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DESIGN OF INDOOR POSITIONING SYSTEMS BASED ON LOCATION

FINGERPRINTING TECHNIQUE

Kamol Kaemarungsi, PhD

University of Pittsburgh, 2005

Positioning systems enable location-awareness for mobile computers in ubiquitous and per-

vasive wireless computing. By utilizing location information, location-aware computers can

render location-based services possible for mobile users. Indoor positioning systems based

on location fingerprints of wireless local area networks have been suggested as a viable so-

lution where the global positioning system does not work well. Instead of depending on

accurate estimations of angle or distance in order to derive the location with geometry, the

fingerprinting technique associates location-dependent characteristics such as received signal

strength to a location and uses these characteristics to infer the location. The advantage

of this technique is that it is simple to deploy with no specialized hardware required at the

mobile station except the wireless network interface card. Any existing wireless local area

network infrastructure can be reused for this kind of positioning system.

While empirical results and performance studies of such positioning systems are pre-

sented in the literature, analytical models that can be used as a framework for efficiently

designing the positioning systems are not available. This dissertation develops an analytical

model as a design tool and recommends a design guideline for such positioning systems in

order to expedite the deployment process. A system designer can use this framework to

strike a balance between the accuracy, the precision, the location granularity, the number of

access points, and the location spacing. A systematic study is used to analyze the location

fingerprint and discover its unique properties. The location fingerprint based on the received

signal strength is investigated. Both deterministic and probabilistic approaches of location

iv



fingerprint representations are considered. The main objectives of this work are to predict

the performance of such systems using a suitable model and perform sensitivity analyses

that are useful for selecting proper system parameters such as number of access points and

minimum spacing between any two different locations.

Keywords: pattern classification, performance, position location system, system design,

wireless local area network.
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I. INTRODUCTION

A. INTRODUCTION TO THE STUDY

Location awareness is one of the key capabilities in context-aware1 computing. Context-aware

computing is one of the building blocks towards the realization of a ubiquitous2 and perva-

sive3 wireless computing environment or smart space where several computers are embedded

within an indoor environment [2]. Location information can provide additional context for

location-aware mobile stations. The meaning and the relevance of data can be interpreted

differently as the mobile station’s location changes with time [4]. Therefore, indoor location

determination for mobile stations imposes a significant challenge for the success of ubiquitous

and pervasive wireless computing.

Location discovery or location determination refers to a process used to obtain location

information of a mobile station (MS) with respect to a set of reference positions within a pre-

defined space. In the literature, this process is usually termed differently as radiolocation [4],

position location [5], geolocation [6], location sensing [7], or localization [8]. This dissertation

will primarily use position location but all of these terms are used interchangeably through-

out the document. A system deployed to determine or estimate the location of an entity

is called a position location system or positioning system. The term positioning system will

be used to represent the system throughout this document. A wireless indoor positioning

1“Context refers to the physical and social situation in which computational devices are embedded. One
goal of context-aware computing is to acquire and utilize information about the context of a device to provide
services that are appropriate to the particular people, place, time, events, etc.” [1]

2“Ubiquitous computing enhances computer use by making many computers available throughout the
physical environment, while making them effectively invisible to the user.” [2]

3“Pervasive Computing is a term for the strongly emerging trend toward: 1) Numerous, casually acces-
sible, often invisible computing devices, 2) Frequently mobile or imbedded in the environment, and 3)Con-
nected to an increasingly ubiquitous network structure.” [3]
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system refers to a wireless network infrastructure that provides indoor location information

to any requesting end user. A set of coordinates or reference points within the predefined

space is typically used to indicate the physical location of the entity. For instance, the global

positioning system (GPS) uses the latitude, longitude, and altitude as the coordinates of an

entity on the Earth’s surface. On the other hand, an indoor positioning system may combine

a floor number, a room number, and other reference objects to represent an entity’s position.

Note that the term position and location are used interchangeably even though the first term

has a smaller scope than the second term.

The applications of indoor location information are not limited to tracking the location

of users and objects in both emergency and normal situations. Concierge services enable

users to become aware of nearest supporting facilities. For example, in an office automation

system a document can be automatically printed to the closest printer near a mobile user.

If a person wearing a location device is not present at his desk, an incoming phone call can

be forwarded to the nearest telephone set [2]. In the field of robotics, a robot can navigate

by itself using the assistance of an indoor positioning system [8]. Smart home applications

such as multimedia appliances that forward multimedia stream to the nearest video screen

can be achieved with a home positioning system [9]. These examples are just some emerging

location related applications.

First, this chapter presents the background of indoor positioning systems, identifies the

challenges of such systems, and briefly describes indoor positioning systems based on lo-

cation fingerprints. Next, the assumptions of study, the overview of approaches, and the

contributions are presented. Finally, the organization of this dissertation is outlined.

B. BACKGROUND OF INDOOR POSITIONING SYSTEMS

The success of outdoor positioning and applications based on the global positioning system

(GPS) provides an incentive to the research and development of indoor positioning systems.

Unfortunately, the GPS system cannot be used effectively inside buildings and in dense

urban areas due to its weak signal reception when there are no lines-of-sight from a MS to
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at least three GPS satellites [10]. As a result, indoor positioning systems require alternative

means to detect the MS’s location without relying on the direct radio frequency (RF) signal

from GPS satellites. Infrared, RF, and ultra sound signals are major technologies used

for indoor positioning systems. Different types of sensors4 are required to detect these

electromagnetic signals which have characteristics depending on each location. For instance,

a photo-diode detector is commonly used as a sensor to detect infrared signals. A sensing

process converts these signals into a measurable metric such as distance or angle for later

location determination [6]. Then, the measurable metrics are processed by a positioning

algorithm to estimate the MS’s position [6]. Unlike outdoor areas, the indoor environment

imposes different challenges on location discovery due to the dense multipath5 effect and

building material dependent propagation effect. Thus, an in-depth understanding of indoor

radio propagation for positioning is crucial for efficient design and deployment.

Concurrently, there has been an increasing deployment of wireless local area networks

(WLANs) by many individuals and organizations inside their homes, offices, buildings, and

campuses. The popularity of WLANs opens a new opportunity for location-based services.

The WLAN infrastructure can be applied to provide indoor location service without deploy-

ing additional equipment [13]. A wireless network interface card which has the ability to

measure RF signals can be considered as a kind of sensor device. Location-aware applica-

tions for indoor systems are potentially new emerging value-added services for WLANs and

can possibly become a prevalent and successful technology of the future.

Indoor positioning is an emerging technology that lacks theoretical and analytical back-

ground. Pahlavan et al [6] recognize the need for fundamental study of the characterization

of indoor radio propagation and its impact on the accuracy of such systems. A framework

for system design and performance evaluation is required for the success and the growth of

this technology. Krishnamurthy [4] identifies four areas of challenges in position location in

mobile environment which are performance, cost and complexity, security, and application

4“Sensor is a device that responds to physical stimulus (as heat, light, sound, pressure, magnetism, or a
particular motion) and transmits resulting impulse (as for measurement or operating a control)” [11]

5Multipath is a radio frequency’s phenomenon that is the result of radio signals traveling through multiple
reflective paths from a transmitter to a receiver [12]. The received signal’s amplitude, phase, and angle of
arrival can fluctuate due to the multipath effect. These signal fluctuations are termed as multipath fading
in wireless mobile communications.
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requirements. These issues are summarized as follows.

• Performance: The most important performance metric is the accuracy of the location

information. This is usually reported as an error distance between the estimated location

and the actual mobile location. The report of accuracy should include the confidence

interval or percentage of successful location detection which is called the location preci-

sion. Other essential performance metrics are delay, capacity, coverage, and scalability

of the positioning system. The delay metric refers to the time taken between sensing

of the location to reporting the information. The capacity metric measures the number

of location estimations that a system can process per unit time. The coverage metric

reports the boundary of a space that location information can be estimated. Scalability

is a metric that suggests how well the system performs when it operates with a larger

number of location requests and a larger coverage. All of these performance metrics

depend on the choice of sensing technologies, characteristics of the radio channel and

environment, the bandwidth of sensing signal, system’s infrastructure capabilities, posi-

tioning algorithm, and complexity of signal processing techniques employed to estimate

the location information.

• Cost and Complexity: The cost incurred by a positioning system can come from the

cost of extra infrastructure, additional bandwidth, fault tolerance and reliability, and

nature of deployed technology. The cost may include installation and survey time during

the deployment period. If a positioning system can reuse an existing communication

infrastructure, some part of infrastructure, equipment, and bandwidth can be saved. For

instance, in an in-band positioning system, the existing communication signals can also

be used for location sensing. After the system becomes operational, the extra power

consumption at each mobile can be considered as a cost for the positioning system [14].

The complexity of the signal processing and algorithms used to estimate the location is

another issue that needs to be balanced with the performance of positioning systems.

Trade-offs between the system complexity and the accuracy affects the overall cost of the

system.

• Application Requirements: The major application requirements for the location in-

formation are the granularity, the performance, and the availability. These requirements
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are different from one application to another. First, the granularity can be subdivided

into temporal granularity and spatial granularity. Temporal granularity determines the

rate at which the location information is requested while spatial granularity determines

the level of detail of location information. Second, the performance requirements can in-

clude any combination of performance metrics discussed above. For example, a concierge

service may not require high accuracy but needs a short delay response. Finally, based

on the type of applications, the location information may be required at different entities

within a wireless network either at the MS itself or at a node within the backhaul net-

work. For example, user tracking may require position information at a centralized server

within the fixed network. Based on the entity that estimates the location information,

there are two approaches for location systems: self-positioning and remote-positioning [4].

The difference between these two approaches will be discussed in Chapter II. Moreover,

the design of positioning systems must take into account issues such as the processing

limitations and the constrained battery life of the MS. Besides the three major require-

ments above, privacy concerns may prevent the availability of the location information

at the centralized node inside the fixed network.

• Security: Location information should be made available only to those with authorized

access. This issue represents the privacy concern of mobile users who do not want to

reveal their location or be tracked. It is closely related to how the system determines the

location information and the type of application. A system similar to the GPS where

each GPS device derives its own position from the GPS satellites can completely secure

the user location information. On the other hand, a location tracking such as the E-911

system [15] with the main purpose to capture the user location can be abused by unau-

thorized groups if there is no security protection in place. Therefore, the location system

should have a security protocol embedded within the system to protect the location in-

formation. Unfortunately, the security of the system is limited by the location sensing

technique. For instance, a positioning system that reuses the communication signals for

the purpose of location detection cannot completely secure the MS’s privacy because of

its active nature.
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C. INDOOR POSITIONING SYSTEMS BASED ON LOCATION

FINGERPRINTING

The demonstration of a positioning system using existing WLAN infrastructure and location

fingerprinting technique such as the RADAR system [13] shows a promising future for indoor

positioning systems. Utilizing the radio frequency (RF) that is readily available by the

widely adopted WLANs, radio frequency based positioning systems can complement the

data networking service with user positioning and tracking capabilities [13]. The location

fingerprinting refers to a technique that exploits the relationship between any measurable

physical stimulus and a specific location. In the RADAR case, the RF received signal strength

is the stimulus. This type of positioning system does not require specialized hardware other

than the common wireless network interfaces with received signal strength measurement

capability; thus, it is relatively simple to deploy compared to other techniques. Unlike

outdoor counterpart systems which can use angle of arrival (AOA) and time difference of

arrival (TDOA) techniques effectively, indoor positioning systems encounter the problem of

non-line-of-sight and the dense multipath effect that render these two techniques ineffective

or complex for practical implementation [13]. It is also difficult for a MS to always see

three or more access points or base stations in indoor environment, which is essential for

triangulation by AOA and TDOA. Location fingerprinting can also be implemented as a

software-based positioning system which can reduce complexity and cost. Any existing

WLAN infrastructure can be reused for this positioning system. Such positioning systems

are viewed as the most effective and feasible solution for the indoor environment [13, 16, 17],

and have thus become the main focus of this dissertation. Generally, the deployment of

fingerprinting based positioning systems can be divided into two phases.

First, in the off-line or calibration phase, the location fingerprints are collected by per-

forming a site-survey of the received signal strength (RSS) from multiple access points (APs).

The entire area is covered by a rectangular grid of points. The distance between two closest

physical positions is called grid spacing and usually reported in meters or feet. However,

some points may be omitted due to inaccessibility. The RSS is measured with enough sta-

tistics to create a database or a table of RSS patterns on the predetermined points of the
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grid. The database of RSS patterns is called a radio map in [18]. The vector of RSS values

at a point on the grid is called the location fingerprint of that point.

Second, in the on-line phase, a MS will report a sample measured vector of RSSs from

different APs to a central server (or a group of APs will collect the RSS measurements from

a MS and send it to the server). The server uses a positioning algorithm to estimate the

location of the MS and reports the estimate back to the MS (or the application requesting the

position information). The most common algorithm used to estimate the location computes

the Euclidean distance between the sample measured RSS vector and each fingerprint in

the database. The coordinates associated with the fingerprint that provides the smallest

Euclidean distance is returned as the estimate of the position. Other advanced algorithms

such as neural networks [19] and Bayesian modeling [20] have been introduced for indoor

positioning systems to determine the relationship between samples of RSS and the location

fingerprint in the radio map. A summary of recent development of indoor positioning systems

is discussed in the next chapter.

It is clear from the above discussion that the designer should not start out to do the

site survey without proper system design objectives and guideline. Only a few guidelines

are provided in [21] for the practical deployment of location fingerprinting techniques such

as collecting fingerprints every 3 to 5 meters and installing at least 3 access points. The

other performance improvement suggestion in [21] is that if the performance is not sufficient,

collecting more fingerprints in the location in between previous location fingerprints may

help.

It is a problem of choice as to how many access points are required for the system and

what the minimum distance between physical positions on the grid should be in order to

provide a good position resolution and best system performance. The system parameters

and factors that improve the accuracy and the precision performance are still not clear. This

study shows in a later chapter that increasing the number of positions in the database by

reducing the grid spacing can improve the spatial granularity and the accuracy performance,

but may degrade the precision performance. For large indoor environments with multiple

floors, we need a cost/time effective approach to deploy the positioning system. So far there

is no literature that focuses on investigating an analytical model for this kind of system.
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D. APPROACHES AND CONTRIBUTIONS

This dissertation is a systematic study of location fingerprints for wireless indoor positioning

systems based on the location fingerprinting technique. The overview of this dissertation

is shown by the relationship of input/output information (denoted by dashed ellipses) and

three main contributions in Figure 1. Beginning with an investigation of the properties

of the received signal strength, a model of the location fingerprint is derived. Next, an

analytical model of the positioning system is proposed consisting of three main components:

the model of location fingerprint, the indoor path loss propagation model, and the positioning

algorithm. This resulting model is considered as a system design framework for the indoor

positioning system. It is a tool that can quantify the relationship between system parameters

and position location performance. Given a performance goal, the proposed model can

be used to determine necessary system parameters. Finally, system design guidelines are

suggested based on the performance study of the proposed indoor positioning model.Properties ofReceived Signal StrengthandLocation Fingerprints
EstimatedIndoor PropagationParameters

Performance Goal:Location AccuracyandLocation Precision
System’s Parameters:Number of Access PointsandGrid Spacing

1. Model ofLocation Fingerprints 2. Model ofIndoor PositioningSystems based onLocation Fingerprinting Model 3. Design of IndoorPositioning Systemswith Proposed Modeland Guidelines
Selection ofPositioning Algorithm
Selection ofIndoor Path LossPropagation Model

Figure 1: Input & Output Relationship of the Research

There are five main assumptions that limit the scope of this work. First, this study is

limited to the investigation of stationary mobile (or quasi-static) devices. No mobility track-

ing is considered. Second, the placement of WLAN’s infrastructure is not considered. The
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indoor positioning is assumed to be overlaid on top of existing infrastructure. Therefore, the

performance of the positioning system depends on the placement of WLAN infrastructure.

Third, the optimum placement of WLAN’s access points to support indoor positioning is

not included in the scope of current study. Fourth, this study does not consider the search

of an optimal positioning algorithm, but assumes generic algorithms as baseline (such as

the Euclidean distance technique). Finally, hybrid approaches that combine multiple sensor

technologies is beyond the scope of this thesis.

Starting with an analysis of the IEEE 802.11b WLAN’s received signal strength from

measurement experiments, this study performs an extensive data analysis of the location fin-

gerprint in order to understand its underlying features. Properties of the location fingerprints

are investigated in detail. In particular, the distribution of the RSS is considered (whether it

can be approximated by a Gaussian or lognormal distribution). Instead of proposing a new

algorithm or system to supersede existing algorithms or systems, this research provides theo-

retical understanding and concrete recommendations on how to design the indoor positioning

system.

To ensure the success of indoor positioning systems based on location fingerprints, a

theoretical model that can be used as a tool to sufficiently analyze the system is required.

A theoretical framework for analyzing wireless indoor positioning systems based on location

fingerprinting is thus proposed here. A mathematical model is developed to support the

framework by applying the findings of location fingerprints’ properties.

Currently, there are no clear guidelines on how to choose the minimum distance between

physical positions or minimum grid spacing. Moreover, it is not clear how many access points

need to be “heard” at a given location for a given accuracy. A set of system parameters

is identified in this dissertation to aid the designer’s decision before the actual deployment

of the positioning system. A set of guidelines based on an analytical model are developed

so that one could convert a set of performance requirements into a set of system design

parameters. The main goal is to study the accuracy and the precision performance metrics

and suggest a performance evaluation methodology. The result of system analysis can be

applied to streamline the surveying phase such as determining the optimal grid spacing in

order to efficiently deploy the positioning system in indoor areas. The following is the list of
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contributions:

• Study and characterization of the unique properties of the received signal strength pattern

in location fingerprints through a extensive measurement campaign.

• Proposed a mathematical model for performance analysis of indoor positioning systems

based on location fingerprints using WLANs.

• Identified system parameters used for designing indoor positioning system such as the

grid spacing and the number of access points. Quantified the impact of these system

parameters on the performance of indoor positioning system.

• Recommended design guidelines to facilitate the deployment of indoor positioning system

based on location fingerprinting technique.

• Developed a prototype of software-based indoor positioning system to validate the pro-

posed model.

E. ORGANIZATION

Chapter II reviews the indoor positioning system and provides the justification of the direc-

tion of this research. Chapter III reports on our detailed investigation of the properties of

indoor positioning systems based on the WLAN’s received signal strength. The results in

Chapter III are applied to Chapter IV to model the location fingerprint and the positioning

system. In Chapter V, a set of design guidelines is recommended and the results of indoor

positioning prototype are compared with the results from th proposed model. Finally, the

conclusion and discussion of the future work is presented in Chapter VI.
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II. LITERATURE REVIEW

This chapter reviews the literature on wireless indoor positioning systems, as a means of pro-

viding an intellectual background for the present research. First in Section II.A, the common

components of indoor positioning systems are described. Then, Section II.B discusses dif-

ferent means to classify indoor positioning systems. Then in Section II.C, related indoor

positioning systems that employ different technologies and techniques are briefly discussed

besides radio frequency based WLANs. Finally, Section II.D reviews all relevant literature

of indoor positioning systems based on location fingerprinting.

A. COMMON COMPONENTS OF INDOOR POSITIONING SYSTEMS

A basic functional block diagram of wireless positioning system is suggested by Pahlavan

et al [6]. It consists of a number of location sensing devices, a positioning algorithm, and

a display system. Figure 2 from [6] illustrates these components and their relationships.

First, the location sensing devices detect the signals transmitted by or received at known

reference points using sensing technologies such as microwave radio frequency (RF), infrared,

or ultrasound. The sensing technique – which can be based on time, direction (angle),

frequency, or signal strength level – converts the sensed signal into location metrics that

are time of arrival (TOA), angle of arrival (AOA), carrier signal phase of arrival (POA), or

received-signal-strength (RSS) [6]. Given a set of known reference points, the relative position

of the mobile station can be derived from the distance or the direction of these location

metrics. Alternatively, the signal characteristics such as RSS at a particular location can form

a pattern unique to that location. Then, the positioning algorithm processes the location
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metrics and estimates the location information using approaches such as signal processing [5],

distance based approach [13], neural networks [22], or probabilistic approach [23]. Finally,

the display system converts the location information into a suitable format for the end user.

Location

Sensing

Location

Sensing

Received

Signal

Positioning

or

Location

estimation

Algorithm

Location metrics

TOA, AOA, RSS, etc.

Display

system

Location

coordinate (x, y, z)

Figure 2: A functional block diagram of positioning system

Alternatively, a location system can be viewed from a software engineering perspective

using a location stack (analogous to the OSI protocol stack) proposed by Hightower et

al [24]. The location stack framework is a layered software engineering model that divides

the positioning problem into smaller research problems. It aims to facilitate the development

of future ubiquitous computing systems using the location information. The location stack

extracted from [24] in Table 1 is designed based on properties of positioning systems which

are the fundamental measurement types, the measurement combination approaches, the

object relationship queries, the preservation of uncertainty, and the application of user’s

activities. However, this abstract model is in the early stage and does not have any interface

specification between layers yet. Table 1 summarizes the description of each layer. Detailed

descriptions can be found in [24]. Based on this protocol stack, this dissertation focuses on

the second layer.
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Table 1: Summary of location stack

Layer Description
6. Activities A system, such as a machine learning system, for categorizing

all available context information including location into activities.
Activities are semantic states defined by a given ubiquitous
computing application.

5. Context fusion A system for merging location data with other non-location
contextual information such as personal data, color, temperature,
light level, and so forth.

4. Arrangements An engine for probabilistically reasoning about the relationships
(e.g. proximity, containment, geometric formations) between two or
more objects.

3. Fusion A general method of continually merging streams of measurements into
a time-stamped probabilistic representation of the positions and
orientations of objects. Through measurement fusion, differing
capabilities, redundancies, and contradictions are exploited to
reduce uncertainty.

2. Measurements Algorithms to transcribe raw sensor data into the canonical
measurement types along with an uncertainty representation based
on a model of the sensor that created it.

1. Sensor Sensor hardware and software drivers for detecting a variety of
physical and logical phenomena.

B. TAXONOMY OF INDOOR POSITIONING SYSTEMS

Indoor positioning systems can be categorized based on their sensing technologies, measure-

ment techniques, or system properties. The sensing technologies refer to the types of signals

used by sensors, while the measurement techniques refer to the methods and metrics used

in location sensing. Alternatively, Hightower and Borreiello [7] suggest a taxonomy of posi-

tioning systems based on system properties that are independent of sensing techniques and

measurement technologies. Their taxonomy suggests a guideline for evaluating positioning

systems; however, some properties are not applicable to all positioning systems.

1. Sensing Technologies

Based on the sensing technologies deployed, the positioning systems inherit certain charac-

teristics and limitations of that type of sensor’s signal. The propagation delay, diffraction,

reflection, and scattering are basic signal characteristics which affect all signal types. The
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effective range, available bandwidth, regulatory constraints, interference, power constraints,

safety, and cost are technology limitations [14]. The wireless signals commonly used for

indoor positioning systems are infrared, radio frequency, and ultrasound. Note that other

technologies such as laser ranging, scene analysis, and inertial based systems are also possible

for indoor positioning system, but are beyond the scope of this study. Brief descriptions of

the three major sensing technologies are as follows [14]:

• Infrared: The infrared signal has the same properties as visible light. It cannot pass

through walls or obstructions; therefore, it has a rather limited range in indoor environ-

ments. However, the propagation speed is high, approximately 3 × 108 m/s. Thus, it

requires a more sophisticated circuitry than ultrasound signals. Indoor lighting interferes

with this type of signal and causes problems in accurate sensing. It generally has a range

of around 5 m. The infrared devices are usually small in size compared to ultrasound

devices [25].

• Radio frequency: The radio frequency (RF) signal can penetrate most indoor building

material; therefore, it has an excellent range in indoor environments. The propagation

speed is also high, approximately 3 × 108 m/s. There are unlicensed frequencies avail-

able freely for use. This type of signal has the longest range compared to infrared and

ultrasound.

• Ultrasound: Although ultrasound operates at low frequency bands (typical 40 kHz) com-

pared to the other two signaling technologies, it possesses a good precision for location

sensing at a slow propagation speed of sound (343 m/s). The advantages of ultrasound

devices are their simplicity and that they are inexpensive. However, ultrasound does

not penetrate walls but reflects off most of the indoor obstructions. It has a short range

around 3 m to 10 m but has a 1 cm resolution of distance measurement. The operating

temperature influences the performance of ultrasound.

2. Measurement Techniques

Besides the sensing technologies, wireless positioning systems can be categorized by mea-

surement techniques used to derive the position of mobile stations. The major categories are
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based on the measurement of distance, angle, location pattern or fingerprint, and any combi-

nation of the previous three categories. Figure 3 shows a taxonomy based on the technology

and the technique classifications.

Figure 3: A taxonomy of positioning systems

The distance measurement technique is usually called lateration, while the angle mea-

surement technique is usually called angulation. Both lateration and angulation are subcat-

egories of triangulation [7] that utilizes triangle geometry in determining a location. Besides

these major categories, proximity, scene analysis, and other non-geometric features such as

light level or temperature can be used as metrics in location measurement [14]. For instance,

“proximity” uses a known location close to the object to determine the location, while “scene

analysis” infers the location based on passive observation of features of a scene. The distance

measurement is the most frequently used metric for location estimation. It can be estimated

from the attenuation of signal strength based on path loss and the time of flight (ToF) of

signal based on propagation speed. The three well-known techniques, angle of arrival (AOA),

time difference of arrival (TDOA), and fingerprinting are discussed in this section.

The first two techniques have been studied extensively for outdoor positioning systems [5].

They are suitable for systems with direct line-of-sight, but have problems or require complex

computation in radio channels with noise, interference, and multipath. In indoor environ-
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ments, the mobile station is surrounded by scattering objects which results in multiple angles

of the signal reception. On the other hand, the distance between transmitter and receiver is

usually shorter than the time resolution that can be measured by the system. Therefore, the

AOA and TDOA approaches are impractical for indoor environments. The fingerprinting

technique has gained more attention lately due to its simplicity compared to the first two for

indoor positioning systems. The descriptions of each measurement techniques are as follows.

• Distance Measurement Based on Time Delay: Time of arrival (TOA) and time difference

of arrival (TDOA) techniques rely on the precision of timing between the signal trans-

mitter and the receiver in order to use the propagation delay or time of flight (ToF) to

calculate the distance between transmitter and receiver. Therefore, a precise synchro-

nization is also very important in such systems. By combining at least three distances

from three reference positions, triangulation can be used to estimate the mobile station’s

location. This type of technique will require a high accuracy clock in the communica-

tion system. TDOA is more practical [5]. Example of location-sensing systems that

use time of flight are GPS [7], the Active Bats [26], and the Cricket [27]. Besides these

time delay-based techniques, the distance between transmitter and receiver can also be

determined from signal strength attenuation and direct distance measurement (such as

dead reckoning).

• Angle Measurement: Angle of arrival (AOA) or direction of arrival (DOA) techniques

locate the mobile station by determining the angle of incident signals. Using simple geo-

metric relationships, the location estimate can be calculated by the intersection of two

lines of bearing (LOBs) which are formed by a radial line from transmitter to receiver [5].

In a two-dimensional plane, at least two reference points are required for location esti-

mation. However, this technique requires the uses of directional antennas and antenna

arrays to measure the angle of incidence. Thus, it is difficult to measure the AOA at the

mobile station.

• Fingerprinting or Location Pattern Matching: This technique generally requires only

measurement of received signal strength or other non-geometric features at several loca-

tions to form a database of location fingerprints. To estimate the mobile location, the

system needs to first measure the received signal strength at particular locations and
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then search for the pattern or fingerprint with the closest match in the database. This

technique does not require the mobile station to see at least three base stations or access

points in order to determine the location. The disadvantage of this technique is that it

is very time-consuming to perform an exhaustive data collection for a wide area network

such as in outdoor positioning systems.

3. Location System Properties

A set of properties which are independent of sensing technologies and measurement tech-

niques can be used to classify indoor positioning systems. Table 2 lists system properties

based on the survey of location systems in [7]. These properties viewed as another taxonomy

can be used to characterize or evaluate positioning systems [7]. An additional property is

added based on the type of services that positioning systems can provide [28].

C. RELATED INDOOR POSITIONING SYSTEMS

Excellent comprehensive surveys of positioning systems can be found in [7] and with a special

focus on indoor positioning systems in [14]. Therefore, this section will not delve into greater

details of each of the forerunners of indoor positioning systems. A subset of these systems

is reviewed as examples. The major characteristics of these systems are summarized.

• The Active Badge location system [25] is one of the first generation of indoor positioning

systems. A central server determines user’s locations using sensors to pick up periodically

transmitted or on demand signals from infrared badges attached to the mobile user. The

infrared signal of each user has a unique identifier. The location determination is based

on the proximity of the badge and the cellular-based sensor; therefore, only symbolic

location information at room-sized granularity is available. This system has limited

range and the infrared signal is susceptible to interference from sunlight and fluorescent

lights [7].

• The second location system called Active Bat [26] improves the accuracy over Active
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Table 2: Properties of location systems

Property Description
Physical Position v.s. Symbolic Location - Physical position or abstract reference is

based on analytic labeling or coordination
such as latitude, longitude, and altitude.
- Symbolic location or real world reference
is based on proximity of known objects or
abstract ideas of location

Absolute or Relative Referencing - Absolute referencing systems share single
or unified reference grid.
- Relative referencing systems have their own
frame of reference grid for each locator.

Remote or Local Computation - Remote computing systems estimate location
(Network- or Mobile-based) of mobile station by network of location

systems or backhaul positioning server. This
is also called network-based system.
- Local computing systems estimate their own
location, e.g. self-positioning. This is also
called mobile-based system.

Network- or Mobile-Assisted This indicates the sensing side which is done
separately from the location computation side.

Recognition Capability Some positioning systems inherit recognition
capability that can classify or identify
located objects such as global ID or naming.

Accuracy and Precision - Location accuracy is usually reported in
meters as an error distance in the estimated
location that deviates from the correct
location.
- Location precision is usually reported in
percentage of correct estimation at certain
accuracy.

Cost and Time - Cost of deploying a location system consists
of the installation cost, infrastructure cost,
user terminal or device cost, and time cost.
- Time to deploy the system: installation time,
and time to estimate the location.

Scalability The scope of space, time, frequency, and
complexity of positioning system may limit the
scalability.

Security and Privacy - Security prevents unauthorized use of location
information.
- Privacy ensures anonymity of the user.

Service Categories Mobile location-based applications can be
classified as either business-to-consumer (B2C)
or business-to-business (B2B) [28].
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Badge by utilizing both radio and ultrasound signals. The distance measured (used

in lateration computation at a centralized controller) is calculated from the time-of-

flight of the ultrasound signal. The location system consists of a set of ceiling-mounted

receivers that detect the ultrasound signal from the Active Bat tag that responds to

an RF request packet from the centralized controller. The ceiling-mounted receivers,

which are connected to the centralized controller via a wired serial network, calculate

the distance measurement starting from the time they receive a reset signal in wired

network to the time they receive ultrasound pulse from the mobile “Bat”. The accuracy

and the precision are quite impressive at 9 cm for 95% of locations.

• The SpotON ad hoc location system [29] is another positioning system that uses distance-

based measurement, but the distance is derived from signal strength attenuation instead

of time-of-flight. The system designers combine the ideas of ad hoc networking and

object localization together. Each object to be located is attached with an RF tag. Ad

hoc lateration is performed using the estimated inter-tag distance instead of the distance

from known sensors or base stations. Therefore, the system could provide both relative

and absolute referencing. A dynamic cluster of tags enables any participating node to

exploit correlation of multiple measurements and improves the location accuracy as the

tags’ cluster becomes denser [29].

• Cricket location-support system [27] is a location-based system designed with four objec-

tives: privacy, decentralization, low cost, and room-sized granularity. The system is said

to be independent of data network technology. It has no centralized server; therefore, the

mobile device has to calculate its own location using both ultrasound and RF technolo-

gies. The mobile device measures the ultrasound signal in order to calculate the range

with TDOA techniques while the RF signal is used for synchronization and to identify

the period of the ultrasound signal. Each room is equipped with a beacon that transmits

an RF pulse with a unique ID for that particular room. This mobile-based approach

ensures its privacy. However, there are potential errors from RF beacon interference that

cause confusion between two adjacent rooms.

• PinPoint’s 3D-iD local positioning system [30] is an indoor RF-based commercial product.

It determines the location of a tag by continuously broadcasting a signal from an array

19



of antennas at known cells’ positions. Upon receiving a signal, the tag will immediately

retransmit the message by shifting to it another radio frequency and encoding it with its

own ID. The system controller measures multiple distances from the array of antennas

using RF round-trip time and performs multilateration. The signal from a transmitter

cell (called cell controller) is a spread-spectrum signal operating at 2.4 GHz with 40 MHz

bandwidth, while the tag transmits a response signal at 5.78 GHz. The system has a

30 m range and 1 m to 3 m accuracy. This system requires several cell controllers per

building and has expensive hardware.

These pioneer works in this area have some disadvantages such as the limitation of the

infrared or ultrasound sensing signals that cannot penetrate the walls and floors which are

common inside most buildings. The cost of sensor infrastructure installation and badges or

tags for most of these systems becomes significant for a building with a lot of small rooms

or offices. Notice that the angular or direction-based measurement was not used in any of

these systems due to the dense multipath effect inside buildings. However, these position-

ing systems have only demonstrated their success empirically, and they all lack theoretical

explanation of their system and performance.

D. INDOOR POSITIONING SYSTEMS USING WIRELESS LANS AND

LOCATION FINGERPRINTING

This section reviews relevant RF-based indoor positioning systems which can be used to

locate stationary objects and track mobile users. The impressive growth of IEEE 802.11

wireless LANs (WLANs) in recent years suggests an interesting future for the location fin-

gerprinting technique. This type of positioning system can be overlaid on top of any existing

WLAN; therefore, it can save the cost of dedicated infrastructure. Moreover, it utilizes ra-

dio frequency signals which can penetrate most of the indoor materials resulting in a larger

range and reducing the number of required access points for positioning purposes. Because

the RSS can be measured by all WLAN network interface cards, no dedicated tag or badge is

required for some of the current laptops and PDAs with built-in IEEE 802.11 interface. The
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system is quite flexible because system designers can select whether to have a centralized

positioning server or let the mobile determine its own position. However, the fingerprinting

technique requires a training phase (off-line phase) to collect location fingerprints for all

positions in the operating area, before the actual deployment (on-line phase).

After a number of empirical and feasibility studies such as in [13, 31], recent develop-

ment has been focused on improvement of location estimation algorithms and system per-

formance [8, 23, 22, 18]. Popular machine learning techniques such as neural network and

support vector machines (SVMs) have been introduced to improve the performance with

RSS fingerprinting.

The following discussion is divided according to the positioning system components out-

lined in Section II.A. First, the effects of the environment on the RF signals such as the

radio channel and the user’s presence are discussed. Second, the common form of location

fingerprint and its relationship with physical position are explained. Third, a number of lo-

cation estimation algorithms are reviewed. Finally, the performance of existing positioning

systems are compared.

1. Indoor Environment

The indoor environment has unique properties that influence the radio frequency signals

used by the sensors of positioning systems. The prominent phenomena is the multipath

effect which dominates how the received signals behave for all wireless receivers. Although

there are several studies on indoor radio propagation and modeling, this section discusses only

the studies focused on indoor positioning systems. The study in [32] at the Carnegie Mellon

University showed the results of their fixed WLAN station measurement inside an office

building. Different periods of measurement were performed to determine the distribution

of WLAN received signal strength. Their conclusion pointed out that since the mean, the

median, and the mode of the data collected at a single location were very close together, the

distribution was lognormal. Besides the distribution, the relationship between the range and

the standard deviation shows linear dependence and a larger transmitter-receiver distances

corresponds to a larger range of standard deviation. Their study also briefly mentioned the
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effect of time of day where they showed that there are negligible differences between different

times of day on their received signal data. However, most of their results and conclusions

are questionable, based on our exhaustive studies discussed in Chapter III.

Another study in [8] also briefly discusses the distribution of received signal strength.

Although their duration of measurement is rather short compared to the study at Carnegie

Mellon, the results contradict the traditional belief of lognormally distributed of received

signal strength. The authors in [8] pointed out that most measured signal distributions are

multi-modal1 with a dominant mode2 and asymmetric3.

Another important factor that affects the received signal is the user’s body which could

block the signal path during the operation. Water, which has a resonance frequency at

2.4GHz and is a significant part inside the human body, greatly attenuates the WLAN

signal strength [8, 18]. In some location-based applications such as in robotics and other

non-human related service, the effect of user’s presence should be neglected. The RADAR

system in [13] suggested that the user’s orientation affected average received signal strength

for the access point blocked by the user. Therefore, the orientation should be included in

the location information. The human being’s movement inside the building creates random

effects of radio propagation inside the building [31]. The other uncontrollable factors, which

are the temperature, air movement, and interference from other devices operating in the

same frequency, also cause the received signal at any particular location to fluctuate over

time [31]. However, in the literature, there is no good characterization of the properties of

the RSS with the indoor positioning applications in mind.

2. Location Fingerprint

A location fingerprint based on RF characteristics such as RSS is the basis for representing a

unique position or location. It is created under the assumption that each position or location

inside a building has a unique RF signature [6]. Generally, a fingerprint F is labeled with a

location information L. The location fingerprints and their labels (e.g. location information)

1Mode is the most likely value that has the highest probability in a set of observations. There may be
more than one mode in any set of observations and it is called multi-modal [33].

2Example of a distribution with a dominant mode is shown in lower right sub-graph of Figure 14.
3Asymmetric distribution is a distribution that has different shape on both side of its mode.
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are maintained in database and used during the on-line phase to estimate the location. The

label and fingerprint are usually denoted as a tuple of (L,F). The measurement dataset

collected during the off-line phase is called a training set4.

Battiti et al [22] point out that the location information L for indoor location can be

recorded in two forms as either a tuple of coordinates or an indicator variable. The tuple

of real coordinates can vary from one dimension to five dimensions which includes the three

dimension space and two orientation variables expressed in spherical coordinates [22]. For

instance, a location information of a two-dimension system with an orientation could be

expressed as a triplet L = {(x, y, d) | x, y ∈ R2, d ∈ {North,East,South,West}}. In the case

of the indicator variable, the scope of location covers a wider area such as a room. The

indicator variable reports only a rough granularity whether the object is inside or outside

the area. An example is given by [22] as L = {−1, 1}. Indoor location systems that use

coordinates are said to be solving a regression problem, while the systems that use indicator

variables are said to be solving decision or classification problems.

It is commonly acknowledged that the RSS is the simplest and most effective RF signature

for location fingerprints because it is readily available in all WLAN interface cards. The RSS

was found by [13] to be more location-dependent than the signal-to-noise ratio (SNR) because

the noise component is rather random in nature. However, the RSS itself fluctuates over time

for each access point and location. Each RSS element can be considered as a random variable;

therefore, it can be captured by recording its descriptive statistics parameters, approximating

its distribution, or maintaining the whole measurement dataset. These approaches of RSS

representation result in different procedures for location estimation algorithms in the next

subsection. Regardless of the approach, the location fingerprint is usually denoted as an array

or vector of signal strength (random variables) received at any position in the location-based

service area. The size of the vector is determined by the number of access points that can

be heard.

To create a basis fingerprint such as in [13, 31], a number of samples of vectors of

signal strength are collected over a window of time for each position. This basis is called

a prototype [34]. Then, the average RSS of each access point is calculated and recorded as

4according to the learning theory [22]
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an element in the location fingerprint. For an area that can receive signals from N access

points, the location fingerprint can be expressed as a vector of average RSS elements ρi:

F = (ρ1, ρ2, . . . , ρN)T . (II.1)

Extra fingerprint information such as standard deviation for each RSS element, which is

suggested in [31], may be added into the location fingerprint as another vector of standard

deviations:

D = (σ1, σ2, . . . , σN)T . (II.2)

An alternative approach to location fingerprints is investigated by [8, 23] in which the

probability distribution is estimated for the RSS signature at a given location. The location

fingerprint becomes a conditional probability distribution of the form P (F | L) where F de-

notes the observation vector of RSS and L denotes the location information. The conditional

probability P (F | L) is called the likelihood function because it provides the probability or

probability density of the occurrence of the RSS vector given the known location informa-

tion [23]. With this form of location fingerprint, the Bayes’ rule can be used to estimate the

location. Details of Bayesian algorithms for location estimation are discussed in the next

subsection.

The examples of location fingerprinting explained above suggest that there are two ways

to model the relationship or dependency between the location information and the RSS

signature. The first way where the location information is tied to the constant value of

average RSS vector is called deterministic approach. The second way where the probabilistic

dependency is exploited is called the probabilistic approach.

Besides the basis location fingerprint, the samples of location fingerprint measured during

the on-line phase is also important for the system that tracks the mobile object. The time

interval and number of samples should be selected appropriately to represent the location

fingerprint for the mobile application.

A step in statistical analysis method called preprocessing [35] is another important issue

needed to be considered because it can impact the estimation of dependency between location

fingerprint and the location information easier. The preprocessing refers to a step that cleans

the raw data (in this case the training set) before any further operations or analysis. The
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cleaning may consist of encoding, dimensionality reduction (reduce unnecessary elements),

feature extraction/selection, clustering [35], and outlier elimination [31]. Roos et al point

out that the preprocessing enables faster location estimation and reduces the noise from the

training data. The process that creates the basis of location fingerprint discussed above

could be considered as a part of preprocessing [23]

3. Location Estimation Algorithm

Location estimation algorithms or positioning algorithms are procedures that exploit depen-

dency between location information and location fingerprint basis in order to determine a

position or location from samples of RSS signals. The examples of simple location estimation

algorithms are strongest base station selection method and random selection method. The

strongest base station selection assumes that the current user’s position is closer to the base

station that has the strongest signal strength, while the random selection reports the user’s

position at random from a set of known positions [13]. It is obvious that these two algo-

rithms may not provide satisfactory results. More complex algorithms can take advantage of

the dependency between RSS fingerprint and location information and could provide better

accuracy, precision, and granularity of the location information.

From a machine learning perspective, the positioning algorithms are pattern classifiers

because they are procedures that can automatically separate samples of patterns into dif-

ferent classes [23]. Each class is referred to as a class of RSS patterns that comes from the

same location or position. The algorithms estimate the location or position from samples

of RSS vectors by learning from previous examples of location-dependent RSS fingerprints

or signatures. The previous RSS data or training set are used to calibrate estimator models

that can automatically relate location fingerprints and location information.

In the literature, positioning algorithms can be classified into deterministic and proba-

bilistic types based on the approaches that model the relationship between location finger-

prints and location information as discussed in previous subsection. The deterministic type

of algorithms are those that based on the nearest neighbor classifiers and neural network

classifiers. The probabilistic type of algorithms are those that are based on the Bayesian in-

25



ference and statistical learning theory such as support vector machines (SVMs). The major

algorithms for indoor positioning systems are discussed below.

a. Nearest Neighbor Methods The nearest neighbor methods are deterministic algo-

rithms because they require only a set of constant location fingerprints which includes mean

vectors and standard deviation vectors of RSS. In order to determine the location, a form

of discriminant function is commonly used to classify a sample of RSS fingerprint into a

position. These nearest neighbor methods are also called case-based methods [23] because

they classify each position into a case or class.

The mean or average RSS vector is a center of a mass which represents each class of

location fingerprint. The basic algorithm for the nearest neighbor classifier is that it selects

the class or case based on the closeness of a sample fingerprint to the center of the mass of

that particular location fingerprint. Suppose that a set of l location fingerprints is denoted

by {F1,F2, . . . ,Fl} exist and each fingerprint has a one-to-one mapping to a set of positions

{L1,L2, . . . ,Ll}. A sample of an RSS fingerprint measured during an on-line phase is denoted

as S which can be another mean or average RSS vector of a small window of RSS samples.

Assuming that an indoor positioning system only considers the average RSS from N access

points as a location fingerprint, the sample of RSS vector is S = (s1, s2, . . . , sN)T and each

location fingerprint i in the database can be expressed as Fi = (ρi
1, ρ

i
2, . . . , ρ

i
N)T .

The simplest closeness metric is a distance measurement in signal space denoted as the

Dist(·) function [31]. Thus, the simple procedure of nearest neighbor algorithm is expressed

as picking the fingerprint j that has the shortest signal distance:

Dist(S,Fj) ≤ Dist(S,Fk),∀k 6= j. (II.3)

A generalized weighted distance Lp summarized by [16] can be used to calculate different

forms of distance in signal space as:

Lp =
1

N

(
N∑

i=1

1

wi

|si − ρi|p
)1/p

, (II.4)

where N is the number of access points, wi is a weighting factor (wi ≤ 1), and p is the norm

parameter starting from 1. The weighting factor wi is a bias parameter that can demote
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or promote an important RSS component in the fingerprint [16]. Either number of signal

samples or standard deviation of RSS fingerprint can be used as the weighting factor [16].

The Euclidean distance is a well known distance metric used in [13, 16, 31] to classify the

positions. For the Euclidean distance, Equation II.4 has p = 2 and all wi = 1. Different

distance measurements (such as Manhattan distance5) are also possible where p 6= 2 [16].

A modification to the nearest neighbor classifier using an additional information of stan-

dard deviation fingerprint was studied in [31]. This modification allows a special class called

non-classifiable pattern which cannot be associated with any position in the database. This

occurs when a sample fingerprint lies outside a region of two standard deviations on each

side of a mean RSS. Assume that the standard deviation vector for each location fingerprint

i is denoted as Di = (σi
1, σ

i
2, . . . , σ

i
N)T . Additional criteria for fingerprint classification are

expressed mathematically with sample vector S and fingerprint Fi as [31]:

ρi
1 − 2σi

1 ≤ s1 ≤ ρi
1 + 2σi

1,

ρi
2 − 2σi

2 ≤ s2 ≤ ρi
2 + 2σi

2,

...
...

...

ρi
N − 2σi

2 ≤ sN ≤ ρi
N + 2σi

N . (II.5)

Since, there are non-classifiable patterns, the average error distance (the actual distance

between the correct position and incorrect position) is smaller [31].

A better minimum distance classifier, which so far has not been applied to any positioning

algorithm, is the Mahalanobis distance [34]. The Mahalanobis distance has three advantages

over the Euclidean distance: automatically accounting for the scaling of the coordinate

axes, correcting for correlation between different features, and enabling both non-linear and

linear decision boundaries [34]. These advantages are useful when the statistical properties

of the location fingerprint are explicitly considered [34] as shown in the comparison of the

Euclidean distance and Mahalanobis distance in Chapter V. In fact, the Euclidean distance

is a special case of the Mahalanobis distance when all the RSS signal components in the

5Manhattan distance is defined as a distance between two points measured along axes at right angles [36].
In a two-dimensional plane with first point at (x1, y1) and second point at (x2, y2), the distance is |x1−x2|+
|y1 − y2|.
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location fingerprint are uncorrelated and their variances are the same in all directions [34].

However, the disadvantage of the Mahalanobis distance is that the covariance matrix for

the location fingerprint must be determined. Given a template or location fingerprint vector

F , a sample vector S, and a covariance metric of location fingerprint C, the Mahalanobis

distance Lm can be calculated as the square root of

L2
m = (S − F)TC−1(S − F). (II.6)

Thus far, the discussion of the distance metrics is limited to determining the closest

location fingerprint. In practice, the actual location is not limited to the locations within

the radio map and there can be more than one closest location fingerprints. This provides

a reason to modify to the nearest neighbor method by using k nearest neighbors instead of

only the closest one [13, 16] or weighted k nearest neighbors [22, 16] where the wi factors

in Equation II.4 are used. The final estimated position is an averaging of those k nearest

neighbors’ coordinates. The reason for using this scheme is that averaging of coordinates

probably results in a closer estimate to the correct location. Bahl and Padmanabhan [13]

reported that for small k there is small improvement over the single nearest neighbor ap-

proach, while for large k the location estimation error performance is increased. Phongsak et

al [16] reported that for k > 8 the performance became worse. There is still room for further

improvement on the nearest neighbor methods. A multidimensional search algorithm such

as R-Tree, X-Tree, and optimal k-nearest neighbor search are among possible improvements

to the positioning algorithm suggested by [13].

The nearest neighbor methods which use distance measures as discriminant functions can

be classified as a subset of statistical approaches in pattern recognition [37]. The separation

of location fingerprints is done via either linear or non-linear decision boundaries which,

according to [38], are determined by the probability distributions of the patterns belong to

each location fingerprint. However, very little in the research of indoor positioning system

has been done to characterize the probability distributions of the location fingerprints. Typical

performance of the nearest neighbor methods is based on the error in classification or how

well different location fingerprints can be separated. The nearest neighbor methods are fast

to deploy and require almost no training or tuning of positioning algorithms. Although the
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calculation is simple and a matched pattern could be found easily, the complexity increases

as the number of elements in the pattern (number of access point’s signals, N) and the

number of entries (number of locations) in the radio map increase. The scalability of these

methods has not been studied for a large space building.

b. Neural Network Methods Neural network methods for indoor positioning systems

presume that the RSS fingerprints are too complex to be analyzed mathematically and may

required subtle non-linear discriminant functions for classification. Therefore, instead of

finding suitable discriminant functions like the minimum distance metric, this approach,

viewed as a black box information processing unit [31], utilizes a generalized structure called

neuron. The neuron consists of a set of input links which are weighted with synaptic weights,

an adder that sums all weighted inputs, and an activation function that limits the amplitude

of the output of the neuron [31]. The activation function is usually in a form of non-linear

function such as sigmoidal function. The sigmoidal function, f(x) = 1/(1 + e−x), is said to

be suitable for “yes/no” classification problems [22]. A model of a neuron is illustrated in

Figure 4.

Figure 4: An example of neuron with non-linear activation function

Interconnecting multiple neurons in both serial and parallel manners results in a multi-
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layer perceptron6 (MLP) neural network [22] in which signals travel sequentially from the

input layer to output layer and from the output of one neuron to the input of another

neuron. The layers in the middle between input and output layers are usually called hidden

layers. A simple feed-forward and fully connected neural network which consists of one

hidden layer was used to determine locations in [31]. The inputs consist of three features

each representing the RSS from three access points. The hidden layer is composed of 20

neurons and the output layer has 19 nodes corresponding to 19 positions on their map.

Battiti et al [40] also implemented a MLP neural network with one hidden layer that uses

the sigmoidal function and the output layer that uses an identity function (f(x) = x). The

final architecture used in [40] was 3→8→2 which refers to three inputs, eight hidden units

and two outputs of 2-D coordinates for 194 measurement points.

Each MLP neural network can be trained with samples of labeled location fingerprints in

order to iteratively calculate all synaptic weights inside the neurons. The training process is

interactive for each input sample of a location fingerprint in which the synaptic weights are

tuned so that the output is the correct position. A training technique called one-step-secant

(OSS) algorithm was used in [40] to iteratively adjust all synaptic weights with second-

derivative information. On the other hand, the error back-propagation algorithm is another

iterative algorithm that was used in [31] to find the synaptic weights. In a sense, these

training processes automatically create complex boundaries for location fingerprint classes.

As a flexible model, the MLP neural network requires no a priori knowledge of any

environment parameters such as the location of access point and building characteristics

(path loss exponent) [40]. The accuracy and the precision performance of [31, 40] was

reported to be better than nearest neighbor method, but not very significantly. For instance,

the results in [40] reported that the average error distance (accuracy performance) for MLP

neural network was 1.82 m while the average error distance for k-nearest neighbors was 1.81

m. The disadvantage of neural networks lies in their slow training time and may require

a large training set to get accurate location estimation. The problem of over-training or

over-fitting also occurred when the number of training iterations was larger than 3,000 and

6The perceptron is a type of artificial neural network invented by Frank Rosenblatt [39]. It consists of
one or more layers of artificial neurons.
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resulted in poor location estimation performance [40]. Moreover, the error performance of

neural networks cannot be calculated analytically due to their complexity. Only measurement

test results can be done for data that was not in the training set.

Although neural network methods seem to be different from the statistical approach of the

nearest neighbor methods, the neural network methods have their equivalent counterparts in

statistical pattern recognition approach [37]. In other words, the neural networks also create

decision boundaries like nearest neighbor methods. For instance, a perceptron is similar

to a linear discriminant function and the multilayer perceptron methods are equivalent to

either non-linear discriminant analysis or a posteriori probability estimation [37]. Since the

neural networks avoid characterization of the statistics of the location fingerprints, they

rarely provide any insight information on the underlying mechanism of indoor positioning

systems.

c. Probabilistic Methods Instead of representing the location fingerprints with proto-

types or vectors of mean RSS as in the nearest neighbor approach, the probabilistic approach

models the location fingerprint with conditional probability and utilizes the Bayesian infer-

ence concept to estimate location [8, 23, 18]. This approach presumes a priori knowledge of

the probability distribution of the user’s location which is analytically shown to provide bet-

ter location accuracy than a deterministic approach as in the nearest neighbor methods [41].

The a priori location distribution allows the positioning system to maintain personalized

user location profiles as additional information [23] and can enhance the location tracking

application [8]. However, Battiti et al [22] point out that in order to create the conditional

probability this approach needs additional knowledge of the signal propagation model. The

knowledge could be in a form of empirical distributions of RSS at each location based on

measured training sets or in the form of a radio propagation model with estimated radio

parameters [22] without using any training set.

For each location coordinate L, we can estimate a conditional probability density func-

tion or the likelihood function P (F|L) from a training set consisting of samples of location

fingerprints and their labels. Roos et al [23] suggest two methods for estimating the like-

lihood function: the kernel method and the histogram method. Given n samples of RSS
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from an access point at a location which is a one dimensional example, the kernel method

imposes a probability mass such as a Gaussian distribution on each sample of RSS values.

As a kernel function, each Gaussian distribution has a mean value ρ which equals to one of

n RSS samples and a proper standard deviation σ which is an arbitrary adjustable kernel

width. Then, the resulting likelihood function of a sample RSS s given a location L is an

equally weighted sum of all n Gaussian kernel functions:

P (s|L) =
1

n

n∑
i=1

[
1√
2πσ

exp

(
−(s− ρ)2

2σ2

)]
. (II.7)

From Equation II.7, the kernel width σ will have a smoothing effect on the probability

density estimation if its value is large. To extend this kernel method to multiple dimen-

sions or multiple access points, Roos et al make an independence assumption and multiply

all conditional probabilities together as P (F|L) = P (s1|L)P (s2|L) · · ·P (sN |L). They also

pointed out that the limiting case of a Gaussian kernel with kernel width approaching zero

is equivalent to the Euclidean nearest neighbor method [23].

On the other hand, the histogram method estimates the continuous density functions

by using discretized density functions. The histogram is essentially a fixed set of bins that

counts the frequency of occurrence of RSS samples that fall within a range of each bin. The

bin’s range is calculated from an adjustable number of bins and the known values of minimum

and maximum RSS values. Simple equal-width bins of 3, 7 and 27 were reported in [23].

The larger the number of bins, the better the histogram can approximate the probability

density function of RSS.

A slightly more sophisticated way to determine the P (F|L) is presented in [8] where

the authors calculate two different conditional probabilities from two different histograms

and multiply them together. The first conditional probability represents the frequency of

an access point’s observations given a location L. In other words, this probability indicates

how often the system can find the signal from that access point. The second conditional

probability represents the distribution of RSS from that access point given the same location.

Each location is assumed to have a priori probability P (L) which initially could be equally

likely for every location in set L. Then, the location estimation algorithms based on the

probabilistic approach apply the Bayes’ rule in order to find a posteriori distribution of that
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location which is the conditional probability of the location L given the location fingerprint

F as:

P (L|F) =
P (F|L)P (L)

P (F)
=

P (F|L)P (L)∑
k∈L P (F|Lk)P (Lk)

. (II.8)

According to Equation II.8, the probabilistic approach classifies the location fingerprints

according to the maximum estimated posterior probability; that is, it selects the location

fingerprint according the likelihood functions. For instance, in the case of two location

fingerprints, the Bayes decision rule will select position A (LA) over position B (LB) to

provide the smallest probability of error [38] when:

P (LA|F) > P (LB|F) (II.9)

P (F|LA)P (LA) > P (F|LB)P (LB). (II.10)

Since probabilistic methods have additional information on the location distribution,

they can provide better performance on location estimation. The disadvantages of this

model are that it may require a large training set to precisely estimate the conditional

probability distribution. Once again, these probabilistic methods require explicit knowledge

of the probability distributions of the location fingerprints. This emphasizes the need to

characterize of the WLAN’s received signal strength and the location fingerprints in greater

detail. Because the probabilistic methods incorporate some information of radio propagation,

they could provide insight on the underlying mechanism of indoor positioning.

d. Support Vector Machine Methods Recently, the support vector machines (SVMs)

technique was introduced as a non-parametric supervised classifier for approaching the indoor

positioning problem in [22]. The SVMs algorithm has its roots in statistical learning theory

introduced by Vapnik [42] in which it combines techniques of statistics, machine learning,

and neural networks together. To estimate the dependency between the RSS fingerprint

and the location from observations, this approach does not require detailed properties of the

dependency such as the propagation model as in the probabilistic method. The strength

of SVMs algorithm lies in its ability to generalize classification which minimizes the test

error or the classification error for the data after the training period. In other words, the

learning machine could be trained correctly by learning from a small training set and creating
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sufficient structure for data classification without memorizing or over fitting the training

samples [22].

The fundamental concept of SVMs algorithm is based on the Structural Risk Minimiza-

tion (SRM) principle that tries to minimize the bound on an expected risk functional or

generalization error [22]. The risk functional is defined as an expected value of a loss func-

tion. The loss function is a measure of how much the function used to approximate the

pattern mapping differs from the real pattern mapping. The overall risk function is showed

to be bounded by the empirical risk function and Vapnik-Chervonenkis (VC) confidence

interval.

The problem of RSS fingerprint classification could be considered as a non-linear classifier

case. Here we explain the classification operation of SVMs without getting into too much of

the mathematical details. First, the vectors of location fingerprints are mapped into a higher

dimensional space called feature space [22] by using a function called kernel of the SVM to

perform vector transformation. There are a variety of SVMs kernel functions to choose from

such as polynomial functions, radial basis functions (RBF), Sigmoid kernel, and Analysis of

Variance (ANOVA) kernel [22]. Note that Battiti et al select a Radial Basis Function (RBF)

as the kernel of the SVM in [22]. Finally, the SVMs algorithm creates an optimal separating

hyperplane7 or decision surface in that feature space and uses the hyperplane to perform

classification. The separating hyperplane is not unique in general and is optimal when it has

a largest possible distance from the closest training point or a maximal margin. Support

vectors are the training vectors that are necessary to define the hyperplanes [22]; hence, the

support vector machine is the learning algorithm (machines) based on support vectors.

Although it is novel and the most sophisticated technique used successfully in the field

of pattern recognition, the performance of this technique for indoor positioning does not

differ very much from the other techniques. For the regression problem, it has comparable

performance to the weighted k nearest neighbors method. The result of error distance for

weighted k nearest neighbors was 3.93 m at 75% while the result error distance for SVMs

was 3.96 m at 75% in [22]. The SVMs algorithm is more suitable to solve classification

7“A hyperplane is any codimension-1 vector subspace of a vector space. Equivalently, a hyperplane V
in a vector space W is any subspace such that W/V is one-dimensional. Equivalently, a hyperplane is the
linear transformation kernel of any nonzero linear map from the vector space to the underlying field.” [43]
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problems, i.e. to determine if the area is inside or outside a room [22]. The performance

of the positioning systems depends on acceptance error rather than the classification error

or mean square error in previous three methods [37]. To improve the classifier performance,

a proper kernel of the SVMs and its parameters must be selected appropriately since there

are several kernel functions to choose from. From the theoretical modeling perspective of

this study, the SVMs may be too complex to provide useful information on designing a

positioning system.

4. Summary of Existing Indoor Positioning Performance

This subsection briefly summarizes performance of existing indoor positioning system based

on location fingerprints and WLANs. The major performance metrics studied by all systems

are positioning accuracy which is a form of error measurement. As mentioned in Chapter I

and listed in Table 2, the accuracy of the location information is usually reported as an

error distance between the estimated location and the actual mobile location. However, the

report of accuracy should include the confidence interval or percentage of successful location

detection which is called the location precision. Recent research on positioning algorithms

has attracted a number of research groups to enhance these two performance with different

pattern recognition tools as discussed above. The system parameters of exiting systems are

summarized in Table 3 and the best reported performance of these systems are listed in

Table 4.

Table 3: Parameter comparison of indoor positioning systems

System Spacing Positions Samples/Pos. APs Orient. Env.
RADAR [13] Nonuniform 70 80 ( 1

4 sec/samp.) 3 4 Hallway
Saha et al [31] Min. 3.12m 19 1200 3 N/A 1-floor
Roos et al [23] Uniform 2m 155 40 10 N/A 1-floor
Battiti et at [22] N/A 257 N/A 6 N/A 1-floor
Ladd et al [8] 3m 11 1307 packets 5 2 Hallway
Prasithsangaree et al [16] 1.5m, 3m 60 40 2-7 4 1-floor
Youssef et al [18] 1.5m 110 300 4 N/A Hallway
Xiang et al [17] N/A 100 300 (2sec/samp.) 5 4 1-floor

Although the accuracy and the precision performance vary from one system to another

in Table 4, the differences among them are not very significant. It is easier to compare the
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Table 4: Performance comparison of indoor positioning systems

System Algorithm Type Accuracy and Precision
RADAR [13] Nearest Neighbor within 7 feet, 38%
Saha et al [31] Nearest Neighbor & Neural Network no specified accuracy, 90%
Roos et al [23] Bayesian best within 8.28 feet, 90%
Battiti et at [22] SVMs, Bayesian, Neural Network all within 16-17 feet, 90%

& Weighted k Nearest Neighbor
Ladd et al [8] Bayesian within 5 feet, 77%
Prasithsangaree et al [16] Weighted k-Nearest Neighbor 25 feet at 75% & 40 feet at 95%
Youssef et al [18] Bayesian within 7 feet, more than 90%
Xiang et al [17] Bayesian with RSS distribution model within 6 feet, 90% (static device)

performance if one of these metrics is fixed, i.e. at the same precision, say 90% , the system

that reports smallest accuracy is the best. Note that these two performance metrics are

closely dependent. When we want to increase the accuracy (shorten deviated distance), the

precision performance has to be decreased (decrease the reliability percentage) [44]. On the

other hand, decreasing the accuracy (lengthen deviated distance) can increase the precision

performance (increase the reliability percentage). Interestingly, the results in [22] reported

a similar average accuracy performance within 3 m with all four positioning algorithms. It

is important to point out that each system has different parameter settings; therefore, com-

parison results summarized here may not be fair. Intuitively, we expect that a system that

has higher number of access points to perform better due to the higher dimension of the

location fingerprint vectors which result in better pattern separability. Moreover, a system

that has the positions only in the hallway may perform better because there are lesser num-

bers of positions in the system to be confused with. However, these two hypotheses were not

confirmed in the comparison above. These observations show a lack of unified performance

comparison methodology and a need for theoretical explanation of the relationship between

the indoor positioning performance and system parameters.

Besides these two performance metrics, other performance metrics which are delay, ca-

pacity, coverage, and scalability discussed in Section I.B are not considered by most of the

current studies. However, the computational complexity of the off-line or learning phase and

on-line or estimation phase of three positioning approaches (weighted k nearest neighbors,
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Bayesian probabilistic approach, and multilayer preceptron neural network) are analyzed

by [22]. Concurrently, WLAN location determination via clustering and probability distri-

bution [18] is a study that tries to improve the positioning accuracy and reduces the com-

putational requirement in location estimation of positioning algorithms. Youssef et al [18]

proposed the Joint Clustering (JC) technique that uses clustering of locations sharing a com-

mon set of access points to reduce the computational complexity. However, their scheme is

still based on the probabilistic approach with Bayesian inference discussed above.

Unrelated to the previous discussion on pattern recognition, sensor fusion techniques

allow the positioning system to exploit redundancies and contradictions to reduce overall

location uncertainty [24]. This technique helps improve accuracy and precision of positioning

systems. An example is presented in [8] where the system combines multiple independent

observations to gain a better estimate from the positioning algorithm. A Hidden Markov

Model (HMM), which is used in [8] to track the user, increases the accuracy and the precision

performance. Utilizing only one of the location sensing techniques usually yields limited

system performance and high uncertainty of location information. The hybrid approach,

which consists of two or more sensing techniques and technologies, can also improve the

accuracy and the precision performance of indoor positioning systems. An example of a

hybrid system is discussed in [5] when AOA and TDOA are combined.

E. CONCLUSIONS

Although there are research studies that report on the time series of WLAN received signal

strength [13, 32, 31] and the unique dependency of signal strength and location for indoor

positioning system, there are surprisingly no studies of the pattern of location fingerprint.

Few properties are known of the location fingerprint such as its distribution even though

they are necessary for pattern classification. Two research groups tried to point out the

distribution of RSS, but their results were contradictory. One group suggested a lognormally

distributed RSS while another showed asymmetric distributions with multi-modal properties.

However, their environments were different. This study investigates the pattern of received
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signal strength or the location fingerprint in greater detail as a part of the contribution.

On the improvement of performance of positioning systems, the research community has

been emphasizing the machine learning approach such as neural networks and support vector

machines. However, these two approaches are quite complex and require careful selection

of learning machine parameters. Since both neural networks and support vector machines

are non-parametric classifiers [45], they do not assume any knowledge of the distributions

of the location fingerprints. Both approaches are considered as black boxes that cannot

provide insight on how to improve the positioning systems beyond the complexity of their

generic learning machines. Thus, this study limits the scope of study to the nearest neighbor

and probabilistic approaches. The nearest neighbor is the simplest non-parametric classifier

that can be analyzed while the probabilistic approach is a parametric classifier that assume

some knowledge of the distribution of the location fingerprints. For instance, the Euclidean

distance technique implicitly assumes that classified patterns are Gaussian with symmetric

variance on each element in the patterns. On the other hand, the probabilistic approach

intrinsically maintains distributions of the location fingerprints via either histogram or para-

metric estimation.

The design of indoor positioning systems requires an analytical model that can explain

the relationship between the system performance and system parameters. The adoption of

location-based services in the future will require an efficient and effective design methodology

for indoor positioning systems. The design area of indoor positioning has not been consid-

ered at all in any literature. There is no simple way to predict the performance of indoor

positioning without actually performing a real measurement to test the positioning algorithm.

Therefore, this study proposes a model of location fingerprints which can be incorporated

into an analytical model for study of indoor positioning systems.

Depending on the positioning algorithm, the impact of database searching performance

should also be investigated. This aspect is not emphasized very much among the existing

positioning system studies. In particularly, the nearest neighbor methods can become inef-

ficient when the number of positions in radio map becomes huge for large sized buildings.

This issue influences the complexity and scalability performance of the indoor positioning

system.
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Finally, there is still a lack of a standard framework for comparing different positioning

systems in the community [23]. Some did provide the precision in percentages while others

only report the average accuracy in meters. The minimum distance separation, the number of

positions, and coverage area from different papers are also different and makes the comparison

among them difficult.
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III. PROPERTIES OF RECEIVED SIGNAL STRENGTH

As described previously, initial data analysis is extremely important for location fingerprint-

ing. In this chapter, we investigate the properties of the received signal strength (RSS) values

as reported by IEEE 802.11b wireless network interface cards (NICs). This analysis of the

RSS values is needed to understand the underlying features of location-dependent RSS pat-

terns and location fingerprints. Although there is extensive knowledge available regarding

radio frequency (RF) phenomena and properties of the received signal in indoor environ-

ments (such as the distance dependence property [46]), such knowledge is aimed towards

other applications, in particular communications capability and receiver design, making it

limited for positioning applications. An understanding of the properties of the RSS values

for location fingerprinting can assist in improving the design of positioning algorithms and in

deployment of indoor positioning systems. A set of mathematical assumptions is proposed

at the end of this chapter based on the results of this analyses. These assumptions will be

used in the later chapters for developing models and providing deployment guidelines.

A. MEASUREMENT SETUP

An IBM A22m laptop computer equipped with a Lucent Orinoco WLAN card and a client

manager software were primarily used to collect samples of RSS from access points (APs)

at the University of Pittsburgh. The WLAN card is plugged into a PCMCIA slot on the

right side of the laptop. The client manager software is a site-survey tool from Lucent [47]

which provides link quality and AP monitoring capabilities. This software monitors IEEE

802.11b radio frequency channels which operate in the 2.4 GHz band. Note that this radio
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spectrum is shared by other equipment in the industrial, scientific, and medical (ISM) band

such as Bluetooth. The number of non-overlapping channels for IEEE 802.11b is three [48]

and they are re-used when more than three access points are needed in any area. The

information available to the user from the client manager software includes the AP’s name,

AP’s medium access control (MAC) address, received signal (dBm), noise (dBm), signal-to-

noise ratio (SNR in dB) and channel number.

The measurement reported in subsequent sections is done by taking logs of RSS measure-

ments from APs “visible” to a mobile client over a certain period of time. For a particular

location, vectors of RSS are formed based on measurable signals from APs during the mea-

surement time. This study assumes that the client manager software provides the same

information as a query from a positioning software accessing a network interface card. The

RSS values reported by most WLAN cards are in integral steps of 1 dBm. Note that all

possible RSS values cannot be represented by a set of integer values [49]. The received signal

sensitivity of a particular make of WLAN card limits the measurable range of the RSS. For

instance, a Lucent Orinoco WLAN card has its receiver sensitivity between -93 dBm and 0

dBm [47]. The smallest signal value that most standard 802.11 cards can receive and report

corresponds to around -96 dBm [49]. The highest typical value of the RSS found in our

experiment using Lucent’s Orinoco card is approximately -30 dBm at one meter from any

AP. According to [49], the maximum signal level reported by most standard 802.11 cards is

-10 dBm even though the actual received signal strength can be higher.

Because the client manager software is proprietary for the Lucent Orinoco card, measure-

ment experiments using this software implies limited control over the setting of the sampling

period and choice of WLAN cards. To obtain the RSS for different wireless network cards,

in this study we used a small program that captures RSS data based on available example

code from Microsoft’s Windows XP driver development kit (DDK) [50] and the University

of California at San Diego’s Wireless Research API (WRAPI) [51]. The program utilizes

Windows XP’s Network Device Interface Specification (NDIS) version 5.1. It is a kernel

layer standard API which defines the interface between the network interface card and the

medium access control (MAC) protocol driver. A WIN32 API called DeviceIoControl allows

any user’s application to query Microsoft’s object identifier (OID) such as OID 802 11 RSSI
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to obtain received signal strength indication (RSSI) on a wireless network card. The RSSI

returned by Windows’s miniport driver is measured in dBm and has typical values between

-10 and -200 [52].

1. Experimental Design

Different factors that affect the indoor RSS are the user’s presence/absence, his/her orien-

tation, time of day, building types and material, distance from transmitter, and make of

wireless cards. These factors are considered because they certainly affect the WLAN’s RSS

as shown in this chapter. These factors are by no means exhaustive. Other possible factors

are antenna orientation, directionality and type but they are not considered here (we only

consider omnidirectional antennas). A number of experiments that vary these different fac-

tors are performed and the results are analyzed to identify the statistical properties of RSS

patterns. The results are applied to model indoor location fingerprints in the next chapter.

Table 5 lists two groups of the factors and the options used in the subsequent studies.

The groups are divided according to the factors’ effects. Note that this study performs

measurements using a quasi-static laptop only. While we are aware of the effect of WLAN’s

mobility it is beyond the scope of current study. Our assumption here is that typical usage

of WLANs occurs under stationary conditions. The movement of the mobile station causes

fluctuation of the received signal strength which is called small-scale fading [12]. Larger

fluctuations of RSS values has been exploited to infer the movement of the mobile station

in [53].

The first factor (proximity of user to mobile) is considered because there are different

location-services applications that may or may not cater to a human user. When a user is

equipped with a mobile terminal and faces different directions, the study in [13] reports that

different user orientations can cause a change in the location fingerprint at the same location.

Our study confirms this observation through the second factor. The third factor considers

the make of wireless cards which could have different chipsets and hardware implementation.

Some vendors have a better hardware design than others.

Because of changes in environment over time (such as movement and number of people)
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Table 5: Factors that affect RSS fingerprint

Effect on Factors Options
1. Proximity of user User’s presence or absence

Data Collection 2. Orientation of user and terminal North, East, South, and West
3. Make of WLAN card Lucent Gold, Lucent Silver, SMC,

Cisco, D-Link, and Proxim
4. Time of measurement Times of day and days of week
5. Period of measurement Second, minute, and hour

Statistics 6. Interference Co-channel or adjacent radio channel
7. Building environment Small office (IS building) or

large hall (Hillman library)

around a measurement location, the fourth factor (time of measurement) is considered. This

might indicate the need to collect location fingerprints at different times to reflect the time

dependency. On the other hand, the fifth factor is considered in order to justify the minimum

duration of measurement required to determine the location fingerprint at each position. This

factor could affect indoor positioning accuracy and the total time required to collect location

fingerprints. This study tries to determine a suitable duration of measurement at each

position and the number of samples per position that can provide sufficient statistics. The

sources of interference in the sixth factor are limited to those signals using the same/different

channels from other access points. This study determines the correlation of received signals

from different access points.

The seventh and final factor is the building environment that we select based on the

available WLAN infrastructure at the University of Pittsburgh. Two different areas were

used in this study: a small office environment and a large hall. In subsequent sections,

we consider two main measurement scenarios that are considered within these two environ-

ments. However, there are additional measurement experiments that are performed over a

few locations within these two environments to identify the effects of the first six factors.

The small office environment is inside the School of Information Sciences (IS) building.

The IS building has 8 floors and 10 APs installed opportunistically. The dimension of each

floor is approximately 76′ × 120′ (23m×37m). All APs are from Lucent’s WAVELAN and

are equipped with Lucent Orinoco Gold/Silver WLAN cards. Only the area on the fourth
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floor is used for this experiment. Locations of access points that have strong signals on the

fourth floor are shown in Figure 5. The operating frequencies and the last sixteen bits of the

MAC addresses of these access points are listed in Table 6. Note that SIS501 AP is located

on the fifth floor and no AP is located on the third floor.

Table 6: Measurable access points on 4th floor in Information Science building

Access Point Name Location Frequency Channel MAC Address
SIS401 Fourth Floor 11 xxxxxxxxE6F7
SIS410 Fourth Floor 6 xxxxxxxx886B
SIS418 Fourth Floor 1 xxxxxxxxE6E8
SIS501 Fifth Floor 6 xxxxxxxxE6EE

For the measurement of the small office environment, we defined a small area as a grid

of 25 locations where 20 of them were placed inside the room 410 and five of them were

placed along the corridor as shown by dots in Fig. 6. The minimum distance between two

locations or grid spacing was fixed at one meter because RSS patterns could overlap more

than a larger distance. Location fingerprints were collected at each location for a period of

five minutes at a rate of four samples per second. This resulted in 25 points × 3 APs = 75

RSS distributions. The user’s orientation was limited to the north direction only.

The large hall environment is inside the Hillman library building. This building has

five floors including a ground floor. The dimension of each floor is approximately 197′ ×
197′ (60m×60m). APs are installed to provide wireless access to students who use the

library. There are six APs located throughout the building and all APs are from Enterasys’s

RoamAbout. There are two APs each on the ground floor, the second floor, and the fourth

floor. The APs placed on different floors are marked in Figure 7 of the first floor. The

building is divided into two wings with three elevators and two stairways in the center of the

building as showed in Figure 7. Two additional stairwells are located near the center-edge

of each wing.

All measurements were done inside the area of the first floor where there is a large open

space (denoted by dashed lines) that shares the ceiling with the second floor. Figure 7 also

shows the locations of measurement with small arrows. Signals from all six AP’s can be

detected on this floor, but their coverage is not complete throughout the floor. The access
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point names and their corresponding operating frequencies are summarized in Table 7.

Table 7: Access points in Hillman library

Access Point Name Location Frequency Channel MAC Address
hlg-a-card1 Ground Floor 1 xxxxxxxxF261
hlg-b-card1 Ground Floor 11 xxxxxxxxF616
hl2-a-card1 Second Floor 11 xxxxxxxxF618
hl2-b-card1 Second Floor 6 xxxxxxxx4115
hl4-a-card1 Fourth Floor 1 xxxxxxxxF5FC
hl4-b-card1 Fourth Floor 6 xxxxxxxxF23E

Table 8: Experimental design and measurement factors

Factors Scenario 1 Scenario 2
Building Type 4th Fl. IS building 1st Fl. Hillman Library

Proximity of Laptop User Presence Presence
User and Terminal Orientation North only Dependent on location

Time of Measurement Afternoon to evening Afternoon to evening
Span of Measurement 1 day 32 days

Period of Measurement per Location 5 minutes 1 hour
Sampling Period 0.25 second 1 second

Number of Locations 25 71
Distance between Locations Uniform 1 meter Non-uniform, 2 meters or more

Client Card Vendor Lucent Orinoco Gold Lucent Orinoco Gold
Access Point Vendor Lucent WAVELAN Enterasys RoamAbout

Software Tool Lucent client manager Lucent client manager

Based on the two environments described above, Table 8 summarizes the measurement

scenarios used to collect most of the RSS data used in subsequent analyses. Both scenarios

have a user operating the laptop during all period of measurement. Because of limited control

over the client manager software, the number of data points collected at each location vary

from one location to another. Note that the distance between different locations in Scenario

2 varied according to locations of reading tables inside the library. The measurement in

Scenario 2 is performed over a period of one hour causing a large span of measurement over

several days due to the three-hour limitation of the laptop’s battery.

According to Table 5, we group the factors studied into those that affect the data collec-

tion and those that affect the statistics of the RSS. The organization in the next two sections

will follow these two categories. Section III.B investigates the first three factors in Table 5
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that cause changes to the received signal strength and its average value. These factors should

be taken into account when collecting location fingerprints. The rest of the factors will be

discussed along with statistical properties of the RSS in Section III.C.

B. COLLECTING MEASUREMENT OF RECEIVED SIGNAL STRENGTH

1. User’s Effect

For indoor positioning systems based on a WLAN infrastructure, users typically carry laptops

or work near devices equipped with WLAN interface cards. The effect of the user’s presence

close to WLAN antennas plays an important role on the mean and the spread of RSS values

(variance). An observation was made in [13] that the user’s orientation can cause a variation

in RSS level up to 5 dBm. However, no analysis of the data was provided nor were there

measurements when no user is present during the measurement.

a. User’s Body To study the effect of the user’s body, we performed measurement of

the signal from SIS410 at location L1 inside the room IS 410a in Figure 5. The distance

between the transmitter (AP) and the receiver (MS) is approximately 7m and the MS does

not have a clear line-of-sight to the AP. The data were recorded for two hours. During the

first hour, the user was present, while no user was present in the second hour. The results

are shown as plots of histograms from both hours in Figure 8.

Figure 8-a and 8-b depict the difference between two histograms at the same measurement

position. The user’s body influences the RSS distribution by spreading the range of RSS

values by a significant amount. The standard deviation is reduced from approximately 3.00

dBm to 0.68 dBm when the user is absent. An explanation of this effect is that the user is

acting like a reflector or scatterer of the signal and causes the received signal to fluctuate

more than otherwise. The mean increases from -71.6 dBm to -70.4 dBm without the user’s

body. Clearly, it is essential to collect data based on the type of location application. When

a positioning system is supposed to cater to real users, it is essential to have a user present
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Figure 8: Effect of user’s body on histograms of the same RSS (SIS410)

while collecting RSS values for fingerprints and to take into account the effect of the human

body.

b. User’s Orientation Because the resonance frequency of water is 2.4 GHz and the

human body consists of 70% water, the signal is absorbed when the user obstructs the

signal path and causes an extra attenuation leading to a lower RSS value [8]. This effect

was mentioned in the RADAR system [13]. To confirm the effect of user’s orientation on

the RSS, we performed another measurement at the location L2 inside the room IS 410 in

Figure 5. In this case, there is a line-of-sight between the transmitter (SIS410) and receiver,

and the distance between them is approximately 20 ft (6 m). The signals from SIS401 and

SIS501 were also present at this location with non line-of-sight distances of 36 ft (11m) and

22 ft (7m), respectively. The measurement was done with four orientations (facing North,

West, South, and East of the building) for a period of 15 minutes each. The results of the

sample means of the RSS from the three transmitters are shown in Tables 9.

In the LOS case (Transmitter SIS410) in Table 9, when the user was facing south and the
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Table 9: Sample mean of RSS (dBm) with different orientations

Access Point North West South East
SIS410 LOS -51.42 -49.73 -59.05 -53.18

SIS401 NLOS -83.12 N/A -82.09 -83.45
SIS501 NLOS -79.95 -83.63 -77.82 -79.24

AP was behind the user, the sample mean of the RSS was lowered to -59.05 dBm compared

to the highest RSS value of -49.73 dBm when the user was facing west and the WLAN card

was facing the AP SIS410. The results show that the mean RSS was attenuated by 9.32

dB in our case due to the obstruction from the human body. This suggests that the user

orientation is crucial and should be included in computing the user location information.

The same conclusion is also suggested by [13]. The attenuation by the body of the user

can even completely block the RSS from a NLOS AP as shown in Table 9 when there was

no RSS information at all during the period that the person’s back was turned toward the

transmitter SIS401. This means that the location fingerprint at the same location may miss

one RSS element in the vector if the user orientation is different. The signal from SIS501

is also attenuated by 5.81 dB between the highest and the lowest RSS levels in Table 9.

Although this study did not consider the orientations of the laptop or its antenna, they can

have different effect which require further investigation.

2. Make of Wireless Card

Comments from the authors of [18] and [53] have suggested that location fingerprints with

different makes of wireless cards can be different, perhaps substantially. In this section,

we determine whether different cards report significantly different RSS values. It is said

that some vendors implement better receivers for the IEEE 802.11b cards than others. In

fact, different vendors choose to measure RF energy differently [49]. Although the IEEE

802.11 standards define RF measurement value as a number between 0 and 255, the actual

implementation of each vendor is limited between 0 and a specific maximum RSSI value called
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“RSSI Max” (not in dBm) [49]. For instance, Cisco’s 802.11 card has a maximum RSSI value

based on 100 levels, while the Atheros chipset has a maximum of 60 levels. These values are

used internally by microcode on the WLAN card and by device drivers [49] to report the

quality of the signal. Each vendor has its own RF measurement accuracy, granularity, range

for the actual power in dBm, and range of RSSI values (0 to RSSI Max) [49]. Some vendors

report the RSS in percentage using the RSSI range, but the RSSI level can be mapped to a

value in dBm using a table. The mapping between the actual RF energy and the range of

RSSI values is different for each vendor. For location fingerprinting purposes, a wireless card

with wider range of RSSI values or good granularity is better since it allows a positioning

system to better differentiate between two locations.

In this study, different wireless cards are tested using our own RSS collecting software as

discussed in Section III.A. Fortunately, the query requested to Windows XP’s NDIS driver

reports back the received power in dBm and our software does not have to perform any

translation. Each card collects 300 samples over a period of 5 minutes (1 sample/second).

Table 10 lists the vendors and models of all the WLAN cards used in this particular experi-

ment. Note that the first four cards on the table employ the PCMCIA 16-bit interface, while

the last three cards are based on the newer Cardbus 32-bit interface.

Table 10: List of WLAN cards

Vendor Model Standards Firmware Ver. Driver Ver.
Lucent Orinoco Gold 802.11b Pri. 4.04, Stat. 9.42 7.82
Lucent WaveLAN Silver 802.11b Pri. 4.00, Stat. 9.42 7.82
Cisco Aironet 350 Series 802.11b 5.60.08 8.6.16

Proxim *Orinico Gold 802.11a/b/g n/a 3.1.2.19
SMC *EZ Connect SMC2635W 802.11b n/a 1.0

D-Link *AirPlus DWL-650+ 802.11b n/a 4.15.5.1
* denotes card with Cardbus 32-bit interface.

Because the mapping between the actual RF energy and the RSSI range can vary from

one vendor to another, the choice of WLAN cards can affect the performance of indoor

positioning systems. Since the range and the measurement of RSS depends on the WLAN

card, it is important to use the same wireless card for collecting the location fingerprints

and determining the location. For communication purposes, a WLAN card that has a higher
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average received signal level at the same location is a better card. However, a better reported

received signal strength may not necessarily be important for location fingerprinting and

positioning. For positioning purposes, the range of RSS and the standard deviation of RSS

are more important.

Table 11: Measurable RSS range of WLAN cards

Vendor Model Max RSS (dBm) Min RSS (dBm) Range
Lucent Orinoco Gold -10 -102 92
Lucent WaveLAN Silver -10 -94 84
Cisco Aironet 350 Series -10 -117 107

Proxim *Orinico Gold -11 -93 82
SMC *EZ Connect SMC2635W -14 -82 68

D-Link *AirPlus DWL-650+ -50 -100 50
* denotes card with Cardbus 32-bit interface.

The widest range of RSS allows positioning systems to identify more locations by differ-

entiating the RSS values at such locations. To compare the range of each card in Table 10,

this study measured the RSS values at locations where the AP’s antenna touches the WLAN

card all the way up to those locations where the signal from the AP is very low. The mea-

surable ranges from our software are summarized in Table 11. An observation from the

measurement results of the Cisco card indicates that some RSS values in dBm will never be

reported which is also pointed out by [49]. The mapping of RSSI to dBm is non-linear [49].

The data reported in Table 11 show that D-Link card has the shortest range of all, while

Cisco seems to have the widest range. Note that the ranges reported in Table 11 may not

correspond to the actual range between 0 and the RSSI Max for of each vendor.

Although signal fluctuations normally occur for any wireless communications due to

changes in environment, a receiver with smaller standard deviation can be useful for location

fingerprinting since it is less likely to show a different value of the RSS at that location.

Clearly, a smaller standard deviation causes less confusion with nearby location fingerprints.

Our preliminary results based on a mathematical model in Chapter IV also suggests the

benefit of small standard deviations. Figure 9 and Figure 10 report the standard deviations

and means of RSS values measured by different WLAN cards at location L1 inside the room

IS 410a of IS building in Figure 5. Although the means of RSS seem to vary a lot both with
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the same card and different cards, the overall averages are around -64 dBm to -66 dBm.

Proxim, D-Link, Lucent Gold, and SMC cards report approximately 1 to 2 dB better RSS

on average than Cisco and Lucent Silver cards. Cisco’s Aironet card has the largest average

standard deviation of 3.02 dBm, while the D-Link card has the smallest average standard

deviation of 1.08 dBm. The reason for difference in the standard deviation of these cards can

be explained by the difference in mapping from the actual RF energy to the internal range

of RSSI values. Since the Cisco’s card has the widest range, it can measure the signal with

higher resolution and see more variation of signal. On the other hand, the D-Link’s card has

the shortest range; therefore, a number of actual measured signal levels may be mapped into

the same RSSI value and it see less signal’s variation.
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Comparison of wireless cards from the same vendor and model is shown in Table 12

where two Lucent Orinoco Gold cards are used. Note that the measurement is done at the

same locations and consecutive time. Although the means are different by about 1 dB, the

range, the standard deviation, and the skewness are very close.

Another important feature of wireless cards essential for indoor positioning is the ca-

pability to scan the nearby APs passively, actively, or combination of both. The passive

scanning is done by recording any 802.11 beacon or probe response frames to card’s cached

Basic Service Set Identifier (BSSID) scan list [54]. The active scanning is done by broad-
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Table 12: Statistics of RSS Measured from Two Lucent Gold Cards

Statistics Lucent Gold Card 1 Lucent Gold Card 2
Mean -62.41 -61.28
Median -62 -61
Mode -62 -61
Standard Deviation 1.61 1.70
Sample Variance 2.59 2.89
Skewness -0.87 -0.48
Range 11 11
Minimum -69 -68
Maximum -58 -57

casting a 802.11 probe request frame on scanning channel and recording any probe reply or

any beacons frame to card’s cached BSSID scan list [54].

To deploy the indoor positioning system, proprietary information of the data format

returned by the scanning operation and how to put the card into scanning mode are very

useful, but not always necessary because most vendors follow the Network Adapter De-

sign Guidelines for Windows XP [52] provided by Microsoft. Our experiment with all

of these cards showed that the scanning information from only SMC’s card can be ac-

quired correctly. This is done by invoking a call to Microsoft’s object identification called

OID 802 11 BSSID LIST SCAN [52]. The software driver will cause the IEEE 802.11 NIC

to survey all the APs and update the BSSID scan list. The second card that seems to perform

scanning correctly is D-Link’s card (all MAC addresses are correctly reported), but the RSS

data reported back are all in positive values which are not in dBm. The rest of the cards

either reported correctly only the associated AP’s signal and garbage data for other APs

(Lucent Gold, Lucent Silver, and Proxim) or no scanning report at all (Cisco). Note that

the queried RSS data of currently associated AP (the one the card communicating with) is

different from the scanning data maintained in the cached BSSID scan list. To study the

design and deployment of indoor positioning system in Chapter V, we will use SMC’s card

with its scanning capability for a prototype software-based indoor positioning system.

Given the basic comparison of the above wireless cards, any of these cards will provide
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comparable quality for communications purpose at the our measurement location. For indoor

positioning purpose, we would like to deploy the card that has the widest range of RSS and

the lowest standard deviation. However, there are limitations of the software tools that

come with each card in terms of support for data collection and logging. The software tools

provided by these cards are different in quality. Thus far, only the Lucent/Orinoco Gold

and Silver cards have the RSS logging capability in their client manager. Fortunately, the

Lucent/Orinoco gold card seems to have a good RSS measurable range and average standard

deviation; therefore, we select this card for most of our measurement experiments and record

RSS fingerprints with its proprietary software.

a. Impact of Quantization of RSS Values by Wireless Cards Ideally, if there is

no randomness in the RSS, we can estimate the resolution of location fingerprint based on

the level of RSS from the wireless card. Assume that there are Q levels of RSS reported

by a wireless card. For one access point, ideally, we could identify Q unique locations. For

two access points, the number of regions of locations that can be identified increases but not

exponentially (less than Q2 regions) as shown in Figure 11.

AP1 AP2

Region of Locations

Figure 11: Resolution of Location Fingerprint

Assuming a coverage area of 2πR2 for two APs where R is the radius of each AP’s
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coverage, the maximum number of unique locations is Q2 and the area per unique location

is 2πR2/Q2. For R = 35 m and Q = 100, the area per unique location is 2π(35)2/(1002) ≈
0.77 m2. The best grid spacing is thus

√
0.77 ≈ 0.88 m. Note that the distance between

two access points also contributes to the identifiable regions of locations. If we move the two

access points close together, the system will have a different region where position location

can be performed. Extending this analysis to larger number of access points is not trivial. A

location fingerprint of higher dimensions cannot be represented easily in a two-dimensional

diagram. The distance in signal space will also be different than the distance in physical

space. In-depth analysis to estimate the resolution according to the quantization is beyond

the scope of this work due to limited information of actual quantization step of each wireless

card.

Although the RSS measurement reported by the software device driver is only in the

quantization step of 1 dBm, we do not report the mean or average of RSS in quantization

steps of 1 dBm. All measurement results in this work calculate the average values and report

all results as real numbers. Figure 12 depicts an example of quantized RSS values which

are reported by typical wireless cards. If only the integer number were used for the location

fingerprints, the chance that any two location fingerprints have identical fingerprints will

increase and degrade the performance of the fingerprinting technique.Mean RSS (Real Number)Quantized RSS (Integer) RSS in dBmFrequency
Figure 12: Quatization of RSS
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C. STATISTICAL PROPERTIES OF RECEIVED SIGNAL STRENGTH

Changes to the signal due to propagation indoors is difficult to predict because of the dense

environment and propagation effects such as reflection, diffraction, and scattering [46]. The

multipath fading effect, which is the result of either constructive or destructive combination

of multiple signal copies at the receiver, causes the received signal to fluctuate around a mean

value at a particular location. The received signal is usually modeled by the combined effects

of large-scale fading and small-scale fading [12]. The large-scale-fading component describes

the signal attenuation as the signal travels over a distance and is absorbed by material such

as walls and floors along the way to the receiver. This component predicts the mean of

the RSS and usually has a lognormal distribution [12]. On the other hand, the small scale-

fading component explains the dramatic fluctuation of the signal due to multipath fading.

If there is no line-of-sight (LOS) component, the small-scale-fading is often modeled with

a Rayleigh distribution. Such scenarios are commonly called non-line-of-sight (NLOS). If

there is a line-of-sight component, the small-scale-fading is typically modeled by a Rician

distribution. Note that when the RSS is measured, the measurement averages out the small-

scale-fading effects. Although these radio propagation models have been studied extensively

in the literature, they are focused on their impact on receiver design and coverage. There is

still a lack of the necessary understanding of the properties of RSSs from the perspective of

indoor positioning systems.

1. Distribution of the Received Signal Strength

Traditionally, the average RSS is believed to be lognormally distributed according the large-

scale fading model [12]. The mean value is generally predictable and believed to follow one of

several standardized path loss models discussed in [46]. However, there are some conflicting

conclusions regarding the RSS distribution measured at the software level by the wireless

NIC for indoor radio propagation in [32] and [8]. Moreover, the standard deviation and the

stationarity of the RSS are not understood very well.

The results in [32] were based on a five second sampling period over a long duration of five
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hours, 20 hours, and one month. They concluded that the RSS was lognormally distributed

due to the similarity of the median, the mean, and the mode. However, they did not indicate

whether the user was present all the time during the measurements. Thus, we suspect that

the distribution of the RSS in dBm that could be observed in reality may not be normal as

described in [32]. A recent study of a 45-second measurement period with the user’s presence

in [8] pointed out that the RSS distribution was non-Gaussian and asymmetric. Moreover,

the histograms in [8] depicted that there could be multiple modes with one dominant mode

in the distribution. The means and the modes were often different in their results. These

results did not however consider an in-depth analysis of the RSS distribution.

Results from Scenario 1 and Scenario 2 described in Section III.A yield 75 and 299 sets

of histograms, respectively. Depending on the duration of measurement and availability of

signals, Scenario 1 has samples of data anywhere in between 441 and 1748 points, while

Scenario 2 has samples of data anywhere in between 2962 and 3956 points. Observations

from these 374 sets of data indicate that certain shapes of distribution occur often at par-

ticular average values of the RSS. Different shapes of distributions are caused by the upper

bound and lower bound of measurable RSS at each location. Because the received signal is

attenuated over distance, a received signal will never reach a value that is as high as the

maximum transmitted power. The upper bound of the received signal in our measurement

results (APPENDIX A) shows no signal deviating higher than 10 dB above its average value.

On the other hand, the lowest received signal is limited only by the receiver sensitivity. The

signal deviation below the mean value can vary as much as the lowest receiver sensitivity.

If the average RSS is high (-80dBm or above), the distribution of the RSS will often have

a long tail to the left which is called left-skewed distribution1. If the average RSS is low

(around -80 dBm), the distribution will not have long tail but will be close to a lognormal

distribution (normal in dB).

Figures in APPENDIX A illustrate different shapes of the distributions from nine APs

in Scenario 1 and Scenario 2. In Scenario 1, signals from access points SIS401 and SIS410

1Skewness is a measure of symmetry of data. A probability density function (PDF) is said to be skewed to
the left (tail on the left) when it has its mean less than its median which is less than its mode [33]. Skewness
is reported by number in which a negative number reflects a left-skewed distribution. For univariate data
x1, x2, . . . , xN with mean x̄ and standard deviation σx, Skewness =

PN
i=1(xi−x̄)3

(N−1)σ3
x
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are stronger on average than those from SIS501 which is located a floor higher. Signals

from both SIS401 in Figure 60 and SIS410 in Figure 59 have larger deviations, primarily

to the left side, while distributions of signals from SIS501 are almost symmetric as seen

in Figure 61. In Scenario 2, similar shapes with long left tails are seen in Figure 62 and

Figure 66. Almost symmetric shapes of the histogram are observed in Figure 64, Figure 63,

Figure 65, and Figure 67. Note that histograms with multiple modes rarely occurred in both

scenarios which is in contrast to the results in [8]. Signals measured with different makes of

cards at the same location on majority also exhibit left-skewness as shown in Figure 13.

Proxim Cisco D−Link L−Gold L−Silver SMC
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Vendor

S
ke

w
ne

ss

11/29/04
11/30/04
12/01/04
12/01/04
12/02/04
12/05/04

Figure 13: Comparing Skewness of different vendors

To determine whether the data is significantly left-skewed, we compare skewness of each

data set with its standard error of skewness. The standard error of skewness can be estimated

by
√

6
N

where N is the number of data points [55]. If an absolute value of skewness is larger

than two standard errors of skewness, the data set is considered to be significantly skewed.

The distributions tended to be left-skewed in most measurement results from both scenarios.

In Scenario 1, we observed that 64 out of 75 histograms were significantly left-skewed, while

7 histograms were symmetric and 4 histograms were significantly right-skewed. In Scenario

2, we found that 191 out of 299 histograms were significantly left-skewed, while 51 of the
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data sets were symmetric and 57 histograms were significantly right-skewed. From our

observation, the histograms that are significantly left-skewed are often the ones with strong

average RSS or when there is a line-of-sight between an AP and a MS.

Three samples of RSS histograms collected from SIS410, SIS401, and SIS501 in Scenario 1

are plotted in Figure 14. We compare these short measurements of five minutes with another

long measurement of the signal from the SIS401. The long duration of measurement was

collected over 26 days at a sampling interval of five seconds and at different locations. The

histogram of the long measurement is shown in the lower-right subgraph of Figure 14. The

left-skewed distributions are prominent with both short and long durations of measurement.

The RSS values are usually concentrated around the dominant modes. However, there are

some histograms in our measurement that could be approximated by a lognormal distribution

because they are slightly skewed or almost symmetric. lognormal or Gaussian curves that

can be fitted to data are superimposed on each histogram to compare the actual distribution

with an ideal lognormal distribution. The lower-left subgraph of Figure 14 illustrates an

example of a slightly left-skewed RSS distribution measured from SIS501. Notice that there

are multiple modes in the measurement results corresponding to the 26 days in the lower-right

subgraph of Figure 14.

Slightly skewed distributions often occur when the RSS level is low (the AP is far from

the measurement location or there is no direct line-of-sight). These conditions are often

valid for indoor environments. This observation could also explain why the measurements

in [32] report a normal distribution where the measurement in that work is done inside

an office room with no line-of-sight path. Figure 15 and Figure 16 show the skewness of

all histograms from Scenario 1 and Scenario 2, respectively. In Figure 15, the skewness

of SIS501’s histograms scatter around a zero value, while the other data from SIS410 and

SIS401 have a rather large negative skewness. In Figure 16, most of the data that have low

RSS values have skewness around the zero value, while the data that have higher RSS values

have larger negative skewness.

The left-skewed distribution is difficult to model and does not fit to any well known dis-

tribution. However, a representative distribution of the underlying RSS process is needed to

gain more understanding of location fingerprinting. If the RSS distribution can be identified
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Figure 14: Samples of RSS distribution over five minutes and 26 days
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from three APs in Scenario 1
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and modeled, analytical models of location fingerprint and the indoor positioning system

could be developed. Although most of the histograms are not symmetric, an assumption

of lognormal distribution can be used to partially describe the RSS distribution. This is a

reasonable choice of representative distribution as we will see in the next chapters.

2. Standard Deviation of the Received Signal Strength

Using the same Lucent Gold card in both Scenario 1 and 2, this subsection reports sample

standard deviations of all APs’ signal at different locations. Table 26, 27, and 28 in AP-

PENDIX B lists all the standard deviations at each location. These tables show that the

standard deviations vary from one location to another and from one AP to another. Sample

standard deviations in Scenario 1 have values between 0.59 and 6.29 dBm, while sample

standard deviations in Scenario 2 have values in between 0.47 and 3.30 dBm. The major

differences in the two environments are the distance and the existence or not of LOS between

the APs and the receiver.

When we plot the mean RSS versus the sample standard deviation, the results reveal that

the farther the AP is from the MS or the lower the received signal level is, the smaller the

standard deviation is. On the other hand, the larger the mean RSS, the larger the standard

deviation. Figure 17 depicts this relationship based on the results of Scenario 1. We observe

that the standard deviation is large for high RSS levels (-60dBm to -40dBm) when the signal

from AP SIS410 has direct LOS to most of the locations in Scenario 1. Smaller standard

deviations are observed in Scenario 2 in Figure 18 when there is no LOS between any AP and

each measurement location. This observation is similar to the skewness property discussed

in previous subsection.

This property of the standard deviation suggests that the RSS from two locations may

be difficult to separate or distinguish if both locations are close to the same AP due to the

high signal level with large degree of variation. On the other hand, two locations might be

easily identified if both do not have LOS paths and are located far from the APs. This is

rather counter-intuitive since the farther apart the WLAN user is from the AP, the worse

the measurement accuracy should be as suggested by [32].
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Figure 17: Relationship between RSS and

its standard deviation from Scenario 1
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Figure 18: Relationship between RSS and

its standard deviation from Scenario 2

3. Stationarity of the Received Signal Strength

Assuming that the Ergodic theorem2 is applied according to the Wiener definition of sta-

tionarity [57], we analyze whether the RSS is stationary by breaking the series of RSS

measurement into separate pieces over different time intervals. A random process can be

said to be stationary when it meets two conditions. First, its mean and variance remain the

same over time. Second, its autocovariance function has the same shape for each separate

time-series. Instead of plotting the autocovariance function, we plot the autocorrelation

function versus time-lag which is called correlogram to test the second condition. Note that

the autocorrelation function is the autocovariance function normalized to the zero-lag au-

tocovariance. We investigated the stationary property over three time scales: pieces of 1

minute and 15 seconds within five consecutive minutes, pieces of 15 minutes within the same

hour, and pieces of one hour over five different hours. All of these measurements are done

at the same location L1 in Figure 5.

2Ergodic theorem states the time average of a random process is equal to the space average of that process
almost everywhere [56].
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Using the data collected by different makes of wireless cards in Section III.B.2, we calcu-

late the mean and the variance for all smaller periods of 1 minute and 15 seconds. Note that

the sampling time is 1 second apart. Table 13 lists the mean values and Table 14 reports

the variance values of all cards. The means of the RSS do not change more than 1.5 dB

for most cards. However, Cisco’s cards seem to shift the mean quite a lot in the last period

(-66.40 to -71.05 dBm or a change of 4.65 dB). The variance values also do not change very

much for most of the cards except the Cisco’s card (4.16 to 19.48). The correlograms to

test the second condition are plotted in APPENDIX E. Overall, the correlogram’s plots do

have similar trend for each card. However, there are few plots that do have different shapes

within each card. The results from these tables and plots suggest that the RSS process is

non-stationary.

Table 13: Mean of RSS with user over short duration of 5 minutes

Vendor 1st Period 2nd Period 3rd Period 4th Period
Cisco -70.88 -68.37 -66.40 -71.05
D-Link -64.57 -63.95 -64.49 -65.27
Lucent Gold -64.55 -64.87 -64.32 -64.91
Lucent Silver -66.65 -66.65 -65.40 -66.44
Proxim -66.29 -66.13 -65.23 -65.43
SMC -67.84 -67.11 -68.45 -67.25

Table 14: Variance of RSS with user over short duration of 5 minutes

Vendor 1st Period 2nd Period 3rd Period 4th Period
Cisco 9.86 6.72 4.16 19.48
D-Link 1.36 0.46 0.93 0.52
Lucent Gold 1.36 1.06 1.30 2.22
Lucent Silver 0.47 1.09 1.38 0.87
Proxim 0.94 2.14 1.02 0.73
SMC 4.22 3.31 1.20 3.19

After dividing the series of measurement data of RSS in Figure 8-within the same hour

into groups of 15 minutes, the RSS distribution within each quarter is observed to follow

a similar distribution within the same group. Table 15 lists the summary statistics within
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each quarter-hour. These results suggest that the RSS distribution may be stationary or

time independent since the means are very close (less than 2 dB difference) and the sample

variances of each quarter are on the same order. The correlograms in Figure 19 depict the

same shapes for each quarter indicating that the second condition is also met for this time

scale.

Table 15: Mean and standard deviation of RSS with user

Statistics 1st Qtr. 2nd Qtr. 3rd Qtr. 4th Qtr.
Mean -71.71 -72.33 -71.82 -70.48

Standard Deviation 2.95 3.20 2.96 2.56
Sample Variance 8.72 10.27 8.77 6.54
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Figure 19: Correlograms of RSS within the same hour

The one-hour time scale study was made for a signal measured at L1 over different times

of day. Table 16 shows a consistent mean, but inconsistent variance values of the RSS.

Therefore, the test for the first condition for stationarity fails at this time scale and we

conclude that the RSS random process is non-stationary.

Another result indicating the non stationary property of the RSS is shown in Figure 20.

The measurement was recorded over a period of one hour from three access point at location
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Table 16: Time dependency of RSS (dBm) from SIS410 with users presence

Statistics 10 AM 12 AM 2 PM 8 PM 10 PM
Mean -62.68 -60.02 -61.85 -63.12 -63.18

Standard Deviation 2.17 1.63 2.05 3.35 2.66
Sample Variance 4.70 2.65 4.22 11.23 7.07

L3. When a person started to use laptop within the same room at location L2 which is

a change in the environment, the RSS of SIS410 abruptly changes to another level with a

higher average value. This can be explained by the multipath effect which causes the signal

to combine constructively after the change in environment.
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Figure 20: Time series of RSS from three APs

4. Time Dependency

The summary of statistics in Table 16 indicates that the RSS is time-dependent. In this

section, we performed a separate experiment for the environment in Scenario 1. This exper-
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iment aims to determine time dependency over hours of day and days of week. Only one

location is considered in this analysis.

Since we learned from Section III.B.1 that the human’s body can influence the distribu-

tion of RSS, this study tries to minimize the user’s effect and focuses on the time dependency

only. We leave the laptop on a desk in a small office room at Location 1 in Figure 5 without

any user operating it after the measurement is started. The office is shared by other graduate

students; thus, within the vicinity of one meter or more there could be other people sitting

within the same room at any time. Moreover, The room has a door which is usually open

once there is a person in this room. The presence of other people and change of the door’s

position are uncontrollable in this experiment.

The measurement was performed over a continuous period of 24 hours on three different

days. The RSS data is recorded once every second. The results of each day are divided into

24 series. The mean, variance, and skewness are calculated for each series to determine their

time dependency. The results of mean, variance, and skewness are plotted in Figure 21,

Figure 22, and Figure 23, respectively. Note that the measurement of each day is started at

a different hour of days which is denoted by a broken line in each figure. The measurement

results are wrapped around for the time between 24th hour and 1st hour.

The observation of the mean values for three days in Figure 21 shows stable signals

during late night and early morning. The reason is that there were no other people around

in the office and the office’s door remained closed all the time. However, as we discovered

in the previous section about the stationarity’s property, the variance of the three signals in

Figure 22 shifted over time during the day time between 10 AM to 8 PM. Considering the

signal in the second hour after the starting of measurement in each day, the signal variation

occurred by the changes in environment when there were other people around and the office

door was opened.

Interestingly, the mean values on January 11 during the day when people were present

was higher than the late night and early morning during. Comparing to the results on

January 14 and 21, the mean values during the day were lower than the late night and early

moring. This difference can be explained by the multipath effect which might enhance or

degrade the received signal power. In any case, the change in the RSS’s statistics by the
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Figure 21: Sample mean of RSS over 24

hours at three different days
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Figure 22: Sample variance of RSS over 24

hours at three different days

environment is difficult to quantify because exactly the same environment may not occur

again.

Notice that the means of RSS from the three different days are different with average of

-71 dbm, -66 dBm, and -61 dBm. This result suggests some dependency of RSS over different

days. Even though for each experiment the investigator tried to place the laptop with the

same WLAN card in the same location, it was possible that slightly shifted of laptop’s

placement might occur and result in different means for each day. This may be interpreted

as a problem for location fingerprint where there were different means over different days.

The results during the day time when people were around indicated an average of RSS that

was closer to a common value of -65 dBm. Therefore, it is possible that the human factor

can dominate the average RSS for the measurement at each location which can result in

similar average RSS over different days. Due to limited numbers of experiments, we cannot

conclude that the same average RSS will occur on each day of week.

Figure 23 plots the skewness over different times. The results in this figure show that

during late night and early morning the signals are often left-skewed. The three signals shift

69



towards right-skewed distributions during the afternoon hours when there are more people

and activity around the measurement point. This results indicate the dependency of the

RSS on the change in environment. Therefore, these preliminary results suggest that the

time dependency of the RSS is in fact the dependency due to the environment that changes

over time.
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Figure 23: Skewness of RSS over 24 hours at three different days

a. Temporal Received Signal Strength Outage If the placement of APs was not

intended for the positioning system or there are some blind spots, there is a chance that not

all APs can be heard all the time by a MS. We observed this problem in our experiment at

location L1 where the RSS signal from SIS418 was not present all the time over a period of

one hour. This causes the problem of incomplete or censored RSS vectors when detecting a

location fingerprint. The effect of incomplete RSS vectors requires further investigation to

determine how to handle such situations in a location estimation algorithm.

5. Interference and Independence

This study quantifies the interference and the independence of multiple signals within each

RSS pattern by calculating the correlation coefficient between any two sequences of received
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signals at a location. The correlation coefficient is reported as a real number between 0 and

1. It is calculated by R =
σ2

i,j√
σ2

i σ2
j

where σ2
i,j is covariance between random variable i and

j, and σ2
i and σ2

j are the variance of random variable i and j, respectively. If two signals

have no effect on each other, the correlation coefficient will be 0. If two signals have a very

strong relationship or depend on one another, the correlation coefficient will approach a

value of 1. A guideline to classify the correlation coefficient of two random variables is that

a value greater than 0.5 is high, 0.5-0.3 is medium, 0.3-0.1 is low, and anything smaller than

0.1 is trivial [58]. A detailed interpretation of the correlation coefficient is summarized in

Table 17 [59].

Table 17: Interpretation of correlation coefficient

Correlation Coefficient Descriptor
0.0-0.1 trivial, very small, insubstantial, tiny, practically zero
0.1-0.3 small, low, minor
0.3-0.5 moderate, medium
0.5-0.7 large, high, major
0.7-0.9 very large, very high, huge
0.9-1.0 nearly, practically, or almost: perfect, distinct, infinite

Samples of RSS patterns collected in both Scenario 1 and 2 are used to verify the sta-

tistical independence of signals from different access points. In Scenario 1 as described in

Table 8, there are three signals that can be measured all the time which are the signals from

SIS410, SIS401, and SIS501. The correlation coefficient values of two of the three signals

are reported in Table 30 of APPENDIX D. Most of the correlation values (51 of them) are

lower than 0.1 which means that there is very small to trivial correlation. The rest of the

values (21 of them) are between 0.1 and 0.3. Only one value is larger than 0.5 but less than

0.8. From these results, it is clear that WLAN signals do not have very large correlation

Signals from different radio channels or signals from the same radio channel but different

transmitters can be assumed to be uncorrelated. In the ideal case, it can be reasonably

assumed that the RSS from each AP is unrelated or independent in Scenario 1.

There are two APs in Scenario 1 that use the same frequency (channel number 6), which

are SIS410 and SIS501. One may think that the RSSs from these APs might interfere with

each other and cause difficulty in forming the location fingerprint. However, the results in
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the third column of Table 30 of APPENDIX D indicate that both RSSs have only low to tiny

correlation. The signals do not interfere with each other. Therefore, access points using the

same radio frequency do not have any significant impact on the location fingerprint. This

could be explained by the collision avoidance mechanism of the IEEE 802.11b [48] which

enables a clear signal reception.

In Scenario 2, there are six signals available inside a large hall environment as described

in Table 8. Because the area in this scenario is larger than the first one, not all signals

can be measured at every location. Table 31, Table 32, and Table 33 of APPENDIX D

summarize the correlation coefficients for the access points with radio channels 1 and 6, 1

and 11, and 6 and 11, respectively. Table 34, Table 35, and Table 36 of APPENDIX D report

the correlation coefficients for those access points using the same radio channel. Only four

correlation coefficients from these six tables are in between 0.5 and 0.3, while 90 of them are

in between 0.3 and 0.1 and 175 of them are less than 0.1. These results suggest that there

is moderate to very small correlation between any received signal pair. Once again, these

results can lead to the reasonable assumption that the RSS from each AP is unrelated or

independent in Scenario 2.

6. Required Number of Samples

Collecting enough statistics for creating location fingerprints is the key to achieving good

performance with any indoor positioning system (either distance based or probabilistic ap-

proach). If the positioning system requires only the mean values to create fingerprints, a

small number of samples is sufficient since the mean is relatively constant. Ideally, we would

like to have as many samples as possible. In the literature, a small number on the order

of 20 samples per location and orientation is used with acceptable location determination

performance in RADAR [13]. Larger numbers of samples are required for the probabilistic

approach to create accurate histograms. Youssef et al [60] and Xiang et al [17] recorded 300

samples per location and orientation.

The duration of data collection in the literature are different due to the sampling period.

For instance, RADAR [13] used a 0.25-second sampling period, while Xiang et al [17] used
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a two-second sampling period. The sampling period is limited by either the software or the

hardware. The software’s limits depend on how often can a device driver be accessed and

how often the BSSID scan list is updated. Some wireless cards have the capability to scan for

APs’ signal in the background [52]. Our prototype software-based indoor positioning system

in Chapter V limits our access to the scanning function to one second. The hardware’s limits

depend on how the vendor implements the scanning cycle and the amount of the channel

dwelling time. Clearly, it is difficult to obtain these limits because the information may be

proprietary for each vendor. However, Microsoft specifies that a scanning query must be

returned within two seconds after the query command is initiated [52].

To study the required number of samples, we randomly select sets of RSS measurement

data from all access points in both scenarios. Then, we calculate summary statistics of

each AP with different numbers of samples ranging from 30, 50, 100, 150, 200, 300, and the

maximum amount of collected data. Assuming that the maximum amount of collected data

represents the most accurate distribution of RSS at that location, we compare the summary

statistics of each number of samples. APPENDIX F lists the tables of these statistics. By

inspection, it is true that only small numbers of samples (30 and 50) would be sufficient for

a location fingerprint based on the mean values only. If we approximate the distribution of

RSS using the lognormal distribution, the distribution can be completely described by the

mean and the variance. Therefore, the convergence of standard deviation can be used as

a condition to stop collecting new samples. From the tables in APPENDIX F, a number

between 150 and 200 should be sufficient.

D. CAUSES OF ERROR IN LOCATION DETECTION

The randomness of RSS is the major cause of error in in any indoor positioning system that

uses the RSS for location inference. If there was no randomness in the RSS and its location

fingerprint, every indoor positioning systems of this type will have no location detection error

(excellent accuracy and precision performance). In this section, we investigate the causes

of error in identifying any indoor locations. First, we discuss the error based on the results
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of our statistical analysis in previous section. Second, we look at the separation of RSS

patterns with different physical distance separations and different numbers of access points

used. Finally, we conduct a small measurement to estimate the path loss exponents which

describe how much the RSS will attenuate over the actual physical distance.

1. Randomness of Received Signal Strength Patterns

The randomness of RSS patterns is clearly described by its probability density function

(PDF) or its distribution. To understand the cause of the error, we need to understand the

nature of the randomness of the RSS. Figure 24 illustrates how the RSS distribution (both

mean and standard deviation) changes with the average RSS or location. The stronger the

mean RSS, the larger the tail to the left and its variation. On the other hand, the weaker

the mean RSS, the more the distribution becomes symmetric. Based on our measurement

results, symmetric distributions can be approximated by the lognormal distribution. Three

different RSS distributions are shown for comparison purposes in Figure 24.

Received Signal Strength (RSS) in dBm -10-20-30-40-50-60-70-80-90-100
FrequencyLeft-SkewAlmost Symmetric

ReceiverSensitivity
Figure 24: Unique property of RSS’s distribution measured from typical WLAN card

Since the level of RSS sometimes also represents the distance between the AP and the

mobile, this phenomenon suggests that the location detection error will be more likely to

make an error away from the AP. The closer the location (stronger RSS), the more difficult
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it is to identify the location. One of possible reason behind the change in distribution is the

non-linear mapping between the actual RF energy and the reported RSS values of WLAN’s

card. Intuitively, the weaker the received signal level, the more difficult it should be for

the WLAN’s card to be able to differentiate it. Ideally, if we have a perfect measurement

tool that can measure small RF energy, we expect the distribution of RSS to be left-skewed

across all RSS levels.

2. Separation of Location Fingerprints

The performance of indoor positioning systems depends greatly on the separation of location

fingerprints. A location fingerprint corresponding to a location can be identified correctly if

it is difficult to classify it (incorrectly) as another fingerprint by a pattern classifier. Note

that we do not specify any classifier at this point. In this section, patterns of RSS collected

at certain locations are plotted to visualize the separation of location fingerprints.

Theoretically, a change in RSS is proportional to the logarithm of the distance between

a transmitter and a receiver. Therefore, two different locations with different distances from

the same AP should have different average RSS values. However, in practice the RSS is a

random variable that has its value fluctuating around the average value due to the dynamics

in the environment. These fluctuating values can be grouped together as patterns of RSS at

a particular location.

To investigate how the patterns of RSS at different locations may appear, we consider

samples of RSS at two locations in the environment of Scenario 1. Location L2 and L3 in

Figure 5 are used and they are separated by approximately 18 ft (5.5 m). The means and

standard deviations of RSS at these two locations are summarized in Table 18. A simple

Euclidean distance calculation gives a signal distance of 18.52; however, this distance should

not be confused with the actual physical distance between two locations.

A two dimensional plot of samples of RSS from two APs (SIS410 and SIS401) are shown

in Figure 25. The patterns of RSS values at Location 2 are denoted by ×, while those at

Location 3 are denoted by ◦. The group of patterns at each location can be called the

location fingerprint of that particular location. From the plot, patterns of each location can
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Table 18: Sample statistics in dBm of two different locations

Statistics SIS410 SIS401 SIS501
L2: Sample mean -43.60 -79.76 -79.68
L2: Standard deviation 3.27 1.24 1.62
L3: Sample mean -57.38 -75.77 -67.97
L3: Standard deviation 2.67 1.83 1.36

be grouped together as a cluster. It is not surprising that the patterns of RSS vectors exhibit

a clustering property because the RSS has limited range and the signal often concentrates

around some average value as discussed in Section III.C. Because the spreading of patterns is

different for each RSS element and the spreading is not symmetric (due to the left-skewness),

the cluster is not a perfect circle.
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Figure 25: RSS fingerprints with two elements

Figure 25 indicates that the RSS’s patterns can be separated by some discriminant

functions or clustering techniques to create a location fingerprint for each location. However,

there are small groups of patterns which are located farther away from the main clusters

of both locations. In fact, these outliers have very small frequencies, but may cause some
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error when they do occur in determining the correct location using the Euclidean distance.

Note that Location 3 consists of 3666 samples and Location 2 consists of 3465 samples.

Only certain patterns are present in the plot which implies that there are only a few unique

patterns for each location. However, the plot does not show the density of each pattern.

Figure 26 plots the the frequency of occurrence of each sample pattern. The patterns near

the center of each cluster do have very high frequencies of occurrence; therefore, the average

or mean value of RSS could represent the RSS patterns very well. This visualization suggests

that we may use the center of the cluster as a representative of the location fingerprint instead

of the distributions of all RSS features. It also suggests that only two APs may be sufficient

for a small number of locations (which is another advantage of this technique over the AOA

and TDOA which require a triangulation of at least three APs). The edge of a cluster could

be drawn from the valleys in between any two clusters. The edge between any two clusters

can be used as the discriminant line for pattern classification.
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Figure 26: Two clusters with frequency of RSS fingerprints with two RSS elements

Based on the above visualization, two locations become difficult to identify if they are

closer together and the distributions of their RSS’s patterns significantly overlap. To illus-

trate this problem, Figure 27 shows two-dimensional plots of patterns from four pairs of

locations that are separated by one, two, three, and four meters in Scenario 1. Highly over-
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lapping patterns in the subplots of one meter and two meters separation suggest that using

two signals is insufficient to identify two locations separated by this distance. This finding

is not always true because patterns could still overlap for any two locations that have the

same average RSS from two APs.
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Figure 27: Separation problem of two locations in Scenario 1 with SIS410 and SIS501

Figure 28 shows a similar problem at the same locations of Figure 27. However, there is a

small difference between these two figures. The AP SIS410 has a larger signal variation than

the AP SIS401. Notice that the main cluster of SIS410’s signal spreads approximately 10

dBm on the abscissa, while the main cluster of SIS401’s signal spreads only approximately 5

dBm. Separation of patterns in Figure 28 is much easier than in Figure 27 for a separating

distance of two meters or more. This observation suggests that signals with larger standard
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deviations (or variance) will make it more difficult to perform location identification.
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Figure 28: Separation problem of two locations in Scenario 1 with SIS401 and SIS501

In real situations, the number of locations that need to be identified is much more than

two (on the order of hundreds per floor). Increasing the number of access points is one way of

separating two location fingerprints further. The overlap between the patterns in Figure 27

becomes a lesser problem for the location discovery algorithm as the number of RSS elements

increases. This can be depicted in Figure 29 when we plot the three dimensions for the RSS

patterns with the addition of the signal from SIS501. Note that it is impossible to illustrate

the frequency of each pattern in this case, but we may deduce from the previous two figures

that the highest frequency of occurrence will be at the center of each cluster.
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Figure 29: RSS fingerprints with three elements

3. Separation by Path Loss in Signal Propagation

Path loss is one of the basic signal propagation properties3 of the RSS that describes at-

tenuation of transmit signal power over a distance between an access point and a mobile

device with WLAN card. Traditionally, a path loss model can be used to predict the average

received signal power at a distance from a transmitter [46]. Using one of the path loss models

in [46], we can determine how the location fingerprints of two locations are separated. If the

attenuation of signal is small, any two location fingerprints will be difficult to identify. If the

attenuation of signal is larger, two locations which are close together will be separated in

signal space easily because the values of average RSS at these locations will be significantly

different. A simplified path loss model, which is sufficient for high-level analysis in this study

as shown by the comparison results between the simulation model and the prototype system

in Chapter V, can be written as a relationship between the received signal strength and the

physical distance from the transmitter: [61]

Pr(dAP,MS) = Pt− Pl(d0)− 10 · α · log10(dAP,MS), (III.1)

3Other signal propagation properties are the shadowing effect and small-scale fading effect.
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where Pr(dAP,MS) is the average received signal strength in dBm, Pt is the average transmit

power of the access point, Pl(d0) is the free-space path loss at the reference distance of

d0 = 1 m, α denotes the path loss exponent and dAP,MS is the distance between transmitter

and receiver in meters.

Using the WLAN card to measure the RSS at different distances from an access point,

we can determine the path loss exponent in Equation III.1 for both indoor environments in

Section III.A.1. A small measurement experiment is done by using our own RSS measurement

program to collect 30 samples of RSS per location. The average RSS is calculated for each

location and plotted against 10× log10 (dAP,MS).
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Figure 30: Path loss propagation of SIS401

in Scenario 1

2 4 6 8 10 12 14 16
−80

−75

−70

−65

−60

−55

−50

−45

−40

−35

10× log
10

(d
AP,MS

 in meters)

A
ve

ra
g

e
 R

S
S

 in
 d

B
m

Measurement
Prediction LOS

Figure 31: Path loss propagation of hl2-b-

card1 in Scenario 2

Figure 30 shows the relationship between the RSS and the logarithm of the distance in

a small office environment from 17 locations in Scenario 1. The signal is measured from the

AP SIS410 in Figure 5. The first eight locations have direct line-of-sight (LOS) between

the AP and the IBM laptop, while the rest of the locations do not have direct line-of-sight

(NLOS). Therefore, we divide the regression analysis into two sections: the LOS and the

NLOS parts. The path loss exponent α for LOS locations is 1.14 and the path loss exponent

for NLOS locations is 8.55. Note that the indoor path loss exponent is reported in [62] to

be in between 1 and 6. The Pt−Pl(d0) for LOS is -39.13 dBm and for NLOS is 14.68 dBm.
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Figure 31 depicts the relationship between the RSS and the logarithm of distance in a

large hall environment from 32 locations in Scenario 2 where there is no obstruction between

the AP (hl2-b-card1) and the IBM laptop at all locations. Using linear regression analysis,

we found that the Pt− Pl(d0) is approximately -31.03 dBm and α is 2.91.

The results in Figure 30 and Figure 31 depict the difference in the environment. For the

open space environment where there is little indoor obstruction, the attenuation is similar

over all distance and area. Thus, the location detection will have the same level of error

almost everywhere. For the small office environment where there are several indoor obstruc-

tions, areas near APs (LOS portion) which have small attenuation will have more location

detection errors than the areas farther away from APs (NLOS portion).

E. SUMMARY OF ANALYSIS RESULTS

The analysis results in this chapter reveal characteristics of RSS and its patterns beyond

the general knowledge of the traditional wireless communications. The experiments in this

study are different from other indoor RF experiments such as in [63] because the WLAN

card is not a proper tool for accurate signal measurement as a vector signal analyzer. In

particular, the vendor-specific RSS measurable range is the key to understand the shape of

the RSS distribution. Important characteristics summarized in this section will be used to

justify our realistic mathematical model of location fingerprint in the next section.

• The average RSS is usually modeled by a lognormal distribution which is symmetric

around a mean value [12], but our measurement results show that the distributions

are often left-skewed. However, some distributions with a weak mean RSS could be

approximated by the lognormal distribution. Distributions of the signal from the same

AP can have different shapes for different average values as shown by the skewness in

Figure 15 and Figure 16. Signals with weak power often have symmetric histograms

while signals with strong power often have highly left-skewed histograms.

• The standard deviation or variance of RSS can be different for signals from different APs

within the same building. The standard deviation of signals from the same AP also varies
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with the location as shown in APPENDIX B. The measurement results suggest that the

signal from APs at locations with direct line-of-sight (LOS) often has a large standard

deviation. On the other hand, the signal at non-line-of-sight (NLOS) locations often has

smaller standard deviations. In large building environments such as in Scenario 2, the

average of the standard deviation4 is smaller than in small building environments such

as in Scenario 1. We found that in Scenario 2 the average standard deviation of signals

from all APs are close together, while in Scenario 1 the average standard deviations are

quite different.

• When we consider the RSS at a location as a random process, we found that the random

process is typically non-stationary. Although the mean usually stays around the same

value, the variance could shift over long periods of time such as different hours of the day.

Moreover, the autocorrelation (autocovariance) function does not have the same shape

for each separate time-series. Changes in environment such as a human’s movement or

furniture relocation could also change the mean RSS. These non-stationary properties

indicate the difficulty in modeling RSS fingerprints for indoor positioning systems.

• Signals from different APs within the range of reception can be considered as independent

because the correlation coefficient between any pair of signals is often small or trivial.

The interference between the signals using the same radio frequency does not have any

strong correlation, thus the interference by the co-channel signals may have little effect

on the formation of the location fingerprint. The independence of signals is most likely

a result of the collision avoidance mechanism of the medium access control protocol in

802.11.

• The RSS patterns for a given location usually cluster around one or more values near

center of patterns that have high frequency of occurrence as shown in Figure 26. This

confirms that a vector of average values of RSS can be used to represent a location

fingerprint or a vector of means as done by RADAR system [13].

• There are two ways to improve the separation of RSS patterns: increase the distance

between two locations or add additional access points into the pattern consideration.

4Although average of standard deviation should not be calculated as a summary statistics, this study
does so in order to find a representative value to model the whole scenario.
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F. IMPLICATION ON MODELING OF LOCATION FINGERPRINT

To model the indoor positioning system based on location fingerprints, we need basic math-

ematical assumptions for location fingerprints. This section lists the set of assumptions that

are derived from the above analyses. These assumptions are proposed for their mathematical

tractability while still reflecting real RSS patterns to the extent possible.

• First of all, we assume that the random RSS is a stationary process. This is done to

eliminate time dependency properties of the RSS. We have seen that the mean is mostly

invariant over time. While the standard deviation will affect the performance, using

larger standard deviations will keep our performance results conservative.

• Each RSS element ρi in the location fingerprint F = (ρ1, ρ2, . . . , ρN)T is assumed to

be a lognormally distributed random variable which can be described by a mean and

a variance. Although measurement results show that the majority of RSS distributions

are non-symmetric and left-skewed, there are no well-known left-skewed distributions

available in the literature. Thus, it is difficult to construct mathematical analysis based

on a left-skewed distribution. When each RSS is assumed to be a lognormally distrib-

uted random variable, the location fingerprint becomes a multivariate lognormal random

variable or vector of N random variables from N APs. We will see in the next chapters

that this assumption gives a reasonable approximation of the performance.

• The (sample) mean ρn of each RSS (lognormally distribution) is assumed to be constant

for each location and corresponding fingerprint.

• The (sample) standard deviation σi of each RSS (lognormal distribution) is assumed to

be constant for each AP’s signal but can be different from one AP to another AP, σi 6= σj.

This assumption will cause our model to have less error in location detection because we

did not model the location-dependent standard deviation as described in Figure 24. For

further simplification, we also assume that the sample standard deviation is identical for

all locations and all APs in order to study the effect of one variable for the whole system.

• All AP’s signals are assumed to be independent. However, the correlation between each

pair of AP’s signal can be represented by a covariance σij in a covariance matrix C which
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is constant and does not shift over time for all locations, C = E{(S −F)(S −F)T}. This

can be used to capture the small effects of correlation.

• The location fingerprint vector F is the vector of the true mean of the multivariate

Gaussian random variable S or sample RSS pattern which is measured during the on-

line phase, ρi = E{si} from access point i. We assume that the mean vectors do not

shift over time.

G. CONCLUSIONS

We presented an initial analysis of the RSS values reported by an 802.11b NIC commonly

used in indoor location systems based on location fingerprinting. We pointed out that the

user’s presence should be taken into account when collecting the location fingerprint. In

some cases, the RSS value from one AP may be missing from the RSS vector just because

of the user’s orientation. The effect of user’s orientation is significant and the orientation

should be recorded in the database. The make of the wireless card which has a better range

and smaller signal variation should be selected for indoor positioning systems. The same

wireless card should be used for fingerprint collection and location detection.

We also analyzed the statistical properties of the RSS and we found that the RSS process

is non-stationary. The mean and the variance of the RSS could be shifted by a change in

environment which is uncontrollable as shown in Figure 20. The distribution of the RSS is not

lognormal or Gaussian, it is often left-skewed and the standard deviation varies according

to the signal level. We also considered the time dependency and the outage of the RSS.

However, more data analysis would require to make concrete conclusion about the time

dependency and temporal outage of RSS. It is clear from our measurement that signals

from multiple APs are mostly independent and the interference from the AP using the same

frequency does not have a significant impact on the RSS pattern. The visual presentations

of the RSS pattern in Section III.D.2 shows that the fingerprint can be grouped together as

a set of clusters. More than one cluster may represent one location. Since the RSS pattern

at a particular location may have more than one cluster, using a simple Euclidean distance
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as in [13] to determine the location may classify some patterns into a wrong location easily.

This causes the poor performance of the Euclidean distance technique. The next chapter will

consider modeling the distribution of the RSS and understanding how it impacts position

location.
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IV. MODELING OF THE POSITIONING SYSTEM

The review of literature in Chapter II pointed out that there was little interest in finding

theoretical explanations for the performance of indoor positioning systems. This study real-

izes the necessity of a mathematical framework that can be used to explain, model and/or

predict the performance of indoor positioning systems based on the location fingerprinting

technique. In particular, efficiently designing such systems requires a more detailed under-

standing of the relationship between system parameters and the system performance. Using

the results from extensive measurements in Chapter III, this chapter develops a model that

closely approximates a real positioning system. This chapter presents the analysis of indoor

positioning systems using this model and focuses on how we can describe the indoor posi-

tioning system based on location fingerprinting technique. The discussion of both analytical

and simulation models in this chapter will serve as a framework for providing a set of design

guidelines in Chapter V.

First, Section IV.A starts with the basic analysis of classification of location fingerprints

which is a form of a statistical decision problem (deciding which RSS pattern belongs to

which locations). We point out the difficulty of modeling the classification of real location

fingerprints. Then, we apply assumptions from the previous chapter to model the location

fingerprints and the system as a whole to understand the performance. In Section IV.B,

we describe the expressions that can be used to approximate the precision performance of

indoor positioning system. Then, with mathematically tractable assumptions, we present

a performance evaluation of an indoor positioning system based on the Euclidean distance

algorithm in Section IV.C. The exact probability of returning the correct location for a

simplified two-location system is derived. We extend the results to approximate the same

probability for a system with a larger number of locations. Because the analysis is limited
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to the probability which is a form of location precision, we suggest the use of a simulation

model in Section IV.D to plot the error distance distribution to enable the estimation of both

accuracy and precision performance. Finally, we discuss the limitations of our analytical and

simulation tools and compare them with a real system in Section IV.E.

A. MODEL FROM PATTERN CLASSIFICATION

Assume we have a simple indoor positioning system with only two locations denoted as k

and l. The locations are separated by an actual physical distance of d meters. The location

fingerprint corresponding to each location can be described using unknown distributions

with a mean vector F and a covariance matrix C. The description of the mean vector

and covariance matrix are explained in Chapter II. With N access points serving these two

locations, the mean vectors and the covariance matrices (Fk, Fl, Ck, and Cl) have dimensions

of [N × 1] and [N ×N ], respectively.

During the online (location determination) phase, the positioning system determines

the probability of whether a sample RSS vector S belongs to one of the two locations. If

the sample RSS vector S has a higher probability of belonging to one location than another

location, the system will report the location with larger probability as the estimated location.

The probability density functions (PDF) for the sample RSS vector S when it is measured

at location k and l are denoted as p(S|Fk) and p(S|Fl), respectively. These two PDFs are

likelihood functions and the ratio of these two functions is called likelihood ratio, p(S|Fk)
p(S|Fl)

.

The likelihood ratio can be used to determine if the sample is more likely to belong to one

of the two locations.

To determine whether the location detection is correct or not, the likelihood ratio is

compared with a threshold. This threshold is the ratio between a priori probabilities p(Fk)

and p(Fl). The a priori probability is the probability that a mobile device may dwell in any

one of these two locations. The threshold is defined as
(

p(Fl)
p(Fk)

)
[34].

Note that we assume a zero-one or symmetric loss function1 here. For indoor positioning

1Loss function specifies the loss associated with the decision of a classifier when choosing one pattern
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with two locations, it is reasonable to assume the zero-one loss function because choosing the

correct location incurs no loss and choosing any incorrect locations incurs the same loss. The

comparison of the likelihood ratio and the threshold is a Bayes minimum error classifier [34]:

(
p(S|Fk)

p(S|Fl)

)
>

(
p(Fl)

p(Fk)

)
. (IV.1)

The location accuracy performance can be derived from the probability that the position-

ing algorithm misclassifies one location fingerprint for another. For a two-location system,

the accuracy can be calculated from two error probabilities: the probability of misclassifying

a pattern as belonging to fingerprint k when it comes from l, p(p(S|Fk)
p(S|Fl)

> p(Fl)
p(Fk)

|Fl), and the

probability of misclassifying a pattern as belonging to fingerprint l when it comes from k,

p(p(S|Fk)
p(S|Fl)

< p(Fl)
p(Fk)

|Fk). Using these two probabilities, the probability of returning the correct

location is [34]:

Pc = 1−Pe

= 1−
[
p(Fk)p

(
p(S|Fk)

p(S|Fl)
<

p(Fl)

p(Fk)
|Fk

)
+ p(Fl)p

(
p(S|Fk)

p(S|Fl)
>

p(Fl)

p(Fk)
|Fl

)]
.(IV.2)

We have learned from the previous chapter that most of the PDFs of the RSS cannot

be characterized by any well-known or standardized distribution. The RSS’s distribution

often exhibits left-skewness and varies according to its average value or its location. It be-

comes even more difficult to find the joint probability density function for the N -variate

RSS random variable (even if the distributions are assumed to be independent). There-

fore, the probability in Equation IV.2 cannot be determined if we do not use well-known

distributions. Fortunately, a portion of the analysis results in Section III.C.1 suggests that

we could approximate some of the RSS distribution with a lognormal distribution (normal

distribution in dBm). This enables us to model the indoor location fingerprint with the

nice mathematical structure of the normal or Gaussian distribution. The elements inside

the sample RSS vector S = [s1, s2, . . . , sN ]T , the mean vector F = [ρ1, ρ2, . . . , ρN ]T and the

covariance matrix C of the location fingerprint can have the following assumptions based on

our analysis in Section III.F.

(k) over another pattern (l). Zero-one loss function Lkl is defined as 1 when k 6= l and 0 when k = l. The
positive loss represents a true loss while the zero loss represents a gain [34].
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• The random variables si (in dBm) for all i are mutually independent.

• The random variables si are lognormally (or Gaussian in dBm) distributed.

• The true mean of the random variable si or E{si} is denoted as ρi (in dBm).

• The (sample) standard deviation of all the random variables si is assumed to be identical

and denoted by σ (in dBm). The variance on the diagonal of covariance matrix are all

σ2.

• Since the random variables si are mutually independent, the covariance elements in the

off-diagonal of the covariance matrix are all zeroes.

Note that the comparison of the probabilities that a sample vector S belongs to one of

the location fingerprints is the key mechanism used by positioning systems with probabilistic

approach discussed in Chapter II. In practice, the real RSS distribution is estimated or

collected with histograms. The performance of the probabilistic approach using the real RSS

distribution will be better than our model here owing to the asymmetry in the distributions

as discussed in Chapter III.

1. Probabilistic Approach with Lognormal Assumption

The system model of indoor positioning with the simplified assumptions becomes a system

of a Bayes classifier for normal patterns [34]. We can derive the probability of returning

a correct location for the two-location positioning system by starting from two probability

density functions of the sample RSS vector S. The PDFs of S when it is measured at location

k and l can be written as [34]:

p(S|Fk) =
1

2πN/2|Ck|1/2
· e[− 1

2
(S−Fk)T C−1

k (S−Fk)], and (IV.3)

p(S|Fl) =
1

2πN/2|Cl|1/2
· e[− 1

2
(S−Fl)

T C−1
l (S−Fl)]. (IV.4)

Equation IV.3 and Equation IV.4 are likelihood functions. We can apply the logarithm

function to simplify the analysis of the exponential form of the likelihood ratio as [34]:

ln

(
p(S|Fk)

p(S|Fl)

)
=

[
−1

2
(S − Fk)

TC−1
k (S − Fk)

]
+ ln

( |Cl|−1/2

|Ck|−1/2

)

−
[
−1

2
(S − Fl)

TC−1
l (S − Fl)

]
. (IV.5)

90



Since the covariance matrices are assumed to be the same for all location fingerprints, C =

Ck = Cl ∀ k, l. With the assumption of independence between any pair of access points, the

off-diagonal values of the covariance matrix become all zero. Thus, the covariance matrix is

σ2I where I is the identity matrix. Applying these two assumptions into Equation IV.5 to

simplify the analysis, we have the log-likelihood ratio denoted as ηkl and can be written as:

ηkl = ln

(
p(S|Fk)

p(S|Fl)

)

=

[
−1

2
(S − Fk)

TC−1(S − Fk)

]
−

[
−1

2
(S − Fl)

TC−1(S − Fl)

]
. (IV.6)

The right-hand side terms in Equation IV.6 can be expanded and manipulated as follows:

ηkl = −1

2
STC−1S +

1

2
STC−1Fk +

1

2
FT

k C−1S − 1

2
FT

k C−1Fk +

1

2
STC−1S − 1

2
STC−1Fl − 1

2
FT

l C−1S +
1

2
FT

l C−1Fl

=
1

2
STC−1Fk +

1

2
FT

k C−1S − 1

2
FT

k C−1Fk − 1

2
STC−1Fl − 1

2
FT

l C−1S +
1

2
FT

l C−1Fl

=
1

2
STC−1(Fk −Fl) +

1

2
(Fk −Fl)

TC−1S − 1

2
FT

k C−1Fk +
1

2
FT

l C−1Fl. (IV.7)

Applying the identity aTC−1b = bTC−1a where a and b are vectors and C is a positive

definite matrix into Equation IV.7 and then adding 1
2
FT

k C−1Fl and subtracting 1
2
FT

k C−1Fl =

1
2
FT

l C−1Fk in Equation IV.7, we have:

ηkl =
1

2
STC−1(Fk −Fl) +

1

2
STC−1(Fk −Fl)− 1

2
FT

k C−1Fk +
1

2
FT

l C−1Fl

= STC−1(Fk −Fl)− 1

2
FT

k C−1Fk +

(
1

2
FT

k C−1Fl − 1

2
FT

l C−1Fk

)
+

1

2
FT

l C−1Fl

= STC−1(Fk −Fl)− 1

2
FT

k C−1(Fk −Fl)− 1

2
FT

l C−1(Fk −Fl)

= STC−1(Fk −Fl)− 1

2
(Fk + Fl)

TC−1(Fk −Fl). (IV.8)

The result on the right-hand side of Equation IV.8 is a summation transformation of

the N Gaussian random variables in the vector S which results in another Gaussian random

variable [34]. This new Gaussian random variable can be described by its mean Ek[ηkl]
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and its variance V ark[ηkl] with respect to the location fingerprint Fk. The mean of the

log-likelihood ratio is [34]:

Ek[ηkl] = Ek[ST ]C−1(Fk −Fl)− 1

2
(Fk + Fl)

TC−1(Fk −Fl)

= FT
k C−1(Fk −Fl)− 1

2
(Fk + Fl)

TC−1(Fk −Fl)

=
1

2
(Fk −Fl)

TC−1(Fk −Fl). (IV.9)

The variance of the log-likelihood ratio is [34]:

V ark[ηkl] = Ek[(ηkl − Ek[ηkl])
2]

= Ek[
(STC−1(Fk −Fl)−FT

k C−1(Fk −Fl)
)2

]

= Ek[(S − Fk)
TC−1(Fk −Fl)(S − Fk)

TC−1(Fk −Fl)]

= Ek[(Fk −Fl)
TC−1(S − Fk)(S − Fk)

TC−1(Fk −Fl)]

= (Fk −Fl)
TC−1(Fk −Fl). (IV.10)

Note that the last line is the result of the covariance matrix expression which is C = Ek[(S −
Fk)(S−Fk)

T ]. The common term (Fk−Fl)
TC−1(Fk−Fl) in both the mean and the variance is

similar to Equation II.6 described in Chapter II. This term is called the Mahalanobis distance

between the two densities of the location fingerprints p(S|Fk) and p(S|Fl). If we denote the

Mahalanobis distance as Hkl = (Fk − Fl)
TC−1(Fk − Fl), the mean and the variance of the

log-likelihood ratio ηkl when the pattern S corresponds to the location fingerprint Fk are [34]:

Ek[ηkl] =
1

2
Hkl, and (IV.11)

V ark[ηkl] = Hkl. (IV.12)

The total probability of error for a two-location system can be derived from two condi-

tional distributions that compare between log-likelihood ratio ηkl and the logarithm of the

threshold denoted as γ = ln
(

p(Fl)
p(Fk)

)
. First, the distribution of p(ηkl > γ|Fk) isN (

1
2
Hkl, Hkl

)
)

when the sample RSS vector S comes from fingerprint Fk [34]. Second, the distribution of
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p(ηkl < γ|Fl) is N (−1
2
Hkl, Hkl

)
) when the sample RSS vector S comes from fingerprint

Fl [34]. These two probabilities can be calculated as:

p(ηkl > γ|Fk) =

∫ ∞

γ

1√
2πHkl

exp

[
−(ηkl + 1

2
Hkl)

2

2Hkl

]

= 1− Φ

(
γ + 1

2
Hkl√

Hkl

)
, (IV.13)

and

p(ηkl < γ|Fl) =

∫ γ

−∞

1√
2πHkl

exp

[
−(ηkl − 1

2
Hkl)

2

2Hkl

]

= Φ

(
γ − 1

2
Hkl√

Hkl

)
, (IV.14)

where Φ is defined as:

Φ(η) =

∫ η

−∞

1√
2π

exp(−y2

2
)dy. (IV.15)

Substituting the results from Equation IV.13 and Equation IV.14 into Equation IV.2, we

have:

Pc = 1− Pe = 1− p(Fk)Φ

(
γ − 1

2
Hkl√

Hkl

)
+ p(Fl)

[
1− Φ

(
γ + 1

2
Hkl√

Hkl

)]
. (IV.16)

When assuming that a priori probabilities are equal for every location p(Fk) = p(Fl), ∀ k, l,

the logarithm of the threshold γ = ln( p(Fl)
p(Fk)

) = ln(1) becomes zero and for the two-location

system p(Fk) = p(Fl) = 1
2
. The probability of returning the correct location can be calcu-

lated by:

Pc = 1−Pe = 1− 1

2
Φ

(
−1

2

√
Hkl

)
− 1

2

[
1− Φ

(
1

2

√
Hkl

)]
(IV.17)

For a positioning system with more than two locations, the positioning algorithm based

on the probabilistic approach has to calculate the discriminant function according to the

Bayes’s decision rule for all location fingerprints: dl(S) = p(S|Fl)p(Fl), l = 1, 2, . . . ,M.

By taking the natural logarithm of this decision function and substituting Equation IV.4

into the decision function, we have a decision function that minimizes the average cost of

missclassification:

dl(S) = ln p(Fl)− N

2
ln 2π − 1

2
ln |C| − 1

2

[
(S − Fl)

TC−1(S − Fl)
]

(IV.18)
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Since we assume that all locations are equally likely, the a priori probabilities p(Fl) are equal

and can be dropped from consideration. Moreover, the second and the third terms on the

right-hand side of Equation IV.18 do not depend on the location in this model and they can

be dropped from our consideration. The last term is the Mahalanobis distance between a

sample pattern and a location fingerprint that is used to determine the estimated location.

Dl(S) =
[
(S − Fl)

TC−1(S − Fl)
]

(IV.19)

This result indicates that the Mahalanobis distance could be used as an alternative to the

Euclidean distance to determine the location in indoor positioning systems. The improve-

ment provided by the Mahalanobis distance lies in its use of the covariance matrix to adjust

the distance metric. Thus far, the Mahalanobis distance has not been used by any indoor po-

sitioning systems based on location fingerprint technique. We will show in the next chapter

that the Mahalanobis distance can be used to improve the performance of indoor positioning

systems.

2. Euclidean Distance with Lognormal Assumption and Identity Covariance

The above analysis of the probability of returning the correct location degenerates into

the Euclidean distance based system when identity covariance matrices are assumed for

all location fingerprints. Given a location fingerprint vector Fl = [ρ1, ρ2, . . . , ρN ]T for l =

1, 2, . . . , L where L is the total number of locations, a sample RSS vector S = [s1, s2, . . . , sN ]T ,

and the identity covariance matrix C = I(N×N), Equation IV.19 is reduced to the square of

Euclidean distance:

D2
E,l(S) =

[
(S − Fl)

T I−1(S − Fl)
]

= ([s1, s2, . . . , sN ]− [ρ1, ρ2, . . . , ρN ])× ([s1, s2, . . . , sN ]− [ρ1, ρ2, . . . , ρN ])T

=
N∑

i=1

(si − ρi)
2 =

N∑
i=1

q2
i . (IV.20)

The smallest such distance among all locations is used to indicate the estimated location by

the positioning algorithm.
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Interestingly, the Euclidean distance metric in Equation IV.20 can provide insight into

the underlying mechanism of the indoor positioning systems better than the probabilistic

approach in previous section. First of all, it can be categorized into two types of random

variables based on the mean value of each random component qi (in dB). The random variable

qi has a zero mean when each of the elements in the sample RSS vector S has the same mean

value as the corresponding element in the average RSS vector F . This corresponds to the

signal distance between the sample RSS vector at the location and the true fingerprint

corresponding to this location. The random variable qi has a non-zero mean when the the

sample RSS vector is compared with a location fingerprint of another position on the grid.

We will consider the characteristics of the random variable X = D2
E to obtain some insights

into the effects of radio propagation on the design of the positioning systems.

If the RSS is normally distributed as assumed in Section IV.A.1, the random variable X

has a central chi-squared distribution with N degrees of freedom [64] when the sample RSS

vector has its true mean recorded in the average RSS vector. That is E{si} = ρi or the mean

of the measured RSS is exactly the true mean in the database. Thus, the distance-squared

component qi is a zero mean Gaussian random variable. The random variable X is the

square of the distance between the sample RSS vector and the average RSS vector and has

a probability density function (PDF):

pχ2
N
(x) =

1

σN2N/2Γ(N/2)
e−x/(2σ2)x(N/2)−1, (IV.21)

where x ≥ 0.

Note that the variance of each Gaussian component in X is σ2 and N represents the number

of access points that are visible. Figure 32 depicts the effect of σ and N on the PDF of the

the random variable X. Table 19 summarizes the effects.

If the sample RSS vector is compared to a location fingerprint in the database that

does not correspond to the correct location, the random variables qi will have a non-zero

mean equal to µi = E{si} − ρi. In this case, the distribution of the square of the distance

between F and S given by X = D2
E has a non-central chi-squared distribution with non-

centrality parameter λ =
∑N

i=1 µ2
i and N degrees of freedom. The non-centrality parameter

is a measure of grid spacing because it is a function of the difference of the means of the
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Figure 32: PDF of central chi-squared distribution

received signal strengths at two points on the grid. The points on the grid are at different

distances from different APs. The farther apart the points on the grid are, the more will

be the difference in the mean received signal strengths at these locations. Thus, a larger λ

means a larger physical distance between two points on the grid. The PDF of the non-central

chi-squared distribution is given by:

px;N,λ = e−
(λ+x)

2σ2
1

2σ2

(x

λ

) (N−2)
4

I (N−2)
2

(√
λx

σ2

)
, (IV.22)

where x ≥ 0.

Table 19: Parameters of central chi-squared distribution

Parameter Effect of Larger Parameter
σ - STD. of Gaussian component X is larger.

N - Number of access points X is larger.
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Here, Iα(x) is the αth-order modified Bessel function of the first kind. Figure 33 shows the

effects of λ, σ, and N on the PDF of this signal distance metric. Table 20 summarizes the

implication of the parameters λ, σ, and N on the non-zero mean signal distance metric.
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Figure 33: PDF of non-central chi-squared distribution

Table 20: Parameters of non-central chi-squared distribution

Parameter Effect of Larger Parameter
σ - STD. of Gaussian component X is larger.

N - Number of access points X is larger.
λ - Non-centrality parameter X is larger.

Figure 34 compares the PDFs of central chi-squared and non-central chi-squared distri-

butions. Notice that the non-central chi-squared distribution shifts to the right for a large

value of the non-centrality parameter. A larger value of the non-centrality parameter will

cause the sample values of the non-central chi-squared distribution to be mostly larger than

the corresponding central chi-squared distribution. A larger standard deviation σ causes the

two distributions to get closer to one another. For example, as the standard deviation of

each of the normal RSS variables becomes as large as σ = 15 dBm, the difference between

the two distributions reduces. Both distributions are almost the same and the PDFs are
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nearly identical as shown in Figure 35. Note that we have kept the non-centrality parameter

to a large value (λ = 20) and still see the similarity of the distributions.
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We can now make some qualitative comments on the impact of some of the parameters

on the design of location fingerprinting based positioning systems based on the visual results

presented so far. The distance between the sample RSS vector and any location fingerprint in

the database is a random variable because the received signal strengths from APs measured

by the MS are all random variables. Consequently, it is possible to pick a location fingerprint

in the database as being closest to the sample RSS vector even though it is not the location

fingerprint of the correct location of the MS. This is very likely to happen if the standard

deviation of the RSSs are high. Intuitively this makes sense. The location fingerprint consists

of the mean values of the RSSs. If the RSSs have a large standard deviation, the probability of

the sample being close to the mean is small. In fact, if the RSS has a uniform distribution, any

RSS value is equally likely so that the location fingerprint that is returned as closest to the

sample RSS vector could correspond to any point on the grid. Ideally then, we would like the

RSSs to have a small standard deviation. Also, as the non-centrality parameter increases, the

probability that an incorrect location fingerprint is returned as the closest (smaller distance)

to the sample RSS vector decreases because the central chi-squared random variable has a
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peak in its PDF at smaller values than the corresponding non-central chi-squared random

variable. In the following sections, we look at the actual probability of returning a correct

location fingerprint.

The insights based on the characterization of distance metrics above provide the theo-

retical explanation for our measurement analyses in Chapter III. For example, we argued

in Section III.E that a larger number of access points can improve the separability of loca-

tion fingerprints. This effect can be described by the non-centrality parameter λ, which in

turn grows larger as the number of APs increases. The confusion between the two distance

metrics becomes less as the non-central chi-squared random variable (distance metric) gets

larger. Even though we did not use the left-skew distribution in this model, the underlying

mechanism of the system can be explained with the same mathematical structure.

Using the interpretation of the patten classification on the indoor positioning above, we

show in the next section how to determine the probability of returning the correct location.

We point out that this probability can be considered as a measure of location precision

performance of the indoor positioning system at zero-meter accuracy. We extend the analysis

from the case of two locations to cover multiple neighboring locations. Notice that although

the probability in Equation IV.17 is available in the classical pattern classification study, no

one has interpreted it as the precision performance for indoor positioning systems. Later in

Section IV.C, we study the sensitivity of number of access points, RSS standard deviation,

path loss exponent, and grid spacing on the probability of returning the correct location

(precision performance).

B. PROBABILITY OF RETURNING THE CORRECT LOCATION

Consider the probability of returning the correct location or correctly classifying a sample

RSS vector, S, over two locations (k and l) in Equation IV.17. We rewrite it here as:

Pc = 1−Pe = 1− 1

2
Φ

(
−1

2

√
Hkl

)
− 1

2

[
1− Φ

(
1

2

√
Hkl

)]
, (IV.23)
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where, Hkl = (Fk − Fl)
TC−1(Fk − Fl) is the Mahalanobis distance between the two distri-

bution of location fingerprint Fk and Fl. The relationship between the probability Pc and

the Mahalanobis distance is plotted in Figure 36. We can see that the performance improve-

ment of classification is very significant for the Mahalanobis distance between 1 and 11. To

maintain a high precision performance for any indoor positioning system, we need to ensure

that the Mahalanobis distance between any two location fingerprints is as large as possible.
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Figure 36: Effect of Mahalanobis distance on probability

We observe that the calculation of the probability does not depend on the sample RSS

vector S at all. Only the mean vectors and the covariance matrix are needed. It is obvious

that the separation of location fingerprints (mean vectors) and the magnitude of variance

of the RSS (or standard deviation of RSS) are the two main factors that dominate the

performance of indoor positioning systems. To improve the accuracy performance, we would

like to have the mean vectors located as far apart as possible in the signal space and have

the magnitude of the variance to be as small as possible. However, to gain detailed insight

on how to improve the precision performance, we consider an alternative calculation of the

the precision performance in the next subsection. The results of Equation IV.17 and the
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alternative calculation are extended to describe the positioning system with more than two

locations in Section IV.B.2.

1. Alternate Calculation of Probability with the Euclidean Distance

Here we present an alternative approach to interpret and calculate the probability of return-

ing the correct location. With this alternative interpretation, it is more obvious than the

probabilistic approach, how the number of access points will affect the system performance.

The analysis here provides more insight to better improve the precision performance. The

derivation of the probability is based on the use of two chi-squared distance metrics discussed

in Section IV.A.2.

Although it is tempting to directly compare the central chi-squared random variable to

the non-central chi-squared random variable, we cannot do so directly due to the dependency

of the two random variables which are transformations of the same random vector S (the

sample RSS vector). However, we can perform the following analysis to determine the

probability of returning the correct fingerprint as the estimate of the location when a MS

reports a sample RSS vector.

Let A be the square of the distance between the sample RSS vector S = (s1, s2, ..., sN)T

and the average RSS vector of the true location F = (ρ1, ρ2, ..., ρN)T . Let B be the

square of the distance between the sample RSS vector S and the location fingerprint F ′ =

(ρ′1, ρ
′
2, .., ρ

′
N)T of a neighboring point on the grid. We then denote {A < B} = {A ≤ B}

as the event that the distance between the sample RSS vector and the correct location

fingerprint is smaller than the distance between the sample RSS vector and the incorrect

neighboring location fingerprint. We can determine the probability of this event. Firstly, we

evaluate {A ≤ B} as follows:

A ≤ B

⇒
N∑

i=1

(si − ρi)
2 ≤

N∑
i=1

(si − ρ′i)
2

⇒
N∑

i=1

(si − ρi)
2 −

N∑
i=1

(si − ρ′i)
2 ≤ 0
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⇒
N∑

i=1

(s2
i − 2siρi + ρ2

i )−
N∑

i=1

(s2
i − 2siρ

′
i + ρ

′2
i ) ≤ 0

⇒ 2
N∑

i=1

si(ρ
′
i − ρi) +

N∑
i=1

(ρ2
i − ρ

′2
i ) ≤ 0

⇒ 2
N∑

i=1

siβi +
N∑

i=1

Γi ≤ 0, (IV.24)

where Γi = (ρ2
i − ρ

′2
i ) and βi = (ρ′i − ρi).

To determine the probability of the event in Equation IV.24, we first apply the properties

of the sum of multiple independent Gaussian random variables [65]. The left-hand side of

Equation IV.24, θ = 2
∑N

i=1 siβi +
∑N

i=1 Γi, is a new Gaussian random variable when all si

are Gaussian. The random variable θ has following mean and variance

µθ = 2
N∑

i=1

ρiβi +
N∑

i=1

Γi,

σ2
θ =

N∑
i=1

(2βiσi)
2. (IV.25)

Therefore, the probability that the system returns the correct location when it compares

just two location fingerprints to the sample RSS vector is given by:

Pr{θ ≤ 0} =

∫ 0

−∞

1√
2πσθ

e
− (θ−µθ)2

2σ2
θ dθ

=
1

2

2√
π

∫ − µθ√
2σθ

−∞
e−t2dt

=
1

2
+

1

2
erf

( −µθ√
2σθ

)
. (IV.26)

Note that the result in Equation IV.26 is equivalent to the result of Equation IV.17 and is

a special case of Equation IV.16. Our mathematical analysis described thus far does not

explain why the probabilistic approach is better than the Euclidean distance approach as

concluded in the literature. The superiority of the probabilistic approach as discussed in

Chapter II is due to its ability to capture the actual distribution of RSS. In this model, we

assume a simplified mathematical model of Gaussian distribution; thus, the benefit of the

real distribution is not present.
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From Equation IV.25 and Equation IV.26, we observe that the mean and variance of the

new distribution are influenced by two parameters of the positioning system: the number

of access points N and the standard deviation σi of the normally distributed RSS variables.

This insight provide more details than the one given previously by Equation IV.17. The

parameters βi and Γi do not have any explicit meaning but are related to the non-centrality

parameter λ discussed earlier. That is, they both depend on the difference between the

mean RSS at the two locations that is determined by the path loss of the signal. In turn,

the path loss of the signal depends on the site and the physical distances of the locations

from the N access points and indirectly to the physical distance between the locations. As

observed in Chapter III, in certain location area with NLOS the path loss exponent is quite

large, small physical distance separation between any two locations will result in large mean

RSS vector separation in signal space. This observation suggests that in a large path loss

exponent environment the positioning system can operate with better precision. We evaluate

the effects of these parameters (N and σ) together with the grid spacing (g) and the path

loss exponent (α) on the precision performance in Section IV.C.

2. Extension to Multi-Location Systems

In a real positioning system, the database contains several entries depending on the size of

the office floor and the grid spacing. The positioning system makes comparisons between

the sample RSS vector and all of these location fingerprints. The database may be arranged

hierarchically. In the first phase, the APs seen by the MS are matched. Then the location

fingerprints corresponding to these APs alone are compared with the sample RSS vector. In

any case, each comparison depends on the same sample RSS vector. Therefore, to be able

to calculate the probability of returning a correct location, we will need to know the joint

probability density function (PDF) of all random variables of the form p(S|F1,F2, . . . ,Fl)

for subsituting in Equation IV.1 or the complex form of θ in Equation IV.26. Deriving an

analytical model can be quite cumbersome where there may be tens or hundreds of location

fingerprints being compared.

To simplify our analysis, we consider a model with only a simple approximation of the
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probability of returning the correct location system. Without loss of generality, we use the

Euclidean distance approach for our explanation. The result described next is applicable to

the probabilistic approach since the calculation of the probability of returning the correct

location in Equation IV.17 and Equation IV.26 are equivalent.

Let θk =
∑N

i=1(si − ρi)
2 − ∑N

i=1(si − ρ′k,i)
2 be the comparison variable. The variable

θk compares the distance between the sample RSS vector S and (a) the correct location

fingerprint F and (b) the k-th incorrect location fingerprint F ′
k. The index k runs from 1 to

K excluding the correct location denoted by the index c. The variable K corresponds to the

number of entries in the database. Then, we can write the probability of correct decision as:

Prob{Correct Estimation} = Pc

= P {θ1 ≤ 0, · · · , θc−1 ≤ 0, θc+1 ≤ 0, · · · , θK ≤ 0} (IV.27)

Under the assumptions stated in Section IV.A, the sampled RSS vector can be viewed as a

fingerprint vector that has Gaussian noise adding to it around the mean of each RSS element.

This is analogous to a signal constellation used in traditional digital signal modulation

representation. To compute this probability, we need the joint distribution of the random

variables θk. Alternatively, we can evaluate an approximation to the probability of returning

a correct location Pc by using the union bound technique [66]. In this case, the RSS elements

from multiple access points may not form a regular grid. We can also not represent them

in only two dimensions like Quadrature Amplitude Modulation (QAM). Determining the

union bound becomes cumbersome as well. To avoid the cumbersome calculation of the

joint distribution or union bound, we make the assumption that they are independent. In

such a case:

Prob{Correct Estimation} = Pc =
K∏

k=1
k 6=c

Pr{θk ≤ 0}. (IV.28)

Equation IV.28 is an approximation to the probability of returning the correct location for

an indoor location system when the correct position is c and there are K location fingerprint

entries in the database. While this assumption is not correct, we compare the results of this

assumption with simulation results to see how close the results are. As we shall see, the

assumption of independence provides a reasonable approximation.
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When there are a large number of locations or K is large, a simpler approximation can

be calculated with the Pr{θk ≤ 0} of the nearest neighboring fingerprints of any correct

location. For a 2-D grid of positions, the largest number of nearest neighbor fingerprints is

eight. Assuming that the set of nearest neighboring fingerprints is denoted as Mn, The Pc

and Pe can be approximated as:

Pc ≈
∏

j∈Mn

Pr{θj ≤ 0}, and (IV.29)

Pe ≈ 1−
∏

j∈Mn

Pr{θj ≤ 0}. (IV.30)

C. PERFORMANCE EVALUATION

The major performance metrics of interest for indoor positioning systems are the accuracy

and the precision in estimating a location. In this section, we investigate how the path

loss and RSS characteristics influence the precision. As a measure of precision at zero-

meter accuracy, we look at the probability of making a correct estimation of the location.

A better measure of accuracy and precision is the distribution of the error in the location

estimate which will be presented in Section IV.D. We use Equation IV.28 as the analytical

approximation of the measure of precision and also compare this with simulations. We use

a simple grid in this work as described below.

1. System Model Setup

Figure 37 illustrates an indoor positioning system with L2 = 25 points on the grid. The

grid at the center is labeled with a ? and is assumed to be the current position of the

mobile station reporting the sample RSS vector. The neighboring positions with location

fingerprints recorded in the database during the site-survey are labeled with ◦. There are 8

neighboring positions in this system. The total number of positions within this system and

in the database is K = 9. The outer most positions are labeled with 2 and reserved for

placing access points only.

105



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Meters

M
et

er
s

Figure 37: A grid space for an indoor positioning system

Initially, we place four access points at the four corners of the grid. The positions of the

access points are AP1 = (0, 0), AP2 = (4, 4), AP3 = (0, 4), and AP4 = (4, 0). The position

of the mobile station is (2, 2). Suppose that the physical distance of the k-th point on the

grid from the j-th AP is dj,k meters. The true mean ρj or expected value of sj for that point

on the grid can be calculated from the mean path loss given by [61]:

Pl(dj,k) = Pl(d0) + 10 · α · log10(dj,k), (IV.31)

Here Pl(d0) is the free-space path loss at the reference distance of d0 = 1 m (this is 41.5

dBm for line-of-sight propagation (LOS) and for 37.3 dBm non-line-of-sight propagation

(NLOS) for reported measurements in [67]). The variable α denotes the path loss exponent,

which for indoor locations at a carrier frequency of 2.4 GHz is reported to be 2 for LOS

propagation and 3.3 for NLOS propagation [67]. Under other circumstances, the indoor

path loss exponent α can be between 1 and 6 [62].

Our path loss propagation analysis in Section III.D.3 also reports the path loss exponents

of 1.14 (LOS) and 8.55 (NLOS) in Scenario 1, and 2.91 (LOS) in Scenario 2 which are on

the same order as those reported in the literature. For demonstration purposes, the current
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analysis will use the propagation parameter from our LOS environment in Scenario 2. Using

our estimated results of Pt− Pl(d0) = -31.03 dBm from Section III.D.3, the mean received

signal strength, E{ρj}, can be found as:

E{ρj} = Pt− Pl(dj,k) = Pt− Pl(d0)− 10 · α · log10(dj,k), (IV.32)

where Pt is the transmit power of the access point which specified in the WLAN standards

of IEEE 802.11b as 15 dBm. The standard deviation of the RSS for this indoor positioning

system is assumed to be σ = 3.3 dBm which is the worst case value found in our experiment

of Scenario 2 environment in Section III.C.2. Other values reported in the literature for σ

are 2.13 dB in [32] or 4 dB for different indoor radio propagation conditions [61]. A more

accurate path loss prediction model could be used instead of the simple path loss model

in Equation IV.31. An inclusion of wall and floor attenuation factor is suggested in [13].

However, based on our path loss model estimation in Section III.D.3, the simple model

in Equation IV.32 is sufficient for our analysis purpose as shown by our validation results

in Section V.C. A recently proposed empirical path loss propagation model inc̃itecheung

incorporates two path loss exponents with breaking point distance, angle-dependent wall

and floor attenuation factors, and diffraction phenomenon into the same equation. Such a

model is suitable for Scenario 1 where there are two path loss exponents that change after a

certain breaking point distance. In our path loss estimation in Scenario 1, the breaking point

distance is approximately 6.4 meters. In summary however, the path loss equation provides

us with the mean received signal strength value. We use Equation IV.31 and Equation IV.32

here for estimation purposes. It is possible to plug in different parameters for different

environments without changing the framework here.

Initially we assume that the grid spacing is 1m (3 feet). We also look at the effect of

grid spacing on the accuracy with the following grid spacing values: 0.25, 0.5, 0.75, 1, 1.25,

1.5, and 1.75 meters. Note that the positions of the center of the grid and the access points

are fixed for all scenarios. As an example of the database of location fingerprints, we show a

sample in Table 21 that contains the location fingerprints of all coordinates within the system

when the grid spacing is set to 1m. If only one access point is present, the fingerprints, as

listed in the second column, may not be unique. this happens when two points on the grid are
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at the same distance from the access point. Additional access points make the fingerprints

unique.

Table 21: RSS fingerprints of indoor location

Access Point AP1 (dBm) AP2 (dBm) AP3 (dBm) AP4 (dBm)
Coordinate (0,0) (4,4) (0,4) (4,0)

(2,2) -44.1700 -44.1700 -44.1700 -44.1700
(1,1) -35.4100 -49.2942 -45.5800 -45.5800
(1,2) -41.2000 -47.2379 -41.2000 -47.2379
(1,3) -45.5800 -45.5800 -35.4100 -49.2942
(2,1) -41.2000 -47.2379 -47.2379 -41.2000
(2,3) -47.2379 -41.2000 -41.2000 -47.2379
(3,1) -45.5800 -45.5800 -49.2942 -35.4100
(3,2) -47.2379 -41.2000 -47.2379 -41.2000
(3,3) -49.2942 -35.4100 -45.5800 -45.5800

2. Results of the Probability of Returning the Correct Location for a Single

Neighbor

Based on the model above, we calculate the precision at zero-meter accuracy in terms of

the probability of returning the correct position. Initially we consider only one neighboring

point on the grid (we compare the location fingerprints at the positions (2,2) and (2,1)). For

this, we can simply use the analytical expression from Equation IV.26.

We first look at the impact of the number of access points deployed by varying this

number from one to 16 according to the system in Figure 37. The first four access points

are installed at the four corners and the rest are located at the following coordinates: AP5

= (2,0), AP6 = (4,2), AP7 = (2,4), AP8 = (0,2), AP9 = (1,0), AP10 = (4,1), AP11

= (3,4), AP12 = (0,3), AP13 = (3,0), AP14 = (4,3), AP15 = (1,4), and AP16 = (0,1).

Figure 38 shows the results of using Equation IV.26 when the number of access points

increases. The label “Ana” indicates calculation from the analytical equations discussed

earlier. A higher number of access points improves the precision but the probability does

not increase significantly for N > 5. We also see that a larger standard deviation of the

RSS results in poorer precision especially for a smaller number of APs. For instance, if the

standard deviation of the RSS changes from 1 to 4, the probability of returning the correct
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location drops from nearly 1 to 0.75 for three access points.
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points on probability
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Figure 39: Effect of RSS standard devia-

tion on probability

We next consider the impact of the standard deviation σ of the RSS in Figure 39. Clearly,

the larger values of σ degrade the precision dramatically. Figure 39 plots the probability

of returning the correct location versus the standard deviation. The results suggest that

the lower the value of standard deviation, the better the precision for any number of access

points. However, this value is difficult to control because it depends on the environment.

One way of improving this is to consider many RSS samples. This could contribute to the

delay in obtaining the location. Another way is to use wireless cards that have small standard

deviations such as those cards compared in Figure 10. The results indicate that reducing

the standard deviation to somewhere between 2 and 4 may be sufficient.

The second parameter that depends on the environment and cannot be controlled is

the path loss exponent α. Results for the probability of returning the correct location as

a function of α are shown in Figure 40. Pc improves as the path loss exponent increases.

This can be intuitively explained as follows. If the signal is attenuated greatly with distance,

even a small shift in the distance can result in large differences in the mean RSS. Thus,

the average RSS vectors between two coordinates become easily distinguishable. This will

also be the case if there are intervening obstacles like walls or floors although we have not

included them in this model. Our measurement result in Figure 30 supports this conclusion
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Figure 41: Effect of grid spacing on prob-

ability

that the faraway locations from access points often have larger path loss exponent due to

the non-line-of-sight effect.

The last system parameter affecting the probability of returning the correct location is

the grid spacing. The grid spacing can be selected during the site-survey. A large grid

spacing will provide poor accuracy or granularity of the location information. On the other

hand, a too small grid spacing may reduce the positioning precision. The measurement

results in Section III.D.2 visualize the problem of small grid spacing by showing significant

overlapping of RSS patterns measured from two different locations at one-meter distance

separation. The analytical results in Figure 41 indicate that a small grid spacing reduces

the precision greatly. For a standard deviation σ = 3.3 dBm, path loss exponent α = 2.91,

and three access points, a grid spacing of 1 m results in a 79% probability of returning the

correct location.

We have validated the analytical results presented so far (using Equation IV.26) with

simulations. The simulations were conducted by generating a random vector of Gaussian

random variables to represent the sample RSS vector with the mean values corresponding

to the average RSS vector at the mobile stations correct location (the ? in Figure 37). One

million sample RSS vectors were simulated for each data point. For each sample RSS vector
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generated, the Euclidean distances between the sample RSS vector and the two average

RSS vectors (location fingerprints) in the system were calculated and then compared. The

validation results confirmed that our analytical calculations exactly match the simulations.

3. Results of the Probability of Returning the Correct Location for Multiple

Neighbors

In this section, we look at the probability of returning the correct location when a comparison

is made not just with one neighboring fingerprint, but with the eight neighbors described

previously. The MS is once again located at the center of the grid. In practice, only a few

APs are visible in any WLAN configuration. This number is anywhere between 2 and 5.

The results in the previous section indicate that N = 5 APs is sufficient for good accuracy.

Therefore, we consider a maximum of four access points in this subsection.
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Figure 42: Effect of RSS standard deviation on probability

Figure 42 compares simulation results with the approximation in Equation IV.28 based

on the range of standard deviation of RSS σ between 1 and 20 dBm. Note that the simulation

results are labeled with “Sim”. The results follow the same trend as in the case of comparing

only one neighboring fingerprint. However, the lowest value of probability has been driven

down to around 0.1 when compared to the previous analysis in Figure 39 that is on the order
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of 0.6. The analytical approximation is found to be close to the simulation results when

the number of access points is three and four. Once again, keeping the standard deviation

to somewhere between 2 and 4 dBm appears to be sufficient when 4 APs are visible. The

approximation in Equation IV.28 is pessimistic compared to the simulation results due to

the assumption of independence between each comparison pair. This is to be expected. For

example, if the sample RSS vector is close to the correct location, it is also true for most

comparisons.
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Figure 43: Effect of path loss exponential

probability

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Performance for 8 neighbors with varying grid spacing and σ = 3.3, α = 2.91

Grid spacing in meters

P
ro

b
a

b
ili

ty
 o

f 
co

rr
e
ct

 lo
ca

tio
n

 e
st

im
a

tio
n

Sim: # of APs = 1
Sim: # of APs = 2
Sim: # of APs = 3
Sim: # of APs = 4
Ana: # of APs = 1
Ana: # of APs = 2
Ana: # of APs = 3
Ana: # of APs = 4

Figure 44: Effect of grid spacing on prob-

ability

Similar trends are observed for simulation and analytical results for Pc as a function of

the path loss exponent α and the grid spacing g as shown in Figure 43 and Figure 44. Larger

values of the path loss exponent and grid spacing improve the precision. It is also clear from

both figures that as the number of access points increases, the analytical approximation and

simulation results are very close especially for larger values of α and g.

D. ERROR DISTANCE DISTRIBUTION

Thus far, the performance evaluation expressions in previous sections only provide the prob-

ability of returning the correct location. This probability is in fact a precision performance of
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zero-meter accuracy of the indoor positioning system. In practice, the performance usually

reports some acceptable accuracy that is larger than zero meters. With the analytical ex-

pression of Equation IV.28 alone, we cannot analyze the precision performance at any other

accuracy.

An important point that needs to be emphasized is that the accuracy and the precision

are closely coupled parameters. A system designer can choose to report good accuracy

with a poor precision or poor accuracy with good precision from the exact same positioning

system. Therefore, to compare any two indoor positioning systems we need to either fix the

accuracy or fix the precision and compare the other performance metric. The error distance

distribution enables a better performance comparison between any two positioning systems.

For instance, the best positioning system should have most of its error distance concentrated

closer to the actual position (or zero-meter accuracy) to the extent possible.

Using Monte Carlo simulations, we can predict the error distance distribution which can

report both the accuracy and the precision information. However, additional positions (that

is, more than the nine locations in previous model) are needed to provide different error

distances. Assuming the same assumptions for the distribution of the location fingerprint,

the simulation is performed by generating multivariate Gaussian random vectors for sample

RSS S using the mean vector of the known location fingerprint F and the covariance matrix

C with identical variance of σ2 along the diagonal elements and zero variance for all other off-

diagonal elements. Next, the positioning algorithm uses the sample RSS vector to calculate

the decision function, which could be either the Euclidean distance or the Mahalanobis

distance, for all location fingerprints in the radio map. Finally, the simulation compares

the decision results with the correct location and records any error distance that occurs by

each random vector. Both accuracy and precision performance for the indoor positoning

system can be shown in a plot between the error distance and the cumulative probability

of returning the distance up to that error distance. This plot is called the error distance

distribution.

To demonstrate the use of the simulation model based on our assumption of multivariate

Gaussian location fingerprint described in Section IV.A, we conducted a small simulation

of a positioning system with 49 locations in the same LOS environment as in Section IV.C.
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That is the path loss exponent α is 2.91 and average standard deviation of RSS σ is 3.3.

The number of access points is in between one and four and located at the each corner

of the service area. We assume that the correct location is in the middle of the grid of

locations. Figure 45 illustrates an indoor positioning system with L2 = 49 locations on the

0 1.5 3 4.5 6 7.5 9 10.5 12
0

1.5

3

4.5

6

7.5

9

10.5

12

Figure 45: A grid space for an indoor positioning system with 49 locations

grid. MATLAB technical program tool is used to generate random vectors of multivariate

Gaussian distribution with 100,000 samples per data points and perform the performance

analysis by recording the error distance result of each sample using the Euclidean distance

metric.

Figure 46 shows four different distributions of error distance from the simulation with a

fixed grid spacing of 1.5 m based on different numbers of APs. The physical distances between

all neighboring and the correct positions are marked on the abscissa in each sub-graph. These

distances can be viewed as the location accuracy while the location precision can be found

by calculating the cumulative error distance distribution. For instance, for four APs one

can report 2.12 m accuracy with 97% precision and the average error distance of 1.1 m.

Observing that with only one AP the error distances are distributed almost uniformly while
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the performance improves dramatically with three and four APs. Calculating the cumulative

distribution with N = 4 from the simulation data, one can report an accuracy of 2.12 m

with a precision of 70%, 1.5 m with 47%, and 0 m with 13%. The average error distance is

2 m. For N = 3, accuracy and precision data are 2.12 m with 56%, 1.5 m with 36.5%, 0 m

with 9.3% and average of 2.49 m.
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Figure 46: Comparison of error distance distributions using simulation

E. GOODNESS OF ANALYTICAL AND SIMULATION MODELS

The analytical model is efficient because it allows quick calculation of precision performance,

but it cannot report the precision performance at other accuracy levels beyond zero meters.

However, the analytical model provides insights for the improvement of the system perfor-

mance through the analysis in Section IV.C. Although our model is based on conservative
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assumptions, it provides a framework for further creating more complex mathematical mod-

els and representations of indoor positioning system. For instance, we could use different

values for the standard deviation of the RSS value from each access point.

The simulation model is another tool which provides more insights on the distribution of

the error distance. It enables a system designer to approximate both precision and accuracy

performance other than the precision at zero-meter. One advantage of the simulation model

is that it can incorporate non-standardized distributions to model location fingerprint for

analysis of indoor positioning performance. We will demonstrate this point in the next

Chapter. However, the disadvantage of the simulation model is that it may require more

time than the analytical approach. In both cases, our models require a good approximation of

the actual environment parameters such as the path loss exponent, the standard deviation

of the RSS in that environment, and a good prediction of the location fingerprints. The

goodness of our system analysis will depend greatly on the system parameters and the

location fingerprint prediction.

In comparing our mathematical model to a real system, we can identify three major

differences based on the infrastructure, the survey, and the real position. The following

subsections discuss these difference and argues the goodness of our models.

1. Missing Signals

First, in real systems, the access points are installed opportunistically and a MS may not

receive signals from all access points in the building. A subset of access points may be present

in the MS’s view at a particular time. Our measurements in Chapter III indicate that some

APs are never seen for significant durations of time at a location, but suddenly become visible

at other times because of the environmental changes especially in multi-floor environments.

This affects the performance of positioning systems, but we have not incorporated this in

the mathematical model.

This limitation is due to the time dependent property of the RSS, which is difficult to

model. Note that our model assumes a stationary random process. The missing RSS could

occur both during the off-line phase and online phase of the indoor positioning system. To
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modify the model to taking into account the missing signal, we might have to incorporate

time dependency into the model and make the RSS distributions vary over time. However,

the proposed model is still valid for the system where the service area has good coverage.

We can assume that the location detection is performed only on those signals from APs that

are available all the time.

2. Non Uniform Grid Spacing

Our model also assumes a very simple grid. Combined with a generic path loss propagation

model, the location fingerprints used as examples in our analytical model are nicely separated.

In practice, during the site-survey the grid spacing may not be strictly uniform due to the

inaccessible parts of the environment such as walls, partitions, and office furniture. Even

when the grid spacing is uniform as in Figure 47 which is used in Scenario 1.
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Figure 47: A uniform grid space of 25 positions

From the experiment of Scenario 1 in Chapter III, we found that the actual location

fingerprints are not always nicely separated as shown in Figure 48. In this figure, we plotted

the average RSS from two APs at each location and labeled each location with corresponding

standard deviations (σSIS410 and σSIS501). From the visual inspection of the fingerprints, we
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can see that they are almost random and sometimes not well separate. Some locations that

should be closer together in physical distance may not be close together in signal space.

Other cases that appear to be separated in physical space may be close in signal space. This

phenomenon is difficult to model because the relationship between physical distance does

not perfectly correspond to signal space distance.
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Figure 48: Location fingerprints of a uniform grid space of 25 positions

However, by comparing Figure 48 and Figure 47 closely, we can see that the neighboring

structure of fingerprints is still apparent. For instance, location 13 is in the middle of the

physical uniform grid and it is also in the middle of real location fingerprints. Here we might

argue that our mathematical model can still imitate the real world fairly well. Moreover,

our conjecture that we considered only the closest neighbors in the uniform grid for our

performance approximation is sufficient.

3. Continuity of Real Location

The actual MS positions are not limited to the grids defined in the database. Therefore the

sampled RSS vector measured by the MS may not have the same mean RSS as recorded
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in the database. This is actually not the problem specific only to the analytical model.

The real indoor positioning system also does not record continuous positions. A real system

also reports the closest location on the grid that the mobile device is at. To imitate the

real system, we could change the model to allow the sample RSS vectors to be generated

based on the mean of locations that are not on the predefined grid. Then, we could simulate

the system to find the error distance distribution. It can be expected that some of the

error distances could be cut into half of the grid spacing because the error distance now

corresponds to a location in the middle of two calibrated locations. However, the precision

reported at zero-meter error distance will be less or none. We believe this is not a significant

limitation of the model since the random variation of the RSS implies that any position

not on a calibrated grid point will likely have a fingerprint that is very close to or almost

identical to those of one of the neighboring grid points.

F. CONCLUSIONS

By looking at the system from the distance comparison approach, this chapter provides a

framework for theoretical explanation and insights about the indoor positioning system.

Equivalent analysis could be done based on the probabilistic approach. Similar results

could be obtained from both approaches because of our simplified mathematical structure

(Gaussian assumption). Given a set of system parameters and radio propagation charac-

teristics, which are the number of access points, the grid spacing, the path loss exponent,

and standard deviation of RSS, the accuracy of the positioning system can be determined

in terms of the probability of returning the correct location with the model presented in

this chapter. The analysis results could lead to a guideline on the parameters to consider in

designing and deploying an indoor positioning system. Monte Carlo simulation of location

fingerprints can be used to create error distance distributions which form a valuable tool to

compare different indoor positioning systems. We will explore the design and deployment of

indoor positioning in the next chapter using the knowledge gained from previous and current

chapters.
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V. SYSTEM DESIGN AND DEPLOYMENT

While prototypes and commercialized products of WLAN based indoor positioning systems

have been available for quite some time, each system has its own design choice with little

benchmarking and no research focusing on system performance, design and deployment

issues. The study in this chapter discusses design trade-off and performance improvement

conditions. First, Section V.A points out a number of high level design and deployment’s

choices which we derive from experience in the literature and our own measurement analysis

results. Second, Section V.B discusses low level design issues which include the selection of

positioning algorithms and the performance of positioning system. Utilizing our proposed

model, we demonstrate the use of our model to justify the performance improvement which

in turn could provide guideline to improve real system. Third, we summarize a set of design

guidelines in Section V.D which consists of a design checklist and performance improvement

recommendations. Finally, we present our own software-based indoor positioning prototype

based on the Euclidean distance algorithm in Section V.C. We use this prototype to consider

our design decision and validate our model presented in previous chapters.

A. HIGH LEVEL SYSTEM DESIGN

This section identifies a set of design decisions which are relevant to location fingerprinting

types of systems. The top level issues that a designer should consider are application, com-

plexity, performance, and security. These issues will dictate where a system component (such

as sensing point and positioning algorithm) should be placed within the indoor positioning

systems. The result of the discussion in this section is a design checklist which is shown in
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Section V.D.

1. System Design Issues

The following list briefly describes the design considerations for indoor positioning system.

A system designer must decide or determine these issues before implementing and deploying

the actual positioning system.

Type of Applications is the first design decision that must be determined. The location

fingerprinting technique is generally aimed to provide locating and tracking services to

users inside buildings [13]. Thus far, the best accuracy performance result of such systems

(summarized in Table 4) is still on the order of a few meters of actual location. Due

to the randomness of the RSS as discussed in Chapter III, the WLAN based indoor

positioning systems will not be able to provide centimeter-level accuracy. Therefore,

this kind of positioning system is suitable for the applications that require one or more

meters of accuracy. Fortunately, there are a number of emerging location-based services

for this level of accuracy for indoor environment such as location determination for home

automation [68].

Size of service area influences how many locations are needed to be calibrated. The area

size affects the time required to collect the location fingerprint, and how many access

points are necessary to cover the service area. We also have to make sure that every

location in the service area has sufficient number of different AP’s signals for positioning

purposes.

Location resolution and grid spacing can be determined based on the type of services

the positioning system will provide. Some applications are sufficiently served with an

accuracy commensurate with the size of an office room size (i.e. 5 m.), while other

applications require an order of a couple meters of location granularity (i.e. cubicle size

of 3 m × 3m). Collecting too dense location fingerprints can lead to wasting of time and

effort without gaining improvement in performance. The decision on these parameters

can dictate how scalable the fingerprinting system will be for that particular choice of

grid spacing. We can use the proposed model in Chapter IV to determine suitable grid
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spacing to meet any required performance goal.

Number of locations depends greatly on the size of service area, the grid spacing and the

actual floor plan. Furniture and inaccessible areas will reduce the number of locations

to perform the fingerprint collection. To decide on number of locations, the help of floor

plan and the results of previous two decisions are required.

Number of access points is the key to improving the performance as we pointed out

in our mathematical description in Chapter IV. Our proposed model in Chapter IV can

help a system designer to estimate the number of access point that could achieve required

performance goal. For indoor positioning purposes, we just need the beacon signal from

the access points for location detection. The access point does not require to be fully

connected to the internet [21]. Fortunately, the price of IEEE 802.11b access points has

been coming down to less than a hundred dollars. Increasing the number of APs does not

cost very much. Although the number of non-overlapping frequencies of IEEE 802.11b

is limited, we can place them close together without much worry about the interference

if data communications is not the main service. Moving access points around to improve

the signal in the area can be easily accomplished as well.

Number of users is another issue that must be considered because it can contributes signif-

icant traffic and work load on the WLAN network infrastructure and positioning server.

For example, if the number of users is large, the location sensing function should be on

the mobile devices rather than on the access points.

User’s Orientation Consideration should be included in the radio map; however, prac-

tical implementation and feasibility of the deployment may force the system designer to

avoid the inclusion of orientation. An example commercial software [21] instructs the user

to turn around 360 degree at each location during the collection of location fingerprints

which takes around 20 seconds. This shows an example of averaging out the fingerprint

across all orientations. If the orientation is decided to be included, the designer must also

decide how many orientations should be included. The more the number of orientations

the larger the number of data must be collected for all combinations of locations and

orientations.

Environment parameters such as the path loss exponent and standard deviation of RSS
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should be determined by conducting a small site survey. They are required if we want

to predict the performance of positioning system without laborious measurements.

Number of samples for location fingerprinting influences the performance of the sys-

tem. We discussed this number in Chapter III. This number should be determined and

tuned to achieve the required performance goal. Our model did not include this issue

and assume that the statistics in any given location fingerprint from the path loss model

is sufficient.

Fingerprint collection is the most time consuming procedure in WLAN based indoor

positioning system. Without assistance of any signal propagation model to create the

location fingerprint, the measurement period and the number of required samples should

be selected such that the system can be efficiently deployed over large areas. There is a

tradeoff between the performance and the time required to collect the fingerprints. The

shortest data collection period per location should be used to scale the deployment of

such systems as the number of points required to collected is multiplied per area.

Number of samples for detecting location: As pointed out by [13], the average value

of multiple samples could improve the performance of location detection slightly. They

indicated that 3 samples provided almost as good as 20 samples in their experiment.

However, in our model and prototype above we use only one sample to detect the location.

Location sensing side can be determined by the application, required security and pri-

vacy, and the complexity limitation. Both mobile devices (client-side) and access points

(network-side) can transmit beacon signals and perform RSS measurement. Note that

The accuracy performance seems not to be significantly affected by the decision of where

to put the location sensing due to very little asymmetry of signal strength measurement

in [13]. This little impact on accuracy performance is true if the hardware comes from

the same vendor on both the client-side and network-side. For user locating and tracking

applications, it is a logical decision to have a WLAN network perform location sensing.

If the number of users for particular application becomes larger, the location sensing

function should be distributed to the mobile devices to reduce the load and complexity

on a positioning server and access points in network. If the location-based service is in

the form of a resource locator, all the location sensing can be done at the client-side. The
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client-side RSS measurement can provide more security and privacy for the user. The

system will be more complex for the network-side measurement because the system will

require the cooperation and synchronization of all mobile devices and access points [13].

Positioning calculation side is the issue that may limited by the computing power and

energy of the mobile device. For applications of home and small office with small number

of mobile devices or user locating and tracking applications, the positioning calculation

is more suitable to be done at a centralized server [68]. In some application like resource

locator, location calculation can be done on the mobile devices with necessary information

pre-loaded on the mobile device themselves.

B. LOW LEVEL SYSTEM DESIGN

1. Algorithm Selection

Comparison of WLAN based positioning algorithms was presented in [22], but little dis-

cussion was made regarding their implication on design decisions of the positioning sys-

tem. In [22], the authors estimated the complexity of the off-line phase, the on-line phase

and Vapnik-Chervonenkis dimension1 for weighted k nearest neighbors, probabilistic ap-

proach, neural networks, and statistical learning theory approach or support vector machines

(SVMs). The Vapnik-Chervonenkis dimension is generally used to compare learning algo-

rithms under statistical learning theory. Our scope of study does not include the neural

network and statistical learning theory; therefore, the VC dimension will not be considered

here. This work will only consider design implications of the distance based approach and

probabilistic approach. The Euclidean and the Mahalanobis distance will be analyzed for

the distance based approach, while the probabilistic approach is based on the algorithm used

by [18].

Given an equal set of R training patterns for all algorithms, we estimate the complexity

1Vapnik-Chervonenkis dimension is a measure of any machine learning algorithm on its ability to classify
patterns [42]. It is defined as the maximum number of points that can be arranged so that the machine
learning algorithm can separate them.
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requirement during the off-line and the on-line phases. Comparison criteria are construction

of the fingerprint database, memory space requirement of the database and complexity of the

algorithm. Assume that the location information in all techniques are the same and contain

d units (e.g. bytes) of dimensions and orientation data. There are total of l locations in the

location-based service (LBS) area and a total of N access points which could be measured

at all locations within the LBS area.

First, we consider the running time requirement to construct fingerprint databases during

the off-line phase. For the Euclidean distance, each location fingerprint requires a calculation

of an average RSS vector of size N that is mapped into a vector of d elements for location

information. For the Mahalanobis distance, an additional calculation is needed to find the

covariance matrix of size N×N and its inverse for each location. The probabilistic approach

requires counting of unique RSS patterns for the histogram at each location. The number

of bins in the RSS histogram could vary depending on the variation of RSS from each AP

and the duration of measurement. The computation of the histogram could be varied but

from our analysis the number of bins are on the order of 100 or more for a measurement

of approximately 1,200 samples over five minutes. Thus, the memory space requirement is

important because the fingerprint database could become very large for a large LBS area. We

will use a constant u to represent the average number of unique patterns at each location. The

memory space requirement for each technique increases as the number of locations increases

but the probabilistic approach tends to need more space to store the histograms. Table 22

compares the off-line phase requirement. The memory space requirement to maintain the

fingerprint database for the probabilistic approach is the largest among the three techniques.

Table 22: Comparison of off-line phase and on-line phase

Off-line Phase On-line Phase
Technique Computation Memory Space Search Space Computation Searching Sorting

Euclidean O(RN) l× (N + d) l entries O(l) n/a O(llogl)
Mahalanobis O(RN) l × (N + N2 + d) l entries O(l) n/a O(llogl)
Probabilistic O(RN) l× u× (N + d + 1) l× u entries O(l) O(l(log(u) + 1)) O(llogl)

The complexity during the on-line phase is also considered in Table 22. Sorting and

searching operations are two common operations for the location fingerprinting technique.

125



For the Euclidean and the Mahalanobis distances, distance calculations for all locations are

done first. The estimated complexity is shown under the computation column. Then, a

sorting is used to determine the location with the smallest distance. We assume that a

quick sort algorithm is used. For the probabilistic approach, first, the searching (assume

a binary search) for a matching RSS pattern is performed first over the histogram bins in

each location. Next, the posterior probability calculation may be required for all locations.

Finally, a sorting is used to determine the location with the maximum likelihood probability.

The probabilistic approach could require more time to find all matching patterns than the

other two schemes.

Based on the analysis above, the distance based approach requires less memory space to

keep the radio map. The shorter search time of the distance based approach is also another

advantage. However, the probabilistic approach can provide better accuracy and precision

performance because of the extra information in its radio map. Note that in practice the

probabilistic approach require larger number of training samples (R) in order to accurately

approximate the real distribution of location fingerprints; thus, it will take more time to

perform the off-line phase. These issues on design’s tradeoff were not considered previously in

the literature because most of the mobile devices used in the prototypes were powerful laptop

computers. These issues will become important if the radio map and computation are placed

on mobile devices with limited power and computation capabilities. This design decision on

performance tradeoffs should be considered when the computation and the maintaining of

radio map are on the mobile device itself. If a positioning server on the network-side is

dedicated for maintaining the radio map and performing location calculations, the memory

space and computation capability may not be an important design decision.

a. Performance Comparison of Different Positioning Algorithms We analyze

trade-offs of positioning algorithms on the performance by using real location fingerprints

from 25 locations in Scenario 1 of Chapter III. Three APs’ signals (SIS410, SIS401, and

SIS501) were recorded in each fingerprint. We created three different fingerprint databases

or radio maps for the following algorithms: Euclidean distance, Mahalanobis distance, and

probabilistic approach with histogram. The radio map of Euclidean distance contains only
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the mean RSS vectors. The radio map of the Mahalanobis distance contains both mean

and variance vectors of RSS (assuming independent among signals from different APs). For

the probabilistic approach, the entire histogram is maintained in radio map. Note that the

Mahalanobis distance has not been used in prior literature. This is the first work that has

suggested its use and compared its performance with the other approaches.

To compare the positioning performance, we used the histogram obtained to create em-

pirical distributions of RSS patterns at each location for the probabilistic approach. Then,

we used the simulation modeling approach suggested in Chapter IV with the empirical dis-

tribution to randomly generated a new data set of 100,000 patterns for each location as input

to all three algorithms. For each random pattern and its corresponding location estimate,

we determined the error distance and collected the statistics of each error. The accuracy and

the precision performance are reported simultaneously using the error distance distribution

in Figure 49 where we average cumulative error distance distributions from the performance

results of all 25 locations and each algorithm.
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Figure 49: Comparison of average cumulative distribution of error distance

The performance results are labeled as Empirical followed by their corresponding algo-

rithms in Figure 49. The probabilistic approach has the best performance (77% at 0 m) of all
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algorithms due to the larger information maintained in the fingerprint database (at the price

of largest memory space requirement and search complexity). The Mahalanobis distance

(57% at 0 m) improves the average precision by 3 percent over the Euclidean distance (54%

at 0 m). Knowing the properties of the RSS patterns such as its variance and applying the

Mahalanobis distance, we could slightly improve the performance of positioning algorithms

with small increments in memory space requirement. Notice that at 3-meter accuracy, the

precision performance of all algorithms are comparable. Therefore, depending on the perfor-

mance requirement of LBS applications, the probabilistic approach may not be necessarily

the best to implement.

The last two curves are the performance results based on the use of a lognormal model

as suggested in Chapter III. The simulation model generates sample RSS patterns with the

mean vectors and covariance matrices estimated from real location fingerprints in Table 29.

The average covariance matrix used in these two curves was

C =




20.2944 0.1492 −0.0288

0.1492 5.0564 −0.1100

−0.0288 −0.1284 1.9788


 . (V.1)

The results suggest that the lognormal model can provide a lower bound approximation of

system performance. Although at zero-meter accuracy the lognormal model has 16% worse

performance than the empirical model with the Euclidean distance, at larger accuracy values

(says 3 meters) the lognormal model could approximate the performance of the empirical

distribution. Similar results are true for the lognormal model with Mahalanobis distance.

2. Performance Achieving Design

To efficiently design indoor positioning systems that cater to location-based services (LBSs)

and meet required accuracy and precision performance, system designers can apply our

proposed modeling technique and design guidelines to approximate the performance of the

system. In this section, we first provide a general guideline on which direction a designer

can take to improve the performance of the system. Then, we demonstrate an example of
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how to use our simulation model to create the error distance distribution curves for different

system scenarios.

a. Design Examples Using Proposed System Model The location fingerprint col-

lection and performance tuning may not be a tedious task for a small LBS area, but for a

large area or large number of locations it could become very time consuming. Instead of

adding more access points later or changing the minimum distance between two locations

and re-collecting the location fingerprint to improve the performance, it could be more ef-

ficient if we predict positioning performance before actual deployment. To accomplish this

task, we investigate the use of the model proposed in Chapter IV to estimate the system

performance when changing the minimum distance between two locations and adding new

access points to the positioning system. The study can be divided into two scenarios.

In first scenario for grid spacing, we created a Monte Carlo simulation that generates

multivariate Gaussian random vectors for a 25-location positioning system similar to our

actual experiment in Scenario 1 of Chapter III. There are three access points in this first

scenario. For the three APs, we have σ2
AP1 = 20.29, σ2

AP2 = 5.06, and σ2
AP3 = 1.98 which

are obtained from Table 29 in APPENDIX C. We assume that all access points are placed

outside and around the grid of locations only. Suppose the physical distance of the k-th

point on the grid from the j-th AP is dj,k meters. We use the mean path loss for LOS of

Scenario 1 estimated in Section III.D.3 to determine the expected value of RSS element ρj

for the location fingerprint at each location.

Eρj = Pt− Pl(d0)− 10 · α · log10(dj,k) (V.2)

Here Pt− Pl(d0) was estimated as -39.13 dBm for LOS region in Scenario 1. Note that Pt

is the transmit power and Pl(d0) is the free-space path loss at the reference distance of d0

= 1 m. The variable α denotes the path loss exponent, which was 1.14 for LOS region in

Scenario 1. Since most of 25 locations in our model do not have any obstruction between

them, the use of LOS parameters is suitable for our example of path loss calculation.

Figure 50 shows the results of simulations to predict average cumulative distributions

of the error distance from all 25 locations in the model. We generated 10,000 samples for

129



each location and averaged out the probability of correctly returning each location. Two

curves in the middle of Figure 50 labeled with 1 m provide a comparison between the use

of the Mahalanobis distance and the Euclidean distance. The Mahalanobis distance shows

a better precision performance than the Euclidean distance up to almost 10%. Our model

results show performance results different from Figure 49 because the real and the simulated

location fingerprints are different.
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Figure 50: Effect of grid spacing on the probability of returning correct location

Because the performance modeling technique estimates conservative performance of in-

door positioning system as shown in Figure 49, we could use this model to study the sen-

sitivity of the two interesting system parameters: the grid spacing and the number of APs.

Figure 50 compares the probability of returning the correct location for different grid spac-

ing values (0.5m, 1m, and 1.75m) from our model. Assume that the LBS area is 5m×5m;

therefore, a larger grid spacing will result in smaller number of positions (less fingerprint

collection time) per area. Although the precision performance result is improved as we in-

crease the grid spacing, the location granularity or resolution is reduced accordingly. In a

real positioning system, the mobile’s location is not limited to locations in the fingerprint

database. The granularity of the correct location is within half the grid spacing.
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As we pointed out earlier, additional access points in the RSS pattern add dimensions

and improve separability among the location fingerprints. There is a diminishing return

on the increment of number of access points [69]. However, this diminishing return also

depends on the number of the locations in the area needed to be identified. A larger number

of locations can affect the number of required APs. Depending on the choice of using existing

access points or installing extra access points for positioning purposes, the location of the

access point could improve the performance of the system. The AP that is far away from

the LBS area and has small signal variation can improve the precision performance better

than the one with larger signal variation.
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Figure 51: Effect of number of access point on the error distance distribution

Figure 51 illustrates the performance improvement to the model of 25 locations when the

number of APs is increased while the grid spacing is fixed at 1 m. In this second scenario of

increasing number of access points, we used the same number of samples as the first scenario

in Figure 50 (10,000 samples) per location and average out the the probability of correctly

returning each location. In this scenario, we assume that the 4th to 6th APs have the same

variance as the 1st to 3rd APs which are 20.29, 5.06, and 1.98, respectively. The 7th and

the 8th APs have the same covariance matrix as the 2nd and the 3rd APs which is 5.06 and
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1.98. All APs are evenly spaced around the LBS area as shown in Figure 52. Notice that

the performance improvement of the 4th AP and 7th AP are small due to the larger signal

variation. The access points with smaller standard deviations can be viewed as the ones with

no line-of-sight even though we did not use the NLOS path loss exponent for those access

points in this model. Therefore, the placement of a new AP farther away or at a location

with no line-of-sight can have a greater impact on the performance improvement.
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Figure 52: Locations of eight access points around the grid of 25 locations

C. PROTOTYPE OF INDOOR POSITIONING SYSTEM

A software-based indoor positioning system is developed for this work. The prototype is

divided into two programs. The first program is called posoffline.exe which is used for

collecting the location fingerprint. The second program is called posonline.exe used for

estimating the user location and testing the performance of the prototype. These programs

are developed from the examples of NDIS connection-less protocol driver called uiotest.c in
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Windows Microsoft’s Windows XP driver development kit (DDK) [50] and WRAPI.cpp in the

University of California’s Wireless Research API (WRAPI) [51]. The hardware requirement

for both programs are a laptop with an EZ Connect SMC2635W’s IEEE 802.11b wireless

card. Before starting the program, the sample NDIS protocol driver must be installed and

started using the command: net start ndisprot at the Windows XP’s shell prompt. Details

on how to install this protocol driver can be found in the help file of the driver development

kit. We list our design decisions for this prototype in Table 23.

Table 23: System design of the prototype

Design Decision Choices Comments
Application User locating and tracking Self locating
Sensing & measurement Mobile/Client side Measurement done at mobile
Location estimation Mobile/Client side Calculation done in mobile
Security concerns User’s privacy Mobile can locate itself

Security of location data Only mobile’s user can access the data
User orientation Record orientation Only one orientation per location
Data collection time Short period (30 samples) Suitable for mean only but more scalable
Hardware vendor Heterogeneous hardware Lucent’s APs but SMC’s WLAN card
Wireless card Range of measurable RSS SMC has shorter range than Lucent

Standard deviation Approximately 2 dBm
Algorithm selection Distance metric approach Euclidean for simplicity
Memory constraint Large memory IBM Laptop with 384MB of memory
Power constraint Limited power Laptop is a mobile device
Computation complexity Offline phase Mean only for Euclidean approach

Online phase Euclidean approach
Performance goal Accuracy Specify tolerable error distance

Precision Specify probability of correctly detect

Two flowcarts in APPENDIX G describe the detailed operations of online and offline

programs. Inside the online program, we use recursive estimations of the mean and variance

according to the following equations [34].

µ(N + 1) =
1

N + 1
(Nµ(N) + xN+1) , (V.3)

and

C(N + 1) =
1

N + 1

(
NC(N) + Nµ2(N) + x2

N+1

)

− 1

(N + 1)2
(Nµ(N) + xN+1)

2 , (V.4)

where µ is the estimated mean of RSS, C is the estimated variance, xN+1 is the latest RSS

sample, and N is the number of samples used in the previous estimation.
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1. Performance Evaluation of Prototype

We performed an evaluation on a set of 28 locations that are located along a straight line

on the north corridor of the fourth floor of the School of Information Sciences building as

shown in Figure 53. Each location is separated by a physical distance (grid spacing) of 1

m. At each location, the user was facing east only during the measurement. A total of 30

samples per AP scanning operation were collected with a sampling period of approximately

1 second. Each location takes 30 seconds to collect data. Approximately 14 minutes were

used to create the radio map. Three access points, which were SIS410, SIS418, and SIS501,

could be heard in all of these 28 locations.The radio map was constructed by posoffline.exe

and saved as a file called radiomap.

UPDN UPDN405 404 403402406
407

401
411

425418 493 496495 497
409-GIS Lab 410-Wireless LabSIS410

SIS418 SIS501 SIS401
North

Figure 53: Positions in Prototype System

The content of the radio map for the three access points are summarized in APPEN-

DIX H. Note that we encountered the problem of missing signals as briefly discussed in

Section III.C.4.a that caused some data missing from AP SIS418 and SIS501 in Table 46.

We found that the average of the estimated variance for all RSS data is 6.77. which results

134



in an average standard deviation of 2.6 dBm. Using the data in the appendix, the path loss

exponent for each AP is calculated and we have αSIS410 = 1.36, αSIS418 = 1.81 and αSIS501

= 1.52. Thus, the average of the path loss exponent from these three APs is 1.56 which is a

fairly small value.
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Figure 54: Error distance distribution (CDF) of prototype

We tested the performance of the prototype by running the posonline.exe which required

the radio map as input. Then, we moved to each of the locations while facing only the east

direction and sampled the data 4 to 5 times at that particular location. Each sample is used

to determine the Euclidean distance with all of the location fingerprints in the radio map.

The result of the location determination with Euclidean distance is compared with the user

input information of current location (we knew the correct locations in this case). The error

in location detection is calculated and saved into a file called statistics. After analyzing the

statistics file, we plot the performance of the prototype using the error distance distribution

as a CDF in Figure 54. Note that we conducted three different tests at three different time

using the same radio map. The results indicated that the time dependency effect did not

cause major problem for the positioning system.
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The results of the experiments from our prototype in Figure 54 show that the system

can achieve approximately 90% precision at approximately 5 meters accuracy. When we

consider the zero-meter accuracy in Figure 54, we find that the precision performance at

zero meter is approximately 24%. Then, we compare this result with our analytical model

in Equation IV.28 by using parameters σ = 2.6 dBm and α = 1.56 for different spacings of

points on the grid. Assuming that the maximum number of neighboring locations is eight

(even though this is a straight line configuration), that is, we consider at most eight nearest

neighbors, we expect the worst case performance from our analytical model. Figure 55 shows

the results of our precision performance approximation. The result at a grid spacing of 1

meter predicts the precision at zero-meter accuracy for three APs as 11%. Our analytical

model is about 13% worse than the real prototype performance. This conservative result

is expected from our analytical expression. Although this validation is only a preliminary

refinement, the results indicate that we might be able to approximate the performance of

real system using our proposed model with additional model adjustment.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Grid spacing in meters

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
 lo

ca
tio

n 
es

tim
at

io
n

Performance for 8 neighbors with varying grid spacing and σ = 2.6, α = 1.56

Ana: # APs = 1
Ana: # APs = 2
Ana: # APs = 3
Ana: # APs = 4

Figure 55: Analytical prediction of precision on effect of grid spacing

The plot in Figure 55 can be used to predict changes in the performance when we adjust
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the number of access points and the grid spacing. This capability of the model enables us to

make a better design choice without going through the real measurement process. However,

the analytical model is limited to the zero-meter of accuracy. Next, we compare the prototype

results with the simulation results based on our proposed model in Section IV.D.

To validate our proposed simulation model, we simulated the same topology of locations

similar to Figure 53 and used the same system parameters for path loss exponent of 1.56 and

standard deviation of RSS of 2.6. The results of our simulation are plotted in Figure 56. The

result for three APs shows a good estimation of the prototype system with 5 m of accuracy

at a precision of 90%. Note that we used the lognormal distribution for the simulations.
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Figure 56: Error distance distribution (CDF) of simulation

Additional comparison using error distance distribution can be done using a plot of

density function. Figure 57 and Figure 58 compare the performance at different accuracy and

precision values. The result of precision at 1 meter of accuracy shows a good approximation

of our simulation model where prototype’s accuracy is 22% while simulation’s accuracy is

23%. The shapes of both error distance distributions also suggest a good approximation.
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2. Performance Improvement Guidelines for Prototype System

In this section we apply the result in previous subsection to create a design guideline which

suggest directions of performance improvement for positioning system. Based on our model

and simplified system analysis and simulations in Chapter IV, we can summarize the effect

of system parameters on the precision performance and recommend a range of parameters

to improve the precision in indoor positioning systems. This provides us with a performance

guideline on how to improve the system which is summarized in Table 24. We expect that

this guideline will be useful in general (which includes the circumstance when the indoor po-

sitioning system is added on top of the existing WLAN infrastructure). As position location

services gain more attention, depending on the application requirements and environmental

characteristics, a WLAN infrastructure must incorporate additional changes to its infrastruc-

ture improve the accuracy and the precision. For example, additional APs may be placed

so that locations where higher accuracy and precision are desired can “hear” at least 4 APs.

The guideline provided in Table 24 may not be applicable to every indoor positioning system.

More details about the environment and accurate path loss models with wall and floor at-

138



tenuation could result in a more realistic recommendation for the deployment process using

our framework proposed here.

Table 24: Recommended values for location system parameters

Parameters Value Increased Desired Range
σ - STD. of Gaussian component precision decreases & accuracy decrease σ < 3

N - Number of access points precision increases & accuracy increase N ≥ 4
α - Path loss exponent precision increases & accuracy increase α > 3.5

(better in NLOS area)
g - grid spacing precision increases & accuracy decrease g > 1.25 meter

D. HIGH LEVEL DESIGN GUIDELINES

1. Design Decision Guidelines

Table 25 summarizes all design decisions in SectionV.A. The table provides brief comments

on each design choice which can help decide during the high level design phase. We demon-

strated the use this design guideline to assist the development of the prototype of software-

based indoor positioning system in the previous section. This table serves as a first step of

our set of design guidelines.

E. CONCLUSIONS

This chapter is the most crucial contribution for the indoor positioning system because the

currently deployment of indoor positioning based on location fingerprinting is expected to

be very time-consuming for the off-line phase. That is the system designer must perform the

data collection first and then test for the positioning performance. If we could predict the

performance of the system without exhaustive real measurement and testing, the deployment

of this system will be much easier and faster. A system design guideline given in this chapter

is the final contribution of this research.
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Table 25: System design checklist

Design Decision Choices Comments
Application User location and tracking Suitable for centralized management

Service/Resource Locator Suitable for distributed management
Sensing & measurement Network side Higher load to network &

more complex & need synchrnoization
Mobile/Client side Possible battery life limitation

Location estimation Network/Server side Centralized calculation &
has higher computing power

Mobile/Client side Distributed calculation &
less computing power and battery life

Security concerns User’s privacy Mobile can locate itself
Security of location data Who can access the data

User orientation Record orientation Higher number of record in radio map
Average out orientation Less accurate but smaller radio map

Data collection time Short period Suitable for mean only but more scalable
Long period Need for probabilistic approach

Hardware vendor Homogeneous hardware Possible allowing best performance
Heterogeneous hardware Possible degradation of performance

Wireless card Range of measurable RSS As wide as possible
Standard deviation As small as possible

Algorithm selection Distance metric approach Simple, less memory requirement
Probabilistic approach Best performance, more memory requirement

Memory constraint Limited memory Small device such as PDA
Large memory Laptop or server

Power constraint Limited power Mobile device such as PDA & laptop
Unlimited power Server or desktop PC

Computation complexity Offline phase Prefer to be less complex
Online phase Depend on the algorithm

Performance goal Accuracy Specify tolerable error distance
Precision Specify probability of correctly detect
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VI. CONCLUSIONS AND FUTURE WORK

While empirical results and performance studies of positioning systems based on location

fingerprinting have been presented in the literature, analytical models that can be used

as a framework for efficiently designing the positioning systems are not available. This

dissertation has developed an analytical model as a design tool and recommends a set of

design guidelines for such positioning systems in order to expedite the deployment process.

A system designer can use this framework to strike a balance between the accuracy, the

precision, the location granularity, the number of access points, and the location spacing.

The location fingerprint based on the received signal strength was investigated extensively

in Chapter III. A systematic study was used to analyze the location fingerprint and discover

its unique properties. We found that the RSS is random, with primarily a left-skewed

distribution irrespective of the make of the WLAN card. In some cases, it is possible to

approximate the RSS as being normally distributed. We also found that while the RSS

random process is non-stationary, the mean is more or less constant and could be used

as the fingerprint of a location. Based on exhaustive measurements, we analyzed these and

other properties of the RSS and came up with a mathematically tractable set of assumptions

that enable us to create a model to predict the performance of the system in Chapter III. In

Chapter IV, we used these assumptions to develop a model that can be used with analytical

expressions to determine the probability of correctly estimating the position location of a

mobile device with a single RSS sample vector (precision at zero-meter accuracy). We also

suggested the use of simulation model to predict the distribution of distance error in the

estimate of the position.

We applied the system model proposed in Chapter IV to create a design framework as

discussed in Chapter V. The design framework and guideline suggested in Chapter V provides
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insights on how to efficiently deploy the indoor positioning system. Accuracy and precision

are the two major performance metrics in this study. Given a set of performance requirements

such as X meters of accuracy and Y % of precision and radio propagation parameters such as

α path loss exponent, the design framework can provide necessary system design guidelines

such as the necessary number of access points and the minimum distance between two closest

positions that can achieve those requirements.

The sensitivity analysis among the system parameters and the performance metrics were

done using the proposed model as showed in Chapter IV. For instance, our study found that

increasing the number of access points could improve the performance of the system, but

there is a diminishing return on the improvement up to certain number of access points. The

effect of radio propagation represented by path loss model suggests that a higher attenuation

in the environment may actually improve the separation of the location fingerprints. The

minimum distance between two adjacent positions also effects the positioning performance.

If two positions are nicely separated, the likelihood that two location fingerprints will be

confused with each other is small. On the other hand, too small a spacing between any

two physical locations will not improve the system performance much. This is due to the

randomness of RSS patterns induced by the ever changing indoor environment. Given the

average standard deviation of the location fingerprints, a designer could identify the minimum

distance separation between two positions that could achieve required performance criteria

as showed in Section V.C.1.

A. CONTRIBUTIONS

This section list the major contribution of this thesis:

I. Extensive measurement analyses of RSS were presented where we confirmed several prop-

erties of the RSS. We used visualization to understand the RSS and its patterns in a

greater detail. We summarized the key properties of the RSS and used it to support

our mathematical model. Although we found that the distribution of RSS has a unique

left-skew property, some distributions could be approximated as lognormal. Because the
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randomness of the RSS is the cause of difficulty in location determination, we learn that

there are ways to mitigate its effect such as separating the locations apart and increasing

the number of access points.

II. We proposed both analytical and simulation models which are based on assumptions

that are backed by our extensive measurement campaign. We interpreted the underlying

mechanism of indoor positioning system based on location fingerprint using the distance

based approach. We identified major parameters that contribute to the performance of

indoor positioning system based on location fingerprinting.

III. We provided an example of a design guideline which will be useful for approximating the

performance of indoor positioning without doing the real measurement evaluation of the

whole system.

IV. We developed a prototype of indoor positioning system which runs on Windows XP and

is easy to use. It was used to validate our analytical model. We found that our analytical

model could provide sufficient performance approximation to a real system.

B. FUTURE RESEARCH WORK

The research in this thesis provides a ground work for the future study of efficient design

of indoor positioning systems. For instance, we could consider an analytical model that can

approximate the precision performance at any other accuracy performance beyond the zero-

meter accuracy. The non-standard left-skew distribution of RSS could be modeled by the

combination of two different Gaussian distributions to provide a more accurate mathematical

model. The problem of WLAN access point placement which is aimed to provide indoor

positioning system has not been explored in great detail.

The proposed framework still has limitations. First, it did not model the time depen-

dency of the location fingerprints. Thus, the future research study should address this issue.

Second, the indoor positioning system in this study depends greatly on existing infrastructure

of WLAN which has its main purpose for communications. The design guidelines provided

by this study may create a conflict to the design of WLAN. A possible research topic based
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on the placement of access points to provide both communications and position location ser-

vice should be explored in the future. Third, the relationship between the grid spacing and

the quantization of the wireless cards still requires further investigation. It might be pos-

sible to estimate the number of unique locations in indoor positioning system based on the

knowledge of quantization level of a wireless card and the number of access points. Fourth,

to improve the performance of the system we need to find a solution to deal with those

incomplete or missing data during the off-line and the on-line phases. Fifth, the movement

of user has not been considered in this study. The consideration of location fingerprints of

slow mobility could provide an additional level of understanding of location fingerprinting

systems.

Three more interesting research paths are possible. First, the unified performance evalu-

ation methodology for all indoor positioning system based on location fingerprint is needed

to allow a fair comparison among variety of emerging indoor positioning systems. So far, the

accuracy and the precision are the only performance metrics used for comparison. Second,

a study of the indoor positioning system on with multi-floor and three-dimensional coordi-

nates is not available. The impact of multiple floors is not yet known. Finally, there is a

possible improvement of the location fingerprinting technique with the recent introduction of

multicarrier modulation called orthogonal frequency division multiplexing (OFDM) which is

used by IEEE 802.11a [70] and g [71]. This new modulation technique opens an opportunity

for the location fingerprint to exploit the fingerprint in frequency domain, based on the as-

sumption that frequency selective fading effect might be dependent on the location as well.

However, to the best of our knowledge, there is currently no software device driver that can

collect the received signal levels of multiple carriers from IEEE 802.11a NIC. To prove the

earlier assumption, we could use an electrical network analyzer to measure the dependency

between the frequency selective radio channel and the location. The major benefit from this

new scheme is that location fingerprinting could possibly be done with high accuracy and

precision using only one WLAN access point.
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APPENDIX A

FIGURES OF RECEIVED SIGNAL STRENGTH DISTRIBUTION
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Figure 59: Distribution of AP: SIS410
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25 Normalized Distributions of RSS from AP: SIS401

Figure 60: Distribution of AP: SIS401
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Figure 61: Distribution of AP: SIS501
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52 Normalized Distributions of RSS from AP: hl2−b−card1 (4115)

Figure 62: Distribution of AP: hl2-b-card1 (4115)
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46 Normalized Distributions of RSS from AP: hl4−a−card1 (F5FC)

Figure 63: Distribution of AP: hl4-a-card1 (F5FC)
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55 Normalized Distributions of RSS from AP: hl4−b−card1 (F23E)

Figure 64: Distribution of AP: hl4-b-card1 (F23E)

−20 −15 −10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Normalized RSS (dB)

N
o

rm
a

liz
e

d
 F

re
q

u
e

n
cy

50 Normalized Distributions of RSS from AP: hlg−a−card1 (F261)

Figure 65: Distribution of AP: hlg-a-card1 (F261)
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53 Normalized Distributions of RSS from AP: hlg−b−card1 (F616)

Figure 66: Distribution of AP: hlg-b-card1 (F616)
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43 Normalized Distributions of RSS from AP: hl2−a−card1 (F618)

Figure 67: Distribution of AP: hl2-a-card1 (F618)

149



APPENDIX B

TABLES OF STANDARD DEVIATION

Table 26: Standard Deviation from Scenario 1

Location SIS410 SIS401 SIS501
L01 5.59 1.93 1.45
L02 4.58 2.15 1.64
L03 4.68 2.56 1.23
L04 5.81 2.89 1.41
L05 3.53 2.22 1.11
L06 3.77 1.39 1.82
L07 3.88 1.61 0.94
L08 6.29 3.22 2.37
L09 5.00 2.53 1.05
L10 4.84 0.95 1.49
L11 5.01 1.19 1.24
L12 6.14 1.69 1.39
L13 5.04 1.55 1.17
L14 3.61 1.41 1.38
L15 4.01 2.63 1.22
L16 5.65 1.61 2.27
L17 3.28 0.59 1.01
L18 5.78 2.55 1.44
L19 3.88 1.58 0.97
L20 4.14 2.55 1.78
L21 2.74 3.95 1.33
L22 3.78 2.84 1.71
L23 1.47 2.50 1.13
L24 3.83 3.41 1.33
L25 2.61 0.69 1.47

Average 4.36 2.09 1.41
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Table 27: Standard Deviation from Scenario 2 Part I

Location 4115 F5FC F23E F261 F616 F618
L001 1.11 1.11 1.20 1.48 0.80 -
L002 1.67 1.01 1.26 2.42 0.93 -
L003 2.05 0.84 1.79 1.81 1.27 -
L004 2.06 0.91 1.70 1.97 0.86 -
L005 1.56 1.21 1.78 1.28 0.75 -
L006 1.23 1.23 1.31 1.84 0.90 -
L007 1.13 1.20 1.19 1.66 1.16 -
L008 1.39 1.14 1.33 1.43 0.60 -
L009 1.62 1.12 0.73 1.60 1.31 -
L010 1.43 1.12 1.35 1.59 1.54 -
L011 1.27 1.33 0.90 1.61 1.08 -
L012 1.54 1.84 - 1.27 1.07 -
L013 1.09 1.58 0.00 2.03 0.98 -
L014 2.11 1.48 - 2.43 0.80 1.69
L015 1.17 0.99 - 1.31 0.51 -
L016 1.43 1.59 - 0.99 0.81 1.40
L017 1.90 2.03 - 2.08 0.75 1.59
L018 1.16 1.52 - 1.44 0.95 2.11
L019 1.22 1.80 - 2.07 1.05 1.14
L020 1.10 1.42 - 1.36 1.00 1.16
L021 0.86 1.04 - 1.37 0.69 1.16
L022 1.20 1.88 - 1.68 0.83 1.27
L023 1.17 1.43 0.94 1.27 0.86 1.85
L024 1.20 1.15 1.18 1.53 0.92 1.34
L025 1.19 1.67 1.42 1.50 1.03 1.49
L026 1.57 1.36 1.55 1.24 1.51 1.09
L027 2.00 - 1.16 - 1.19 1.32
L028 1.17 - 1.61 0.65 1.82 1.47
L029 1.32 0.85 1.16 1.28 0.97 1.26
L030 2.36 - 1.25 1.25 1.81 1.39
L031 2.04 - 1.80 1.17 0.96 1.54
L032 1.77 - 1.47 0.84 2.15 1.63
L033 1.59 - 1.71 - 1.37 1.46
L034 1.83 - 1.28 - - -
L035 1.86 - 1.98 - - -
L036 1.13 - 1.39 - - -

151



Table 28: Standard Deviation from Scenario 2 Part II

Location 4115 F5FC F23E F261 F616 F618
L037 1.29 - 1.89 - - -
L038 1.39 1.38 1.23 - - -
L039 2.01 0.47 1.32 - - -
L040 1.88 - 1.95 - - -
L041 1.13 - 1.93 - 1.96 1.38
L042 1.12 0.59 1.43 - 1.37 1.22
L043 1.07 1.10 1.17 1.03 3.31 1.49
L044 1.58 0.73 1.53 1.07 1.07 1.17
L045 1.32 - 2.27 - 1.96 1.48
L046 1.71 - 0.99 - 1.61 1.14
L047 1.19 0.97 1.43 1.14 1.39 1.33
L048 1.75 1.59 0.91 1.53 2.16 1.68
L049 2.09 1.28 2.14 1.17 2.13 1.17
L050 1.74 1.57 1.63 1.07 1.63 1.35
L051 1.97 1.35 1.32 1.21 2.10 1.29
L052 1.62 1.29 1.31 1.05 2.66 1.86
L053 - 1.23 1.39 0.75 1.29 1.33
L054 - 1.56 1.38 1.06 2.48 1.34
L055 - 1.64 1.60 1.11 2.41 1.19
L056 - 0.96 1.23 - 1.49 1.20
L057 - 1.77 1.23 1.08 2.12 1.90
L058 - 1.53 1.24 1.37 1.19 1.11
L059 - - 1.58 1.04 1.64 2.91
L060 - - 1.60 - 1.42 1.66
L061 - 1.28 1.60 0.82 1.95 1.41
L062 - 1.92 0.96 1.27 1.68 1.33
L063 - 2.32 1.33 1.37 2.72 1.56
L064 - 2.50 0.93 1.59 2.27 1.58
L065 - 1.89 1.83 1.11 1.53 -
L066 - 1.61 1.31 1.40 2.15 -
L067 - 1.18 1.23 - 1.54 -
L068 - 1.48 1.50 1.07 1.35 -
L069 - 1.34 1.92 - 2.17 -
L070 - 1.41 1.06 - 2.67 -
L071 - 1.19 1.21 - 2.48 -

Average 1.51 1.36 1.39 1.38 1.49 1.45
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APPENDIX C

TABLES OF VARIANCE AND COVARIANCE

Table 29: Estimated Variance and Covariance in Scenario 1

Location σ2
A σ2

B σ2
C σ2

(A,B) σ2
(A,C) σ2

(B,C)

L01 31.22 3.73 2.10 -0.36 0.30 -0.49
L02 20.96 4.61 2.69 2.38 0.42 0.35
L03 21.92 6.55 1.52 -0.02 -0.27 -0.27
L04 33.74 8.36 1.97 -0.01 -0.43 -0.01
L05 12.46 4.94 1.24 -0.32 -0.07 -0.16
L06 14.20 1.92 3.33 0.29 0.28 -0.46
L07 15.02 2.59 0.88 -0.33 -0.07 0.13
L08 39.52 10.40 5.62 -1.91 -0.12 -0.74
L09 25.05 6.42 1.11 0.43 0.00 0.20
L10 23.44 0.90 2.21 -0.05 -0.15 0.18
L11 25.09 1.42 1.55 0.04 -0.80 0.02
L12 37.69 2.86 1.94 -0.35 -0.97 0.37
L13 25.42 2.39 1.36 0.20 0.86 -0.22
L14 13.05 1.98 1.91 0.19 -0.19 0.08
L15 16.11 6.89 1.48 1.25 0.37 -0.03
L16 30.68 2.64 1.48 1.32 -0.53 -1.02
L17 10.76 0.35 1.02 0.05 0.00 -0.35
L18 33.45 6.48 2.06 -0.10 -0.33 -0.17
L19 15.02 2.49 0.94 0.19 -0.23 0.04
L20 17.14 6.50 3.17 1.58 0.77 1.67
L21 7.52 15.58 1.77 1.54 0.37 -0.51
L22 14.26 8.05 2.93 -0.16 -0.20 -0.14
L23 2.17 6.24 1.27 -0.28 -0.09 0.28
L24 14.68 11.64 1.77 -1.81 0.78 -1.32
L25 6.79 0.48 2.15 -0.03 -0.42 -0.18

Average 20.29 5.06 1.98 0.15 -0.03 -0.11
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APPENDIX D

TABLES OF CORRELATION COEFFICIENT

Table 30: Correlation Coefficient from Scenario 1

Channel 6 and 11 6 and 6 11 and 6
Location (SIS410, SIS401) (SIS410, SIS501) (SIS401, SIS501)

1 -0.0337 0.0375 -0.1734*
2 0.2421* 0.0561 0.0981
3 -0.0014 -0.0465 -0.0859
4 -0.0003 -0.0528 0.0015
5 -0.0408 -0.0176 -0.0641
6 0.0561 0.0409 -0.1810*
7 -0.0534 -0.0195 0.0845
8 -0.0944 -0.0082 -0.0970
9 0.0342 -0.0007 0.0756
10 -0.0113 -0.0214 0.1265*
11 0.0073 -0.1284* 0.0128
12 -0.0336 -0.1138* 0.1588*
13 0.026 0.1466* -0.1232*
14 0.037 -0.0390 0.0428
15 0.1183* 0.0766 -0.0091
16 0.1518* n/a n/a
17 0.0252 -0.0008 -0.5802*
18 -0.0071 -0.0401 -0.0471
19 0.0317 -0.0603 0.0239
20 0.1500* 0.1050* 0.3681*
21 0.1423* 0.1028* -0.0973
22 -0.0148 -0.0311 -0.0290
23 -0.0760 -0.0555 0.0997
24 -0.1381* 0.1538* -0.2903*
25 -0.0185 -0.1086* -0.1748*

Average 0.019944 -0.0040 -0.0358
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Table 31: Correlation Coefficient Scenario 2 (Ch.1 and Ch.6)

Channel 1 and 6 1 and 6 1 and 6 1 and 6
Location F5FC and 4115 F261 and F23E F261 and 4115 F5FC and F23E

1 0.0769 -0.1208 – –
2 – 0.1581 -0.3994* –
3 – – -0.0471 –
4 – – -0.2390 –
5 – – 0.1931 –
6 0.2352 – 0.0541 –
7 0.1673 0.1392 0.1079 0.0698
8 -0.0550 – 0.0625 –
9 -0.1261 – 0.2397 –
10 -0.0655 – 0.1332 –
11 0.1490 – 0.0374 –
12 -0.0711 – -0.0116 –
13 0.0347 – 0.0684 –
14 -0.1223 – 0.0244 –
16 0.0616 – -0.0774 –
17 -0.0136 – -0.1535 –
18 0.0345 – 0.1621 –
19 -0.0465 – 0.1287 –
20 -0.0195 – 0.0152 –
21 0.0251 – -0.0518 –
23 -0.1399 – – –
29 – 0.0645 0.0857 –
30 – -0.036 0.0564 –
48 -0.1016 – -0.1865 –
52 0.0698 – – –
53 – – – 0.0611
55 – – – 0.1970
57 – – – 0.0088
58 – – – -0.0332
61 – – – -0.0775
65 – – – -0.0458
69 – – – -0.1625

Average 0.0049 0.0410 0.0092 0.0022
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Table 32: Correlation Coefficient Scenario 2 (Ch.1 and Ch.11)

Channel 1 and 11 1 and 11 1 and 11 1 and 11
Location F5FC and F616 F261 and F616 F5FC and F618 F261 and F618

9 -0.0306 0.1827 – –
14 – – 0.0998 0.0842
16 – – -0.1085 -0.1363
17 – – 0.0744 0.1969
18 – – 0.0415 -0.0790
19 -0.0585 0.0803 0.0674 -0.0863
20 0.0332 0.0134 -0.0205 0.0040
21 – – 0.1601 -0.0912
22 – – -0.0230 -0.0832
23 – – – 0.1887
24 – – – -0.0038
25 – – – 0.0862
26 0.0102 – – -0.1238
29 – -0.0086 – -0.0154
30 – 0.1723 – 0.0307
48 -0.179 -0.0107 -0.0124 -0.0313
52 0.0413 – 0.0593 –
53 0.0629 – -0.0214 –
55 0.2734 – 0.1510 –
57 0.1287 – -0.1004 –
61 -0.0410 – 0.2384 –
62 -0.0580 – – –
64 -0.0230 – 0.1716 –
65 -0.0460 – – –
66 -0.1374 – – –
67 0.0011 – – –
70 -0.0232 – – –
71 0.0716 – – –

Average 0.0015 0.0716 0.0518 -0.0040
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Table 33: Correlation Coefficient Scenario 2 (Ch.6 and Ch.11)

Channel 6 and 11 6 and 11 6 and 11 6 and 11
Location 4115 and F616 4115 and F618 F23E and F616 F23E and F618

9 0.165 – – –
14 – 0.2387 – –
16 – 0.0704 – –
17 – -0.1923 – –
18 – -0.062 – –
19 0.0825 -0.0852 – –
20 0.0569 -0.0232 – –
21 – 0.0043 – –
27 -0.0198 0.0639 0.0582 -0.0328
28 0.1948 -0.0108 0.1747 -0.0066
29 0.2919 -0.0991 -0.0167 0.0280
30 0.3923* 0.045 0.0768 -0.0116
31 0.0397 0.0414 0.1348 0.2674
32 0.0316 -0.0113 -0.0769 0.0274
33 0.1590 0.0775 0.1259 0.1573
41 -0.0328 -0.0606 -0.0818 -0.0881
42 0.0133 0.1280 0.1600 -0.0596
43 0.1612 -0.0688 0.2027 0.0615
44 -0.0153 0.0780 0.1822 0.2425
45 -0.2547 -0.0840 -0.1944 0.0113
46 -0.0219 -0.0437 0.1554 0.0152
47 -0.1588 0.2288 -0.0736 0.1701
48 0.0693 0.0209 – –
49 -0.0674 0.0600 – –
50 0.1983 -0.0048 – –
51 0.1552 – – 0.1444
52 0.0374 -0.0686 – –
53 – – 0.1650 -0.0923
54 – – -0.1089 -0.1288
55 – – 0.3962* 0.1810
56 – – 0.1042 –
57 – – -0.0092 -0.0533
59 – – 0.0468 -0.0069
60 – – 0.0402 0.1270
61 – – 0.0293 0.1989
65 – – 0.0709 –

Average 0.0672 0.0100 0.0679 0.0524
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Table 34: Correlation Coefficient Scenario 2: Interference Effect

Channel 1 and 1
Location F261 and F5FC

6 0.0436
7 0.3159*
8 0.0834
9 -0.0309
10 -0.0166
11 0.0128
12 0.2184
13 0.0319
14 0.1474
15 0.0656
16 0.1536
17 0.0289
18 0.0716
19 -0.2507
20 0.1268
21 0.0647
22 0.1016
48 0.0897

Average 0.0699
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Table 35: Correlation Coefficient Scenario 2: Interference Effect

Channel 6 and 6
Location F23E and 4115

2 0.0620
7 0.0431
27 0.0626
28 0.0514
29 0.05
30 0.1715
31 0.0822
32 -0.0983
33 0.0928
34 -0.0819
35 0.1499
36 -0.0469
37 -0.0035
38 -0.1327
39 0.0997
40 -0.0226
41 0.0583
42 0.0169
43 -0.0636
44 -0.0289
45 0.0760
46 0.0318
47 0.1656

Average 0.0320
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Table 36: Correlation Coefficient Scenario 2: Interference Effect

Channel 11 and 11
Location F616 and F618

19 -0.0314
20 -0.0620
27 0.0005
28 0.1616
29 0.0659
30 0.0064
31 -0.0382
32 -0.1992
33 0.0682
41 -0.0842
42 -0.0124
43 0.0353
44 0.1605
45 0.0899
46 0.1542
47 -0.0488
48 0.0710
49 0.0091
50 -0.0212
52 0.2324
53 -0.1969
54 0.1906
55 0.1986
57 -0.059
58 -0.0636
59 0.2212
60 -0.0036
61 -0.0183
64 0.1334

Average 0.0331
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APPENDIX E

FIGURES OF CORRELOGRAMS
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Figure 68: Correlogram of Cisco Card at

Location 1 over 5 minutes on 1 Dec 04
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Figure 69: Correlogram of D-Link Card at

Location 1 over 5 minutes on 1 Dec 04
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Figure 70: Correlogram of Lucent Gold

Card at Location 1 over 5 minutes on 1

Dec 04
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Figure 71: Correlogram of Lucent Silver

Card at Location 1 over 5 minutes on 1

Dec 04
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Figure 72: Correlogram of Proxim Card at

Location 1 over 5 minutes on 1 Dec 04
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Figure 73: Correlogram of SMC Card at

Location 1 over 5 minutes on 1 Dec 04
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APPENDIX F

SUMMARY STATISTICS WITH DIFFERENT NUMBER OF SAMPLES

Table 37: Summary Statistics of SIS410’s RSS at Location 20

Number of Samples 30 50 100 150 200 300 1282
Mean -49.2 -49.72 -50.06 -50.01 -50.315 -50.98 -49.80

Standard Error 0.13 0.13 0.15 0.17 0.15 0.23 0.12
Median -49 -50 -50 -50 -50 -50 -49
Mode -49 -50 -50 -50 -50 -50 -48

Standard Deviation 0.71 0.90 1.54 2.10 2.08 4.02 4.14
Sample Variance 0.51 0.82 2.36 4.42 4.32 16.16 17.14

Skewness 0.32 0.27 -0.41 -1.84 -1.44 -4.79 -3.03
Kurtosis -0.91 -0.62 -0.64 4.91 3.17 27.59 16.00
Range 2 3 5 11 11 30 34

Minimum -50 -51 -53 -58 -58 -77 -78
Maximum -48 -48 -48 -47 -47 -47 -44

Confidence Level(95.0%) 0.27 0.26 0.30 0.34 0.29 0.46 0.23
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Table 38: Summary Statistics of SIS401’s RSS at Location 2

Number of Samples 30 50 100 150 200 300 1526
Mean -79.50 -79.70 -80.20 -80.27 -80.48 -80.53 -80.71

Standard Error 0.09 0.09 0.11 0.08 0.17 0.14 0.05
Median -79 -80 -80 -80 -80 -80 -80
Mode -79 -80 -80 -80 -80 -80 -80

Standard Deviation 0.51 0.65 1.08 1.03 2.39 2.44 2.15
Sample Variance 0.26 0.42 1.17 1.07 5.73 5.94 4.61

Skewness 0.00 -0.38 -0.81 -0.74 -4.56 -4.14 -3.53
Kurtosis -2.15 -0.65 0.29 0.08 23.45 18.78 17.45
Range 1 2 4 4 15 15 16

Minimum -80 -81 -83 -83 -94 -94 -94
Maximum -79 -79 -79 -79 -79 -79 -78

Confidence Level(95.0%) 0.19 0.18 0.21 0.17 0.33 0.28 0.11

Table 39: Summary Statistics of SIS501’s RSS at Location 2

Number of Samples 30 50 100 150 200 300 1384
Mean -79.00 -79.10 -78.85 -78.47 -78.78 -79.40 -80.11

Standard Error 0.21 0.15 0.11 0.10 0.11 0.10 0.04
Median -78.5 -79 -79 -78 -79 -79 -80
Mode -78 -78 -78 -78 -78 -78 -80

Standard Deviation 1.17 1.05 1.11 1.18 1.50 1.76 1.41
Sample Variance 1.38 1.11 1.24 1.39 2.24 3.08 1.97

Skewness -0.68 -0.34 -0.08 -0.14 0.11 -0.12 -0.12
Kurtosis -1.11 -1.25 -1.04 -0.62 -0.23 -0.10 0.73
Range 3 3 4 5 7 9 9

Minimum -81 -81 -81 -81 -82 -84 -84
Maximum -78 -78 -77 -76 -75 -75 -75

Confidence Level(95.0%) 0.44 0.30 0.22 0.19 0.21 0.20 0.07
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Table 40: Summary Statistics of hlg-a-card1’s RSS at Location 1

Number of Samples 30 50 100 150 200 300 3563
Mean -82.37 -82.80 -83.46 -83.31 -83.50 -83.79 -82.41

Standard Error 0.24 0.18 0.13 0.10 0.08 0.07 0.02
Median -82 -83 -83.5 -83 -83 -84 -82
Mode -82 -82 -84 -83 -83 -84 -82

Standard Deviation 1.30 1.26 1.31 1.18 1.17 1.25 1.48
Sample Variance 1.69 1.59 1.73 1.40 1.38 1.56 2.19

Skewness -0.67 -0.08 0.23 -0.03 0.06 0.02 -0.06
Kurtosis 1.35 0.15 -0.15 0.12 0.03 0.11 0.73
Range 6 6 6 6 6 8 11

Minimum -86 -86 -86 -86 -86 -88 -89
Maximum -80 -80 -80 -80 -80 -80 -78

Confidence Level(95.0%) 0.49 0.36 0.26 0.19 0.16 0.14 0.05

Table 41: Summary Statistics of hlg-b-card1’s RSS at Location 47

Number of Samples 30 50 100 150 200 300 3545
Mean -60.63 -60.96 -60.95 -61.16 -61.60 -61.59 -61.66

Standard Error 0.18 0.15 0.11 0.10 0.11 0.08 0.02
Median -61 -61 -61 -61 -61.5 -62 -62
Mode -60 -62 -60 -60 -60 -61 -62

Standard Deviation 1.00 1.07 1.15 1.27 1.50 1.37 1.39
Sample Variance 1.00 1.14 1.32 1.63 2.26 1.87 1.93

Skewness 0.06 0.13 -0.34 -0.29 -0.15 -0.09 -0.19
Kurtosis -1.01 -0.96 -0.32 -0.75 -1.11 -0.82 -0.22
Range 3 4 5 5 6 6 9

Minimum -62 -63 -64 -64 -65 -65 -67
Maximum -59 -59 -59 -59 -59 -59 -58

Confidence Level(95.0%) 0.37 0.30 0.23 0.21 0.21 0.16 0.05
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Table 42: Summary Statistics of hl2-a-card1’s RSS at Location 33

Number of Samples 30 50 100 150 200 300 3576
Mean -82.37 -82.02 -82.46 -82.80 -82.97 -84.18 -85.03

Standard Error 0.21 0.16 0.18 0.14 0.12 0.13 0.02
Median -82.5 -82 -82 -83 -83 -84 -85
Mode -83 -81 -82 -83 -83 -83 -85

Standard Deviation 1.13 1.15 1.79 1.72 1.67 2.32 1.46
Sample Variance 1.27 1.33 3.22 2.97 2.80 5.40 2.13

Skewness 0.18 -0.04 -1.21 -0.73 -0.52 -0.20 0.12
Kurtosis -0.91 -0.93 1.46 0.44 0.06 -0.91 0.35
Range 4 4 8 8 8 10 10

Minimum -84 -84 -88 -88 -88 -90 -90
Maximum -80 -80 -80 -80 -80 -80 -80

Confidence Level(95.0%) 0.42 0.33 0.36 0.28 0.23 0.26 0.05

Table 43: Summary Statistics of hl2-b-card1’s RSS at Location 5

Number of Samples 30 50 100 150 200 300 3590
Mean -88.37 -88.54 -89.01 -88.67 -89.09 -88.85 -88.68

Standard Error 0.52 0.32 0.21 0.15 0.14 0.10 0.03
Median -87 -88 -89 -89 -89 -89 -89
Mode -86 -86 -89 -88 -88 -88 -88

Standard Deviation 2.82 2.28 2.06 1.89 1.97 1.78 1.56
Sample Variance 7.96 5.19 4.25 3.58 3.88 3.15 2.44

Skewness -0.51 -0.42 0.06 -0.28 -0.05 -0.25 -0.18
Kurtosis -1.46 -0.80 -0.62 -0.43 -0.86 -0.50 -0.17
Range 8 8 8 8 8 8 11

Minimum -93 -93 -93 -93 -93 -93 -95
Maximum -85 -85 -85 -85 -85 -85 -84

Confidence Level(95.0%) 1.05 0.65 0.41 0.31 0.27 0.20 0.05
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Table 44: Summary Statistics of hl4-a-card1’s RSS at Location 13

Number of Samples 30 50 100 150 200 300 3571
Mean -84.20 -84.06 -84.02 -84.25 -84.05 -84.24 -82.91

Standard Error 0.18 0.13 0.10 0.09 0.10 0.08 0.03
Median -84 -84 -84 -84 -84 -84 -83
Mode -84 -84 -84 -84 -84 -84 -83

Standard Deviation 1.00 0.91 1.00 1.10 1.34 1.38 1.58
Sample Variance 0.99 0.83 1.01 1.21 1.81 1.91 2.51

Skewness -0.47 -0.55 -0.39 -0.34 0.74 0.42 0.20
Kurtosis 1.35 1.17 0.07 -0.18 2.39 1.39 0.13
Range 5 5 5 5 9 10 10

Minimum -87 -87 -87 -87 -87 -88 -88
Maximum -82 -82 -82 -82 -78 -78 -78

Confidence Level(95.0%) 0.37 0.26 0.20 0.18 0.19 0.16 0.05

Table 45: Summary Statistics of hl4-b-card1’s RSS at Location 25

Number of Samples 30 50 100 150 200 300 3050
Mean -89.33 -89.10 -88.32 -88.43 -88.44 -88.64 -89.19

Standard Error 0.15 0.13 0.14 0.11 0.09 0.07 0.03
Median -89 -89 -88 -89 -89 -89 -89
Mode -89 -89 -89 -89 -89 -89 -89

Standard Deviation 0.80 0.91 1.38 1.29 1.26 1.22 1.42
Sample Variance 0.64 0.83 1.90 1.66 1.59 1.48 2.00

Skewness -1.02 -0.14 0.08 0.28 0.20 0.13 -0.02
Kurtosis 0.58 0.48 -0.48 -0.37 -0.29 0.25 1.38
Range 3 4 6 6 6 7 11

Minimum -91 -91 -91 -91 -91 -92 -95
Maximum -88 -87 -85 -85 -85 -85 -84

Confidence Level(95.0%) 0.30 0.26 0.27 0.21 0.18 0.14 0.05
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APPENDIX G

FLOWCHARTS OF INDOOR POSITIONING PROTOTYPE
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Begin
Enter Location #.Call DeviceIoControl() to request APscanning withOID_802_11_BSSID_LIST_SCANEstimateMean & Variance of RSSfor new samplesNumber ofsamples/locationis met?

- Save to files1) raw data of MACaddress and its RSS value.2) Radio Map (Location#,MAC Addr., est. mean, est.variance and #. Samples.- Close all opened filesIs # between 0 toMax_Location?
Open radiomapand rawdatafiles for write-Open NDIS ProtocolDriver’s device handler-Access WLAN device

Wait for scanninginterval of 1 sec.
Call DeviceIoControl() to queryBSSID info fromOID_802_11_BSSID_LISTDisplay queried resultsRecord RSS datain Radio Map

Yes
NoYes

No End-Close NDIS ProtocolDriver’s device handler
InitializeRadio Mapin memory

Figure 74: Flowchart of Off-line Prototype.

169



Begin
Enter Location #.Call DeviceIoControl() to request APscanning withOID_802_11_BSSID_LIST_SCANRecord data into sample RSS vectorand calculate Euclidean distance witheach entry in Radio Map

Save statistics table to fileand close all opened filesIs # between 0 toMax_Location?
Open radiomap file forread and statistics filefor write-Open NDIS ProtocolDriver’s device handler-Access WLAN device

Call DeviceIoControl() to queryBSSID info fromOID_802_11_BSSID_LISTDisplay queried results
Record Estimatedlocation instatistics table

Yes
Yes

No
- Load Radio Map from file- Initialize statistics table andsample RSS vector in memory

End-Close NDIS ProtocolDriver’s device handler
Sort or Search for a locationin Radio Map with minimumEuclidean distance

Figure 75: Flowchart of On-line Prototype.
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APPENDIX H

LOCATION FINGERPRINTS OF PROTOTYPE’S EXPERIMENT
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Table 46: Location Fingerprint of 28 Locations in SIS Building

AP SIS410 AP SIS418 AP SIS501
Location Mean Var. Count Mean Var. Count Mean Var. Count
1 -73.70 8.21 30 -46.50 9.45 30 -77.50 5.62 16
2 -63.67 3.02 30 -53.90 14.49 30 -75.38 2.72 29
3 -62.20 0.96 30 -59.33 4.29 30 -77.71 2.20 7
4 -62.60 2.24 30 -59.67 5.96 30 -76.00 1.24 29
5 -63.83 6.14 30 -62.47 10.58 30 -75.68 0.86 28
6 -64.53 7.58 30 -57.40 3.24 30 -76.00 3.21 28
7 -60.73 5.00 30 -63.47 2.85 30 -75.79 0.60 28
8 -61.73 0.93 30 -62.07 9.80 30 -75.60 4.04 30
9 -59.80 4.16 30 -64.50 7.45 30 -75.80 2.36 30
10 -62.67 5.36 30 -65.87 6.45 30 -76.37 3.23 16
11 -61.47 3.92 30 -65.03 8.70 30 -75.22 5.73 27
12 -56.60 7.24 30 -66.90 19.33 29 -74.40 10.64 30
13 -53.10 6.09 30 -66.40 12.04 30 -73.30 4.41 30
14 -51.50 6.65 30 -69.50 6.65 30 -68.57 4.38 30
15 -50.73 7.46 30 -65.30 6.81 30 -67.93 4.40 30
16 -57.20 8.56 30 -67.47 5.52 30 -69.83 13.59 29
17 -49.60 3.44 30 -68.92 10.41 24 -67.00 9.60 30
18 -55.10 13.89 30 -71.23 7.08 22 -65.43 11.71 30
19 -57.47 13.65 30 -70.70 4.01 30 -62.13 2.58 30
20 -55.73 6.13 30 -73.24 9.30 25 -65.80 20.16 30
21 -51.70 4.01 30 -73.00 7.62 26 -64.07 3.13 30
22 -51.57 17.45 30 -72.50 6.50 24 -63.67 9.62 30
23 -50.40 4.44 30 -72.67 4.22 27 -63.00 2.40 30
24 -53.67 16.96 30 -75.40 1.44 10 -59.70 6.61 30
25 -52.73 12.33 30 -72.42 5.55 26 -60.67 5.62 30
26 -51.73 11.20 30 -74.50 3.25 18 -56.10 6.49 30
27 -55.47 7.72 30 -74.62 6.39 13 -60.27 6.80 30
28 -54.47 8.45 30 -71.78 8.17 27 -59.87 3.65 30
Min. -73.70 0.93 30 -75.40 1.44 10 -77.71 0.60 7
Max. -49.60 17.45 30 -46.50 19.33 30 -56.10 20.16 30
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