL_DT_PG, with 2 of 

them having the greatest performance across all tested Bayesian local structure methods. 
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Table 5-4 through Table 5-6 report the results from pair-wise comparisons of the 

performance measures of the Bayesian local structure rule learning algorithms using MDLPC on 

the biomedical datasets. These tables show the statistical significance of the observed differences 

in the measures. Table 5-4 reports results from the analysis of accuracy compared in three tests, 

BLSRL_DG_G vs. BLSRL_DG_PG, BLSRL_DT_G vs. BLSRL_DT_PG, and since 

BLSRL_DG_PG and BLSRL_DT_G have higher average compared to the alternative search 

strategy within the same local structure, we compared them. Table 5-5 reports results from the 

analysis of balanced accuracy comparing the same tests as in Table 5-4. Table 5-6 reports results 

from the analysis of Relative Classifier Information (RCI) using the same comparisons as in 

Table 5-4 and Table 5-5.  

We noticed that when comparing these algorithms using MDLPC as the discretization 

method, two measures, accuracy and balanced accuracy show no significant difference between 

any of the comparisons, while Relative Classifier Information (RCI) shows significant difference 

between two of the comparisons: BLSRL_DG_G vs. BLSRL_DG_PG and BLSRL_DG_PG vs. 

BLSRL_DT_G. The comparison of BLSRL_DT_G to BLSRL_DT_PG shows no significance 

difference in any of the measures. 

5.1.1.2 Discussion 

Overall, the BLSRL_DG_PG algorithm increased performance on average across the various 

measures, though only RCI had statistical significance. This could be due to many reasons. The 

lack of statistical difference in accuracy can be explained when considering the highly skewed 

nature of the data. While measures like RCI and balanced accuracy attempt to compensate for 

skewed distributions among classes, accuracy reflects total correct or incorrect. This means that 

if there are a large number of samples from one class, equivalent accuracy can be achieved in 
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many ways. Balanced accuracy showed that considering multi-class problems as one vs. rest for 

performance evaluation can be problematic. We see that even though BLSRL_DG_PG achieves 

greater BACC than BLSRL_DG_G 14 out of 24 times with 9 of them being the greatest out of 

all Bayesian local structure algorithms tested with MDLPC, the one vs. rest comparisons leads to 

difficultly in showing statistical difference between the classifiers. RCI, however, considers the 

classification problem as a whole where the distribution of the predictions in the classifier is 

considered against the predictions a majority classifier calculating the information gain when 

using the classifier over the majority class prediction. This results in a very sensitive measure 

that allows distinction between classification methods. Using this measure, BLSRL_DG_PG was 

shown to be statistically significant and greater than the decision tree search methods and 

BLSRL_DG_G.  This means that the most amount of information is gained over majority 

classification when using BLSRL_DG_PG when using MDLPC as the discretization method. 
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Table 5-1. The percent accuracy averaged over 10x10 fold cross-validation for MDLPC discretization and 
Bayesian local structure classifiers. Those values which are greater within the same local structure type are in bold 
and the largest value of all structures is italicized.  
Bayesian Local Structure Decision Tree Decision Graph 

Search Strategy Greedy Parallel Greedy Greedy Parallel Greedy 
Alon et al. 100.00 100.00 100.00 100.00 
Armstrong et al. 81.43 61.07 70.18 84.46 
Beer et al. 78.06 79.17 81.81 78.19 
Bhattacharjee et al. 50.10 52.98 72.01 71.98 
Bhattacharjee et al. 65.48 70.00 62.62 72.86 
Golub et al. 69.29 55.36 63.57 67.86 
Hedenfalk et al. 97.50 90.00 97.50 97.50 
Iizuka et al. 63.33 60.00 58.33 65.00 
Khan et al. 70.72 60.15 69.29 71.10 
Nutt et al. 62.00 54.00 54.00 52.00 
Pomeroy et al. 67.78 72.22 65.56 60.00 
Pomeroy et al. 50.00 55.00 55.00 56.67 
Ramaswamy et al. 42.50 46.81 45.00 51.97 
Rosenwald et al. 60.83 60.00 61.25 65.00 
Staunton et al. 31.67 25.00 20.00 28.33 
Shipp et al. 87.50 83.57 86.07 81.07 
Singh et al. 83.18 74.45 80.27 84.18 
Su et al. 32.27 52.98 59.34 57.89 
Veer et al. 74.58 73.98 84.92 87.92 
Welsch et al. 87.50 90.00 87.50 87.50 
Yeoh et al. 74.40 74.37 68.72 66.67 
Petricoin et al. 69.23 69.55 60.50 67.20 
Pusztai et al. 46.57 46.77 59.07 59.56 
Ranganathan et al. 67.27 66.91 65.27 61.64 
Average 67.22 65.60 67.82 69.86 
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Table 5-2. The percent balanced accuracy averaged over 10x10 fold cross-validation for MDLPC 
discretization and Bayesian local structure classifiers. Those values which are greater within the same local 
structure type are in bold and the largest value of all structures is italicized. 
Bayesian Local Structure Decision Tree Decision Graph 

Search Strategy Greedy Parallel Greedy Greedy Parallel Greedy 
Alon et al. 100.00 100.00 100.00 100.00 
Armstrong et al. 85.61 69.63 79.44 87.01 
Beer et al. 51.21 52.21 54.03 51.65 
Bhattacharjee et al. 54.84 53.80 58.15 59.20 
Bhattacharjee et al. 43.39 46.19 42.26 49.94 
Golub et al. 63.96 55.36 61.38 62.46 
Hedenfalk et al. 97.50 90.00 97.50 97.50 
Iizuka et al. 51.67 47.08 49.17 51.67 
Khan et al. 71.17 72.25 73.14 71.63 
Nutt et al. 72.15 67.54 67.21 64.50 
Pomeroy et al. 54.54 56.59 53.71 55.41 
Pomeroy et al. 40.00 45.00 44.17 46.67 
Ramaswamy et al. 56.24 55.93 53.67 54.89 
Rosenwald et al. 57.50 57.57 52.68 56.25 
Staunton et al. 56.28 53.39 51.38 56.73 
Shipp et al. 62.71 59.29 61.79 56.37 
Singh et al. 83.33 73.58 80.50 84.25 
Su et al. 55.74 64.47 64.85 66.78 
Veer et al. 70.65 73.60 85.00 86.34 
Welsch et al. 48.75 50.00 48.75 48.75 
Yeoh et al. 46.34 47.34 47.85 43.26 
Petricoin et al. 53.28 54.98 48.75 55.88 
Pusztai et al. 66.93 67.23 68.95 68.45 
Ranganathan et al. 69.25 65.17 67.25 63.92 
Average 63.04 61.59 62.98 64.15 
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Table 5-3. The percent RCI averaged over 10x10 fold cross-validation for MDLPC discretization and 
Bayesian local structure classifiers. Those values which are greater within the same local structure type are in bold 
and the largest value of all structures is italicized. 
Bayesian Local Structure Decision Tree Decision Graph 

Search Strategy Greedy Parallel Greedy Greedy Parallel Greedy 
Alon et al. 100.00 100.00 100.00 100.00 
Armstrong et al. 32.24 25.97 33.73 57.74 
Beer et al. 2.83 6.40 2.66 7.16 
Bhattacharjee et al. 57.98 57.88 58.98 59.12 
Bhattacharjee et al. 0.88 0.58 0.17 1.69 
Golub et al. 36.79 17.36 35.82 34.62 
Hedenfalk et al. 72.10 72.10 72.10 72.10 
Iizuka et al. 0.53 1.09 0.92 0.83 
Khan et al. 32.00 18.35 29.35 36.56 
Nutt et al. 30.14 33.25 29.24 31.78 
Pomeroy et al. 22.89 20.87 22.94 25.99 
Pomeroy et al. 1.66 1.40 1.73 1.22 
Ramaswamy et al. 29.21 33.98 49.53 52.99 
Rosenwald et al. 14.14 15.98 18.09 27.74 
Staunton et al. 32.69 30.07 32.16 33.43 
Shipp et al. 24.33 17.47 24.98 25.31 
Singh et al. 34.71 17.68 30.76 29.97 
Su et al. 60.27 59.67 60.84 66.99 
Veer et al. 19.68 18.91 42.94 48.94 
Welsch et al. 23.27 27.89 23.27 23.27 
Yeoh et al. 7.12 7.89 7.79 7.26 
Petricoin et al. 1.70 2.65 2.06 5.89 
Pusztai et al. 24.02 27.02 25.94 28.11 
Ranganathan et al. 5.25 6.89 5.57 5.50 
Average 27.77 25.89 29.65 32.68 
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Table 5-4. The comparison of accuracies of the different search strategies and local structure type using 
MDLPC discretization. A positive score represents results that favor the first item in the comparison. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
DG_G 

Vs 
DG_PG 

67.82 
(17.27) -2.03 0.079 

(-1.755) 
0.058 

(-1.995) 69.86 
(16.10) 

DT_G 
Vs 

DT_PG 

67.22 
(18.31) 1.62 0.330 

(0.973) 
0.329 

(0.997) 65.60 
(16.58) 

DG_PG 
Vs 

DT_G 

69.86 
(16.10) -2.64 0.289 

(-1.060) 
0.162 

(-1.444) 67.22 
(18.31) 

 
Table 5-5. The balanced accuracy comparison of the different search strategies and the local structure type 
using MDLPC discretization. A positive score represents results that favor the first item in the comparison. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
DG_G 

Vs 
DG_PG 

62.98 
(16.06) -1.16 0.159 

(1.408) 
0.123 

(-1.601) 64.15 
(15.92) 

DT_G 
Vs 

DT_PG 

63.04 
(15.90) 1.45 0.378 

(0.882) 
0.191 

(1.348) 61.59 
(13.63) 

DG_PG 
Vs 

DT_G 

64.15 
(15.92) -1.10 0.370 

(-0896) 
0.301 

(1.057) 63.04 
(15.90) 

 
Table 5-6. The Statistical comparison of RCI of the different search strategies and local structure type using 
MDLPC discretization. A positive score represents results that favor the first item in the comparison. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
DG_G 

Vs 
DG_PG 

29.65 
(25.10) -3.03 0.003 

(-3.007) 
0.010 

(-2.790) 32.68 
(25.75) 

DT_G 
Vs 

DT_PG 

27.77 
(24.72) 1.88 0.649 

(0.455) 
0.166 

(1.431) 25.89 
(24.52) 

DG_PG 
Vs 

DT_G 

32.68 
(25.75) 4.91 0.003 

(2.972) 
0.013 

(2.687) 27.77 
(24.72) 
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5.1.2 EBD 

5.1.2.1 Results 

Table 5-7 through Table 5-9 report the means of the accuracy, the balanced accuracy, and the 

RCI respectively for using Efficient Bayesian Discretization (EBD) method on the four different 

Bayesian local structure rule learning algorithms: Bayesian Local Structure Rule Learning – 

Greedy Decision Tree (BLSRL_DT_G), Bayesian Local Structure Rule Learning – Parallel 

Greedy Decision Tree (BLSRL_DT_PG), Bayesian Local Structure Rule Learning – Greedy 

Decision Graph (BLSRL_DG_G), Bayesian Local Structure Rule Learning – Parallel Greedy 

Decision Graph (BLSRL_DG_PG). In each table, each row is a dataset, and each column is a 

learning method. The last row in each table represents the overall mean of the specified 

performance measure across the datasets.  

In Table 5-7, we see that BLSRL_DG_PG has greater accuracy than BLSRL_DG_G on 

12 datasets. Ten of those twelve datasets show highest accuracy (among local structure methods) 

with the combination of parallel greedy search method with decision graph. BLSRL_DG_G 

achieves higher accuracy than BLSRL_DG_PG on six datasets. On two of those six datasets, 

BLSRL_DG_G produces the highest accuracy out of all tested Bayesian local structure methods. 

There were six ties between BLSRL_DG_PG and BLSRL_DG_G. For Bayesian local structure 

decision trees, BLSRL_DT_PG achieves higher accuracy than BLSRL_DT_G on eight datasets; 

in 3 cases among those, BLS_DT_PG achieves the largest value across all tested Bayesian local 

structure methods. In twelve datasets, BLSRL_DT_G achieves greater accuracy than 

BLSRL_DT_PG with 5 of them having the greatest performance across all tested Bayesian local 

structure methods. 
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In Table 5-8, which shows the performance results with respect to BACC, we see that 

BLSRL_DG_PG achieves greater BACC than BLSRL_DG_G on 18 datasets; in all of those 18 

datasets, the parallel greedy search method for decision graph produces the highest BACC out of 

all local structure methods. BLSRL_DG_G is greater than BLSRL_DG_PG on 2 datasets. 

BLSRL_DG_G produces the highest accuracy on none of the datasets out of all tested Bayesian 

local structure methods. There were four ties for the BLSRL_DG algorithms. For Bayesian local 

structure decision trees, BLSRL_DT_PG has higher BACC values than BLSRL_DT_G on 7 

datasets; in 1 of those cases, BLS_DT_PG has the largest value across all tested Bayesian local 

structure methods. In 10 datasets BLSRL_DT_G achieves higher BACC than BLSRL_DT_PG, 

with 3 of them having the greatest performance across all tested Bayesian local structure 

methods. There were seven ties between the BLSRL_DT algorithms 

In Table 5-9, which shows the performance results with respect to RCI, we see that 

BLSRL_DG_PG is greater than BLSRL_DG_G on 18 datasets; in 16 of those 18 datasets, the 

parallel greedy search method for decision graph produces the highest accuracy out of all local 

structure methods. BLSRL_DG_G is greater than BLSRL_DG_PG on 2 datasets, among which 

BLSRL_DG_G produced the highest accuracy out of all tested Bayesian local structure methods. 

There were four ties between BLSRL_DG_G and BLSRL_DG_PG. For Bayesian local structure 

decision trees, BLSRL_DT_PG has higher values than BLSRL_DT_G on 14 datasets; in 3 of 

those cases, BLS_DT_PG has the largest value across all tested Bayesian local structure 

methods. BLSRL_DT_G has 7 datasets in which it achieves greater RCI than BLSRL_DT_PG, 

with 1 of them having the greatest performance across all tested Bayesian local structure 

methods. There were three ties between BLSRL_DT_G and BLSRL_DT_PG. 
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Table 5-10 through Table 5-12 report the results from pair-wise comparisons of the 

performance measures of the Bayesian local structure rule learning algorithms using EBD on the 

biomedical datasets that is aimed at measuring the statistical significance of the observed 

differences in the measures. Table 5-10 reports results from the analysis of accuracy compared in 

three tests, BLSRL_DG_G vs. BLSRL_DG_PG, BLSRL_DT_G vs. BLSRL_DT_PG, and since 

BLSRL_DG_PG and BLSRL_DT_G has the higher average compared to the alternative search 

strategy within the same local structure, we compared them. Table 5-11 reports results from the 

analysis of balanced accuracy comparing the same tests as in Table 5-10. Table 5-12 reports 

results from the analysis of RCI using the same comparisons as in Table 5-10 and Table 5-11.  

When comparing these algorithms using EBD as the discretization method, one measure, 

accuracy, showed no significant difference between any of the comparisons, while BACC and 

RCI show significant difference between two of the comparisons: BLSRL_DG_G vs. 

BLSRL_DG_PG and BLSRL_DG_PG vs. BLSRL_DT_G. The comparison of BLSRL_DT_G to 

BLSRL_DT_PG shows no significant difference using any of the measures. 

5.1.2.2 Discussion 

Overall, the BLSRL_DG_PG algorithm shows improved performance on average across all 

performance measures with BACC and RCI having statistically significant differences. The lack 

of statistical difference in accuracy can be explained when considering the highly skewed nature 

of the data. While the number of correct predictions is equivalent across the datasets (as seen by 

no statistical difference in the methods), as we see with BACC and RCI, the distributions of the 

predictions are not. BACC and RCI take sample distribution of the datasets into account when 

measuring the performance of the classifier. BACC has the approach of one vs. rest when 

calculating sensitivity and specificity while RCI measures the distributions of the predictions of 
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the classifier compared to the predictions a majority classifier would make. Both these 

performance measures show significant difference, illustrating that with EBD, BLSRL_DG_PG 

can predict the same number correct samples, but trades the correct predictions for the majority 

class with the correct predictions for the sparse classes. 
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Table 5-7. The percent accuracy averaged over 10x10 fold cross-validation for EBD discretization and 
Bayesian local structure classifiers. Those values which are greater within the same local structure type are in bold 
and the largest value of all structures is italicized. 
Bayesian Local Structure Decision Tree Decision Graph 

Search Strategy Greedy Parallel Greedy Greedy Parallel Greedy 
Alon et al. 100.00 100.00 100.00 100.00 
Armstrong et al. 78.93 52.86 76.25 76.25 
Beer et al. 73.06 76.53 72.08 72.22 
Bhattacharjee et al. 53.44 56.68 76.37 78.98 
Bhattacharjee et al. 74.29 64.29 74.05 64.29 
Golub et al. 70.89 48.39 69.46 69.46 
Hedenfalk et al. 97.50 97.50 97.50 97.50 
Iizuka et al. 55.00 58.33 55.00 51.67 
Khan et al. 61.81 54.90 61.54 64.25 
Nutt et al. 58.00 52.00 50.00 58.00 
Pomeroy et al. 74.44 77.78 78.89 81.11 
Pomeroy et al. 60.00 58.33 58.33 58.33 
Ramaswamy et al. 48.57 47.49 50.36 52.55 
Rosenwald et al. 59.17 57.50 63.75 69.17 
Staunton et al. 36.67 31.67 40.67 45.00 
Shipp et al. 84.82 84.82 82.14 80.54 
Singh et al. 83.09 70.73 80.27 76.09 
Su et al. 25.92 50.92 65.93 67.92 
Veer et al. 77.08 77.00 82.17 89.17 
Welsch et al. 87.50 90.00 87.50 87.50 
Yeoh et al. 74.77 76.78 72.31 70.72 
Petricoin et al. 69.40 70.03 70.20 79.99 
Pusztai et al. 47.18 47.91 68.99 71.32 
Ranganathan et al. 63.64 63.27 67.64 65.64 
Average 67.30 65.24 70.89 71.99 
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Table 5-8. The percent BACC averaged over 10x10 fold cross-validation for MDLPC discretization and 
Bayesian local structure classifiers. Those values which are greater within the same local structure type are in bold 
and the largest value of all structures is italicized.  
Bayesian Local Structure Decision Tree Decision Graph 

Search Strategy Greedy Parallel Greedy Greedy Parallel Greedy 
Alon et al. 100.00 100.00 100.00 100.00 
Armstrong et al. 83.25 63.46 79.62 89.62 
Beer et al. 52.90 53.00 58.67 53.54 
Bhattacharjee et al. 54.92 56.32 59.63 65.32 
Bhattacharjee et al. 52.14 47.66 52.02 48.24 
Golub et al. 65.85 55.68 65.00 65.00 
Hedenfalk et al. 97.50 97.50 97.50 97.50 
Iizuka et al. 43.33 48.33 47.08 52.50 
Khan et al. 67.62 61.12 77.41 78.29 
Nutt et al. 74.56 67.64 68.35 69.29 
Pomeroy et al. 54.58 54.42 52.17 59.58 
Pomeroy et al. 48.33 47.50 46.67 47.83 
Ramaswamy et al. 51.65 54.89 52.20 64.81 
Rosenwald et al. 56.46 56.74 55.54 59.92 
Staunton et al. 49.65 54.97 50.06 59.44 
Shipp et al. 63.12 59.54 59.20 57.98 
Singh et al. 83.25 74.50 80.67 88.00 
Su et al. 54.27 62.13 67.40 73.95 
Veer et al. 75.24 74.95 86.32 89.32 
Welsch et al. 48.75 50.00 48.75 48.75 
Yeoh et al. 47.08 48.12 47.94 49.42 
Petricoin et al. 55.12 54.92 49.98 64.99 
Pusztai et al. 67.21 68.23 74.66 76.50 
Ranganathan et al. 64.83 66.33 68.83 69.58 
Average 62.98 61.58 64.40 67.89 
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Table 5-9. The percent RCI averaged over 10x10 fold cross-validation for MDLPC discretization and 
Bayesian local structure classifiers. Those values which are greater within the same local structure type are in bold 
and the largest value of all structures is italicized.  
Bayesian Local Structure Decision Tree Decision Graph 

Search Strategy Greedy Parallel Greedy Greedy Parallel Greedy 
Alon et al. 100.00 100.00 100.00 100.00 
Armstrong et al. 52.57 22.26 58.10 61.55 
Beer et al. 2.10 5.51 0.73 3.12 
Bhattacharjee et al. 56.99 59.00 61.30 64.99 
Bhattacharjee et al. 2.11 0.40 4.52 3.70 
Golub et al. 39.78 10.75 37.54 39.54 
Hedenfalk et al. 72.10 72.10 72.10 72.10 
Iizuka et al. 0.55 2.17 1.19 1.52 
Khan et al. 24.17 12.56 28.00 39.00 
Nutt et al. 30.22 25.52 29.49 35.06 
Pomeroy et al. 24.73 26.22 22.83 35.91 
Pomeroy et al. 0.90 0.73 1.20 1.52 
Ramaswamy et al. 31.22 35.99 53.39 61.99 
Rosenwald et al. 13.99 15.80 34.65 37.01 
Staunton et al. 27.74 33.29 29.02 41.58 
Shipp et al. 25.93 13.49 23.60 27.63 
Singh et al. 25.70 15.27 27.94 27.54 
Su et al. 55.49 63.65 64.03 68.40 
Veer et al. 28.16 32.29 42.05 52.05 
Welsch et al. 23.27 27.89 23.27 23.27 
Yeoh et al. 7.07 8.32 8.24 8.33 
Petricoin et al. 1.16 2.47 2.83 9.65 
Pusztai et al. 28.56 29.56 29.62 33.79 
Ranganathan et al. 3.86 4.57 5.77 7.02 
Average 28.27 25.83 31.73 35.68 
 

  

 106 



Table 5-10. The comparison of accuracies of the different search strategies and local structure type using 
EBD. A positive score represents results that favor the first item in the comparison. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
DG_G 

Vs 
DG_PG 

70.89 
(14.25) -1.09 0.122 

(-1.546) 
0.208 

(-1.295) 71.99 
(13.78) 

DT_G 
Vs 

DT_PG 

67.30 
(17.91) 2.06 0.375 

(0.866) 
0.305 

(1.048) 65.24 
(17.14) 

DG_PG 
Vs 

DT_G 

71.99 
(13.78) 4.69 0.131 

(1.512) 
0.063 

(1.954) 67.30 
(17.91) 

 
Table 5-11. The comparison of BACC of the different search strategies and local structure type using EBD. A 
positive score represents results that favor the first item in the comparison. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
DG_G 

Vs 
DG_PG 

64.40 
(15.90) -3.49 0.003 

(-2.987) 
0.002 

(-3.423) 67.89 
(15.80) 

DT_G 
Vs 

DT_PG 

62.98 
(15.63) 1.40 0.638 

(0.471) 
0.251 

(1.178) 61.58 
(13.91) 

DG_PG 
Vs 

DT_G 

67.89 
(15.80) 4.91 0.003 

(2.937) 
0.001 

(3.710) 62.98 
(15.63) 

 
Table 5-12. The comparison of RCI of the different search strategies and local structure type using EBD. A 
positive score represents results that favor the first item in the comparison. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
DG_G 

Vs 
DG_PG 

31.73 
(25.88) -3.95 <0.001 

(-3.702) 
<0.001 
(-4.518) 35.68 

(26.41) 

DT_G 
Vs 

DT_PG 

28.27 
(24.94) 2.44 0.910 

(0.114) 
0.237 

(1.214) 25.83 
(25.30) 

DG_PG 
Vs 

DT_G 

35.68 
(26.41) 7.41 <0.001 

(3.980) 
<0.001 
(4.197) 28.27 

(24.94) 
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5.1.3 Discretization Comparison 

5.1.3.1 Results 

Table 5-13 through Table 5-15 report the means of the accuracy, the balanced accuracy, and the 

RCI respectively comparing Efficient Bayesian Discretization (EBD) method and MDLPC 

discretization method on the four different Bayesian local structure rule learning algorithms: 

Bayesian Local Structure Rule Learning – Greedy Decision Tree (BLSRL_DT_G), Bayesian 

Local Structure Rule Learning – Parallel Greedy Decision Tree (BLSRL_DT_PG), Bayesian 

Local Structure Rule Learning – Greedy Decision Graph (BLSRL_DG_G), Bayesian Local 

Structure Rule Learning – Parallel Greedy Decision Graph (BLSRL_DG_PG). In each table, 

each row is a dataset, and each column is a learning method. The last row in each table 

represents the overall mean of the specified performance measure across the datasets.  

In Table 5-13, which shows the results using the measure of accuracy, we see within the 

BLSRL_DG_PG algorithm EBD discretization is greater than MDLPC 14 times with 9 of those 

times having the highest accuracy out of all Bayesian local structure algorithms and 

discretization combinations. MDLPC combined with BLSRL_DG_PG is greater than EBD with 

BLSRL_DG_PG 7 times with 4 of those times having the highest accuracy out of all methods. 

There are 3 ties between EBD and MDLPC when using BLSRL_DG_PG. BLSRL_DG_G 

algorithm using EBD is greater than using MDLPC a total of 14 times with 1 of those having the 

highest accuracy across the different methods and discretizations. MDLPC and BLSRL_DG_G 

combined has a greater accuracy than BLSRL_DG_G with EBD a total of 6 times with 1 of them 

having the highest overall accuracy. EBD and MDLPC tie 4 times when using the 

BLSRL_DG_G algorithm. BLSRL_DT_PG algorithm EBD discretization is greater than 

MDLPC 11 times with none of those times having the highest accuracy out of all Bayesian local 
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structure algorithms and discretization combinations. MDLPC combined with BLSRL_DT_PG 

is greater than EBD with BLSRL_DG_PG 11 times with none of those times having the highest 

accuracy out of all methods. There are 2 ties between EBD and MDLPC when using 

BLSRL_DT_PG. BLSRL_DT_G algorithm using EBD is greater than using MDLPC a total of 

10 times with 3 of those having the highest accuracy across the different methods and 

discretizations. MDLPC and BLSRL_DG_G combined has a greater accuracy than 

BLSRL_DG_G with EBD a total of 10 times with 2 of them having the highest overall accuracy. 

EBD and MDLPC tie 4 times when using the BLSRL_DT_G algorithm. 

In Table 5-14, which shows the results using the measure of BACC, we see that 

BLSRL_DG_PG algorithm EBD discretization is greater than MDLPC 20 times with 18 of those 

times having the highest accuracy out of all Bayesian local structure algorithms and 

discretization combinations. MDLPC combined with BLSRL_DG_PG is greater than EBD with 

BLSRL_DG_PG once. There are 3 ties between EBD and MDLPC when using 

BLSRL_DG_PG. BLSRL_DG_G algorithm using EBD is greater than using MDLPC a total of 

16 times with none of those having the highest accuracy across the different methods and 

discretizations. MDLPC and BLSRL_DG_G combined has a greater accuracy than 

BLSRL_DG_G with EBD a total of 5 times with none of them having the highest overall 

accuracy. EBD and MDLPC tie 3 times when using the BLSRL_DG_G algorithm. 

BLSRL_DT_PG algorithm EBD discretization is greater than MDLPC 15 times with none of 

those times having the highest accuracy out of all Bayesian local structure algorithms and 

discretization combinations. MDLPC combined with BLSRL_DT_PG is greater than EBD with 

BLSRL_DG_PG 7 times with none of those times having the highest accuracy out of all 

methods. There are 2 ties between EBD and MDLPC when using BLSRL_DT_PG. 
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BLSRL_DT_G algorithm using EBD is greater than BLSRL_DT_G using MDLPC a total of 13 

times with 4 of those having the highest accuracy across the different methods and 

discretizations. MDLPC and BLSRL_DG_G combined has a greater accuracy than 

BLSRL_DG_G with EBD a total of 8 times with none of them having the highest overall 

accuracy. EBD and MDLPC tie 3 times when using the BLSRL_DT_G algorithm. 

In Table 5-15, which shows the results using the measure of RCI, we see that 

BLSRL_DG_PG algorithm EBD discretization is greater than MDLPC 19 times with 15 of those 

times having the highest accuracy out of all Bayesian local structure algorithms and 

discretization combinations. MDLPC combined with BLSRL_DG_PG is greater than EBD with 

BLSRL_DG_PG 2 times with 1 of them having the highest accuracy across the discretization 

methods and classifiers. There are 3 ties between EBD and MDLPC when using 

BLSRL_DG_PG. BLSRL_DG_G algorithm using EBD is greater than using MDLPC a total of 

13 times with 1 of those having the highest accuracy across the different methods and 

discretizations. MDLPC and BLSRL_DG_G combined has a greater accuracy than 

BLSRL_DG_G with EBD a total of 8 times with 1 of them having the highest overall accuracy. 

EBD and MDLPC tie 3 times when using the BLSRL_DG_G algorithm. BLSRL_DT_PG 

algorithm EBD discretization is greater than MDLPC 9 times with none of those times having 

the highest accuracy out of all Bayesian local structure algorithms and discretization 

combinations. MDLPC combined with BLSRL_DT_PG is greater than EBD with 

BLSRL_DG_PG 12 times with none of those times having the highest accuracy out of all 

methods. There are 3 ties between EBD and MDLPC when using BLSRL_DT_PG. 

BLSRL_DT_G algorithm using EBD is greater than BLSRL_DT_G using MDLPC a total of 10 

times with 1 of those having the highest accuracy across the different methods and 
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discretizations. MDLPC and BLSRL_DG_G combined has a greater accuracy than 

BLSRL_DG_G with EBD a total of 11 times with none of them having the highest overall 

accuracy. EBD and MDLPC tie 3 times when using the BLSRL_DT_G algorithm. 

Table 5-16 through Table 5-18 report the results from pair-wise comparisons of the 

performance measures of the Bayesian local structure rule learning algorithms using EBD on the 

biomedical datasets that is aimed at measuring the statistical significance of the observed 

differences in the measures. Table 5-16 reports results from the statistical significance of the 

analysis of accuracy compared in four tests, BLSRL_DG_PG algorithm with EBD vs. 

BLSRL_DG_PG with MDLPC, BLSRL_DG_G with EBD vs. BLSRL_DG_G with MDLPC, 

BLSRL_DT_PG algorithm with EBD vs. BLSRL_DT_PG with MDLPC, BLSRL_DT_G with 

EBD vs. BLSRL_DT_G with MDLPC. Table 5-17 reports results from the analysis of balanced 

accuracy comparing the same tests as in Table 5-16. Table 5-18 reports results from the analysis 

of Relative Classifier Information (RCI) using the same comparisons as in Table 5-16 and Table 

5-17.  Figure 5-1 to Figure 5-3, show the overall average across all datasets of the 4 different 

Bayesian local structure search algorithms with SEM.  

5.1.3.2 Discussion 

We noticed a definitive interaction between classifier and discretization method when comparing 

the algorithms using EBD to the algorithms using MDLPC. For Parallel Greedy search we 

noticed that using EBD provides a statistically significant advantage in both balanced accuracy 

and RCI. It also provides a greater magnitude of average accuracy, although it is not statistically 

significant. When using a greedy search with Decision graphs, two measures show statistical 

difference (ACC, BACC), while RCI shows no difference. For Decision Trees, there was no 

significant difference between the discretization methods on any measure. 

 111 



As seen in the results, there is a definitive interaction between the machine learning 

algorithms, search strategies and discretization methods. However, it is difficult to identify the 

exact cause. When we look at the overall behavior of the different discretization methods in 

terms of the number of rules generated, the number of variables used in the model, and the time 

it takes to run a fold of one of the machine learning methods (see Appendix B, Table 6-7 - Table 

6-9), an interesting trend appears. There is an equivalent amount of variables used as well as 

rules generated, however combined with the increase in performance observed, it suggests that 

EBD picks better variables for the rule generation. The cost, however, is that on average you 

nearly double the running time. This could be due to implementation (the parallel greedy 

algorithms do not have a completely parallel implementation of model generation), however 

since the pattern is observable across multiple types of search strategies, it is a reasonable 

assumption that the increase in the number of variables discretized by EBD creates a longer run 

time for the model construction. 

It is difficult to evaluate how the variables interact with the model construction. 

However, empirically, Bayesian local structure (BLS) with decision graph produces better results 

in combination with EBD while BLS with decision tree structure performs equivalently with 

either MDLPC or EBD with no clear winner.  Researchers have focused on this question 

detailing why it is critical that when choosing an algorithm that requires discretization. They 

concluded that the discretization method interacts with the learning algorithm to produce the 

models, and choosing the right discretization method for the learning algorithm is an important 

problem [44, 45, 157]. The results from these four different Bayesian local structure algorithms 

support their claim that the discretization method interacts with the learning algorithm. 
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Figure 5-1. The Accuracy with standard errors for all datasets using MDLPC or EBD as the discretization 
techniques and the four different Bayesian local structure algorithms. 
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Figure 5-2. The Balanced Accuracy with standard errors for all datasets using MDLPC or EBD as the 
discretization techniques and the four different Bayesian local structure algorithms. 
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Figure 5-3. The Relative Classifier Information with standard errors for all datasets using MDLPC and EBD 
as the discretization technique and the four different Bayesian local structure algorithms. 
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Table 5-16. Accuracy Comparison of EBD to MDLPC Across Search Strategies and Local Structure. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
EBD_DG_G 

Vs 
MDLPC_DG_G 

70.89 
(14.25) 3.07 0.050 

(1.960) 
0.041 

(2.167) 67.82 
(17.27) 

EBD_DG_PG 
Vs 

MDLPC_DG_PG 

71.99 
(13.78) 2.13 0.244 

(1.164) 
0.227 

(1.241) 69.86 
(16.10) 

EBD_DT_G 
Vs 

MDLPC_DT_G 

67.30 
(17.91) 0.08 0.958 

(0.052) 
0.936 

(0.082) 67.22 
(18.31) 

EBD_DT_PG 
Vs 

MDLPC_DT_PG 

65.24 
(17.14) -0.36 0.638 

(-0.471) 
0.676 

(-0.423) 65.60 
(16.58) 

 
 
 

Table 5-17. BACC Comparison EBD to MDLPC across Search Strategies and Local Structure. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
EBD_DG_G 

Vs 
MDLPC_DG_G 

64.40 
(15.90) 1.42 0.026 

(2.225) 
0.021 

(2.488) 62.98 
(16.06) 

EBD_DG_PG 
Vs 

MDLPC_DG_PG 

67.89 
(15.80) 3.74 <0.001 

(3.875) 
<0.001 
(5.912) 64.15 

(15.92) 

EBD_DT_G 
Vs 

MDLPC_DT_G 

62.98 
(15.63) -0.060 0.931 

(-0.087) 
0.942 

(-0.074) 63.04 
(13.25) 

EBD_DT_PG 
Vs 

MDLPC_DT_PG 

61.58 
(13.91) -0.010 0.277 

(-1.088) 
0.988 

(-0.015) 61.59 
(13.63) 
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Table 5-18. RCI Comparison to MDLPC across Search Strategies and Local Structure. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
EBD_DG_G 

Vs 
MDLPC_DG_G 

31.72 
(25.88) 2.08 0.159 

(1.408) 
0.109 

(1.666) 29.65 
(25.10) 

EBD_DG_PG 
Vs 

MDLPC_DG_PG 

35.68 
(26.41) 3.00 0.001 

(3.250) 
<0.001 
(4.079) 32.68 

(25.75) 

EBD_DT_G 
Vs 

MDLPC_DT_G 

28.27 
(24.94) 0.50 0.931 

(0.087) 
0.666 

(0.437) 27.77 
(24.72) 

EBD_DT_PG 
Vs 

MDLPC_DT_PG 

25.83 
(25.30) -0.06 0.754 

(-0.313) 
0.942 

(-0.073) 25.89 
(24.53) 

 

 

5.1.4 Summary of Bayesian Local Structure Experiments 

In summary, we showed that there are statistically significant differences between the local 

structure methods, search strategies used, and the different discretization methods. Parallel 

greedy search Bayesian local structure decision graph rule generation produces greater 

performance on average across the multiple measures when combined with EBD. Since there 

was no significance between EBD and MDLPC when comparing either of the decision tree 

search strategies, there is no unequivocal recommendation. We will therefore utilize 

BLSRL_DG_PG as the best, most general BN learning algorithm within the BRGF. 
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5.2 BGRL VS BLSRL-DG  

The results from Section 5.1 allow us to choose Bayesian local structure Decision Graph using 

parallel greedy search as the method of choice for local structure to compare to the global 

algorithms. Since EBD was shown to produce the largest increase in performance for the 

Bayesian global structure methods (see Appendix B.1), we used only EBD as the discretization 

method of choice. This section tests whether the most general method, BLSRL_DG_PG is truly 

better than the standard Bayesian global structure.  That is, we compare whether context-specific 

independencies assist in increasing the performance on average compared to the global structure 

which enforces a complete decision tree local structure. 

5.2.1 Results 

Table 5-19 through Table 5-21 report the means of the accuracy, the balanced accuracy, and the 

RCI respectively for using Efficient Bayesian Discretization (EBD) method on the three different 

Bayesian global structure rule learning algorithms and the Bayesian local structure method: 

Bayesian Global Rule Learning – Greedy (BGRL_ 0), Bayesian Global Rule Learning – Beam 

Search (BGRL_B), Bayesian Global Rule Learning – Parallel Greedy (BGRL_ 2), and Bayesian 

Local Structure Rule Learning – Parallel Greedy Decision Graph (BLSRL_DG_PG). In each 

table, each row is a dataset, and each column is a learning method. The last row in each table 

represents the overall mean of the specified performance measure across the datasets. 

In Table 5-19, which shows the results using the measure of accuracy, BLSRL_DG_PG 

is greater than the Bayesian global structure algorithms on 12 datasets. BGRL_PG is greater than 

the other compared methods on 2 datasets. For BGRL_B, it has higher values on 4 datasets. 
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BGRL_G has 2 datasets that it is greater than BGRL_B, BGRL_PG, and BLSRL_DG_PG. There 

were 4 datasets which had more than one classifier performing equally. 

In Table 5-20, which shows the results using the measure of BACC, BLSRL_DG_PG is 

greater than the Bayesian global structure algorithms on 14 datasets. BGRL_PG is greater than 

the other compared methods on 2 datasets. For BGRL_B, it has higher values on 2 datasets. 

BGRL_G has 2 datasets that it is greater than BGRL_B, BGRL_PG, and BLSRL_DG_PG. There 

were 4 datasets which had more than one classifier performing equally. 

In Table 5-21, which shows the results using the measure of RCI, BLSRL_DG_PG is 

greater than the Bayesian global structure algorithms on 15 datasets. BGRL_PG and BGRL_G 

are not greater than the other compared methods on any dataset. For BGRL_B, it has higher 

values on 5 datasets. There were 4 datasets which had more than one classifier performing 

equally.  

Table 5-22 through Table 5-24 report the results from pair-wise comparisons of the 

performance measures of the three different Bayesian global structure rule learning algorithms 

and the Bayesian local structure method on the biomedical datasets that is aimed at measuring 

the statistical significance of the observed differences in the measures.  

Table 5-22 reports results from the analysis of accuracy compared in three tests, 

BGRL_G vs. BLSRL_DG_PG, BGRL_B vs. BLSRL_DG_PG, and BGRL_PG vs. 

BLSRL_DG_PG. Table 5-23 reports results from the analysis of balanced accuracy comparing 

the same tests as in Table 5-22. Table 5-24 reports results from the analysis of Relative Classifier 

Information (RCI) using the same comparisons as in Table 5-22 and Table 5-23.  

When comparing these algorithms using EBD as the discretization method, one measure, 

accuracy, showed no significance between BGRL_B and BLSRL_DG_PG; however, both 
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BGRL_G and BGRL_PG performed statistically worse than BLSRL_DG_PG. Balanced 

accuracy and Relative Classifier Information (RCI) shows significance between all of the 

Bayesian global structure search algorithms and the Bayesian local structure decision graph 

search method favoring BLSRL_DG_PG. 

5.2.2 Discussion 

This section shows the comparison of Bayesian global structure search with Bayesian local 

structure decision graphs. As seen in multiple experiments [67, 68, 124], local structure 

simplifies the conditional probability table for the constrained BN by allowing for context-

specific independencies as seen by the differences in the average number of rules generated 

(Appendix B.2). We see that indeed, this generalization (reduction in the number of parameters 

of the CPT) generally leads to greater performance across the multiple measures with balanced 

accuracy and RCI being statistically significant. This comparison is critical to make since the 

premise of using Bayesian local structure is the reduction in the number of parameters needs for 

the model since we are dealing with a sparse matrix (number of variable combinations vs. 

number of samples). While the benefit of using Bayesian local structure is indeed higher 

performance on average, fewer rules and simpler models, the build time is significantly different 

particularly when you compare BGRL_PG to BLSRL_DG_PG. BGRL_PG takes the longest of 

all the methods with an average of 4 minutes to build, while BLSRL_DG_PG takes an average 

of 18 minutes, which is more than four times longer. We also noticed that the BGRL algorithms 

performed better with EBD than MDLPC which again highlights the interaction between the 

machine learning algorithm and the discretization method (see Appendix B). 
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Table 5-19. The percent accuracies of the different search strategies for Bayesian global structure and the 
local structure BLSRL_DG_PG using EBD. Those values in bold is the largest value across the various methods 
and the largest value of all structures is italicized. 

Bayesian Structure Global Structure Local Structure 
Search Strategy Greedy Beam  Parallel Greedy DG_PG 

Alon et al. 100.00 100.00 100.00 100.00 
Armstrong et al. 75.89 77.68 77.68 76.25 
Beer et al. 71.81 70.97 70.69 72.22 
Bhattacharjee et al. 64.79 72.81 67.26 78.98 
Bhattacharjee et al. 58.10 62.86 54.52 64.29 
Golub et al. 66.25 66.43 62.50 69.46 
Hedenfalk et al. 97.50 97.50 97.50 97.50 
Iizuka et al. 60.00 56.67 55.00 51.67 
Khan et al. 69.39 73.22 66.76 64.25 
Nutt et al. 62.00 50.00 42.00 58.00 
Pomeroy et al. 76.67 74.97 78.89 81.11 
Pomeroy et al. 58.33 56.67 58.33 58.33 
Ramaswamy et al. 18.43 46.88 16.07 52.55 
Rosenwald et al. 55.83 54.58 55.83 69.17 
Staunton et al. 30.00 35.20 31.67 45.00 
Shipp et al. 85.00 86.25 87.32 80.54 
Singh et al. 80.64 82.45 81.91 76.09 
Su et al. 38.09 71.98 48.29 67.92 
Veer et al. 75.58 86.98 66.75 89.17 
Welsch et al. 87.50 87.50 87.50 87.50 
Yeoh et al. 67.53 72.17 70.71 70.72 
Petricoin et al. 77.97 79.13 75.17 79.99 
Pusztai et al. 54.07 57.20 55.32 71.32 
Ranganathan et al. 48.00 57.11 50.36 65.64 
Average 65.81 69.88 64.92 71.99 
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Table 5-20. The percent balanced accuracies of the different search strategies for Bayesian global structure 
and the local structure BLSRL_DG_PG using EBD. Those values in bold is the largest value across the various 
methods and the largest value of all structures is italicized. 

Bayesian Structure Global Structure Local Structure 
Search Strategy Greedy Beam  Parallel Greedy DG_PG 

Alon et al. 100.00 100.00 100.00 100.00 
Armstrong et al. 80.57 82.10 87.82 89.62 
Beer et al. 47.21 46.79 52.14 53.54 
Bhattacharjee et al. 60.99 62.98 56.30 65.32 
Bhattacharjee et al. 44.98 44.94 41.73 48.24 
Golub et al. 66.43 61.79 63.58 65.00 
Hedenfalk et al. 97.50 97.50 97.50 97.50 
Iizuka et al. 50.83 47.50 47.92 52.50 
Khan et al. 68.37 79.99 68.85 78.29 
Nutt et al. 69.65 62.67 62.46 69.29 
Pomeroy et al. 54.88 55.93 54.24 59.58 
Pomeroy et al. 49.17 45.83 50.00 47.83 
Ramaswamy et al. 57.01 58.23 55.17 64.81 
Rosenwald et al. 57.44 56.19 59.05 59.92 
Staunton et al. 57.20 59.32 55.61 59.44 
Shipp et al. 59.83 61.08 62.62 57.98 
Singh et al. 85.33 85.83 81.75 88.00 
Su et al. 57.35 65.98 57.44 73.95 
Veer et al. 81.64 85.98 84.31 89.32 
Welsch et al. 48.75 48.75 48.75 48.75 
Yeoh et al. 47.21 49.13 47.36 49.42 
Petricoin et al. 53.89 65.99 50.53 64.99 
Pusztai et al. 68.22 66.12 66.13 76.50 
Ranganathan et al. 48.42 56.51 50.67 69.58 
Average 63.04 64.46 62.58 67.89 
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Table 5-21. The Relative Classifier Information (RCI) of the different search strategies for Bayesian global 
structure and the local structure BLSRL_DG_PG using EBD. Those values in bold is the largest value across 
the various methods and the largest value of all structures is italicized. 

Bayesian Structure Global Structure Local Structure 
Search Strategy Greedy Beam  Parallel Greedy DG_PG 

Alon et al. 100.00 100.00 100.00 100.00 
Armstrong et al. 51.15 46.53 46.46 61.55 
Beer et al. 0.37 1.97 2.98 3.12 
Bhattacharjee et al. 32.42 57.68 42.81 64.99 
Bhattacharjee et al. 1.92 0.26 2.00 3.70 
Golub et al. 38.25 39.89 29.67 39.54 
Hedenfalk et al. 72.10 72.10 72.10 72.10 
Iizuka et al. 0.79 0.86 0.90 1.52 
Khan et al. 44.32 45.95 35.71 39.00 
Nutt et al. 29.89 22.95 26.20 35.06 
Pomeroy et al. 22.25 25.35 26.59 35.91 
Pomeroy et al. 1.52 1.29 1.25 1.52 
Ramaswamy et al. 27.38 58.13 17.30 61.99 
Rosenwald et al. 26.11 32.95 29.08 37.01 
Staunton et al. 31.18 31.87 30.56 41.58 
Shipp et al. 17.98 19.68 19.83 27.63 
Singh et al. 28.84 30.24 27.60 27.54 
Su et al. 66.49 70.82 67.67 68.40 
Veer et al. 24.67 46.12 35.71 52.05 
Welsch et al. 23.27 23.27 23.27 23.27 
Yeoh et al. 6.98 7.54 7.43 8.33 
Petricoin et al. 5.66 13.32 6.54 9.65 
Pusztai et al. 7.44 8.43 8.36 33.79 
Ranganathan et al. 4.04 5.56 1.63 7.02 
Average 27.71 31.78 27.57 35.68 
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Table 5-22. The comparison of Accuracies of the different search strategies and local structure type using 
EBD. A positive score represents results that favor the first item in the comparison. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
BGRL_G 

Vs 
BLSRL_DG_PG 

65.72 
(19.73) -6.26 0.025 

(-2.240) 
.012 

(-2.739) 71.99 
(13.78) 

BGRL_B 
Vs 

BLSRL_DG_PG 

69.88 
(16.15) -2.10 0.135 

(-1.495) 
0.107 

(-1.678) 71.99 
(13.78) 

BGRL_PG 
Vs 

BLSRL_DG_PG 

64.92 
(19.86) -7.07 0.005 

(-2.800) 
0.003 

(-3.300) 71.99 
(13.78) 

 
Table 5-23. The comparison of BACC of the different search strategies and local structure type using EBD. A 
positive score represents results that favor the first item in the comparison. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
BGRL_G 

Vs 
BLSRL_DG_PG 

62.91 
(15.80) -4.98 <0.001 

(-3.623) 
<0.001 
(-4.134) 67.89 

(15.80) 

BGRL_B 
Vs 

BLSRL_DG_PG 

64.46 
(16.07) -3.43 <0.001 

(-3.493) 
<0.001 
(-4.232) 67.89 

(15.80) 

BGRL_PG 
Vs 

BLSRL_DG_PG 

62.58 
(16.19) -5.31 <0.001 

(-3.493) 
<0.001 
(-4.441) 67.89 

(15.80) 
 
Table 5-24. The comparison of RCI of the different search strategies and local structure type using EBD. A 
positive score represents results that favor the first item in the comparison. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
BGRL_G 

Vs 
BLSRL_DG_PG 

27.39 
(25.20) -8.29 0.001 

(-3.398) 
0.003 

(-3.361) 35.68 
(26.41) 

BGRL_B 
Vs 

BLSRL_DG_PG 

31.78 
(26.48) -3.90 0.010 

(-2.589) 
0.012 

(-2.721) 35.68 
(26.41) 

BGRL_PG 
Vs 

BLSRL_DG_PG 

27.57 
(24.94) -8.11 <0.001 

(-3.980) 
<0.001 
(-3.726) 35.68 

(26.41) 
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5.3 COMPARISON WITH OTHER RULE LEARNERS 

Although comparison among our novel Bayesian rule learning methods allows for the 

determination of the best rule learning method within the BRGF, comparison with existing state-

of-the-art rule generating machine learning algorithms is central to this thesis. For this 

experiment, we used combinations of discretization method and machine learning algorithm that 

produced the highest overall accuracy among the classifiers C4.5, RL and BGRL. This resulted 

in the pairing of MDLPC with C4.5. While MDLPC with C4.5 is not statistically greater than 

EBD with C4.5 (See Appendix B.1), the MDLPC discretization method provides on average a 

greater performance across the various measures. With RL, EBD produces higher average 

performance that is also statistically significant (Lustgarten, et al. [28]). For Bayesian Global 

Rule Learning (BGRL), we used the beam search method combined with EBD that produced the 

highest overall performance across multiple methods. Both of these algorithms will be compared 

with Bayesian Local Structure Rule Learning with Decision Graph and Parallel Greedy Search 

(BLSRL_DG_PG). 

5.3.1 Results 

 Table 5-25 through Table 5-27 report the means of accuracy, BACC, and RCI respectively for 

the rule learning algorithms paired with their respective discretization methods: C4.5 paired with 

MDLPC (C4.5-MDLPC), RL paired with EBD (RL-EBD) and Bayesian Local Structure Rule 

Learning Decision Graph Parallel Greedy paired with EBD (BLSRL_DG_PG-EBD). In each 

table, each row is a dataset, and each column is a learning method. The last row in each table 

represents the overall mean of the specified performance measure across the datasets.  
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In Table 5-25, which shows the results with respect to accuracy, BLSRL_DG_PG-EBD 

performs better than the C4.5-MDLPC and RL-EBD on 10 datasets. RL-EBD is better than the 

other compared methods on 8 datasets. C4.5-MDLPC has higher values on 5 datasets. There was 

1 dataset which had more than one classifier performing equivalently. 

In Table 5-26, which shows the results with respect to BACC, BLSRL_DG_PG-EBD 

performs better than the C4.5-MDLPC and RL-EBD on 14 datasets. RL-EBD is better than the 

other compared methods on 3 datasets. C4.5-MDLPC has higher values on 5 datasets. There 

were 2 datasets which had more than one classifier performing equally. 

In Table 5-27, which shows the results with respect to RCI, BLSRL_DG_PG-EBD 

performs better than the C4.5-MDLPC and RL-EBD on 14 datasets. RL-EBD is better than the 

other compared methods on 2 datasets. C4.5-MDLPC has higher values on 5 datasets. There 

were 3 datasets which had more than one classifier performing equally.  

Tables 5-28 to 5-30 report the results from pair-wise comparisons of the performance 

measures of the three different rule learning methods, C4.5-MDLPC, RL-EBD, and 

BLSRL_DG_PG-EBD. They are aimed at measuring the statistical significance of the observed 

differences in the measures.  

Table 5-28 reports results from the analysis of accuracy compared in three tests, RL-EBD 

vs. C4.5-MDLPC, C4.5-EBD vs. BLSRL_DG_PG, and RL-EBD vs. BLSRL_DG_PG. Table 

5-29 reports results from the analysis of BACC comparing the same tests as in Table 5-28. Table 

5-30 reports results from the analysis of RCI using the same comparisons as in Table 5-28 and 

Table 5-29.  

When comparing these algorithms using EBD as the discretization method, one measure, 

accuracy, showed no significant difference between any of the classifiers though both C4.5-
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MDLPC and RL-EBD performed on average worse than BLSRL_DG_PG-EBD. BACC and RCI 

show significant difference between the comparison of C4.5-MDLPC vs. BLSRL_DG_PG-EBD 

as well as RL-EBD vs. BLSRL_DG_PG-EBD when using the Wilcoxon paired signed rank test. 

When using the t-test, only BACC showed significant difference between the two previously 

listed comparisons. None of the measures showed RL and C4.5 being statistically 

distinguishable, although RL has slightly better BACC (in magnitude) and a larger number of 

datasets where it had a higher RCI.  

5.3.2 Discussion 

Using the best pairing of discretization and rule learning algorithms allows different conclusions 

to be made. First we notice that while on average accuracies are greater for BLSRL_DG_PG 

when comparing with both C4.5-MDLPC and RL-EBD, they are not statistically significant. 

This suggests that the different rule learning algorithms are obtaining approximately the same 

number of samples correct across the 24 datasets. While this is important, the difference between 

the methods is clearer when we consider the distribution of the class labels among the different 

datasets. 

When the comparison is made using BACC, BLSRL_DG_PG-EBD achieve a higher and 

statistically significant value than either C4.5-MDLPC or RL-EBD. This implies that while each 

algorithm may get similar total number of samples correctly predicted, BLSRL_DG_PG-EBD 

has the ability to accurately predict those classes with fewer representing samples. 

RCI has an interesting characteristic. It is evident from the results that with the t-test none 

of the comparisons achieve significance; however, if the Wilcoxon paired signed rank test is 
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used, which makes no parametric distributional assumptions, both the comparisons of 

BLSRL_DG_PG-EBD with C4.5-MDLPC or RL-EBD are shown to be significant. 

Comparing the classifiers using Fayyad and Irani MDLPC discretization, we notice 

another interesting trend. BLSRL_DG_PG paired with MDLPC performs better than C4.5 paired 

with MDLPC. This suggests a characteristic of the decision graph, the ability to combine paths, 

as seen in Figure 4-2, overrides the disadvantage of not maximizing the model via entropy. This 

result, the benefit of decision graphs in combining paths, is similar to the conclusions stated in 

[16] that an increase in performance over decision tree can be achieved by using an algorithm to 

ameliorate the small disjunct problem (small number of samples at leaf nodes). Qualitatively, 

BLSRL_DG_PG-EBD on average takes longer to run and produces more rules since its search 

space is significantly larger than either C4.5 or RL; however, it utilizes fewer variables than 

either C4.5-MDLPC or RL-EBD (see Appendix B). Another interesting result, when comparing 

the methodologies of C4.5 to BLSRL_DG, is that BLSRL does not have a trimming of cost-

complexity pruning option currently implemented.  This means that the BN algorithm assists in 

reigning in over-specialization without an explicit heuristic such as those used in the C4.5 

algorithm. 

In summary, I have shown that BLSRL_DG_PG paired with EBD generates on average 

greater performance that is statistically significant when compared to either C4.5 with MDLPC 

or RL with EBD. It generates greater number of rules on average, but with fewer variables. 

Although this comes at a cost in terms of running times, improvements in efficiency and 

optimization of the BLSRL_DG_PG can help alleviate the problem to some degree, as is seen by 

the running times of BLSRL_DG_G when compared to the other algorithms. 
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Table 5-25. The percent accuracies of the different rule learning methods paired with the discretization 
method that gives it the highest overall accuracy. Those values in bold are the largest values across the various 
methods. 
Performance Measure Accuracy 

Classifier Method C4.5-MDLPC RL-EBD BLSRL_DG_PG-EBD 
Alon et al. 100.00 100.00 100.00 
Armstrong et al. 82.14 82.86 76.25 
Beer et al. 66.39 75.56 72.22 
Bhattacharjee et al. 86.17 77.13 78.98 
Bhattacharjee et al. 62.62 60.71 64.29
Golub et al. 77.50 71.96 69.46 
Hedenfalk et al. 95.00 94.17 97.50
Iizuka et al. 48.33 41.67 51.67
Khan et al. 84.44 88.33 64.25 
Nutt et al. 52.00 62.00 58.00 
Pomeroy et al. 71.11 83.00 81.11 
Pomeroy et al. 61.67 53.33 58.33 
Ramaswamy et al. 52.50 42.14 52.55
Rosenwald et al. 58.33 53.75 69.17
Staunton et al. 28.33 33.33 45.00
Shipp et al. 83.39 69.82 80.54 
Singh et al. 79.45 89.18 76.09 
Su et al. 65.46 70.72 67.92 
Veer et al. 69.29 63.00 89.17
Welsch et al. 95.00 87.50 87.50 
Yeoh et al. 71.08 71.16 70.72 
Petricoin et al. 73.26 78.54 79.99
Pusztai et al. 52.79 40.40 71.32
Ranganathan et al. 55.67 51.82 65.64
Average 69.66 68.42 71.99 
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Table 5-26. The percent BACC of the different rule learning methods paired with the discretization method 
that gives it the highest overall accuracy. The values in bold are the largest values across the various methods. 
Performance Measure Balanced Accuracy (BACC) 

Classifier Method C4.5-MDLPC RL-EBD BLSRL_DG_PG-EBD 
Alon et al. 100.00 100.00 100.00 
Armstrong et al. 85.42 80.88 89.62 
Beer et al. 45.00 47.32 53.54 
Bhattacharjee et al. 64.02 65.11 65.32 
Bhattacharjee et al. 43.21 43.45 48.24 
Golub et al. 67.43 59.79 65.00 
Hedenfalk et al. 95.00 97.50 97.50 
Iizuka et al. 43.33 35.83 52.50 
Khan et al. 83.18 85.80 78.29 
Nutt et al. 65.85 71.67 69.29 
Pomeroy et al. 58.71 58.21 59.58 
Pomeroy et al. 54.17 50.33 47.83 
Ramaswamy et al. 66.41  59.47 64.81 
Rosenwald et al. 53.82 51.10 59.92 
Staunton et al. 54.25 56.55 59.44 
Shipp et al. 60.65 48.75 57.98 
Singh et al. 79.83 90.33 88.00 
Su et al. 69.26 73.82 73.95 
Veer et al. 66.32 64.40 89.32 
Welsch et al. 56.25 52.50 48.75 
Yeoh et al. 46.83 48.35 49.42 
Petricoin et al. 51.98 61.07 64.99 
Pusztai et al. 63.87 73.12 76.50 
Ranganathan et al. 50.58 51.83 69.58 
Average 63.56 63.63 67.89 
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Table 5-27. The percent RCI of the different rule learning methods paired with the discretization method that 
gives it the highest overall accuracy. Those values in bold are the largest values across the various methods. 
Performance Measure Relative Classifier Information (RCI) 

Classifier Method C4.5-MDLPC RL-EBD BLSRL_DG_PG-EBD 
Alon et al. 100.00 100.00 100.00 
Armstrong et al. 68.50 54.30 61.55 
Beer et al. 4.04 2.93 3.12 
Bhattacharjee et al. 40.91 62.38 64.99 
Bhattacharjee et al. 0.22 1.96 3.70 
Golub et al. 53.84 49.56 39.54 
Hedenfalk et al. 69.05 72.10 72.10 
Iizuka et al. 0.50 0.80 1.52 
Khan et al. 61.57 34.75 39.00 
Nutt et al. 31.06 33.95 35.06 
Pomeroy et al. 33.90 34.29 35.91 
Pomeroy et al. 3.60 1.08 1.52 
Ramaswamy et al. 61.44 72.51 61.99 
Rosenwald et al. 1.22 2.61 37.01 
Staunton et al. 32.15 39.61 41.58 
Shipp et al. 14.82 3.33 27.63 
Singh et al. 27.76 49.62 27.54 
Su et al. 60.96 70.17 68.40 
Veer et al. 23.05 3.92 52.05 
Welsch et al. 23.27 23.27 23.27 
Yeoh et al. 0.17 6.83 8.33 
Petricoin et al. 3.32 9.28 9.65 
Pusztai et al. 11.05 24.21 33.79 
Ranganathan et al. 5.88 5.84 7.02 
Average 30.51 31.64 35.68 
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Table 5-28. The comparison of accuracies of the different rule learning methods using the discretization 
method which gives them the greatest accuracy. A positive score represents results that favor the first item in the 
comparison. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
RL-EBD 

Vs 
C4.5-MDLPC 

68.42 
(18.42) -1.24 0.412 

(-0.821) 
0.424 

(-0.814) 69.66 
(17.11) 

C4.5-MDLPC 
Vs 

BLSRL_DG_PG-
EBD 

69.66 
(17.11) 

-2.32 0.294 
(-1.049) 

0.234 
(-1.223) 71.99 

(13.78) 
RL-EBD 

Vs 
BLSRL_DG_PG-

EBD 

68.42 
(18.42) 

-3.57 0.158 
(-1.412) 

0.147 
(-1.500) 71.99 

(13.78) 
 
Table 5-29. The comparison of BACC of the different rule learning methods using the discretization method 
which gives them the greatest accuracy. A positive score represents results that favor the first item in the 
comparison. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
RL-EBD 

Vs 
C4.5-MDLPC 

63.59 
(17.25) 0.03 0.903 

(0.122) 
0.979 

(0.026) 63.56 
(15.62) 

C4.5-MDLPC 
Vs 

BLSRL_DG_PG-
EBD 

63.56 
(15.62) 

-4.33 0.013 
(-2.494) 

0.009 
(-2.841) 67.89 

(15.80) 
RL-EBD 

Vs 
BLSRL_DG_PG-

EBD 

63.59 
(17.25) 

-4.60 0.007 
(-2.678) 

0.009 
(-2.857) 67.89 

(15.80) 
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Table 5-30. The comparison of RCI of the different rule learning methods using the discretization method 
which gives them the greatest accuracy. A positive score represents results that favor the first item in the 
comparison. 

Classifier Value 
(Std Dev) Diff Wilcoxon 

(Z-score) 
t-test 

(t-score) 
RL-EBD 

Vs 
C4.5-MDLPC 

30.05 
(28.60) -0.46 0.758 

(0.308) 
0.838 

(-0.207) 30.51 
(28.27) 

C4.5-MDLPC 
Vs 

BLSRL_DG_PG-
EBD 

30.51 
(28.27) 

-5.16 0.026 
(-2.224) 

0.061 
(-1.968) 35.68 

(26.41) 

RL-EBD 
Vs 

BLSRL_DG_PG-
EBD 

30.05 
(28.60) 

-5.63 0.046 
(-1.999) 

0.098 
(-1.726) 35.68 

(26.41) 

5.4 RESULTS ON UNPUBLISHED PROTEOMIC SETS 

The previous experiments, described in Sections 5.1 - 5.3, show the differences in performance 

of C4.5, RL, Bayesian global rule learning with beam search, and Bayesian Local Structure Rule 

Learning with Decision Graph structure and Parallel Greedy search strategy. The comparisons in 

Section 5.2 and 5.3 show the differences between these algorithms when choosing the 

discretization method that give each the greatest overall performance. To make sure that the 

results are reflective of a general trend, BLSRL_DG_PG paired with EBD produces better 

performance on average, four proteomic datasets that were not previously analyzed will be used 

as test data.  

The four proteomic datasets that are described in Table 3-7 will be used. The first dataset 

was produced by the Bowser lab on the Surface Enhanced Laser/Desorption Ionization Time of 

Flight (SELDI-TOF) platform. It contains 67 patient’s blood plasma, of which approximately 
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one half have Amyotrophic Lateral Sclerosis (ALS). The second dataset was produced by me on 

the Matrix Assisted Laser/Desorption Ionization Time of Flight platform. It contains 22 patients’ 

cerebrospinal fluid (CSF) of which a little less than half have ALS. The third dataset contains 

239 patients’ plasma of which a little less than half have a form of lung cancer. This set was 

derived from the Lung Spore project. The fourth and final dataset for comparison is also an ALS 

dataset created by the Bowser lab. It is a SELDI-TOF dataset containing 168 patients of which 

one third are diagnosed with ALS. All datasets are high dimensional, having greater than 17,900 

observed variables. 

5.4.1 Results 

Table 5-32 - Table 5-34 report the means of accuracy, BACC and RCI, respectively, for the rule 

learning algorithms paired with their respective discretization method as described in Section 

5.3. In each table, each row is a dataset, and each column is a learning method. The last row in 

each table represents the overall mean of the specified performance measure across the datasets.  

In Table 5-32, which shows the results with respect to accuracy, BLSRL_DG_PG-EBD 

performs better than C4.5-MDLPC, RL-EBD, and BGRL_B-EBD on 2 datasets. C4.5-MDLPC 

achieves a higher value on 1 dataset. There was 1 dataset which had more than one classifier 

performing equivalently. 

In Table 5-33, which shows the results with respect to BACC, BLSRL_DG_PG-EBD 

performs better than the C4.5-MDLPC, RL-EBD, and BGRL_B-EBD on 2 datasets. RL-EBD 

achieves a higher value on 1 dataset. There was 1 dataset which had more than one classifier 

performing equivalently. 
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Table 5-34, which shows the results with respect to RCI, BLSRL_DG_PG-EBD performs 

better than the C4.5-MDLPC, RL-EBD, and BGRL_B-EBD on 2 datasets. RL-EBD achieves a 

higher value on 1 dataset. 

5.4.2 Discussion 

As we see, the pattern exhibited in the Sections 5.1 - 5.3 continues. We see that overall, the 

accuracy on average is similar among the different classifiers, though BLSRL_DG_PG with 

EBD achieves higher accuracy on greater number of datasets while C4.5 with MDLPC achieves 

the highest average. When looking at balanced accuracy and RCI, on average, Bayesian local 

structure using a decision graph with parallel beam search combined with EBD out-performs the 

other compared classifiers, both in the number of datasets achieving highest accuracy as well as 

the overall average.  

 These results, combined with those in the previous sections, support the idea that using 

the BRGF allows you to increase performance on multiple measures when analyzing biomedical 

genomic and proteomic datasets.  We saw a trend where choosing EBD allowed for greater 

overall performance in the Bayesian methods, and MDLPC allowed for greater performance 

when combined with C4.5. 

Table 5-31, we summarize some of the important strengths and weaknesses of the 

different algorithms within the BRGF. This table summarizes the results of Chapter 5 

highlighting in particular the conclusions from the overall classification performance, the speed, 

and the complexity of the model (number of rules in the model).  
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Table 5-31. A summary of the different rule learning algorithms in the BRGF strengths and weaknesses as 
seen from the results in Chapters 5.0 . 
Learning Method Search Strategy Summary 

RL Beam 

Strength: Can handle small sample sizes, 
sampling with replacement 
Weakness: Prone to over fitting, certainty 
factors derived from statistical measures such 
as Signal-To-Noise, Positive Predictive Value, 
requires bias space search to find “optimal” set 
of parameters 

Bayesian Global Structure 

(BGS) 

Greedy Strength: Fast, Probabilistic 
Weakness: Prone to local maxima, 
combinatorial explosion of rules 

Beam 

Strength: Faster than Parallel Greedy, Less 
prone to local maxima, Performs best of all 
Bayesian global methods tested, Probabilistic 
Weakness: combinatorial explosion of rules, 
slower than greedy 

Parallel Greedy 

Strength: Better than greedy search, allows 
multiple start possibilities, Probabilistic 
Weakness: combinatorial explosion of rules, 
slowest of all the Bayesian global methods, 
performs worse than Beam search 

Bayesian Local Structure 
Decision Tree (BLSDT) 

Greedy 

Strength: Fastest of all local search methods, 
allows for reduction of parameters in CPT, 
Probabilistic, simpler model than BGS 
Weakness: prone to local maxima, performs 
worse than any of the decision graph methods 

Parallel Greedy 
Strength: reduction of parameters in CPT, 
Probabilistic, simpler model than BGS 
Weakness: Slower than greedy search, 
performs on average a little worse than greedy 

Bayesian Local Structure 
Decision Graph (BLSDG) 

Greedy Strength: Faster than PG, better than BLSDT 
and BGS except Beam, combination of paths, 
allows for reduction of parameters in CPT, 
Probabilistic, simpler model than BGS 
Weakness: Prone to local maxima 

Parallel Greedy Strength: Best method, combination of paths, 
allows for reduction of parameters in CPT, 
Probabilistic, fewer rules than BGS 
Weakness: Slower than greedy DG and many 
of the other methods. 
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Table 5-32. The accuracy of four different rule learning algorithms on four unpublished proteomic datasets. 
Those accuracies that are the highest among all classifiers on the dataset are in bold font. 
Datasets C4.5-MDLPC RL-EBD BGRL_B-EBD BLSRL_DG_PG-EBD 

SELDI‐TOF ALS Plasma  48.30% 53.17% 39.53% 55.63% 
MALDI‐TOF ALS CSF  69.00% 60.00% 64.00% 58.00% 

SELDI‐TOF Lung Cancer  72.27% 55.53% 60.39% 68.41% 
SELDI‐TOF ALS CSF  61.44% 36.33% 62.05% 62.62% 

Average 62.75% 51.26% 56.49% 61.17% 

 

Table 5-33. The BACC of four different rule learning algorithms on four unpublished proteomic datasets. 
Those accuracies that are the highest among all classifiers on the dataset are in bold font. 
Datasets C4.5-MDLPC RL-EBD BGRL_B-EBD BLSRL_DG_PG-EBD 

SELDI‐TOF ALS Plasma  48.14% 53.21% 39.29% 49.55% 

MALDI‐TOF ALS CSF  58.33% 54.17% 53.33% 58.33% 

SELDI‐TOF Lung Cancer  69.52% 67.72% 63.44% 72.92% 
SELDI‐TOF ALS CSF  49.16% 45.08% 51.37% 53.77% 

Average 56.29% 55.04% 51.86% 58.64% 

 
Table 5-34. The RCI of four different rule learning algorithms on four unpublished proteomic datasets. Those 
accuracies that are the highest among all classifiers on the dataset are in bold font. 
Datasets C4.5-MDLPC RL-EBD BGRL_B-EBD BLSRL_DG_PG-EBD 

SELDI‐TOF ALS Plasma  0.05% 1.01% 1.32% 1.65% 
MALDI‐TOF ALS CSF  3.21% 6.37% 1.79% 5.70% 
SELDI‐TOF Lung Cancer  12.43% 9.27% 6.06% 18.05% 
SELDI‐TOF ALS CSF  0.08% 0.76% 0.23% 1.33% 

Average 3.94% 4.35% 2.35% 6.68% 
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6.0  CONCLUSIONS AND FUTURE WORK 

Using a Bayesian approach to generating rules is central to this body of work.  We showed 

increased performance and decreased number of variables selected, which allows for a more 

parsimonious model while increasing performance as compared to the state-of-the-art rule 

generation techniques.  We also established a framework for integrating different probabilistic 

measures allowing for easy combination of rule learning with probabilistic network learning 

techniques. The BRGF allows for future usage of decision theoretic models with rules due to the 

generation of probabilistic rule models, which was unavailable before from rule generating 

algorithms. While it might have been possible to assign a probability to a rule, the BRGF allows 

the rule model (all of the rules) to be optimized to be the most probable. 

6.1 SPECIFIC FINDINGS 

The first hypothesis, using the BRGF is sufficient to generate probabilistic rules, has been tested 

and proven correct through empirical determination in Chapter 4.0 . We were able to show that 

using Bayesian discretization combined with Bayesian rule learning, that is both components of 

the BRGF, can generate probabilistic rules that reflect the BN structure while encapsulating the 

uncertainty derived from the CPT within the certainty factor of the rule. This therefore also 

strongly supports claim 1. 
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The second hypothesis that using the BRGF leads to an increased classification 

performance on average over standard rule generation techniques, was shown to be true (as 

measured by BACC and RCI) in Sections 5.3 and 5.4. We not only tested for statistical 

significance (whether or not the BRGF had a greater performance on multiple measures) and 

showed that it did, but also showed that this pattern continued when BRGF methods were 

applied to 4 unpublished proteomic datasets. 

Using the publicly available biomedical data, we were able to show strong support for 

claim 2 that under controlled conditions (constrained BNs), Bayesian local structure increases 

classification performance on average over Bayesian global structure for rule generation. 

Specifically, we showed that using Bayesian local structure decision graph combined with a 

parallel greedy search paradigm was statistically significant and greater on average than any of 

the Bayesian global structure methods, which can be considered a specific instance of Bayesian 

local structure decision tree (a complete decision tree). 

Claim 3, under controlled conditions (constrained BNs), Bayesian discretization produces 

equivalent or greater performance on average than Fayyad and Irani’s MDLPC [49] 

discretization when  combined with a Bayesian rule generation methods, can be supported, but 

only in specific combinations.  For the Bayesian global structure and the Bayesian decision 

graphs, claim 3 has strong support shown by the statistical significance and greater performance 

when using a Bayesian discretization method. The combination of a Bayesian discretization 

method and the decision tree algorithm results in poorer performance, albeit not statistically 

significant, when compared with the decision tree algorithm and an entropy based discretization 

(MDLPC). This could be due to multiple reasons including the sensitivity of decision trees to the 

number of intervals, EBD produces more than MDLPC, and its correlation to the sparseness of 
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the samples as expressed by Yang, et al. [157] and Carvalho, et al.[16]. The overwhelming 

performance of decision graphs with a Bayesian discretization method and the equivalent 

performance of decision trees with entropy-based discretization or Bayesian discretization 

provide enough support for the correctness of this claim.  

Claim 4, under controlled conditions (constrained BNs), the BRGF leads to increased 

classifier performance on average over state-of-the-art traditional rule learning algorithms, is 

strongly supported by the statistical significance and greater performance on average of the 

BRGF.  This was validated using a large collection of biomedical datasets (Chapter 5). However, 

this performance is not universal across all datasets tested as shown by the increased 

performance of RL on few datasets. The creation of probabilistic rules, the ability to do trivial 

inference, and the flexibility of being using a probabilistic model should overcome the difference 

in performance that might occur on some datasets. 

During the evaluation and comparison of the BRGF with traditional rule learners, the 

BRGF showed that it balances the number of rules generated with the number of variables used 

while achieving (on average) greater performance. It was also argued that using purely the 

number of correct predictions is not sufficient enough as a performance measure. The BRGF 

trades predictions of the majority class for those samples belonging to the minority classes as 

shown by the increased RCI score. 

The BRGF has impacts on both the experimental and clinical domains. For the 

experimental, the BRGF suggests fewer possible biomarkers (observed variables) creating a 

more parsimonious model than traditional rule generation techniques (see Appendix B) while 

increasing performance of the model on average.  This assists in decreasing the number of 

possible targets a biologist has to explore using more time consuming techniques such as knock-
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out studies for genomics and MS/MS and identification for proteomics [1, 4, 78, 96, 101, 158-

161].   

In the clinical domain, understandable models assist the clinician in understanding how 

the model arrives at the diagnosis [2, 14, 18, 25, 26, 115, 162], and the probabilistic nature of the 

rules derived from the BRGF can help a clinician understand the probability of the condition 

being predicted explicitly.  This can help especially when integrating disparate data sources that 

each predict with a probability of a specific clinical finding [124, 163, 164].  It also allows for 

the possibility of integrating the BRGF into a decision theoretic workflow, such as decision 

support systems that can be utilized for clinical care, for the previously mentioned reasons of 

production of probabilistic rules. The idea of heterogeneous data sources as well as additional 

future expansions of the BRGF will be discussed in the next section below.  

6.2 FUTURE WORK 

While the potential benefits of these methods have been shown in this work, the method space 

explored is a small percentage of the possibilities. Certain heuristics have been used including 

limiting the number of parents (or number of variables per a path) and the choice of different 

search strategies. Future exploration of techniques that have been applied to BNs can also now 

be applied to the rule learning space. 
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6.2.1 Bayesian discretization methods 

As explained in chapter three, there is an additional discretization method that is within the 

BRGF, but for focus on the framework, was not included within the analysis. Future experiments 

might show that changing the penalty (EBD utilizes a combinatorial penalty while EBD-D uses a 

distance penalty) when scoring a particular policy might increase the performance of the BRGF. 

We also, using the Bayesian framework, have the ability to manipulate the Dirichlet 

hyperparameters. By changing these priors, we would be injecting information into the 

discretization process. These possibilities, along with a further investigation into the interaction 

of the Bayesian discretization methods and a Bayesian rule generation method signifies that there 

are large areas within this small component that can be explored as future work. 

6.2.2 Beam Search for Local Structure 

As shown in Chapter 2 and 3, the overall space of BNs for both global and local structures is 

large. Usage of beam search heuristic therefore requires curtailing the possible combinations in 

some fashion. For Bayesian global structure search, the usage of the heuristic to eliminate 

repetitive model consideration helps reduce the model space that is considered; however the 

same heuristic cannot be applied due to the variable nature of the splitting that occurs with local 

structure. It might be possible to develop a heuristic to eliminate many different models from 

consideration by taking advantage of beam search that was shown to improve performance over 

the greedy or parallel greedy within the Bayesian global structure (Chapter 5.2). 
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6.2.3 Heuristics for stopping specialization for Bayesian Decision Trees and Graphs 

The results of chapter 5 are particularly significant especially when considering that the 

specialization of both the Bayesian decision trees and decision graphs only stops specialization 

when the leaf node in the tree has a pure distribution (only one class of the target is represented). 

Algorithms such as C4.5 have pruning capabilities to eliminate some of the over-specialization to 

which decision trees are prone.  As future work, we could experiment with different stopping 

heuristics such as purity of the distribution within the leaf node being less than 100% (more than 

one class represented). 

6.2.4 Bayesian Model Averaging 

An additional approach used by Visweswaran, which utilized Bayesian local structure, also 

utilized a technique called Bayesian model averaging (BMA) [124]. This technique utilizes 

multiple BNs to produce a weighted prediction, weighting each network by the probability of the 

data given the model. Since the parallel greedy method as explained in Chapter 3.1.4.2 generates 

1000 models, it is possible to do a BMA without any extra overhead of additional generation. 

This requires extensive testing since it is not guaranteed that these additional models provide 

increased performance. There is a possibility that the model chosen is really the most probable of 

all the 1000 models generated, and so when weighting the predictions, the additional models will 

contribute little to the prediction. 
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6.2.5 Heterogeneous Data Sources for analysis 

Given that the rule models are now probabilistic, the integration of heterogeneous data sources, 

e.g., genomic and proteomic data, can be done using the rigorous mathematics of probability 

incorporating the biologists beliefs. The idea is that building models from different data sources 

and then combining them for inference will increase the overall performance of the classifier. 

This idea has been explored previously and it was shown that analyzing the datasets separately 

achieved better performance [164].  

6.2.6 Incorporation of Prior Knowledge 

The usage of a BN for rule generation allows for incorporation of prior information through the 

weighting of interaction of variables and the target. Currently the BRGF weights each variable 

uniformly in its strength of interaction with the target, thus treating each interaction as equally 

likely. This is not necessarily the case especially in the analysis genomic and proteomic data. It is 

known that there are some interactions between genes and proteins as detailed by resources such 

as KEGG [165] and EPO-KB [111, 166]. Though the approach of integrating prior information 

into machine learning is often in the form of clustering [167-169], no experiment has recently 

been done using probabilistic weighting. 

6.2.6.1 Prior Biological Knowledge derived from Literature 

It is possible to mine relationships from literature that indicate gene-disease or protein-disease 

relationships. It might be possible to codify these relationships as probabilities and use them as 

weights for the interactions between the variable and target. This involves many difficulties 
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though, such as how exactly to codify the probabilities or what prior weights to assign to 

variables that are not given a prior probability from the literature. However prior work in the 

field shows promise for applicability of this method as an effective way to retrieve probabilities 

of interaction and their subsequent utilization in construction of BNs [119, 123] . 
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APPENDIX A 

RULE MODELS PRODUCED BY RULE LEARNING ALGORITHMS 

Bhattacharjee et al Prognostic Genomic Dataset: 

C4.5 with MDLPC 

A2090 = NegInfinity..317.25 
|  A459 = NegInfinity..-40: 1 (2.0) 
|  A459 = -40..Infinity 
|  |  A1627 = NegInfinity..717 
|  |  |  A2142 = NegInfinity..404.75 
|  |  |  |  A5250 = NegInfinity..1657.375 
|  |  |  |  |  A270 = NegInfinity..133: 1 (4.0) 
|  |  |  |  |  A270 = 133..Infinity: 2 (1.0) 
|  |  |  |  A5250 = 1657.375..Infinity: 2 (51.0) 
|  |  |  A2142 = 404.75..Infinity: 1 (3.0) 
|  |  A1627 = 717..Infinity: 1 (2.0) 
A2090 = 317.25..Infinity: 1 (6.0) 
 

RL with EBD 

1. ((A522 = Negative Infinity..1,394.250)) ==> (@Class = 1)  
 CF=1.012, Av.Cost=1.0, CF/Cost=1.012, P=0.003, TP=4, FP=0, Pos=17, Neg=52 
 
2. ((A5124 = Negative Infinity..329.000)) ==> (@Class = 1)  
 CF=1.012, Av.Cost=1.0, CF/Cost=1.012, P=0.003, TP=4, FP=0, Pos=17, Neg=52 
 
3. ((A1073 = Negative Infinity..259.917)) ==> (@Class = 1)  
 CF=1.012, Av.Cost=1.0, CF/Cost=1.012, P=0.003, TP=4, FP=0, Pos=17, Neg=52 
 
4. ((A1697 = Negative Infinity..1,519.750)) ==> (@Class = 1)  
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 CF=1.012, Av.Cost=1.0, CF/Cost=1.012, P=0.003, TP=4, FP=0, Pos=17, Neg=52 
 
5. ((A4551 = Negative Infinity..-68.500)) ==> (@Class = 1)  
 CF=1.012, Av.Cost=1.0, CF/Cost=1.012, P=0.003, TP=4, FP=0, Pos=17, Neg=52 
 
6. ((A501 = 195.000..Infinity)) ==> (@Class = 1)  
 CF=1.012, Av.Cost=1.0, CF/Cost=1.012, P=0.003, TP=4, FP=0, Pos=17, Neg=52 
 
7. ((A201 = 466.000..Infinity)) ==> (@Class = 1)  
 CF=1.012, Av.Cost=1.0, CF/Cost=1.012, P=0.003, TP=4, FP=0, Pos=17, Neg=52 
 
8. ((A4449 = 184.000..Infinity)) ==> (@Class = 1)  
 CF=1.012, Av.Cost=1.0, CF/Cost=1.012, P=0.003, TP=4, FP=0, Pos=17, Neg=52 
 
9. ((A1627 = 717.000..Infinity)) ==> (@Class = 1)  
 CF=1.012, Av.Cost=1.0, CF/Cost=1.012, P=0.003, TP=4, FP=0, Pos=17, Neg=52 
 
10. ((A1286 = 306.500..Infinity)) ==> (@Class = 1)  
 CF=1.012, Av.Cost=1.0, CF/Cost=1.012, P=0.003, TP=4, FP=0, Pos=17, Neg=52 
 
11. ((A308 = 344.750..380.750)) ==> (@Class = 1)  
 CF=1.01, Av.Cost=1.0, CF/Cost=1.01, P=0.001, TP=5, FP=0, Pos=17, Neg=52 
 
12. ((A3481 = 2,391.000..Infinity)) ==> (@Class = 2)  
 CF=1.008, Av.Cost=1.0, CF/Cost=1.008, P=0.17, TP=6, FP=0, Pos=52, Neg=17 
 
13. ((A892 = Negative Infinity..-74.000)) ==> (@Class = 2)  
 CF=1.005, Av.Cost=1.0, CF/Cost=1.005, P=0.047, TP=10, FP=0, Pos=52, Neg=17 
 
14. ((A308 = Negative Infinity..344.750)) ==> (@Class = 2)  
 CF=1.003, Av.Cost=1.0, CF/Cost=1.003, P=0.002, TP=19, FP=0, Pos=52, Neg=17 
 
15. ((A2537 = Negative Infinity..-40.500)) ==> (@Class = 2)  
 CF=1.002, Av.Cost=1.0, CF/Cost=1.002, P=0.001, TP=21, FP=0, Pos=52, Neg=17 
 
16. ((A2561 = Negative Infinity..1,032.250)) ==> (@Class = 2)  
 CF=1.002, Av.Cost=1.0, CF/Cost=1.002, P=0.0, TP=22, FP=0, Pos=52, Neg=17 
 
17. ((A3711 = 2,194.500..Infinity)) ==> (@Class = 2)  
 CF=1.002, Av.Cost=1.0, CF/Cost=1.002, P=0.0, TP=22, FP=0, Pos=52, Neg=17 
 
18. ((A4474 = 695.750..Infinity)) ==> (@Class = 2)  
 CF=0.955, Av.Cost=1.0, CF/Cost=0.955, P=0.009, TP=20, FP=1, Pos=52, Neg=17 
 
0. ((A3405 = Negative Infinity..-62.500)) ==> (@Class = 1)  
 CF=0.783, Av.Cost=1.0, CF/Cost=0.783, P=0.0, TP=7, FP=2, Pos=17, Neg=52 
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Variables Used: 
A522,A1073,A1627,A501,A892,A308,A3405,A3711,A4551,A4474,A4449,A201,A2561,A3481
,A1697,A5124,A1286,A2537 
 

Bayesian Global Rule Learning with Beam Search 

1. ((A4474 = 695.750..Infinity) (A2987 = -31.750..Infinity) (A671 = 51.500..Infinity) (A459 = -
40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.667, Av.Cost=1.0, CF/Cost=0.667, P=0.246, TP=1, FP=0, Pos=17, Neg=52 
 
2. ((A4474 = 695.750..Infinity) (A2987 = -31.750..Infinity) (A671 = 51.500..Infinity) (A459 = -
40.000..Infinity) (A1754 = Negative Infinity..124.750)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
3. ((A4474 = 695.750..Infinity) (A2987 = -31.750..Infinity) (A671 = 51.500..Infinity) (A459 = 
Negative Infinity..-40.000) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
4. ((A4474 = 695.750..Infinity) (A2987 = -31.750..Infinity) (A671 = 51.500..Infinity) (A459 = 
Negative Infinity..-40.000) (A1754 = Negative Infinity..124.750)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
5. ((A4474 = 695.750..Infinity) (A2987 = -31.750..Infinity) (A671 = Negative Infinity..51.500) 
(A459 = -40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class = 2)  
 CF=0.952, Av.Cost=1.0, CF/Cost=0.952, P=0.002, TP=19, FP=0, Pos=52, Neg=17 
 
6. ((A4474 = 695.750..Infinity) (A2987 = -31.750..Infinity) (A671 = Negative Infinity..51.500) 
(A459 = -40.000..Infinity) (A1754 = Negative Infinity..124.750)) ==> (@Class = 2)  
 CF=0.667, Av.Cost=1.0, CF/Cost=0.667, P=0.754, TP=1, FP=0, Pos=52, Neg=17 
 
7. ((A4474 = 695.750..Infinity) (A2987 = -31.750..Infinity) (A671 = Negative Infinity..51.500) 
(A459 = Negative Infinity..-40.000) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
8. ((A4474 = 695.750..Infinity) (A2987 = -31.750..Infinity) (A671 = Negative Infinity..51.500) 
(A459 = Negative Infinity..-40.000) (A1754 = Negative Infinity..124.750)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
9. ((A4474 = 695.750..Infinity) (A2987 = Negative Infinity..-31.750) (A671 = 51.500..Infinity) 
(A459 = -40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
10. ((A4474 = 695.750..Infinity) (A2987 = Negative Infinity..-31.750) (A671 = 51.500..Infinity) 
(A459 = -40.000..Infinity) (A1754 = Negative Infinity..124.750)) ==> (@Class = 1)  
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 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
11. ((A4474 = 695.750..Infinity) (A2987 = Negative Infinity..-31.750) (A671 = 51.500..Infinity) 
(A459 = Negative Infinity..-40.000) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
12. ((A4474 = 695.750..Infinity) (A2987 = Negative Infinity..-31.750) (A671 = 51.500..Infinity) 
(A459 = Negative Infinity..-40.000) (A1754 = Negative Infinity..124.750)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
13. ((A4474 = 695.750..Infinity) (A2987 = Negative Infinity..-31.750) (A671 = Negative 
Infinity..51.500) (A459 = -40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
14. ((A4474 = 695.750..Infinity) (A2987 = Negative Infinity..-31.750) (A671 = Negative 
Infinity..51.500) (A459 = -40.000..Infinity) (A1754 = Negative Infinity..124.750)) ==> (@Class 
= 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
15. ((A4474 = 695.750..Infinity) (A2987 = Negative Infinity..-31.750) (A671 = Negative 
Infinity..51.500) (A459 = Negative Infinity..-40.000) (A1754 = 124.750..Infinity)) ==> (@Class 
= 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
16. ((A4474 = 695.750..Infinity) (A2987 = Negative Infinity..-31.750) (A671 = Negative 
Infinity..51.500) (A459 = Negative Infinity..-40.000) (A1754 = Negative Infinity..124.750)) ==> 
(@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
17. ((A4474 = 549.500..695.750) (A2987 = -31.750..Infinity) (A671 = 51.500..Infinity) (A459 = 
-40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.75, Av.Cost=1.0, CF/Cost=0.75, P=0.058, TP=2, FP=0, Pos=17, Neg=52 
 
18. ((A4474 = 549.500..695.750) (A2987 = -31.750..Infinity) (A671 = 51.500..Infinity) (A459 = 
-40.000..Infinity) (A1754 = Negative Infinity..124.750)) ==> (@Class = 1)  
 CF=0.75, Av.Cost=1.0, CF/Cost=0.75, P=0.058, TP=2, FP=0, Pos=17, Neg=52 
 
19. ((A4474 = 549.500..695.750) (A2987 = -31.750..Infinity) (A671 = 51.500..Infinity) (A459 = 
Negative Infinity..-40.000) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
20. ((A4474 = 549.500..695.750) (A2987 = -31.750..Infinity) (A671 = 51.500..Infinity) (A459 = 
Negative Infinity..-40.000) (A1754 = Negative Infinity..124.750)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
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21. ((A4474 = 549.500..695.750) (A2987 = -31.750..Infinity) (A671 = Negative Infinity..51.500) 
(A459 = -40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class = 2)  
 CF=0.857, Av.Cost=1.0, CF/Cost=0.857, P=0.231, TP=5, FP=0, Pos=52, Neg=17 
 
22. ((A4474 = 549.500..695.750) (A2987 = -31.750..Infinity) (A671 = Negative Infinity..51.500) 
(A459 = -40.000..Infinity) (A1754 = Negative Infinity..124.750)) ==> (@Class = 1)  
 CF=0.857, Av.Cost=1.0, CF/Cost=0.857, P=0.001, TP=5, FP=0, Pos=17, Neg=52 
 
23. ((A4474 = 549.500..695.750) (A2987 = -31.750..Infinity) (A671 = Negative Infinity..51.500) 
(A459 = Negative Infinity..-40.000) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.8, Av.Cost=1.0, CF/Cost=0.8, P=0.013, TP=3, FP=0, Pos=17, Neg=52 
 
24. ((A4474 = 549.500..695.750) (A2987 = -31.750..Infinity) (A671 = Negative Infinity..51.500) 
(A459 = Negative Infinity..-40.000) (A1754 = Negative Infinity..124.750)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
25. ((A4474 = 549.500..695.750) (A2987 = Negative Infinity..-31.750) (A671 = 51.500..Infinity) 
(A459 = -40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
26. ((A4474 = 549.500..695.750) (A2987 = Negative Infinity..-31.750) (A671 = 51.500..Infinity) 
(A459 = -40.000..Infinity) (A1754 = Negative Infinity..124.750)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
27. ((A4474 = 549.500..695.750) (A2987 = Negative Infinity..-31.750) (A671 = 51.500..Infinity) 
(A459 = Negative Infinity..-40.000) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
28. ((A4474 = 549.500..695.750) (A2987 = Negative Infinity..-31.750) (A671 = 51.500..Infinity) 
(A459 = Negative Infinity..-40.000) (A1754 = Negative Infinity..124.750)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
29. ((A4474 = 549.500..695.750) (A2987 = Negative Infinity..-31.750) (A671 = Negative 
Infinity..51.500) (A459 = -40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
30. ((A4474 = 549.500..695.750) (A2987 = Negative Infinity..-31.750) (A671 = Negative 
Infinity..51.500) (A459 = -40.000..Infinity) (A1754 = Negative Infinity..124.750)) ==> (@Class 
= 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
31. ((A4474 = 549.500..695.750) (A2987 = Negative Infinity..-31.750) (A671 = Negative 
Infinity..51.500) (A459 = Negative Infinity..-40.000) (A1754 = 124.750..Infinity)) ==> (@Class 
= 1)  
 CF=0.667, Av.Cost=1.0, CF/Cost=0.667, P=0.246, TP=1, FP=0, Pos=17, Neg=52 
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32. ((A4474 = 549.500..695.750) (A2987 = Negative Infinity..-31.750) (A671 = Negative 
Infinity..51.500) (A459 = Negative Infinity..-40.000) (A1754 = Negative Infinity..124.750)) ==> 
(@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
33. ((A4474 = Negative Infinity..549.500) (A2987 = -31.750..Infinity) (A671 = 51.500..Infinity) 
(A459 = -40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
34. ((A4474 = Negative Infinity..549.500) (A2987 = -31.750..Infinity) (A671 = 51.500..Infinity) 
(A459 = -40.000..Infinity) (A1754 = Negative Infinity..124.750)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
35. ((A4474 = Negative Infinity..549.500) (A2987 = -31.750..Infinity) (A671 = 51.500..Infinity) 
(A459 = Negative Infinity..-40.000) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
36. ((A4474 = Negative Infinity..549.500) (A2987 = -31.750..Infinity) (A671 = 51.500..Infinity) 
(A459 = Negative Infinity..-40.000) (A1754 = Negative Infinity..124.750)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
37. ((A4474 = Negative Infinity..549.500) (A2987 = -31.750..Infinity) (A671 = Negative 
Infinity..51.500) (A459 = -40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class = 2)  
 CF=0.963, Av.Cost=1.0, CF/Cost=0.963, P=0.0, TP=25, FP=0, Pos=52, Neg=17 
 
38. ((A4474 = Negative Infinity..549.500) (A2987 = -31.750..Infinity) (A671 = Negative 
Infinity..51.500) (A459 = -40.000..Infinity) (A1754 = Negative Infinity..124.750)) ==> (@Class 
= 2)  
 CF=0.75, Av.Cost=1.0, CF/Cost=0.75, P=0.565, TP=2, FP=0, Pos=52, Neg=17 
 
39. ((A4474 = Negative Infinity..549.500) (A2987 = -31.750..Infinity) (A671 = Negative 
Infinity..51.500) (A459 = Negative Infinity..-40.000) (A1754 = 124.750..Infinity)) ==> (@Class 
= 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
40. ((A4474 = Negative Infinity..549.500) (A2987 = -31.750..Infinity) (A671 = Negative 
Infinity..51.500) (A459 = Negative Infinity..-40.000) (A1754 = Negative Infinity..124.750)) ==> 
(@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
41. ((A4474 = Negative Infinity..549.500) (A2987 = Negative Infinity..-31.750) (A671 = 
51.500..Infinity) (A459 = -40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
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42. ((A4474 = Negative Infinity..549.500) (A2987 = Negative Infinity..-31.750) (A671 = 
51.500..Infinity) (A459 = -40.000..Infinity) (A1754 = Negative Infinity..124.750)) ==> (@Class 
= 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
43. ((A4474 = Negative Infinity..549.500) (A2987 = Negative Infinity..-31.750) (A671 = 
51.500..Infinity) (A459 = Negative Infinity..-40.000) (A1754 = 124.750..Infinity)) ==> (@Class 
= 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
44. ((A4474 = Negative Infinity..549.500) (A2987 = Negative Infinity..-31.750) (A671 = 
51.500..Infinity) (A459 = Negative Infinity..-40.000) (A1754 = Negative Infinity..124.750)) ==> 
(@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
45. ((A4474 = Negative Infinity..549.500) (A2987 = Negative Infinity..-31.750) (A671 = 
Negative Infinity..51.500) (A459 = -40.000..Infinity) (A1754 = 124.750..Infinity)) ==> (@Class 
= 1)  
 CF=0.75, Av.Cost=1.0, CF/Cost=0.75, P=0.058, TP=2, FP=0, Pos=17, Neg=52 
 
46. ((A4474 = Negative Infinity..549.500) (A2987 = Negative Infinity..-31.750) (A671 = 
Negative Infinity..51.500) (A459 = -40.000..Infinity) (A1754 = Negative Infinity..124.750)) ==> 
(@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
47. ((A4474 = Negative Infinity..549.500) (A2987 = Negative Infinity..-31.750) (A671 = 
Negative Infinity..51.500) (A459 = Negative Infinity..-40.000) (A1754 = 124.750..Infinity)) ==> 
(@Class = 1)  
 CF=0.667, Av.Cost=1.0, CF/Cost=0.667, P=0.246, TP=1, FP=0, Pos=17, Neg=52 
 
48. ((A4474 = Negative Infinity..549.500) (A2987 = Negative Infinity..-31.750) (A671 = 
Negative Infinity..51.500) (A459 = Negative Infinity..-40.000) (A1754 = Negative 
Infinity..124.750)) ==> (@Class = 1)  
 CF=0.5, Av.Cost=1.0, CF/Cost=0.5, P=1.0, TP=0, FP=0, Pos=17, Neg=52 
 
Variables Used: A671,A1754,A4474,A2987,A459 
 

Bayesian Local Structure Rule Learning with Decision Graphs and Parallel Greedy Search with 

EBD 

1. ((A2900 = Negative Infinity..1,808.750) (A2002 = Negative Infinity..2.750)) ==> (@Class = 
2)  
 CF=0.981, Av.Cost=1.0, CF/Cost=0.981, P=0.0, TP=52, FP=0, Pos=52, Neg=17 
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2. ((A2900 = 1,808.750..Infinity) (A4474 = Negative Infinity..549.500) (A1627 = Negative 
Infinity..717.000)) ==> (@Class = 2)  
 CF=0.981, Av.Cost=1.0, CF/Cost=0.981, P=0.0, TP=52, FP=0, Pos=52, Neg=17 
 
3. ((A2900 = 1,808.750..Infinity) (A4474 = 695.750..Infinity) (A1627 = Negative 
Infinity..717.000)) ==> (@Class = 2)  
 CF=0.981, Av.Cost=1.0, CF/Cost=0.981, P=0.0, TP=52, FP=0, Pos=52, Neg=17 
 
4. ((A2900 = 1,808.750..Infinity) (A4474 = 549.500..695.750) (A4882 = Negative 
Infinity..372.333) (A45 = 399.500..Infinity)) ==> (@Class = 2)  
 CF=0.981, Av.Cost=1.0, CF/Cost=0.981, P=0.0, TP=52, FP=0, Pos=52, Neg=17 
 
5. ((A2900 = Negative Infinity..1,808.750) (A2002 = 2.750..Infinity)) ==> (@Class = 1)  
 CF=0.947, Av.Cost=1.0, CF/Cost=0.947, P=0.0, TP=17, FP=0, Pos=17, Neg=52 
 
6. ((A2900 = 1,808.750..Infinity) (A4474 = 549.500..695.750) (A4882 = 372.333..Infinity)) ==> 
(@Class = 1)  
 CF=0.947, Av.Cost=1.0, CF/Cost=0.947, P=0.0, TP=17, FP=0, Pos=17, Neg=52 
 
7. ((A2900 = 1,808.750..Infinity) (A4474 = 549.500..695.750) (A4882 = Negative 
Infinity..372.333) (A45 = Negative Infinity..399.500)) ==> (@Class = 1)  
 CF=0.947, Av.Cost=1.0, CF/Cost=0.947, P=0.0, TP=17, FP=0, Pos=17, Neg=52 
 
8. ((A2900 = 1,808.750..Infinity) (A4474 = Negative Infinity..549.500) (A1627 = 
717.000..Infinity)) ==> (@Class = 1)  
 CF=0.947, Av.Cost=1.0, CF/Cost=0.947, P=0.0, TP=17, FP=0, Pos=17, Neg=52 
 
9. ((A2900 = 1,808.750..Infinity) (A4474 = 695.750..Infinity) (A1627 = 717.000..Infinity)) ==> 
(@Class = 1)  
 CF=0.947, Av.Cost=1.0, CF/Cost=0.947, P=0.0, TP=17, FP=0, Pos=17, Neg=52 
 
Variables Used: A2002,A4474,A1627,A2900,A45,A4882 
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APPENDIX B 

B.1 THE RESULTS OF MDLPC VS. EBD ON BAYESIAN GLOBAL STRUCTURE 

RULE LEARNING AND C4.5  

Table 6-1. The percent accuracies of various rule learning methods using MDLPC. BGRL_G is the Bayesian 
Global Rule Learning with Greedy Search. 
Datasets BGRL_G BGRL_B BGRL_PG C4.5 RL 
Alon et al. 100.00 100.00 100.00 100.00 100.00 
Armstrong et al. 68.75 70.18 84.46 82.14 84.29 
Beer et al. 76.39 73.19 74.58 66.39 75.42 
Bhattacharjee et al. 78.50 81.68 82.39 86.17 74.11 
Bhattacharjee et al. 62.62 65.24 63.81 62.62 67.86 
Golub et al. 71.96 67.50 67.50 77.50 69.11 
Hedenfalk et al. 97.50 97.50 97.50 95.00 89.17 
Iizuka et al. 51.67 56.67 48.33 48.33 53.33 
Khan et al. 72.21 76.55 66.58 84.44 84.63 
Nutt et al. 52.00 36.00 42.00 52.00 54.00 
Pomeroy et al. 65.56 69.17 67.78 71.11 82.22 
Pomeroy et al. 55.00 56.67 53.33 61.67 55.00 
Ramaswamy et al. 19.29 39.30 25.00 52.50 36.43 
Rosenwald et al. 57.92 57.08 55.83 58.33 57.50 
Staunton et al. 35.00 32.67 36.67 28.33 25.00 
Shipp et al. 83.75 83.75 91.25 83.39 68.04 
Singh et al. 87.27 84.45 82.55 79.45 89.00 
Su et al. 40.91 61.98 57.03 65.46 62.76 
Veer et al. 82.17 81.98 83.33 69.29 55.25 
Welsch et al. 87.50 87.50 87.50 95.00 87.50 
Yeoh et al. 69.18 70.13 71.97 71.08 76.39 
Petricoin et al. 75.49 77.92 76.74 73.26 76.40 
Pusztai et al. 55.95 59.67 58.39 52.79 32.00 
Ranganathan et al. 44.36 52.98 50.18 55.67 56.00 
Average 66.74 68.96 67.61 69.66 68.49 
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  Table 6-2. The percent BACC of various rule learning methods using MDLPC. BGRL_G is the Bayesian 
  Global Rule Learning with Greedy Search 
Datasets BGRL_G BGRL_B BGRL_PG C4.5 RL 
Alon et al. 100.00 100.00 100.00 100.00 100.00 
Armstrong et al. 76.73 77.90 86.43 85.42 91.41 
Beer et al. 50.19 47.71 49.40 45.00 51.03 
Bhattacharjee et al. 59.61 58.44 58.56 64.02 57.18 
Bhattacharjee et al. 45.77 47.20 45.95 43.21 48.51 
Golub et al. 65.21 63.43 62.06 67.43 66.27 
Hedenfalk et al. 97.50 97.50 97.50 95.00 92.50 
Iizuka et al. 42.50 48.33 39.58 43.33 46.08 
Khan et al. 72.48 77.20 67.65 83.18 72.82 
Nutt et al. 64.85 55.96 60.23 65.85 66.46 
Pomeroy et al. 51.69 53.55 55.57 58.71 61.55 
Pomeroy et al. 46.67 45.83 44.17 54.17 47.00 
Ramaswamy et al. 56.14 57.40 58.16 66.41 59.47 
Rosenwald et al. 53.92 57.08 52.80 53.82 56.74 
Staunton et al. 56.65 58.95 57.30 54.25 53.28 
Shipp et al. 58.17 58.17 66.25 60.65 50.15 
Singh et al. 87.50 84.50 82.67 79.83 89.33 
Su et al. 57.96 59.92 65.12 69.26 69.74 
Veer et al. 80.48 84.93 83.39 66.32 59.50 
Welsch et al. 48.75 48.75 48.75 56.25 50.00 
Yeoh et al. 47.10 48.98 47.14 46.83 47.81 
Petricoin et al. 51.81 54.97 52.73 51.98 56.94 
Pusztai et al. 67.61 68.12 69.06 63.87 67.60 
Ranganathan et al. 47.75 54.70 50.00 50.58 51.33 
Average 61.96 62.90 62.52 63.56 63.03 
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Table 6-3. The percent RCI of various rule learning methods using MDLPC. BGRL_G is the Bayesian Global 
Rule Learning with Greedy Search. 
Datasets BGRL_G BGRL_B BGRL_PG C4.5 RL 
Alon et al. 100.00 100.00 100.00 100.00 100.00 
Armstrong et al. 30.78 28.04 46.12 68.50 52.60 
Beer et al. 1.04 0.49 1.78 4.04 3.42 
Bhattacharjee et al. 31.59 37.68 38.65 40.91 17.96 
Bhattacharjee et al. 1.59 3.01 0.80 0.22 2.53 
Golub et al. 42.05 42.68 32.70 53.84 51.22 
Hedenfalk et al. 72.10 72.10 72.10 69.05 72.10 
Iizuka et al. 0.24 0.19 2.46 0.50 1.10 
Khan et al. 46.95 49.61 38.85 61.57 32.86 
Nutt et al. 28.40 26.82 28.13 31.06 37.08 
Pomeroy et al. 21.43 23.39 26.29 33.90 37.05 
Pomeroy et al. 1.73 0.76 1.58 3.60 1.34 
Ramaswamy et al. 20.29 54.35 57.74 61.44 71.58 
Rosenwald et al. 15.10 25.10 14.29 1.22 2.33 
Staunton et al. 30.92 31.65 30.86 32.15 32.45 
Shipp et al. 19.85 19.23 30.58 14.82 4.92 
Singh et al. 37.62 33.00 31.76 27.76 42.17 
Su et al. 61.00 62.24 63.46 60.96 63.84 
Veer et al. 26.69 45.98 47.84 23.05 3.12 
Welsch et al. 23.27 23.27 23.27 23.27 23.27 
Yeoh et al. 6.23 6.89 6.91 0.17 5.33 
Petricoin et al. 1.21 1.89 1.44 3.32 2.54 
Pusztai et al. 12.34 11.99 11.65 11.05 22.84 
Ranganathan et al. 4.68 5.46 3.18 5.88 4.76 
Average 26.55 29.41 29.68 30.51 28.68 

 

 159 



Table 6-4. The percent accuracies of various rule learning methods using EBD. BGRL_G is the Bayesian 
Global Rule Learning with Greedy Search. 
Datasets BGRL_G BGRL_B BGRL_PG C4.5 RL 
Alon et al. 100.00 100.00 100.00 100.00 100.00 
Armstrong et al. 75.89 77.68 77.68 82.14 82.86 
Beer et al. 71.81 70.97 70.69 68.89 75.56 
Bhattacharjee et al. 64.79 72.81 67.26 85.69 77.13 
Bhattacharjee et al. 58.10 62.86 54.52 62.62 60.71 
Golub et al. 66.25 66.43 62.50 77.86 71.96 
Hedenfalk et al. 97.50 97.50 97.50 95.00 94.17 
Iizuka et al. 60.00 56.67 55.00 56.67 41.67 
Khan et al. 69.39 73.22 66.76 80.83 88.33 
Nutt et al. 62.00 50.00 42.00 54.00 62.00 
Pomeroy et al. 76.67 74.97 78.89 70.00 83.00 
Pomeroy et al. 58.33 56.67 58.33 60.00 53.33 
Ramaswamy et al. 16.43 46.88 16.07 43.21 42.14 
Rosenwald et al. 55.83 54.58 55.83 56.67 53.75 
Staunton et al. 30.00 35.20 31.67 25.00 33.33 
Shipp et al. 85.00 86.25 87.32 75.89 69.82 
Singh et al. 80.64 82.45 81.91 78.36 89.18 
Su et al. 38.09 71.98 48.29 59.71 70.72 
Veer et al. 75.58 86.98 66.75 74.46 63.00 
Welsch et al. 87.50 87.50 87.50 95.00 87.50 
Yeoh et al. 67.53 72.17 70.71 71.50 71.16 
Petricoin et al. 77.97 79.13 75.17 73.29 78.54 
Pusztai et al. 54.07 57.20 55.32 54.67 40.40 
Ranganathan et al. 48.00 57.11 50.36 53.33 51.82 
Average 66.01 70.14 65.06 68.95 69.95 
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Table 6-5. The percent BACC of various rule learning methods using EBD. BGRL_G is the Bayesian Global 
Rule Learning with Greedy Search. 
Datasets BGRL_G BGRL_B BGRL_PG C4.5 RL 
Alon et al. 100.00 100.00 100.00 100.00 100.00 
Armstrong et al. 80.57 82.10 87.82 85.51 80.88 
Beer et al. 47.21 46.79 52.14 46.25 47.32 
Bhattacharjee et al. 60.99 62.98 56.30 64.10 60.12 
Bhattacharjee et al. 44.98 44.94 41.73 43.21 43.45 
Golub et al. 66.43 61.79 63.58 69.42 59.79 
Hedenfalk et al. 97.50 97.50 97.50 95.00 97.50 
Iizuka et al. 50.83 47.50 47.92 50.83 35.83 
Khan et al. 68.37 79.99 68.85 81.12 85.80 
Nutt et al. 69.65 62.67 62.46 66.79 71.67 
Pomeroy et al. 54.88 55.93 54.24 56.20 58.21 
Pomeroy et al. 49.17 45.83 50.00 52.50 50.33 
Ramaswamy et al. 54.01 58.23 55.17 62.08 63.36 
Rosenwald et al. 57.44 56.19 59.05 52.64 51.10 
Staunton et al. 57.20 59.32 55.61 52.98 56.55 
Shipp et al. 59.83 61.08 62.62 53.15 48.75 
Singh et al. 85.33 85.83 81.75 78.33 90.33 
Su et al. 57.35 65.98 57.44 67.35 73.82 
Veer et al. 81.64 85.98 84.31 71.32 64.40 
Welsch et al. 48.75 48.75 48.75 56.25 52.50 
Yeoh et al. 47.21 49.13 47.36 46.76 48.35 
Petricoin et al. 53.89 65.99 50.53 53.02 61.07 
Pusztai et al. 68.22 66.12 66.13 66.30 73.12 
Ranganathan et al. 48.42 56.51 50.67 50.92 51.83 
Average 62.91 64.46 62.58 63.42 63.59 

 

 161 



Table 6-6. The percent RCI of various rule learning methods using EBD. BGRL_G is the Bayesian Global 
Rule Learning with Greedy Search. 
Datasets BGRL_G BGRL_B BGRL_PG C4.5 RL 
Alon et al. 100.00 100.00 100.00 100.00 100.00 
Armstrong et al. 51.15 46.53 46.46 69.42 54.30 
Beer et al. 0.37 1.97 2.98 1.63 2.93 
Bhattacharjee et al. 32.42 57.68 42.81 41.07 24.33 
Bhattacharjee et al. 1.92 0.26 2.00 0.12 1.96 
Golub et al. 38.25 39.89 29.67 53.33 49.56 
Hedenfalk et al. 72.10 72.10 72.10 69.05 72.10 
Iizuka et al. 0.79 0.86 0.90 1.06 0.80 
Khan et al. 44.32 45.95 35.71 55.58 34.75 
Nutt et al. 29.89 22.95 26.20 30.72 33.95 
Pomeroy et al. 22.25 25.35 26.59 36.00 34.29 
Pomeroy et al. 1.52 1.29 1.25 3.24 1.08 
Ramaswamy et al. 19.78 58.13 17.30 54.73 72.51 
Rosenwald et al. 26.11 32.95 29.08 0.72 2.61 
Staunton et al. 31.18 31.87 30.56 34.51 39.61 
Shipp et al. 17.98 19.68 19.83 8.59 3.33 
Singh et al. 28.84 30.24 27.60 29.18 49.62 
Su et al. 66.49 70.82 67.67 58.32 70.17 
Veer et al. 24.67 46.12 35.71 21.60 3.92 
Welsch et al. 23.27 23.27 23.27 23.27 23.27 
Yeoh et al. 6.98 7.54 7.43 0.08 6.83 
Petricoin et al. 5.66 13.32 6.54 0.81 9.28 
Pusztai et al. 7.44 8.43 8.36 11.96 24.21 
Ranganathan et al. 4.04 5.56 1.63 5.35 5.84 
Average 27.39 31.78 27.57 29.60 30.05 
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B.2 THE QUALITATIVE RESULTS OF THE DIFFERENT MACHINE LEARNING 

ALGORITHMS 

Table 6-7. The number of rules generated using MDLPC across the four Bayesian local structure algorithms 
with a maximum of 8 possible variables per a path within the local structure. 
Bayesian Local Structure Decision Tree Decision Graph 

Search Strategy Greedy Parallel Greedy Greedy Parallel Greedy 
Alon et al. 2 2 2 10 
Armstrong et al. 17 10 31 26 
Beer et al. 13 7 18 34 
Bhattacharjee et al. 47 48 51 49 
Bhattacharjee et al. 14 10 26 12 
Golub et al. 13 13 22 33 
Hedenfalk et al. 2 2 2 13 
Iizuka et al. 13 10 25 37 
Khan et al. 18 19 13 51 
Nutt et al. 12 17 35 49 
Pomeroy et al. 18 13 36 87 
Pomeroy et al. 15 12 19 11 
Ramaswamy et al. 120 88 85 72 
Rosenwald et al. 32 36 16 16 
Staunton et al. 23 24 20 52 
Shipp et al. 9 7 21 17 
Singh et al. 16 27 18 46 
Su et al. 73 69 70 63 
Veer et al. 10 9 9 28 
Welsch et al. 2 2 2 3 
Yeoh et al. 52 34 25 29 
Petricoin et al. 33 37 38 24 
Pusztai et al. 21 25 31 22 
Ranganathan et al. 11 11 13 11 
Average 24.417 22.167 26.177 33.125 
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Table 6-8. The number of variables used in the model over the different methods using EBD with a maximum 
of 8 possible variables per a path within the local structure. 
Bayesian Local Structure Decision Tree Decision Graph 

Search Strategy Greedy Parallel Greedy Greedy Parallel Greedy 
Alon et al. 2 2 2 15 
Armstrong et al. 10 10 27 50 
Beer et al. 17 13 18 44 
Bhattacharjee et al. 33 32 20 37 
Bhattacharjee et al. 17 10 21 13 
Golub et al. 13 13 21 25 
Hedenfalk et al. 2 2 2 17 
Iizuka et al. 13 12 25 25 
Khan et al. 25 25 27 45 
Nutt et al. 15 37 26 56 
Pomeroy et al. 22 20 45 46 
Pomeroy et al. 15 11 20 21 
Ramaswamy et al. 321 411 67 266 
Rosenwald et al. 29 36 18 24 
Staunton et al. 31 29 32 33 
Shipp et al. 11 7 14 10 
Singh et al. 17 19 22 38 
Su et al. 139 117 97 101 
Veer et al. 9 9 12 23 
Welsch et al. 2 2 2 3 
Yeoh et al. 61 57 20 25 
Petricoin et al. 52 45 40 35 
Pusztai et al. 30 30 35 63 
Ranganathan et al. 11 9 15 16 
Average 37.375 39.917 26.167 42.958 
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Table 6-9. The time it takes to run one fold of the classifier with EBD with a maximum of 8 possible variables 
per a path within the local structure. 
Bayesian Local Structure Decision Tree Decision Graph 

Search Strategy Greedy Parallel Greedy Greedy Parallel Greedy 
Alon et al. 0.65 3.77 0.66 5.37 
Armstrong et al. 11.56 61.83 11.33 64.87 
Beer et al. 0.14 0.68 0.14 0.78 
Bhattacharjee et al. 0.03 0.07 0.03 0.08 
Bhattacharjee et al. 1.09 12.21 1.10 13.07 
Golub et al. 0.74 1.50 0.74 2.12 
Hedenfalk et al. 0.11 0.36 0.11 0.41 
Iizuka et al. 0.47 13.50 0.48 13.06 
Khan et al. 13.70 37.76 13.84 55.84 
Nutt et al. 3.01 25.27 3.02 25.71 
Pomeroy et al. 0.06 0.14 0.06 0.15 
Pomeroy et al. 0.07 0.48 0.07 0.35 
Ramaswamy et al. 1.76 29.24 1.79 24.50 
Rosenwald et al. 0.65 4.06 0.58 5.49 
Staunton et al. 1.94 20.71 1.91 16.45 
Shipp et al. 2.54 9.82 2.52 12.35 
Singh et al. 0.95 1.22 0.94 1.28 
Su et al. 26.42 329.86 28.40 251.84 
Veer et al. 46.90 604.34 47.36 306.61 
Welsch et al. 0.14 0.40 0.14 0.24 
Yeoh et al. 102.71 2486.72 99.61 931.01 
Petricoin et al. 0.44 8.56 0.43 6.29 
Pusztai et al. 3.65 69.35 3.63 41.85 
Ranganathan et al. 5.55 12.61 5.00 15.03 
Average 9.39 155.60 9.33 74.78 
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Table 6-10. The average number of rules over all folds for the Bayesian global rule learning algorithms (with 
a maximum of 8 possible parents), C4.5, and RL using MDLPC. 

Rule Learning Bayesian Global Structure 
C4.5 RL Search Strategy Greedy Beam 

Search Parallel Greedy 

Alon et al. 2.00 2.00 2.00 2.00 2.00 
Armstrong et al. 16.00 16.00 8.00 4.00 10.00 
Beer et al. 16.00 16.00 32.00 5.00 20.00 
Bhattacharjee et al. 360.00 360.00 72.00 11.00 23.00 
Bhattacharjee et al. 128.00 128.00 256.00 7.00 16.00 
Golub et al. 16.00 16.00 16.00 7.00 13.00 
Hedenfalk et al. 2.00 2.00 2.00 2.00 2.00 
Iizuka et al. 16.00 16.00 32.00 6.00 19.00 
Khan et al. 32.00 32.00 32.00 9.00 13.00 
Nutt et al. 12.00 24.00 16.00 6.00 18.00 
Pomeroy et al. 192.00 288.00 128.00 9.00 35.00 
Pomeroy et al. 32.00 32.00 16.00 6.00 23.00 
Ramaswamy et al. 1152.00 1196.00 1296.00 82.00 106.00 
Rosenwald et al. 256.00 256.00 256.00 26.00 56.00 
Staunton et al. 64.00 64.00 256.00 15.00 27.00 
Shipp et al. 8.00 8.00 4.00 5.00 9.00 
Singh et al. 48.00 48.00 24.00 7.00 22.00 
Su et al. 1152.00 418.00 576.00 21.00 47.00 
Veer et al. 16.00 16.00 16.00 5.00 37.00 
Welsch et al. 2.00 2.00 2.00 2.00 33.00 
Yeoh et al. 256.00 256.00 256.00 18.00 41.00 
Petricoin et al. 256.00 138.00 384.00 20.00 79.00 
Pusztai et al. 64.00 64.00 128.00 29.00 8.00 
Ranganathan et al. 8.00 8.00 8.00 4.00 9.00 
Average 171.08 141.92 159.08 12.83 27.83 
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Table 6-11. The average number of rules over all folds for the Bayesian global rule learning algorithms (with 
a maximum of 8 possible parents), C4.5, and RL using EBD. 

Rule Learning Bayesian Global Structure 
C4.5 RL Search Strategy Greedy Beam 

Search Parallel Greedy 

Alon et al. 2.00 2.00 2.00 2.00 2.00 
Armstrong et al. 8.00 12.00 12.00 4.00 10.00 
Beer et al. 16.00 32.00 24.00 6.00 21.00 
Bhattacharjee et al. 48.00 96.00 144.00 9.00 24.00 
Bhattacharjee et al. 64.00 64.00 16.00 8.00 19.00 
Golub et al. 32.00 32.00 64.00 7.00 14.00 
Hedenfalk et al. 2.00 2.00 2.00 2.00 2.00 
Iizuka et al. 16.00 16.00 16.00 6.00 19.00 
Khan et al. 32.00 32.00 32.00 9.00 10.00 
Nutt et al. 12.00 24.00 24.00 6.00 16.00 
Pomeroy et al. 192.00 192.00 256.00 8.00 63.00 
Pomeroy et al. 16.00 16.00 16.00 6.00 10.00 
Ramaswamy et al. 1152.00 562.00 576.00 109.00 120.00 
Rosenwald et al. 256.00 256.00 256.00 31.00 53.00 
Staunton et al. 96.00 96.00 256.00 14.00 28.00 
Shipp et al. 8.00 8.00 18.00 5.00 25.00 
Singh et al. 16.00 24.00 16.00 7.00 20.00 
Su et al. 1304.00 1532.00 1944.00 31.00 55.00 
Veer et al. 16.00 16.00 8.00 5.00 34.00 
Welsch et al. 2.00 2.00 2.00 2.00 2.00 
Yeoh et al. 256.00 256.00 256.00 19.00 36.00 
Petricoin et al. 640.00 284.00 384.00 30.00 75.00 
Pusztai et al. 64.00 144.00 384.00 34.00 12.00 
Ranganathan et al. 12.00 12.00 8.00 5.00 7.00 
Average 177.58 154.67 196.50 15.21 28.21 
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Table 6-12. The average number of variables over all folds for the Bayesian global rule learning algorithms 
(with a maximum of 8 possible parents), C4.5, and RL using MDLPC. 

Rule Learning Bayesian Global Structure C4.5 RL Search Strategy Greedy Beam Search Parallel Greedy 
Alon et al. 1.00 1.00 1.00 1.00 1.00 
Armstrong et al. 3.00 3.00 3.00 3.00 10.00 
Beer et al. 4.00 4.00 5.00 4.00 20.00 
Bhattacharjee et al. 7.00 7.00 8.00 6.00 16.00 
Bhattacharjee et al. 4.00 4.00 4.00 6.00 12.00 
Golub et al. 1.00 1.00 1.00 1.00 1.00 
Hedenfalk et al. 4.00 4.00 5.00 5.00 19.00 
Iizuka et al. 5.00 5.00 5.00 7.00 13.00 
Khan et al. 3.00 4.00 4.00 5.00 18.00 
Nutt et al. 5.00 5.00 4.00 5.00 23.00 
Pomeroy et al. 6.00 6.00 8.00 13.50 26.00 
Pomeroy et al. 3.00 3.00 2.00 4.00 9.00 
Ramaswamy et al. 5.00 5.00 4.00 6.00 22.00 
Rosenwald et al. 1.00 1.00 1.00 1.00 33.00 
Staunton et al. 7.00 7.00 7.00 8.00 32.00 
Shipp et al. 8.00 8.00 8.00 25.00 61.00 
Singh et al. 4.00 4.00 4.00 4.00 37.00 
Su et al. 8.00 8.00 8.00 19.00 45.00 
Veer et al. 8.00 8.00 8.00 17.00 46.00 
Welsch et al. 6.00 6.00 5.00 9.00 23.00 
Yeoh et al. 8.00 8.00 8.00 74.00 93.00 
Petricoin et al. 6.00 6.00 7.00 28.00 13.00 
Pusztai et al. 8.00 8.00 8.00 18.50 82.00 
Ranganathan et al. 3.00 3.00 3.00 3.00 9.00 
Average 4.92 4.96 5.04 11.38 27.67 
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Table 6-13. The average number of variables over all folds for the Bayesian global rule learning algorithms 
(with a maximum of 8 possible parents), C4.5, and RL using EBD. 

Rule Learning Bayesian Global Structure C4.5 RL Search Strategy Greedy Beam Search Parallel Greedy 
Alon et al. 1.00 1.00 1.00 1.00 1.00 
Armstrong et al. 3.00 3.00 3.00 3.00 10.00 
Beer et al. 4.00 5.00 4.00 5.00 20.00 
Bhattacharjee et al. 6.00 6.00 4.00 7.00 18.00 
Bhattacharjee et al. 5.00 5.00 6.00 6.00 15.00 
Golub et al. 1.00 1.00 1.00 1.00 2.00 
Hedenfalk et al. 4.00 4.00 4.00 5.00 19.00 
Iizuka et al. 5.00 5.00 5.00 7.00 10.00 
Khan et al. 3.00 4.00 4.00 5.00 15.00 
Nutt et al. 4.00 4.00 4.00 5.00 10.00 
Pomeroy et al. 6.00 6.00 8.00 12.00 27.00 
Pomeroy et al. 3.00 3.00 3.00 4.00 24.00 
Ramaswamy et al. 4.00 4.00 4.00 8.00 20.00 
Rosenwald et al. 1.00 1.00 1.00 1.00 2.00 
Staunton et al. 7.00 7.00 8.00 7.00 63.00 
Shipp et al. 8.00 8.00 8.00 30.00 70.00 
Singh et al. 4.00 4.00 3.00 4.00 34.00 
Su et al. 8.00 7.00 8.00 26.00 55.00 
Veer et al. 8.00 8.00 8.00 18.00 35.00 
Welsch et al. 5.00 6.00 6.00 15.00 24.00 
Yeoh et al. 8.00 8.00 8.00 88.50 120.00 
Petricoin et al. 6.00 6.00 8.00 32.00 21.00 
Pusztai et al. 8.00 8.00 8.00 27.00 74.00 
Ranganathan et al. 3.00 3.00 3.00 7.00 7.00 
Average 4.79 4.88 5.00 13.52 29.00 
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Table 6-14. The run time(in minutes) for a single fold averaged over all folds for the Bayesian global rule 
learning algorithms (with a maximum of 8 possible parents), C4.5, and RL using MDLPC. 

Rule Learning Bayesian Global Structure C4.5 RL Search Strategy Greedy Beam Search Parallel Greedy 
Alon et al. 0.00 0.20 0.61 0.00 2.73 
Armstrong et al. 0.01 5.10 5.91 0.00 8.51 
Beer et al. 0.00 0.02 0.11 0.00 1.33 
Bhattacharjee et al. 0.00 0.00 0.00 0.00 0.37 
Bhattacharjee et al. 0.00 0.14 0.93 0.00 5.40 
Golub et al. 0.00 0.13 0.41 0.00 1.92 
Hedenfalk et al. 0.00 0.01 0.03 0.00 0.41 
Iizuka et al. 0.00 0.11 0.83 0.00 4.71 
Khan et al. 0.01 4.44 6.01 0.00 7.48 
Nutt et al. 0.01 1.35 6.47 0.00 11.63 
Pomeroy et al. 0.00 0.00 0.01 0.00 0.42 
Pomeroy et al. 0.00 0.12 0.04 0.00 3.89 
Ramaswamy et al. 0.00 0.01 0.05 0.00 3.19 
Rosenwald et al. 0.00 0.21 0.99 0.00 3.35 
Staunton et al. 0.01 1.17 4.71 0.00 4.78 
Shipp et al. 0.00 0.68 2.57 0.00 3.94 
Singh et al. 0.00 0.12 0.37 0.00 2.74 
Su et al. 0.12 54.24 78.02 0.01 132.60 
Veer et al. 0.04 14.43 17.33 0.01 15.80 
Welsch et al. 0.00 0.10 0.01 0.00 1.49 
Yeoh et al. 0.06 20.89 48.13 0.01 34.44 
Petricoin et al. 0.00 0.10 0.73 0.00 13.59 
Pusztai et al. 0.03 1.46 12.13 0.01 30.30 
Ranganathan et al. 0.00 0.51 1.58 0.00 2.87 
Average 0.01 4.40 7.83 0.00 12.41 
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Table 6-15. The run time(in minutes) for a single fold averaged over all folds for the Bayesian global rule 
learning algorithms, C4.5, and RL using EBD with a maximum of 8 possible parents in minutes. 

Rule Learning Bayesian Global Structure C4.5 RL Search Strategy Greedy Beam Search Parallel Greedy 
Alon et al. 0.00 0.25 0.67 0.00 2.90 
Armstrong et al. 0.02 9.60 8.25 0.00 12.46 
Beer et al. 0.00 0.04 0.26 0.00 2.86 
Bhattacharjee et al. 0.00 0.00 0.01 0.00 0.46 
Bhattacharjee et al. 0.00 0.76 3.47 0.00 8.29 
Golub et al. 0.00 0.17 0.48 0.00 2.17 
Hedenfalk et al. 0.00 0.01 0.09 0.00 0.89 
Iizuka et al. 0.00 0.35 2.61 0.00 5.75 
Khan et al. 0.01 11.93 10.77 0.00 12.58 
Nutt et al. 0.02 4.03 11.73 0.00 22.76 
Pomeroy et al. 0.00 0.00 0.02 0.00 0.53 
Pomeroy et al. 0.00 0.33 0.14 0.00 1.73 
Ramaswamy et al. 0.01 1.80 8.89 0.00 9.20 
Rosenwald et al. 0.00 0.27 1.27 0.00 3.71 
Staunton et al. 0.01 1.37 4.49 0.00 5.42 
Shipp et al. 0.01 0.92 3.03 0.00 4.53 
Singh et al. 0.00 0.30 0.57 0.00 2.84 
Su et al. 0.09 34.93 76.23 0.01 198.52 
Veer et al. 0.25 4.77 104.70 0.02 195.02 
Welsch et al. 0.00 10.94 0.06 0.00 1.57 
Yeoh et al. 0.73 83.73 681.93 0.07 814.49 
Petricoin et al. 0.00 0.26 2.04 0.00 14.64 
Pusztai et al. 0.03 4.28 14.70 0.01 32.30 
Ranganathan et al. 0.00 1.13 2.50 0.00 3.66 
Average 0.05 7.17 39.12 0.01 56.64 
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APPENDIX C 

COMMAND LINE PROCEDURES FOR BRL 

The template command line is: 

Java –Xmx[Memory] –jar nbrl.jar –lp [learning parameters] –ppp [PreProcessing methods] –dp 
[data input parameters] 
 
Sample command line: 
For analysis of RL with EBD Discretization with no validation splits: 
java –Xmx1300m –jar nbrl.jar –lp –rgm 0 –bss --d 0 --f 10 –d 7 1 –dp Dataset.txt 
Analysis of RL with EBD with 10 fold Validation and 5-fold internal for parameter learning: 
java –Xmx1300m –jar nbrl.jar –lp –rgm 0 –bss --d 0 --f 5 –cfv 10 –d 7 1 –dp Dataset.txt 
 
Analysis using BLS-RL Parallel Greedy Decision Graph with EBD with 10-CFV 
java –Xmx1300m –jar nbrl.jar –lp –rgm 2 5 –bss --f 10 –d 7 1 –dp Dataset.txt 

- Since there is currently no parameter learning for the BLS‐RL you can use the 
internal cross‐fold as regular cross‐fold validation 
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For Learning parameters 

Input Type Input Style Parameter 1 Parameter 2 
Rule 
Generation 
Mechanism 

-rgm p1 p2 Learning Method 
-rgm 0: Rule Learner 
-rgm 1: Bayesian Global Rule 
Learning  
-rgm 2: Bayesian Local Structure 
RL 

-rgm 0: No parameter 2 
-rgm 1: 
  -rgm 1 0: Greedy Search (GS) 
  -rgm 1 1: Beam Search (BS) 
  -rgm 1 2: Parallel Greedy Search 
(PGS) 
-rgm 2: 
  -rgm 2 0: Decision Tree(DT) GS 
  -rgm 2 1: DT BS 
  -rgm 2 2: DT PGS 
  -rgm 2 3: Decision Graph(DG) GS 
  -rgm 2 4: DG BS 
  -rgm 2 5: DG PGS 

Bias Space 
Search 

-bss  
--d X --f X 

--d : Bias Space Depth 
For Rule Learning: 
--d 0: shallow (short – default) 
--d 1: medium 
--d 2: deep (takes a long time may 
run out of memory) 

--f : Number of folds within bss 
Range: 1 – n 
Where n is the number of samples in 
dataset 

    
Cross Fold 
Validation 

-cfv p1 The number of folds for 
validation  
Range: 1 – n where n is the 
number of samples 

 

Random 
Resample 
Validation 

-rrv p1 p2 The number of random resample 
validation sets to create 
Range: 1-1000 

The percent size of the random 
resample validation. 
Range: 1% - 70% 
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For Preprocessing parameters 

Input Type Input Style Parameter 1 Parameter 2 
Chi Square Trim -chi p1  Chi square level 

Range: 0 - ∞ 
None 

Scale Data Univariate -s p1,p1’, p1*, … Scale Methods: 
0: 0-1 Scaling 
1: Subtract Local Min 
2: Subtract Global Min 
3: Log 2 Transform 
4: Square Root 
5: exponent 2 
6: Square 
7: Normalize (µ=0,σ=1) 

None 

Remove Single Interval 
Discs via EBD 
discretization 

-r None None 

Discretize -d p1 p2 Same as those in 
Learning parameters 

Same as those in 
Learning parameters 

Discretize and remove 
single intervals 

-dr p1 p2 Same as those in 
Learning parameters 

Same as those in 
Learning parameters 

Combine Tech Replicates 
- Samples must have same 
name with a (#) next to it 

-ctr None None 

Create Independent Test -itst p1 Percent size of test set None 
Create Random Resample 
Validation 

-rrv p1 p2 Same as those in 
Learning parameters 

Same as those in 
Learning parameters 
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For Data parameters 

Input Type Input Style Parameter 1 
Data output type -o p1 -o arff: Variable Relation File Format 

-o csv: Comma Separated Values 
 
NO –o is a default of tab delimited 

Random Seed -rand p1 The default is 1, any specified changes the fold splits 
Standardizes fold generation so you don’t need to keep 
GBs of folds 

Input training file is 
format of CSV 

-itrncsv None 

Input test file is 
format of CSV 

-itstcsv None 

File is transposed: 
Variables as rows, 
Samples as columns 

-t None 

Testing file is a 
directory of ASCII 
files where one 
column is variable the 
second column is 
values 

-dtst p1 The Directory containing the training file 
- Within the directory files grouped by class folder 
- E.g., Within Dataset, there is a DISEASE folder and a 
CNTRL folder 

Testing File -tst p1 The Test File 
Output Directory -odir p1 The output directory to print all the results 
Training File is a 
directory of ASCII 
files where one 
column is variable the 
second column is 
values 

-dtr p1 The Directory containing the training file 
- Within the directory files grouped by class folder 
- E.g., Within Dataset, there is a DISEASE folder and a 
CNTRL folder 

If no –dtr parameter 
last value is the 
training dataset 

p1 The training file 

PARAMETERS that allow no learning and no other parameters including the last one 
Convert file from 
CSV to Tab or TAB 
to CSV 

-c p1 The file to convert 

Transpose the file -tpf p1 The file to transpose 
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