
POWER MANAGEMENT TECHNIQUES FOR

CONSERVING ENERGY IN MULTIPLE SYSTEM

COMPONENTS

by

Neven Abou Gazala

B.E., Arab Academy for Science and Technology, 1996

M.E., Arab Academy for Science and Technology, 2000

M.S., University of Pittsburgh, 2003

Submitted to the Graduate Faculty of

the Department of Computer Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12206172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Neven Abou Gazala

It was defended on

February 7th 2008

and approved by

Rami Melhem, Department of Computer Science, University of Pittsburgh

Daniel Mossé, Department of Computer Science, University of Pittsburgh

Bruce Childers, Department of Computer Science, University of Pittsburgh

Mary Jane Irwin, Department of Computer Science and Engineering, Penn State University

Dissertation Advisors: Rami Melhem, Department of Computer Science, University of Pittsburgh,

Daniel Mossé, Department of Computer Science, University of Pittsburgh

ii

ABSTRACT

POWER MANAGEMENT TECHNIQUES FOR CONSERVING ENERGY IN

MULTIPLE SYSTEM COMPONENTS

Neven Abou Gazala, PhD

University of Pittsburgh, 2008

Energy consumption is a limiting constraint for both embedded and high performance systems.

CPU-core, caches and memory contribute a large fraction of energy consumption in most computing

systems. As a result, reducing the energy consumption in these components can significantly

reduce the system’s overall energy consumption. However, applying multiple independent power

management policies in the system (one for each component) may interfere with each other and in

some occasions increase the combined energy consumption.

In my thesis, I present three power management techniques that target more than a single

component in a system. The focus is on reducing the total energy consumption in processors,

caches and memory combinations. First, I present a memory-aware processor power management

using collaboration between the OS and the compiler. The technique objectives are: (1) finish the

application execution before its deadline and (2) minimize the combined energy consumption in

processor and memory. Second, I present an integrated-DVS technique for processor and on-chip

cache power management in multi-voltage domain systems. Integrated-DVS co-ordinates power

management decisions across voltage domains rather that being applied in isolation in each domain.

Third, I present a Power-Aware Cached DRAM (PA-CDRAM) memory organization for reducing

the energy consumption in DRAM memory and off-chip caches. PA-CDRAM exploits the high

internal memory bandwidth by bringing the off-chip caches ”closer” to the memory, which improves

both the overall performance and energy consumption.

The techniques in my dissertation highlight the importance of designing power management

schemes that consider multiple components and their interactions (in terms of power and per-

iii

formance) in the system rather than applying multiple isolated power management polices. This

study should lay the foundation for further research in the domain of integrated power management,

where a single power manager controls many system components.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Problem statement . 2

1.2 Contributions . 3

1.2.1 Memory-aware processor power management 3

1.2.2 Integrated DVS policies for CPU and cache power management 5

1.2.3 Power-aware Cached DRAM . 5

1.2.4 Summary of contributions . 6

1.3 Thesis roadmap . 7

2.0 BACKGROUND AND RELATED WORK . 8

2.1 CPU power management using DVS . 8

2.2 Cache power management . 10

2.3 Power management in Multiple clock domains chips 11

2.4 DRAM power management . 13

2.5 Embedded DRAM . 15

3.0 MODELS . 16

3.1 Real-time applications . 16

3.2 CPU energy model . 17

3.3 Cache energy model . 18

3.4 Memory energy model . 18

4.0 COMPILER AND OS COLLABORATION FOR CPU AND MEMORY

POWER MANAGEMENT . 20

4.1 Compiler and OS collaborative approach . 21

4.2 PMP versus PMH placement strategy . 23

4.3 Collaborative power management algorithm overview 26

v

4.4 Compiler support for the Collaborative scheme . 27

4.4.1 Timing Extraction . 27

4.4.2 Placement of PMHs . 29

4.4.2.1 Sequential code . 29

4.4.2.2 Branches . 30

4.4.2.3 Loops . 30

4.4.2.4 Procedure calls . 30

4.4.3 PMH computation of wcri . 31

4.4.3.1 Static PMH . 31

4.4.3.2 Index-controlled PMH . 31

4.4.4 Example on the PMH placement and execution 32

4.5 OS Support for the Collaborative Scheme . 34

4.5.1 Dynamic Speed Setting . 35

4.5.1.1 CPU speed computation . 35

4.5.1.2 Memory-aware speed setting . 36

4.5.2 Setting the PMP-interval . 37

4.5.3 OS extensions . 38

4.6 Evaluation . 40

4.6.0.1 Impact on energy and performance 42

4.6.0.2 Run-time Overhead . 50

4.7 Conclusion . 53

5.0 INTEGRATED DVS POLICIES FOR CPU AND CACHE POWER MAN-

AGEMENT . 55

5.1 Introduction . 55

5.2 Integrated DVS (IDVS) policy . 56

5.2.1 Motivation . 56

5.2.2 Integrated DVS architecture . 58

5.2.3 MCD inter-domain interactions . 59

5.3 Online IDVS policy . 61

5.3.1 Limitation of the online IDVS policies . 63

5.4 Machine Learning based IDVS approach . 63

5.4.1 Overview of ML-IDVS approach . 64

vi

5.4.2 Construction of IDVS Policy . 65

5.4.2.1 Stage I: Data analysis . 65

5.4.2.2 Stage II: IDVS policy learning . 72

5.4.3 Design Issues . 73

5.5 Evaluation . 74

5.5.1 Experimental setup . 74

5.5.2 Evaluation of online-IDVS policy . 76

5.5.2.1 Impact on performance and energy consumption 76

5.5.2.2 Varying system configurations . 78

5.5.3 Evaluation of ML-IDVS approach . 80

5.5.3.1 Impact on performance and energy consumption 81

5.5.3.2 Analysis of the training process . 84

5.5.4 Online-IDVS versus ML-IDVS . 85

5.5.4.1 Energy and delay savings . 85

5.5.4.2 Discussion . 86

5.6 Conclusion . 89

6.0 POWER-AWARE CACHED DRAM . 90

6.1 Cached DRAM . 91

6.2 PA-CDRAM . 92

6.2.1 DRAM-core power management . 94

6.2.2 DRAM-core versus near-memory cache energy trade-off 95

6.3 PA-CDRAM implementation . 97

6.3.1 PA-CDRAM architecture . 97

6.3.2 Near-memory cache controller . 98

6.3.3 PA-CDRAM operation . 99

6.4 Energy and delay modeling of PA-CDRAM . 102

6.5 Evaluation of PA-CDRAM . 104

6.5.1 Methodology . 105

6.5.2 Energy and delay . 107

6.5.2.1 Effect on delay . 107

6.5.2.2 Effect on energy consumption . 108

6.5.3 Near-memory versus near-processor caches 110

vii

6.5.4 Cache controller location . 112

6.5.5 Effect of multiprocess and multithreaded environments 112

6.5.6 Sensitivity to design parameters . 115

6.5.6.1 Effect of varying the cache size . 115

6.5.6.2 Effect of varying the CPU frequency 117

6.5.6.3 Effect of logic slowdown . 118

6.5.6.4 Effect of CPU and memory bus bandwidth 119

6.6 Discussion . 120

6.7 Conclusion . 121

7.0 CONCLUSIONS AND FUTURE WORK . 123

7.1 Conclusions . 123

7.2 Future Work . 126

APPENDIX. DERIVATION OF DVS FORMULAS 129

A.1 Derivation for Proportional closed-form equation 129

A.1.1 Derivation for Lemma 1 . 129

A.1.2 Derivation of Proportional closed-form formula 130

A.2 Derivation for Greedy closed-form equation . 131

A.2.1 Derivation for Lemma 2 . 131

A.2.2 Derivation of the Greedy closed-form formula 132

BIBLIOGRAPHY . 133

viii

LIST OF TABLES

2.1 Examples on CPU power management schemes . 8

4.1 Adverse combinations of code structure for some PMP placement strategies. 25

4.2 Profiled wcc for each region in CFG shown in Figure 4.6 33

4.3 Other profiled information for CFG shown in Figure 4.6 33

4.4 The inserted PMHs details. 34

4.5 Simplescalar configuration . 40

4.6 The power levels in the Transmeta processors model. 41

4.7 The power levels in the Intel XScale processor model. 41

4.8 The number of executed PMPs, PMH and speed changes for the sub-band tuner. . . 52

5.1 Percentage of time intervals that experience positive feedback scenarios in some

MiBench and SPEC2000 benchmarks. 60

5.2 Rules for adjusting core and L2 cache speeds in local DVS policy and proposed policy. 62

5.3 Eight training samples: CPI (C), L2PI (L) and energy-delay product (ED) at all

frequency combinations. 68

5.4 Constructed ST from samples in Table 5.3. 71

5.5 Example of a policy to minimize energy-delay product. 73

5.6 Simulation configurations . 75

5.7 Variants of our proposed policy: actions of setting the core voltage (Vc) and the

cache speed (V$) in rules 1 & 5 from Table 5.2. 78

5.8 Comparison of online-IDVS and ML-IDVS . 88

6.1 PA-CDRAM cache commands send across the control bus 100

6.2 System configuration . 107

6.3 Per-access latency and energy break down of L3 and near-memory caches. 110

ix

6.4 PA-CDRAM energy consumption normalized to the base case when running appli-

cation pairs interleaved. 116

x

LIST OF FIGURES

1.1 Proposed power management techniques targeting more than one system component. 4

2.1 Example of domain partitions in MCD processors [1, 2] 12

4.1 (a) Sample CFG. (b) Invocations of PMHs & PMPs for executing the bold path in

(a). 22

4.2 Some PMP placement strategies and their adverse cases of code structure (See Ta-

ble 4.1 for description). 24

4.3 Phases of the collaborative power management scheme. 26

4.4 Examples on region segmentation for (a) branches and (b) loops, with and without

procedure calls. 28

4.5 PMH placement in loops when (a) ac+loop segment > PMP-interval, (b) loop body

< PMP-interval < loop segment, and (c) loop body > PMP-interval. 31

4.6 Example of the PMH placement in a simple CFG. 33

4.7 Lowest total energy consumption at break-even frequency. 36

4.8 ISR pseudocode for PMPs. 39

4.9 ATR: Total (CPU+memory) energy consumption normalized to no power manage-

ment on Transmeta Crusoe. 43

4.10 ATR: Total (CPU+memory) energy consumption normalized to no power manage-

ment on Intel XScale. 44

4.11 MPEG2 decoder: Total energy consumption normalized to no power management

scheme on Transmeta Crusoe. 47

4.12 MPEG2 decoder: Total energy consumption normalized to no power management

scheme on Intel XScale. 48

4.13 Size distribution (in million cycles) for the sub-band filter events. 49

xi

4.14 Sub-band Tuner: Total energy consumption normalized to no power management

scheme on Transmeta Crusoe. 51

4.15 Sub-band Tuner: Total energy consumption normalized to no power management

scheme on Intel XScale model. 52

5.1 Variations in application phases throughout execution. 57

5.2 Example of an MCD processor design with integrated DVS control. 59

5.3 Example of positive feedback in local power management in each domain 60

5.4 Information flow in ML-IDVS . 65

5.5 Stages for automatic DVS policy generation. 66

5.6 Acc construction pseudocode . 69

5.7 ST construction pseudocode to minimize energy-delay product. 70

5.8 Energy and delay of Local-DVS and our online-IDVS relative to no-DVS policy in

configuration A and two voltage domains processor. 77

5.9 Average degradation in energy-delay product relative to the local-DVS policy 79

5.10 Energy and delay for local-DVS and online-IDVS policy relative to no-DVS policy

for processors with (a) two domains and (b) six domains. 80

5.11 Energy-delay product for SPEC2000 and MiBench benchmarks when using local-

DVS versus ML-IDVS. 82

5.12 Energy-delay product when optimizing energy with delay bound. 83

5.13 Energy-delay product for policies running on system with configuration Config B in

Table 5.6. 83

5.14 Average energy-delay product at different DVS control-interval sizes (using Config A). 84

5.15 ST coverage. 85

5.16 Online-IDVS versus ML-IDVS normalized to no-DVS 87

6.1 Functional block diagram of a CDRAM . 92

6.2 Average performance and energy consumption for different near-memory cache block

sizes. 94

6.3 The effect of different cache block sizes on the memory energy consumption for the

CPU-intensive bzip (left) and the memory-intensive mcf (right). 96

6.4 Functional block diagram of a PA-CDRAM. Dark blocks are the added components

to an RDRAM architecture. 98

xii

6.5 Timing diagram of the Rambus channel for near-memory cache read hit (upper) and

read miss (lower) transactions. 101

6.6 The effects of varying η and µ on the energy-delay product 104

6.7 Memory organizations of the base case (left) and the proposed PA-CDRAM (right). 106

6.8 PA-CDRAM energy-delay break down normalized to the base case. 108

6.9 PA-CDRAM and the base case energy break down and cache miss rates 109

6.10 Energy-delay product of near memory versus near-processor cache organizations nor-

malized to the base case. 111

6.11 Energy-delay product of distributed controller normalized to centralized cache con-

troller design. 113

6.12 Energy-delay product with and without pre-emption, normalized to the base case

without preemption. 114

6.13 The effect of varying the cache size on execution time, energy and energy-delay

product normalized to the base case. 117

6.14 The effect of varying the CPU frequency for the PA-CDRAM, normalized to the base

case on execution time, energy and energy-delay product. 118

6.15 The effect of the logic slowdown in the near-memory cache on the total execution

time normalized to fast SRAM case. 119

6.16 The effect of different CPU and memory bus bandwidth. 120

xiii

1.0 INTRODUCTION

Energy consumption is a limiting constraint for both embedded and high performance systems. In

embedded systems, the operational lifetime of a device is limited by the rate of energy dissipation

from its battery. On the other hand, energy consumption in high-performance systems increases

thermal dissipation, which requires more cooling resources, and thus higher system management

overhead. Among the major energy consumers in computing systems are the CPU and memory

subsystems. In high performance systems such as servers, CPU and memory consume up to 50% [3]

and 41% [4], respectively; while in portable devices they consume 26% and 23%, respectively [5].

The continuous demand for more computing power motivates the design of more sophisticated

processors. With the increase in system’s computing capabilities, power dissipation is expected

to rise proportionally in these systems [6]. Moreover, increasing the computing capability would

potentially increase workload on the memory system, thus increasing its power dissipation as well.

Accordingly, this increase in power dissipation motivates the need for more efficient system-wide

power management schemes.

Reducing the energy consumption in computing systems has become a prime design criterion–

motivated by the limited lifetime of battery operated systems, and the high electrical and cooling

power costs in server farms. Processor and memory subsystems contribute a large fraction of the

overall system power dissipation. The fraction of the processor energy compared to the memory

energy varies based on the system parameters (memory size, processor core complexity) and on the

application behavior (memory versus CPU intensive). As a result, to achieve overall low system

energy, choosing an appropriate power management technique should be based on the fraction of

the power consumed by each.

Applying power management techniques often involves a trade-off between performance and

energy consumption. Thus, a power management scheme should consider this trade-off in addition

to existing application and system performance constraints. Application performance constraints

1

can be a result of a limitation in the available time for application execution, as in real-time

systems. System constraints are the result of performance bottleneck(s) in one or more of the

system components (as in memory and I/O subsystems).

A major constraint imposed on computing systems is the increasing speed gap between processor

and memory. This speed difference limits the overall system performance. The main contributors

to this problem are the large memory access time and the limited transfer bandwidth between the

memory and the CPU [7]. Memory architectures aim at decreasing the access time by using faster

clocks and increasing the level of concurrency in data accesses. However, the bus transmission speed

is becoming a significant bottleneck limiting the memory system performance [8]. Thus, systems

—especially with large memory traffic— face the problem of minimizing this speed gap to achieve

high performance while consuming less energy.

Independently managing power in one system component while neglecting other component’s

power may not necessarily achieve lower combined energy consumption for the entire system. For

example, slowing down the processor to save its energy increases the execution time and causes

memory to retain data for longer periods, thus consuming more memory’s energy. Hence, an

effective power management scheme should consider multiple system components for optimizing

the system’s total energy consumption.

1.1 PROBLEM STATEMENT

Power dissipation in CPU, caches and memory accounts for the majority of total power consumption

in most computing systems. Components that consume large percentage of the overall system’s

energy consumption are good targets for power management.

The objective of applying power management policies is to ideally optimize the overall system

energy consumption rather than reduce energy consumption of one component. The majority of

power management policies proposed in the literature address the energy problem for one system

component. While these policies can locally minimize energy consumption for a component, being

oblivious to the overall system power may adversely affect other system components by increasing

their energy consumption. As a result, the system’s overall energy savings is lower. For example,

dynamic voltage scaling in processors slowdown execution of a process. Accordingly, this increases

energy consumption in the memory system, and the I/O devices associated with a process due

2

to the extension of their active periods. Thus, to achieve higher energy savings for the entire

system, the power management technique should take into account the resulting effects on the

other components in the system or even target more than one system component simultaneously.

We address the problem of achieving efficient power management in more than one system

component simultaneously. The main focus of our study are CPU, caches and main memory energy

consumption. We propose three power management techniques with the objective of reducing the

combined energy consumption in multiple components with minimal impact on performance.

1.2 CONTRIBUTIONS

In this dissertation, we present three power management techniques. The common feature among

the techniques is that they reduce the combined energy consumption of at least two system com-

ponents. Each of these techniques addresses a particular class of systems.

For systems with dominant processor power consumption, we propose a scheme that primarily

targets the CPU energy consumption without consuming excessive memory energy. We approach

this problem in the context of real-time systems where timing constrains are critical. For systems

with comparable processor and cache energy consumption, we propose a second scheme that man-

ages both the CPU and the on-chip caches simultaneously. This technique is feasible in modern

chips with multiple clock and voltage domains, where the clock and voltage of each domain is

controlled independently. The third scheme targets the memory and off-chip cache energy con-

sumption while improving the overall system performance. This technique is intended for systems

where memory energy dominates the total system energy. Figure 1.1 summarizes the focus and

domain of each of the three proposed techniques. A brief overview of each scheme is presented

next.

1.2.1 Memory-aware processor power management

Dynamic Voltage Scaling (DVS) is an effective technique for reducing power dissipation in pro-

cessors. DVS slows down the processor’s speed to lower its energy consumption. Because some

applications must finish by a certain deadline, the objective of a power management scheme em-

ploying this technique is to efficiently use the available slack (time when processor is idle) to reduce

3

Scheme 2: targets
CPU−core and
on−chip caches
in multiple clock
domain chips

Scheme 3: targets
DRAM memory
and off−chip
caches in high
performance
systems

Scheme 1: targets CPU
(with caches) and memory
in real−time systems

(Chapter 4)

(Chapter 5)

(Chapter 6)

CPU−core

Caches

DRAM
memory

Figure 1.1: Proposed power management techniques targeting more than one system component.

the processor’s frequency without violating an application’s timing constraints. More slack utiliza-

tion implies more slowdown and thus more processor energy savings. On the other hand, excessive

slowdown in processor speed increases the time where the memory stays active, which increases the

system’s overall energy. Thus, finding an efficient operating frequency that balances these trade-offs

is essential to reduce the system’s overall energy.

To maximize the amount of detected slack in the system, we take advantage of dynamic slack,

which is the slack resulting from applications running for shorter times than their worst case

execution times. This is different than static slack which is known offline (the difference between

the worst case execution time and an application’s deadline). To detect and utilize dynamic slack,

we use the compiler knowledge of the state of execution of an application. The compiler inserts

special hints in the application code. These hints are capable of computing–at run-time– the worst

case remaining cycles for the application to finish execution at each hint location. At run time,

information from the hints is passed to the operating system to periodically schedule the proper

speed based on the combined available static and dynamic slacks. To avoid excessive slowdown

of the application’s execution, and hence increasing the memory’s energy, we compute a cut-off

frequency below which the processor should not operate. This cutoff frequency represents the

4

break-even point where further slowdown causes the energy savings in the processor to be less

than the additional energy consumed in memory. We model the processor and memory energies to

compute this cut-off frequency based on processor and memory parameters.

The main contributions of this work are: (1) describe an approach where the OS and compiler

collaborate to extract information useful for building more efficient power management policies,

and (2) determine the cut-off frequency beyond which the overall system energy increases despite

decrease in the CPU energy. More details on this work in presented in Chapter 4.

1.2.2 Integrated DVS policies for CPU and cache power management

When the fractions of power consumed by the processor and memory are comparable, we should

target both components simultaneously, focusing on the interplay of power management in both

subsystems. In this scheme, we are especially concerned with the processor and the on-chip caches.

In multiple clock and voltage domain chips, we propose an integrated technique for controlling

the voltage/frequency of each of the domains. The integrated technique is more efficient than its

local counterpart because it considers interactions among domains. In our proposed policies, we

focus mainly on the CPU-core and L2 cache domains. We first propose a generic online heuristic-

based integrated DVS policy that suits most application classes. We then proposed a machine

learning approach that generates DVS policies optimized for each class of applications.

This work shows that integrated DVS policies are more energy efficient than local DVS policies

that target different domains in isolation. This efficiency is primarily due to the global knowledge

of the workload and power dissipation in different chip domains. That global knowledge allows the

policy to make better informed decisions with respect to selecting the best speeds for each domain.

More details on this work in presented in Chapter 5.

1.2.3 Power-aware Cached DRAM

Dynamic power management in memory can indirectly influence the processor’s energy consumption

when applications experience performance degradation due to increased average memory access

latency. This increase is a result of extra delay experienced from transitioning the memory to low

power states. Longer execution time implies that the processor resources have to be active for

longer periods, thus consuming more energy.

5

On the other hand, memory has a huge internal bandwidth compared to its external bus band-

width. To exploit the wide internal bus, cached DRAM (CDRAM) adds an SRAM cache to the

DRAM array on the memory chip. Such a near-memory cache acts as an extra memory hierarchy

level, whose fast latency improves the average memory access time and potentially improves system

performance. However, proposed CDRAM organizations do not necessarily optimize the system

energy due to the extra energy consumed in the near-memory caches.

In our work, we investigate the effect of placing a subset of the total cache capacity closer to

the memory rather than closer to the CPU. We are especially interested in overall performance and

energy consumption. We optimize the CDRAM organization for energy efficiency. We integrate

a moderately sized cache within the chip boundary of a power-aware multi-banked memory. We

call this organization power-aware cached DRAM (PA-CDRAM). In addition to improving per-

formance, PA-CDRAM significantly reduces energy consumption in caches and in main memory.

This is due to (1) using small caches distributed to the memory chips reduces the cache access

energy compared to using a large non-distributed cache, (2) near-memory caches allow the access

of relatively large blocks from memory, which is not affordable with near-processor caches, and (3)

memory energy consumption is reduced by having longer memory idle periods during which DRAM

banks can be powered off. PA-CDRAM improves the original CDRAM by tackling the interplay of

the cache and memory organizations to optimize the memory’s performance and energy consump-

tion. The contribution of this part of the work is twofold. First, we propose near-memory caches

for energy reduction of the overall system. Second, we describe an implementation of PA-CDRAM

that integrates a near-memory cache in a Rambus chip (RDRAM). We also describe how our im-

plementation can maintain backward compatibility with existing Rambus memories. More details

on this work in presented in Chapter 6.

1.2.4 Summary of contributions

To summarize, the contributions of this dissertation work are:

• We present a collaboration scheme between operating system and compiler for a memory-aware

CPU power management technique for real-time systems. This technique is more efficient than a

compiler-only and OS-only schemes because it can extracts more information about the system

and use it more efficiently.

• We propose a class of integrated DVS techniques for reducing energy consumption in both CPU-

6

core and L2 caches for multiple clock domains. The integrated DVS technique is more energy

efficient than local DVS techniques due to its global knowledge of both power and activity of

the target components.

• We devise an architectural optimization for improving the energy consumption in DRAM mem-

ory and off-chip caches, called PA-CDRAM, in high performance systems. PA-CDRAM im-

proves both overall performance and energy consumption over traditional memory hierarchy.

1.3 THESIS ROADMAP

The remainder of this dissertation is organized as follows. Chapter 2 reviews background and

some related work to power management techniques that target CPU, caches and memory energy

consumption. Chapter 3 introduces the main models used throughout this work. Our proposed

policy for memory-aware CPU power management is presented in Chapter 4, followed by techniques

for integrated CPU and cache power management in Chapter 5. Our technique for improving

performance and reducing energy consumption in DRAM memory and off-chip caches is presented

in Chapter 6. Chapter 7 summarizes and concludes our thesis.

7

2.0 BACKGROUND AND RELATED WORK

2.1 CPU POWER MANAGEMENT USING DVS

An efficient power saving technique for processors dynamically changes the CPU supply voltage

according to current workload. This technique is called dynamic voltage scaling (DVS). Reducing

voltage in CMOS circuits reduces the processor’s power consumption quadratically. Because the

processor clock frequency is dependent on the supply voltage, reducing the voltage causes a program

to run slower. However, this slowdown is linear with the supply voltage. Since, the dynamic energy

consumed by an application is the product of the CPU power and time spent running an application,

running a program with reduced voltage and frequency leads to significant energy savings.

DVS techniques can be classified into schemes that use information about tasks’ deadlines

and schemes that maintain an acceptable performance degradation to achieve significant energy

savings. Orthogonally, speed scheduling in DVS algorithms can be controlled by either the OS

or the compiler/application. Table 2.1 lists some power management techniques based on this

classification.

Table 2.1: Examples on CPU power management schemes

application w/o deadlines applications w deadlines

OS directed Childers et al. [9], ECOSystem [10],

Vertigo [11, 12]

Mossé et al. [13], Gruian [14],

PACE [15], Pillai et al. [16], Aydin et

al. [17], Pering et al. [18]

Compiler

directed

Hsu el al. [19, 20] Azevedo et al. [21], Shin et al. [22],

Saputra et al. [23]

For systems with no strict time constraints, the operating system periodically collects informa-

tion about the system and adjusts the speed accordingly. Childers et al. [9], periodically invokes

8

an interrupt service routine that adjusts the speed to maintain a desired performance goal. The OS

keeps track of the accumulated application’s instruction level parallelism throughout the applica-

tion execution time. The ECOSystem framework [10] allocates energy budget per resource to limit

the battery energy dissipation per period. Flautner et al. [11, 12] classified execution intervals as

interactive, periodic producer, and periodic consumer to derive potential deadlines. The derived

deadlines guide the speed setting in each scheduling interval.

Power-aware compilation performs specialized code optimizations to assign lower speeds to

selected code segments. Hsu el al. [19, 20], identifies program regions where the CPU can be

slowed down. The compiler sets the speed in each region based on the expected time the CPU

would wait for a memory access. However, this work does not exploit dynamic slack time generated

in computation-dominated applications.

Time restrictions in real-time applications mandate the processor to finish the application’s

execution before its deadline. On the OS level, CPU speeds are set using knowledge about a task

execution time profile. Mossé et al. [13] present a number of dynamic speed-setting schemes that

reclaim both static and dynamic slack. Gruian [14] determines a voltage schedule that changes the

speed within the same task/application based on task’s statistical behavior. Similarly, in PACE

[15], a task’s speed increases as it’s execution progresses over time based on probability distribution

of its execution times. Pillai et al. [16] presented power management heuristics that modify EDF

and RMS scheduling in RT-Linux to incorporate voltage scaling. Aydin et al. [17] determine the

optimal static speed for periodic real-time tasks with different power characteristics. Pering et

al.[18] presented one of the early DVS implementation on a CPU scheduler to target real-time

system.

Compiler controlled DVS techniques in real-time systems analyze an application and insert

code offline that controls the CPU speed at run-time. Azevedo et al. [21] insert checkpoints at the

start of each branch, loop, function call, and normal segment. Information about the checkpoints

along with profile information are used to estimate the remaining cycle count and hence compute

a new frequency. Shin et al. [22] augment each basic block in a CFG with its worst case execution

cycles along with the remaining worst case cycles till the end of the program. Speed-change code is

inserted in selected branches. The branch is selected if the remaining cycles at this branch is smaller

than the worst case remaining cycles at a sibling branch. Saputra et al. [23] select the best supply

voltage for each loop nest based on the loop’s estimated energy. The voltage levels are set at compile

time for each region using an integer linear programming DVS strategy. Kim et al. [24] presented

9

a comparison of Shin’s and Gruian’s algorithms on the same simulation environment. They showed

that the performance of these two schemes are quite different depending on the available slack

times.

My proposed CPU power management scheme falls in to the class of schemes that target ap-

plications with deadlines. OS-directed schemes predict the remaining workload based on overall

worst-case and average-case execution time estimates. However, the collaborative scheme estimates

the remaining execution time based on knowledge about the current execution instance of an appli-

cation. This knowledge provides more accurate estimates that can be used in scheduling the CPU

speed.

Compared to the aforementioned compiler-directed schemes, the key advantage of the collab-

orative scheme is the use OS’s runtime knowledge in computing the CPU speed while accounting

for overheads. In Azevedo et al. [21], run-time overhead of updating data structures and setting

the new voltages is relatively high especially on the nodes granularity assumed (almost every basic

block). The collaborative scheme uses a much larger granularity than a basic block to schedule

the CPU speed with minimal overheads. In Shin et al. [22], profiled timing information and speed

change decisions are hard coded in the selected branches. However, part of the dynamic slack is

wasted due to the deviation of the actual execution time from the profiled information used to set

the speed. In contrast, the collaborative scheme can account for this slack by calculating the speed

at run-time. Since Saputra et al. [23] assign lower voltages to loops only, their scheme is best

suited for media applications where the loop dominates the execution of an application, while my

proposed scheme fits general purpose applications.

2.2 CACHE POWER MANAGEMENT

The current increase in the number of cores per chip requires a similar increase in on-chip cache

capacities. Larger caches provide faster access to the data coming from multiple running threads

on these cores. As a result, on-chip caches occupy large chip area and consume a large percentage

of the total chip power. Efficient cache management and organization improve the cache access

latency and power consumption. Examples of techniques that can optimize cache performance and

energy are cache partitioning, turning off unused sections in the cache, and tag-array optimizations.

Cache partitioning reduces both the per-access energy and latency due to activating and ac-

10

cessing small portions of the cache rather than the entire cache. Accessing a portion of the cache

involves activation of shorter bit and word lines. Kim et al. examine ways of splitting the cache

into smaller units, each of which is called a sub-cache [25]. They selectively activate a target cache

upon a memory access. In CMP processors, a cache partitioning manager can allocate cache sizes

according to the demands of the running threads [26, 27, 28]. Ravindran et al. use the compiler to

analyze applications’ cache access characteristics, and accordingly determine the cache partitioning

strategy [26]. The compiler inserts hints to control cache lookup and data placement of each parti-

tion. Data is accessed from partitions as indicated by a bit-vector associated with each Load/Store

instructions.

In conjunction with partitioning, parts of the cache can be set at a lower power state or even

turned off. Putting unused cache portions into lower power states is beneficial in reducing the

cache’s leakage energy with insignificant impact on performance. Patel et al. exploits the spa-

tial/temporal properties of data caches to store high locale data in a separate small memory while

turning off the cache lines belonging to this data [29]. Kadayif et al study the relationship between

prefetching and the turnoff of cache lines to save leakage energy [30, 31].

Since the cache’s tag array is accessed at every cache access, reducing per-access energy in the

tag array causes significant decrease in the cache energy consumption. Zhou et. al. propose a cache

architecture which eliminates the majority of references of TLB lookups by storing both virtual and

physical tags [32]. For I-cache, Petrov et al. proposes a software-directed technique that reduces

the number of tag bits lookup for instructions in the most frequently executed loops [33]. Loghi et

al. propose reducing the number of tag bits by moving a large number of tag bits to an external

register [34].

2.3 POWER MANAGEMENT IN MULTIPLE CLOCK DOMAINS CHIPS

With the increase in number of transistors and reduced feature size, higher chip densities create

a problem for clock synchronization among chip computational units. With a single master clock

for the entire chip, it is harder to design a clock distribution network that limits clock skew in the

different chip components. Several solutions have been proposed to this problem using globally-

asynchronous locally synchronous (GALS) designs. In a GALS design, a chip is divided into multiple

clock domains (MCD). Each domain operates synchronously with its own clock, and communicates

11

L1− I Cache

Fetch Unit

ROB, Rename, Dispatch

FRONT END
EXTERNAL

FLOATING POINTINTEGER

integer ALU L1−Dcache

LS queue

FP ALUs

Integer queue

Main memory

L2 cache

FP queue

LOAD/STORE

Figure 2.1: Example of domain partitions in MCD processors [1, 2]

with other domains asynchronously through FIFO queues.

MCD design increases the opportunity for better power management with dynamic voltage and

frequency scaling (DVS). Since each domain maintains its own clock and voltage independently of

other domains, DVS can be applied in each domain for an extra level of power management (rather

than applying DVS at the chip level). Power and energy benefits come from dynamically adjusting

an individual domain’s clock and voltage according to its activity.

Several power management policies have been proposed to incorporate DVS into MCD chips.

For example, an online power management policy that monitors queue occupancy of each domain

and adapts the domain voltage accordingly has been proposed [1, 2]. Figure 2.1 shows the domains

of the proposed MCD chip. For each domain, the policy computes the change in the average queue

length in consecutive intervals. Increasing queue length triggers higher voltage and clock settings

for a domain and vice versa. Results show a significant power and energy improvement. In general,

policies in the literature focus on each domain in isolation without considering possible inter-domain

effects when varying clock/voltage.

MCD design has the advantages of alleviating some clock synchronization bottlenecks and re-

ducing the power consumed by the global clock network. Semeraro et al. explored the benefit

of voltage scaling in MCD versus globally synchronous designs [35]. They find a potential 20%

average improvement in the energy-delay product. Similarly, Iyer at al. analyzed the power and

performance benefit of MCD with DVS [36]. They find that DVS provides up to 20% power savings

over an MCD core with single voltage.

In industrial semiconductor manufacturing, National Semiconductor in collaboration with ARM

12

developed PowerWise technology that uses Adaptive Voltage Scaling and threshold scaling to au-

tomatically control the voltage of multiple domains on chip [37]. The PowerWise technology can

support up to 4 voltage domains [38]. Their current technology also provides power management

interface for dual-core processors.

Another technique by Magklis et al. is a profile-based approach that identifies program regions

that justify reconfiguration [39]. This approach involves extra overhead of profiling and analyzing

phases for each application. Zhu et al presented architectural optimizations for improving power

and reducing complexity [40]. However, these policies do not take into account the cascading effect

of changing a domain voltage on the other domains.

Wu et al. present a formal solution by modeling each domain as a queuing system [41]. However,

they study each domain in isolation and incorporating domain interactions increases the complex-

ity of the queuing model. Varying the DVS power management interval is another way to save

energy. Wu et al. adaptively vary the controlling interval to react to changes in workload in each

domain [42]. They do not take into account the effect induced by voltage changes in one domain

on the other domains.

MCD design can be applied to multicore and simultaneous multithreading processors such [43,

44, 45]. In [43, 44], each core has its own clock network, and the DVS policy independently controls

each core’s voltage. Lopez et al. studies the trade-off between adapting the L2 cache capacity and

speed based on the number of active threads in the core domain [45].

2.4 DRAM POWER MANAGEMENT

Current memory organizations, such as SDRAM and Rambus, allow managing energy consumption

by setting the DRAM chips to one of two or more power states [46]. DRAM chips are set at a low

power (sleep) state during idle periods and transitioned to a high power state (active) to service

memory requests. During a read/write transaction, all chip components (row decoder, clock, etc.)

are powered up to service requests. Powering down some of these components creates power-saving

states. Delay penalties result from transitioning between power states before servicing a memory

request. A common technique of scheduling a chip’s power state transitions is through a time-out

policy. A power management algorithm defines a time-out threshold such that, when a memory

idle period exceeds this threshold, the chip is transitioned to a lower power state.

13

At the micro-architecture level, the use of special purpose memory like Streaming Memory,

Scratch-Pad Memory, or Energy-Saver Buffers can reduce the memory’s energy by accessing the

most frequent data from these special low power memories [47, 48]. Fan et al. [49, 50] analyzed

different memory controller policies and their effect on the DRAM power. They found that imme-

diate shutdown of the memory chips yields better results than sophisticated adaptive techniques.

Memory and disk controller policies can apply similar power management strategies [51, 52].

In the OS layer, Lebeck et al. [53] proposed the use of a power aware allocation policy where data

is allocated sequentially in each memory bank to increase the bank idle periods. An implementation

of the memory power manager in the Linux operating system [54] allocates memory pages to

banks grouped based on the allocating process. Li et al. [51] presented a technique that provides

performance guarantees on the memory system by periodically adjusting the time-out threshold

based on the available slack and the current workload. Cai et al. [52] uses an interval based scheme

that adapt the memory page size and the disk time-out threshold based on the system workload.

Other research direction targets compiler techniques for memory power management. Delaluz

et al.[55, 56] group the allocation of the requested pages in memory based on application’s order of

data accesses. Ozturk et al. [57] modify the data access pattern of a performance-oriented scheme

to reduce leakage and dynamic energy in the memory hierarchy. Grun et al. [58] clustered variables

into memory banks based on their spatial and temporal locality. Kandemir et al. [59] presented a

code optimization technique to manage the flow of data to/from a scratchpad memory.

My proposed memory power management scheme compares to schemes implemented in the

architecture and the OS levels. While the use of extra on-chip memory (as with energy-saving buffers

and streaming memories) reduces the activation of the DRAM chips, the aggressive prefetching

creates a memory bus performance bottleneck and increases the bus’s energy consumption. These

factors were not accounted for in the above related work. In comparison, my scheme uses near-

memory caching (within the DRAM chips) to avoid such a bottleneck. With respect to adaptive OS

techniques that vary the time-out threshold, they mainly optimize the energy-delay product without

providing bounds on the delay experienced during this adaptation (except in [51]). However, we

propose to maintain the memory delays within specified bounds. In contrast to [51], we look for

adapting more reconfigurable system parameters, such as the cache block size, in conjunction with

the time-out threshold.

14

2.5 EMBEDDED DRAM

Integrating DRAM and logic cells on the same chip is an attractive solution to achieve both high

performance (from logic cells) and high memory density (from DRAM cells). This integration avoids

the high latency of going off-chip by doing computation (or even caching) at the memory itself.

Currently, manufactured chips with embedded DRAM and logic are mainly used in applications

like computer graphics, networking, and handheld devices [60]. Based on the fabrication technology

(either DRAM-based or logic-based), some degradation to the speed (density) of the logic (DRAM)

cells may occur. For example, in early DRAM-based chips, logic cells were reportedly slower by

20% to 35% [60]. However, emerging fabrication technologies aim at overcoming these penalties.

For example, NEC’s embedded DRAM chips offer DRAM-like density with SRAM-like performance

[61], and IBM’s third generation embedded DRAM chips support two embedded DRAM families

for high density and high performance to serve both purposes with no degradation [62].

15

3.0 MODELS

3.1 REAL-TIME APPLICATIONS

Real-time applications are characterized by deadlines. A deadline is the amount of time available for

an application to finish execution. The deadline should be larger than or equal to the application’s

worst case execution time. Since the execution time for an application may vary in a system with

multiple operating frequencies, the execution time is expressed in cycles rather than time units.

Thus, the application’s duration is represented by its worst case execution cycles (WCC). We define

an application worst case execution time (WCET) as the time spent executing the WCC at the

maximum frequency. We consider two types of real-time applications: applications subject to hard

deadlines and others subject to soft deadlines. It is critical for applications with hard deadlines

to meet these deadlines. However, it is desirable for an application with a soft deadline to finish

execution within the allowed deadlines. That is, in contrast to hard deadlines, it is acceptable for

applications with soft deadlines to endure performance degradation in excess of their deadlines in

order to achieve higher energy savings.

When running at the maximum frequency, if deadline > WCET (i.e., the allotted time exceeds

the WCET), the time difference is known as static slack. During actual execution, an application

runs for its actual execution time (ACET), which is smaller than or equal to its WCET. The

difference between WCET and ACET is called the dynamic slack, which usually comes from data

dependencies that cause program instances to execute different paths. Thus, it is safe to represent

application duration by its worst case cycles (WCC). Similarly, ACC is used to represent the actual

number of cycles spent executing an application.

We consider the general form of real-time applications that may consist of sequential code,

branches, loops and procedures. A program is represented by a control flow graph (CFG). CFGs

are used as an intermediate representation in compilers. CFG consists of basic blocks (code segment

16

with one entry point, exit point and no jump instructions contained within it).

3.2 CPU ENERGY MODEL

In CMOS circuits, energy dissipated is the sum of three main components: dynamic, static and

leakage power. Dynamic energy is a function of the processor’s switching activity, operating fre-

quency and voltage. Dynamic power is directly proportional to the square of the input voltage:

Pdyn α CV β
ddf , where C is the switched capacitance, Vdd is the supply voltage, f is the operating

frequency and β is a processor dependent constant that is typically greater than or equal to two.

Static energy is the energy consumed due to powering up some of the core’s structures like the

register file and the load/store queue. This energy is consumed independent of any activity in the

core. Leakage energy is the energy consumed during processor’s idleness as a result of the leakage

current flow in the transistors. Leakage energy is a function of both the gate supply and threshold

voltages.

Most commercially available processors support Dynamic Voltage Scaling (DVS) capabilities

to control the trade-offs between performance and energy consumption. Two examples are the

Transmeta Crusoe TM5400 [63] and the Intel XScale [64]. In this work, we consider realistic

processors with discrete voltage and frequency levels. We refer to changing the voltage/frequency

and speed changes interchangeably.

When computing and changing the CPU speed, two main sources of overhead may be encoun-

tered depending on the CPU architecture: (1) computing a new speed, and (2) setting the speed

through a voltage transition in the processor’s DC-DC regulator (resulting in a processor frequency

change) and the clock generator. The speed change overhead takes between 25µsec to 150µsec and

consumes energy in the range of micro Joules (for example 4µJ in lparm) [65, 18]. We assume

that the overhead of changing the voltage is constant for all the power level transitions in a given

processor, whereas the overhead of computing the speed depends on the CPU operating frequency

during each computation.

17

3.3 CACHE ENERGY MODEL

Access energy and latency for each cache access is a function of the cache configuration. For a

given technology, the key parameters for cache configuration are cache size, associativity, and cache

block size. Varying these parameters affects the length of the word and bit lines that need to be

activated at each cache access. Longer lines causes longer delay and higher power consumption per

access. We use the Cacti 3.0 [66] simulator to obtain the access energy and latency for the different

configurations of caches used in our work. In Cacti, the per-access energy and latency is divided

into portions consumed in the tag-array and the data-array (including sense amplifiers and output

latches). In n-way set associative caches, tag and data arrays are accessed concurrently to reduce

the total access time. In fully associative caches, the tag array is replaced by a fully associative

decoder, after which the data array is accessed. Tag comparison takes place in the decoder. Then,

the decoder drives the wordline associated with the cache entry. The serial access of tag and data

arrays reduces the cache per-access energy; however, it increases the per-access latency. Using

Cacti, we obtain access latencies and energy assuming that the cache is operating at voltage Vdd =

1.3 V.

When integrating SRAM cache and DRAM memory on the same chip as discussed in Section 2.4,

we add a delay penalty ranging from 10% to 35% for accessing logic cells in the memory chip [60].

We also account for delay penalties for accessing off-chip caches.

3.4 MEMORY ENERGY MODEL

External DRAM memory usually consists of multiple memory chips. A chip contains one or more

memory banks. Each chip can be transitioned independently to/from a low power memory state.

A chip consists of control logic (for example, row and column decoders) and data array (memory

banks). Energy in the DRAM-core is consumed during read/write activity (Edyn) and during idle

periods (Estatic). The memory’s dynamic energy is consumed in address decoding, Eaddr decode, and

data transfer to/from DRAM-core. At each miss in the lowest level cache, the memory controller

decodes the row and column addresses then precharges a row in the desired bank containing the

requested data. Data access energy is proportional to the number of bytes transferred during read

or write transactions. During inactivity (idle periods), the memory’s idle energy is a function of

18

the idle time spent at each power state. We assume five DRAM power states: active, standby,

nap, sleep, and off [67]. Transition energy, Etrans, is consumed when a chip transitions to/from the

active state. Thus, the energy consumed in the DRAM-core Etot equals:

Etot = d Eaddr decode + c Paccess taccess +
∑

s

Ps ts + r Etrans

where d is the number of data requests; c is the number of transferred bytes; Paccess is the power

dissipated during read/write transactions. Ps is the power consumed when the DRAM is in the sth

state. taccess and ts are the time for transferring a single byte to/from DRAM-core and the time

spent in the sth state, respectively; and r is the number of transitions to and from the active state.

Eaddr decode, Paccess, taccess, Ps, and Etrans are memory specific parameters while d, c, ts, and r are

factors of the application’s memory access pattern and the memory hierarchy configuration.

19

4.0 COMPILER AND OS COLLABORATION FOR CPU AND MEMORY

POWER MANAGEMENT

Dynamic Voltage Scaling (DVS) slows down the processor speed to reduce its power consumption.

The objective of a power management scheme employing DVS is to efficiently use the available slack

(time where the processor is idle) to reduce the processor’s speed without violating applications

time constraints. Better slack utilization implies a decrease in processor energy consumption but

an increase in other system components.

Dynamically changing the speed in real-time applications (tasks) is classified into two categories:

inter-task and intra-task voltage scaling [24]. Inter-task DVS schemes schedule speed changes when

a task starts or finishes execution, while intra-task schemes schedule speed changes during task

execution. In this chapter, we describe an intra-task DVS scheme, where voltage scheduling points

(also called power management points, PMP) are invoked throughout an application’s execution to

change the CPU speed.

Considering the general form of a real-time application code, automatically deciding on the

proper location to invoke PMPs using intra-task DVS scheduling is not trivial. One problem is how

frequently the power manger should change the speed. Ideally, the more voltage scaling invocations,

the more fine-grain control the application has for exploiting dynamic slack and reducing energy.

However, in practice, the energy and time overhead associated with each speed adjustment can

overshadow the DVS energy savings.

To design an efficient intra-task DVS scheme, a PMP should have enough information about the

application to select the most energy-efficient speed level. With knowledge about the application

execution, a PMP estimates the amount of work remaining to execute versus the time available

before a deadline. The proper estimation by PMPs of the remaining workload saves energy by

selecting the slowest speed that guarantees meeting the application’s deadline.

The contribution of this chapter is threefold. First, we present a novel technique that in-

20

volves the collaboration between the OS and the compiler to collect both run-time information

and path-dependent information. Second, we show the effect of reducing the CPU frequency on

increasing the memory energy consumption. We present speed scheduling schemes that compute

the proper CPU frequency such that the sum of the CPU energy and the memory energy consump-

tion is minimized. Third, we evaluate our technique on time-sensitive applications running on two

commercially available processors with dynamic voltage scaling. We show that our technique can

achieve significant energy reduction over no power management, OS-directed and compiler-directed

power management techniques.

Next, we present a brief description of the power management approach that deals with these

issues. We start with a discussion of the idea behind our OS-compiler collaborative approach in

Section 4.1 and highlight its advantages over OS-only or compiler-only approaches in Section 4.2.

A brief overview of the technique is presented in Section 4.3. We then describe the different

algorithm phases and the role of both compiler and the OS in Section 4.4 and Section 4.5. We

present a detailed evaluation on different real-time applications in Section 4.6 followed by a chapter

conclusion in Section 4.7.

4.1 COMPILER AND OS COLLABORATIVE APPROACH

To control the number of speed changes during the execution of an application, we present a

collaborative compiler-OS technique [68]. Initially, some timing information is collected about a

program’s execution behavior. This information is used offline to compute how frequently PMPs

are invoked. The number of cycles between executions of two PMPs is called the PMP-interval.

The length of the PMP-interval controls the number of PMPs executed in an application, and

therefore the overhead. Next, the compiler inserts instrumentation code to compute some timing

information and make it available to the operating systems. We call such instrumentation: power

management hints, PMH. PMHs compute the worst-case remaining cycles, wcri, starting from the

ith PMH location to the end of the application. The value of wcri at these locations may vary

dynamically based on the executed path for each run. For example, the remaining cycles at a PMH

inside a procedure body is dependent on the path from which this procedure is invoked. During

run-time, a PMH computes and passes dynamic timing information (i.e., wcri) to the OS in a

predetermined memory location named RWCR, which holds the most recent value of the estimated

21

worst case remaining cycles. Periodically, a timer interrupt invokes the operating system to execute

an interrupt service routine (ISR) that does the PMP job; that is, the ISR adjusts the processor

speed based on the latest worst case remaining cycles, WCR, value and the remaining time to the

deadline.

Figure 4.1 shows an example CFG and how PMHs and PMPs work together. A PMP is

periodically invoked (the large bars) to adjust the processor’s speed based on RWCR. In the

compiler, a PMH placement algorithm first divides an application code into segments, such that

the worst case execution cycles of each segment, wcc, does not exceed the PMP-interval length (in

cycles). The compiler then inserts one PMH (the short bars) after each segment. Each PMHi

computes the worst case remaining cycles (wcri) and stores it in RWCR. A PMHi is guaranteed

to execute at some point before a PMP to update the RWCR with the value of wcri based on the

path of execution. Because the actual execution cycles of each segment is less than or equal wcc,

more than one PMH can be executed in a single PMP-interval, improving the estimation of WCR.
PMH

PMH

PMH

PMH

PMH
i+1

i−1

i−2

i+2

i

wcri−1

Elapsed cycles along
single execution path

WCR = wcri−3 i−3WCR = wcriWCR = wcri−2WCR = wcr

OS interrupt invoked
for executing PMPs

PMHs inserted by
the compiler

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
� wcri i+2wcr wcri+1wcri−2

Interrupt Interval

Figure 4.1: (a) Sample CFG. (b) Invocations of PMHs & PMPs for executing the bold path in (a).

The collaborative scheme uses knowledge shared by both the OS and the compiler to control

the speed, in contrast to OS-only or compiler-only DVS scheme. The collaborative scheme exploits

the compiler’s ability to extract run-time information about the application execution progress

indicated by wcri. The scheme also takes advantage of the OS’s ability to schedule DVS events

independent of which path is executed in the application. In a solely OS-directed scheme, the

OS is unaware of an application’s execution progress and the number of remaining cycles, while a

solely compiler-directed scheme can not control how often PMPs will be called (due to the non-

determinism of the path followed during program execution), and thus, there is no upper bound on

the overhead.

22

4.2 PMP VERSUS PMH PLACEMENT STRATEGY

For a single application, a PMH inserted in the application code while PMPs are invoked by the OS

is more beneficial with respect to slack utilization than inserting PMPs directly in the code. Since

actual execution paths are only known at run-time, placement of PMPs directly in the applications

code based on information available offline may lead to inefficiencies. There are two reasons for

the inefficiency. First, an offline decision may not account for all the run-time slack generated by

an application, and second, there is no control on the frequency of executing PMPs due to the

uncertainty related to which paths will be taken at run-time.

Scheduling the speed offline based on profile information can not use all the generated slack. The

actual execution time of an application is likely to differ from its offline estimates using profiling

or static analysis. This difference contributes to the dynamic slack generated in the system. A

compiler-only intra-task DVS scheme makes speed change decisions based solely on offline estimates.

For this, such schemes can not exploit all the dynamic slack generated at run-time. On the other

hand, PMHs can convey run-time knowledge about the application execution. Thus, during run-

time a more informed decision can be made based on better estimates of the actual slack available

at the time of the speed transitions. Further analysis of the slack utilization efficiency compared

to other offline schemes is discussed in Section 4.6.

The uncertainty in finding the execution path at compile time can cause some offline placement

strategies to increase energy consumption rather than achieve energy savings for some combinations

of code structures. This can be due to the overhead associated with executing too many PMPs

or due to inefficient slack utilization due to too few PMP invocations. Figure 4.2 and Table 4.1

show different PMP placement strategies and some combinations of code structures that show the

shortcomings of those strategies for specific cases. Although some slack is exploited, the given

examples show that there is no guarantee that the overhead of changing the speed does not offset

the total energy savings. We evaluate this issue later in this chapter.

The strength of the collaborative scheme lies in three properties. First, a separate PMH place-

ment algorithm can be devised to supply the OS with the necessary timing information about

an application at a rate proportional to the PMP invocation. Second, the actual speed-change is

done seldom enough by the OS at pre-computed time intervals (every PMP-interval) to keep the

overhead low. The PMP-interval is tailored to an application’s execution behavior in a way that

minimizes the energy consumption while meeting deadlines. Finally, by giving the OS control to

23

��
��
��
��Basic Block Speed change

invocation
Prodecure body Region of

basic blocks

��
��
��
��

(a)

��
��
��
��

(b)

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

(c)

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

D

C

B

A

Z

Y

X

(d)

PMP PMP

{stmnts}

return

call B() Call C()
Main ()

A()

C()

B()

D()

{stmnts}

return

{stmnts}
PMP

return

call D()

return

{stmnts}

PMP

call A()

{stmnts}

(e)

{stmnts}
PMP
{stmnts}
PMP
return

X()

A

B C

D

call X()

call X()

call X()

(f)

Figure 4.2: Some PMP placement strategies and their adverse cases of code structure (See Table 4.1

for description).

24

Table 4.1: Adverse combinations of code structure for some PMP placement strategies.

Case Placement

Strategy

Adverse case Side effect

(a) PMP placed at

each loop itera-

tion

Loop body (single iteration) con-

sists of one or few small sized ba-

sic blocks, i.e., loop body size is

in order of few to hundreds of cy-

cles)

Too frequent speed-

change invocations

relative to the slack

that may be generated

in the system.

(b) A PMP placed be-

fore the start or

after the termina-

tion of a loop exe-

cution

An application consisting of sin-

gle main loop

Dynamic slack gener-

ated from the loop can

not be exploited.

(c) PMP placed at

each branch

Each branch is a basic block be-

fore it branches again

Too frequent speed-

change invocations.

(d) Place PMP in

branches with

non worst case

(cycles) path

Path ABCD is a sequence of ba-

sic blocks interleaved with PMPs.

Regions X,Y and Z are worst case

paths after blocks A,B, and C, re-

spectively.

Too frequent speed-

change invocations.

(e) PMP placed at

each procedure

call

Frequent call to procedures of

small sizes

Too frequent speed-

change invocations.

(f) PMPs inserted in

procedures’ bod-

ies

Procedure X contains PMPs and

is called from different call-sites in

the application

Need a way to estimate

the worst case remain-

ing cycles inside proce-

dure X to compute a

new speed

25

change the CPU speed, the scheme controls the number of executed PMPs independent of any

execution path.

The advantage of using a collaborative scheme that includes both PMHs and PMPs over a

scheme that uses only PMPs is that the application’s execution progress can be known without

actually invoking a speed-change and incurring its high overhead. For example, consider the case of

a loop body that contains mainly two exclusive branches (e.g., if-then-else statement), such that

the wcc of the first branch (then part) is much larger then the second one (else part). Consider

a scheme that utilizes PMPs alone (the locations of PMPs in the code are statically determined),

and places a PMP inside the loop body before the branches. This scheme would hurt energy

consumption if the smaller branch is executed more often than the large branch. This is because,

with each loop iteration, the scheme would pay the overhead of the speed-change independent of

the branch/path visited. However, using the proposed scheme, the overhead in each iteration is

reduced by replacing the PMP in the loop with a PMH. Also, the actual speed-change (PMP) is

scheduled after a “reasonable” amount of work, such that the potential energy savings from DVS

can justify the energy overhead of the PMP. Similar scenarios occur in all program constructs that

have variable dynamic execution times.

4.3 COLLABORATIVE POWER MANAGEMENT ALGORITHM OVERVIEW

The collaborative approach is divided into offline and run-time phases. Figure 4.3 shows the tasks

required at each phase. Below, we describe the role of the compiler and of the OS in each of these

tasks.

Collect Timing
Information of PMPs

Execution
& set WCR

PMH compute
code with hints

Application

of PMHs
Placement

Run−Time phase

Compute
Interval Length

Offline phasesPre−Processing

Compiler Support
OS support

Figure 4.3: Phases of the collaborative power management scheme.

The compiler and the OS interplay roles in our scheme. The compiler analyzes the application’s

26

code through a timing profile phase. Then, the OS uses this profiling data to compute the interrupt

interval length. Based on the interval length and the timing information collected in pre-processing,

the compiler places the PMHs in the application source code. At runtime, as the application

executes, hints are executed and evaluated based on the code path followed. Hints estimate the

worst case remaining cycles, and accordingly the OS computes the desired speed. Next, we describe

the detailed roles of both the compiler and the OS.

4.4 COMPILER SUPPORT FOR THE COLLABORATIVE SCHEME

4.4.1 Timing Extraction

Before deciding on the locations of the PMHs in the code, the compiler collects timing knowledge

about an application. We assume that the WCET (the worst-case execution time at maximum

speed) of an application is known or can be obtained (for example, through profiling or software

timing analysis1 [69, 70]).

To collect timing information, we divide a program’s control flow graph (CFG) into regions.

Each region contains one or more adjacent basic blocks (BB). Since the typical size of a basic block

is small (tens of cycles) compared to the typical size of a PMP-interval (hundreds of thousands of

cycles), blocks can be aggregated into a region to be profiled. Region formation has the key

advantage of reducing the number of traversed objects and the complexity of traversing the CFG

in later stages of our power management scheme. Region formation also avoids aggregating too

many basic blocks into a region such that the region execution at run-time exceeds the PMP-

interval. Since some procedures called within a BB may execute for relatively long periods, we

avoid overgrowing a region by isolating each BB that contains a procedure call into its own region.

We aggregate the blocks into a region while maintaining the structure of the program constructs

(for example, loops and control flow statements). Regions are determined by a region construction

algorithm described in [71].

Figure 4.4 shows examples of region formation and how it reduces the number of regions and

preserves the program structure. We show the cases where branches and loops contain procedure

calls. For Figure 4.4-a (a branch construct like an if-then-else statement), if none of the blocks

1The usual trade-off applies: profiling cannot guarantee the deadlines of tasks, since it does not derive the worst-
case execution, while software analysis allows for that at the expense of lower slack utilization.

27

��
��
��

��
��
��

(a)

��
��
��

��
��
��

(b)

��
��
��

��
��
��

procedure call

Region

Basic block with

Basic block

Figure 4.4: Examples on region segmentation for (a) branches and (b) loops, with and without

procedure calls.

forming the construct contains any procedure call then all the blocks are merged into one region.

Also, if followed by a block without calls, then that block is merged with the larger region. However,

if any of the BBs that belong to the branch construct contains a call, then this block forms a separate

region not to be merged with other blocks. With respect to loops (Figure 4.4-b), if the entire loop

body does not include any calls then it forms a single region that can be merged with other BB

outside the loop. Similar to the case of branches with procedure calls, if any of the BBs has a call

then the body is divided into more than a single region, and these regions cannot be merged with

any region outside the loop.

After forming regions, profiling is used to extract timing information about the constructed

regions. For loops, we collect the maximum cycle count of loop segments along with the maximum

trip count of that loop, where loop segment includes the total execution cycles of the loop iterations

and, the trip count is the number of iterations in the loop. We use loop segment and the maximum

trip count to estimate the loop body size, which is the number of cycles spent in a single iteration

of the loop. For each procedure, we collect the time spent executing that procedure. High level

information (WCC and average cycle count) about the entire application is used to compute the

PMP-interval size.

Based on the timing information collected by the compiler, the OS computes the best PMP-

interval that avoids excessive execution of PMPs (as described in Section 4.5). PMP-interval

length is dependent on the speed scheduling scheme used by the OS. PMP-interval length is key

information that the compiler use for the PMH placement as described in the next section.

28

4.4.2 Placement of PMHs

The goal of the PMH-placement algorithm is to ensure that, at least, a PMH is executed before the

invocation of the next PMP. The placement algorithm traverses the CFG to insert PMHs no further

apart than the size of the PMP-interval (computed by the OS). Ideally, a PMH should execute right

before the PMP is invoked, so that the PMP has the most accurate information. Since we do not

control the application’s dynamic behavior, we allow more than a single PMH to be executed in

each execution segment to improve the probability of an accurate speed computation.

In the PMH-placement algorithm [72], while traversing the CFG of a procedure, a cycle accu-

mulators, ac, is incremented by the value of the elapsed worst-case cycles of each traversed region.

A PMH is inserted in the code just before this counter exceeds the PMP-interval and the counter

is reset. PMH locations are selected according to the different types of code structures in an appli-

cation, namely sequential code, branches, loops or procedure calls. Next we describe the criteria of

placement in each of these cases.

4.4.2.1 Sequential code We define a sequential segment as a series of adjacent regions in

the CFG that are not separated by branches, loops, joins or back edges (although the segment

may include a procedure call). Sequential placement inserts a PMH just before ac exceeds the

PMP-interval. It is non trivial to insert a PMH in a region containing a procedure call, since

the procedure’s cycles are accounted for in the enclosing region’s execution cycles. If the called

procedure is too large (i.e., larger than the PMP-interval), then inserting PMHs only at the region

boundary is insufficient to update the WCR before the next PMP invocation. For this reason, we

need to further investigate possible locations inside a region related to the locations of procedure

calls. For regions in a sequential segment, PMHs are inserted according to the following rules:

• When the cumulative counter ac exceeds the PMP-interval cycles and there are no procedure

calls in the region then a PMH is placed before the current region.

• If a region contains a procedure call and the body of a called procedure exceeds the PMP-

interval, a PMH is placed before the procedure call and another PMH after the procedure call.

The called procedure is marked for later placement. The PMH before the call indicates the

worst case remaining cycles at the start of this procedure’s execution. The PMHs before and

after the called procedure – that may contain PMHs– simplify the PMH placement scheme by

avoiding the need to track inter-procedural information about ac (i.e., ac does not have to be

29

remembered from one procedure to the next).

4.4.2.2 Branches For any branch structure, each path leaving a branch is treated as a sequen-

tial segment or recursively as a branch structure. At any branch, the value of ac is propagated to

all the branch’s paths. In a join, ac is set as the maximum value of all the propagated counters

just before the join.

4.4.2.3 Loops The decision of placing PMHs in a loop is based on the loop segment and loop

body sizes (in cycles). The different cases for inserting PMHs in loops are as follows:

• If the sum of ac and loop segment exceeds PMP-interval but the loop segment is smaller than

PMP-interval then a PMH is placed before the loop (see Figure 4.5-a).

• If a loop segment exceeds PMP-interval but the loop body is smaller than PMP-interval, then

a PMH is placed at the beginning of the loop body in addition to the PMH placed before the

loop. Another PMH is inserted after the loop exit (see Figure 4.5-b).

• If the size of the loop body exceeds PMP-interval, a PMH is placed at the start of the loop body

and the loop is treated separately as either sequential code or code with branches. Another

PMH is inserted after the loop exit (see Figure 4.5-c).

The reason for placing a PMH after the loop in the last two cases is to adjust any over-estimation

of WCR done by the loop’s PMHs. Nevertheless, over-estimation of WCR is possible in the case

where the actual number of loop iterations is unknown during loop execution.

4.4.2.4 Procedure calls As described above, in the processing of sequential segments, proce-

dure calls are detected and accordingly some procedures are selected to undergo PMH placement

in their bodies. The procedure selection is subject to satisfying the need for updating the WCR

(through PMHs) at least once during each PMP interval. For each procedure selected for place-

ment, a PMH is placed before a procedure call to compute wcri of each instance of this procedure,

and to store wcri in the procedure’s activation frame. Instrumentation code is inserted in the

procedure prologue to retrieve the value of wcri computed dynamically by the PMH located before

the call. Each PMH located inside this procedure uses this value in its calculations of the remain-

ing cycles. This instrumentation is necessary because a procedure may be called from different

program paths and each with different wcri value even for the same called procedure (but different

30

���
���
���
���ac

lo
op

 s
eg

m
en

t

P
M

P
−

in
te

rv
al

(a)

����
����
����
����

����
����
����
����

���
���
���
���

lo
op

 s
eg

m
en

t

lo
op

 b
od

y

(b)

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���lo

op
 s

eg
m

en
t

lo
op

 b
od

y

(c)

Figure 4.5: PMH placement in loops when (a) ac+loop segment > PMP-interval, (b) loop body <

PMP-interval < loop segment, and (c) loop body > PMP-interval.

instance). This is especially beneficial in case of recursive calls, where each call instance has its

own wcri estimate.

4.4.3 PMH computation of wcri

The PMH placement algorithm can insert two different types of PMHs, static or index-controlled,

based on the program structure. The two types compute the worst-case remaining cycles based on

whether the PMH is located inside a loop or not.

4.4.3.1 Static PMH This type of PMH is placed in any location in the code outside a loop

body. Generally, a PMH is located inside a procedure. A PMH computes wcri based on the

remaining cycles at the start of the procedure instance, p wcr. Since the path is only known at

run-time, during execution, a procedure retrieves its p wcr stored in its stack space. A static PMH

computes wcri by subtracting the displacement of the PMH location in the procedure from p wcr.

For example, for a PMH inserted 100 cycles from the beginning of the procedure, the remaining

number of cycles in the program is computed as: wcri = p wcr − 100.

4.4.3.2 Index-controlled PMH PMHs of this type are inserted inside the body of a loop

where wcri varies according to the current loop iteration counter. The PMH computes the worst

case remaining cycles based on equations from [70]. Using the worst case cycles of a loop segment,

31

wc loop segment, the term wc loop segment / maximum trip count (maximum number of itera-

tions) estimates the size of a loop body, loop body. Then, wcri is computed as wcr before loop−
(iteration count ∗ loop body)− ldisp, where wcr before loop is the remaining cycles determined at

run-time from the PMH that precedes the loop, and ldisp, is number of cycles elapsed since the

start of the loop body in a single iteration. The same technique can also be applied in case of

nested loops.

Estimating the loop’s execution time using wc loop segment rather than using wc loop body *

maximum trip count (this term denoted by wc lbody) creates a trade-off between energy savings

and timeliness. Although accounting for the wc lbody overestimates the loop execution time and

thus increases the probability that a task will not miss its deadline2. This overestimation delays the

slack availability until the loop finishes execution. On the other hand, using wc loop segment lets

the slack to be used earlier in the execution, resulting in more energy savings. Even if the actual

cycles of a loop iteration exceeds loop body, the application is less likely to miss a deadline in some

cases: there is no large variation in the actual cycles of each iteration, or the iteration with the

duration of wc lbody happens early in the execution that the remaining code would generate enough

slack to avoid a deadline miss. Our experiments confirm that these cases are very common, and

thus no deadlines were missed. We conclude that, if the application is very sensitive to deadline

misses, then index-controlled PMH computes the wcri as a function of the wc lbody; otherwise,

PMH computes it based on wc loop segment.

4.4.4 Example on the PMH placement and execution

We present an example that shows how the placement algorithm works for the simple CFG shown

in Figure 4.6. The timing information for the CFG is listed in Tables 4.2 and 4.3. Assume that

the PMP-interval is 1000 cycles. Below, we first give the details on how the algorithm selects the

locations to insert PMHs and then the details of how each inserted PMH computes WCR.

• PMH1: A PMH is placed at the beginning of the CFG, indicating the WCR (= 16,500 cycles)

at the start of this procedure.

• PMH2 and PMH3: Since R2 starts a loop with a segment size of 16,000 cycles that is larger

than PMP-interval, PMH2 is placed at the end of R1 (before the loop). Because the body of

2Software analysis (in Section 4.4.1) does guarantee deadlines

32

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

PMH4

PMH5

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

R1

R4

R2

R3

R5

ac = 0

ac = 0

ac = 200

ac = 50

ac = 500

ac = 700

ac = 500

PMH1
PMH2

PMH3

PMH4
PMH5

R3

call Proc1

Figure 4.6: Example of the PMH placement in a simple

CFG.

Table 4.2: Profiled wcc for each

region in CFG shown in Figure 4.6

Region WCC (cycle)

1 500

2 200

3 1200

4 300

5 200

Table 4.3: Other profiled informa-

tion for CFG shown in Figure 4.6

Loop body 1600 cycles

Max TripCounts 10 iterations

Procedure size 1100 cycles

disp of Proc1 50 cycles

33

Table 4.4: The inserted PMHs details.

PMH Type Computed as:

1 static p wcr - 0 (= 16,500 for this procedure instance)

2 static p wcr - 500 (= 16,000)

3 index-controlled 16,000 - (iteration count x 1600)

4 index-controlled 16,000 - (iteration count x 1600) - 250

5 index-controlled 16,000 - (iteration count x 1600) - 1350

the loop exceeds PMP-interval, PMH3 is placed at the start of R2 (inside the loop) and, the

loop body is traversed for further PMH placement (similar to case (c) in Figure 4.5).

• PMH4 and PMH5: Because the sum of ac and R3 cycles is larger than PMP-interval, the

algorithm looks for the first called procedure (i.e., Proc1) in region R3 which is located at 50

cycles from the beginning of R3. Since the procedure body is larger than PMP-interval, PMH4

and PMH5 are placed before and after the procedure call, respectively. Procedure Proc1 is

marked for later PMH placement. The PMHs placed inside procedure Proc1 are not shown in

this example.

Assuming that the presented CFG is the application’s main procedure, p wcr equals the appli-

cation’s worst case remaining cycles (= 16,500). Table 4.4 lists the details of the computation done

by each inserted PMH. Note that PMH2 is useful in evaluating wcr before loop.

4.5 OS SUPPORT FOR THE COLLABORATIVE SCHEME

To support our collaborative scheme on the OS side, the OS uses information provided by the

compiler and periodically schedule the speed change. We first explain our speed scheduling schemes

in Section 4.5.1, then show how we compute the best PMP-interval length used with each scheme in

Section 4.5.2. Implementation details to support our scheme in the OS are described in Section 4.5.3.

34

4.5.1 Dynamic Speed Setting

From the CPU perspective, we can achieve the least CPU dynamic energy consumption by lowering

the operating frequency. However, from the system perspective, lowering frequency increases execu-

tion time and increases the power consumption of other system components, memory in particular.

This increase in memory energy can overshadow CPU energy savings. Hence, two constraints have

to be considered in setting the CPU frequency. First, the algorithm should lower the CPU frequency

such that it is just high enough to meet the application deadline. Second, the algorithm should pre-

vent the CPU frequency from being too low, to the point of increasing the overall system energy. We

present ways of computing the CPU speed for efficient energy savings in Section 4.5.1.1, then show

how to make the CPU speed setting aware of the memory energy consumption in Section 4.5.1.2.

4.5.1.1 CPU speed computation We use two schemes from [13] as examples to demonstrate

ways of computing CPU speed in the OS-ISR. We selected the Proportional and Greedy dynamic

schemes. We further incorporated the overhead in the speed computation in these schemes. To

guarantee meeting the deadline, the total time overhead of computing and changing the speed is

deducted from the remaining time before deadline. This time overhead is composed of changing the

speed once in the current ISR interval (Tcomp(fcurr) + Tset) and once for potentially changing the

speed after the next interval to the maximum speed (Tcomp(fnext) + Tset) if the schedule requires

so. The total time overhead is expressed as Ttotal(fcurr, fnext) = Tcomp(fcurr)+Tcomp(fnext)+2Tset.

The Proportional scheme

In this scheme, reclaimed slack is uniformly distributed to all remaining intervals proportional

to their worst-case execution times. Our main concern here is to compute the exact time left for

the application to execute before the deadline. The processor’s speed at the start of an interval,

fnext, is computed as follows: the execution times for the remaining tasks are stretched out based

on the remaining time to the deadline (d− ct) minus the possible time spend switching the speed,

Ttotal, where ct is current time at the beginning of the interval. While taking into consideration the

overhead of changing the speed, this scheme computes a new speed as:

fnext =
RWCR

d− ct− Ttotal(fcurr, fnext)
(4.1)

The Greedy scheme

In this scheme all the available slack is allocated for the next interval. As a result, the scheme

35

tends to schedule the first few intervals at a low speed, and gradually increases it after consuming

slack. The frequency for segment i is computed as:

fnext =
wcc

d− ct− RWCR−wcc
fmax

− Ttotal(fcurr, fnext)
(4.2)

where fmax is the maximum frequency the processor can operate on and wcc equals WCC/number

of intervals. Similar to the proportional scheme, the overhead components should be subtracted

from the remaining time after accounting for the execution time of the remaining intervals (exclud-

ing the current one) running at fmax.

4.5.1.2 Memory-aware speed setting To avoid operating at an excessively low frequency,

which increases the overall energy consumption, we have to account for the power of other compo-

nents while computing the speed. We only focus on memory in this work as the other major power

consumer in the system; however, we can easily extend the model to other components. From the

memory perspective, increasing execution time increases the idle time during which data needs to

be refreshed in memory. hence, reducing the CPU speed increases the memory energy consump-

tion. To reach a compromise between reducing the CPU energy and the memory energy, we limit

the CPU frequency at a point where further reduction in operating frequency will force memory

to consume energy more than the CPU energy savings. We call this frequency, the break-even

frequency, fbe. Figure 4.7 illustrates the intuition behind the computation of fbe.

E
ne

rg
y

E

E

fbe

Etot
cpu

mem

freq

Figure 4.7: Lowest total energy consumption at break-even frequency.

Given that supply voltage, Vdd is proportional to frequency, we simplify the CPU energy model

to E = Kcf
β where Kc is a constant that includes the factor of proportionality as well as some

technology specific parameters. β typically equals 3. For memory, we consider the case where

36

the memory controller can turn off memory banks that belong to an application immediately after

the application finishes execution. We define Pm
static and Pm

dyn as the average power consumed in

memory during idle period and data access, respectively. Let Etot be the sum of the CPU and

memory energy consumption.

Etot = WCET
fmax

fnext
Kcf

β
next + Pm

static WCET
fmax

fnext
+ Pm

dyn Nm

Where Nm is the number of memory accesses. To get the frequency that yields minimum energy

consumption, we differentiate Etot with respect to frequency and equate to zero. Hence,

dEtot

df
= WCET fmax (β − 1) Kc fβ−2

next − Pm
static WCET

fmax

f2
next

After equating with zero, we find that break-even frequency (fbe = fnext) that results in the

minimum energy is fbe = β

√
P m

static
(β−1)Kc

. Hence, the OS selects a frequency that is the minimum of

fnext and fbe.

The computation of fbe can be applied to account for other components in the system, such as

disk and motherboard power. It also can account for the aggregate power of multiple components

by replacing Pm
static by the sum of the static power of all components under consideration. The same

concept can also be applied to account for leakage power assuming that leakage power is constant

throughout execution.

4.5.2 Setting the PMP-interval

Determining the PMP-interval for invoking PMPs is based on the average and worst case execution

times of a program and the overhead of PMP executions. To compute PMP-interval length, we

derive a closed form formula from Equation 4.1 or 4.2 to model the relationship between the

computed frequency and the number of execution segments in a program, n. Then, we find the

value of n that achieves minimum energy consumption when executing a program. From n, the

optimal number of PMPs, we compute the best PMP-interval length as shown below.

We incorporate the overhead of a invoking PMP in the speed computation. This overhead

includes the time and energy consumed in computing and setting the speed. We assume that (1)

each execution segment has a perfect execution behavior (that is, the actual execution times of all

the execution segments are equal to the average execution time of each execution segment), and (2)

the overhead, Ttotal, of computing and setting the speed at each PMP is constant. Below are the

37

closed form equations for Proportional and Greedy speed setting schemes. Appendices A.1 and A.2

list the derivations of these formulas starting from Equations 4.1 and 4.2, respectively.

Proportional scheme : φi =
1

n− i + 1
(

n

load
− Ttotal

wcc
)Πi−1

k=1

[
1− α

n− k + 1
]

(4.3)

Greedy scheme : φi =
1− (1− α)i

α
+ (

n

load
− n− Ttotal

wcc
)(1− α)i−1 (4.4)

where φi is the ratio fmax/fi (fi is the operating frequency for execution segment i), n is the

number of execution segments in the longest execution path, load equals WCET/d, and α is the

ratio of average to worst case cycles in each execution segment. To obtain n that corresponds

to the minimum energy consumption in the average case, we substitute the formula of φi in the

energy formula from Section 3.2 and solve iteratively for n. Hence, we get the PMP-interval size

by dividing the average number of cycles for executing an application by n.

4.5.3 OS extensions

We introduce an ISR for setting the speed [73] and a system call to set the application’s power

management parameters in the OS. Additionally, more information is stored in the process’s context

to support multi-process preemption. Details about each of the needed OS extensions are given

below.

• Power-management parameters initialization system call: This system call, inserted by

the compiler, sets the application’s power management parameters in the OS. The parameters

include the length of PMP-interval (in cycles), and the memory location of the WCR. This

system call is called once at the start of each application. Although the PMP-interval is constant

(in cycles) throughout the application execution, each ISR instance computes its equivalent

time (to set the interrupt timer) based on the frequency set by this PMP instance. If there

are multiple applications running, the context switching mechanism adjusts these timers (see

below).

• Interrupt service routine: According to the dynamic speed setting scheme for computing

a new operating frequency, the ISR selects an appropriate speed/power level to operate on.

When working with discrete power levels, for a real-time application to meet its deadline, there

are two possible ways to set the operating speed. One is to operate on the smallest power level

larger than or equal to the desired frequency obtained from the speed setting scheme. The

38

1 ct = read current time

2 fcurr = read current frequency

3 fnew = compute speed (algo, ct, d, wcc, WCR)

4 if (fnew 6= fcurr) then

5 if (fnew ≤ fmin) then fnew = fmin

6 if (fnew ≥ fmax) then fnew = fmax

7 if (fnew < fbe) then fnew = fbe

8 set speed (discretize speed (fnew))

9 next PMP = ct + (PMP-interval /fnew)

10 set timer (next PMP)

11 rti // return from interrupt

Figure 4.8: ISR pseudocode for PMPs.

second is to use the dual-speed-per-task scheme [74]. The second scheme may be more efficient,

depending on the overhead of changing the speed twice. However, in this work we choose to

select the closest speed larger than the desired speed for simplicity. The pseudocode of the ISR

is listed in Figure 4.8. compute speed is responsible for computing the next speed according to a

selected speed scheduling scheme, algo. discretize speed returns the smallest available frequency

that is bigger than the input frequency, fnew.

• Preemption support: In case there is more than one application running in a preemptive

system, the OS should keep track of how long each application was running with respect to

the current PMP-interval. At each context switch, the elapsed time in the current PMP-

interval is stored as part of the state of the departing process (application) and replaced by

the corresponding value of the newly dispatched process. The elapsed time in the current

PMP-interval and the operating frequency become part of the application context.

In case of multiple applications, every time the application is preempted, the timer value is

stopped and the time value is reset when the application is resumed. For this, the PCB must

contain a variable, saved PMP , that saves these values: at preemption time, saved PMP =

next PMP − ct and at resume time, next PMP = ct + saved PMP , where ct is the current

time.

39

Table 4.5: Simplescalar configuration

fetch width 4 instruction/cycle

decode width 4 instruction/cycle

issue width 4 out of order

commit width 4 instruction/cycle

RUU size 64 instruction

LSQ size 16 instruction

FUs 4 int, 1 int mult/divide, 4 fp, 1 fp mult/divide

branch pred. bimododal, 2048 table size

L1 D-cache 512 sets, 32 byte block, 4 byte/block, 1 cycle, 4-way

L1 I-cache 512 sets, 32 byte block, 4 byte/block, 1 cycle, 4-way

L2 cache 1024 sets, 64 byte block, 4 byte/block, 1 cycle, 4-way

memory 40 cycle hit, 8 bytes bus width

TLBs instruction:16 sets, 4096 byte page - data: 32 sets, 4096byte page

When the system allows for multitasking, our scheme will extract timing information (i.e., slack)

from the task execution through the PMHs, and the operating system will decide how to use

such slack in inter-task DVS [13, 16].

4.6 EVALUATION

We evaluate the efficacy of our scheme in reducing the energy consumption of DVS processors using

the SimpleScalar micro-architecture toolkit [75] with configurations shown in Table 4.5. Also, a

dual-issue processor with similar configurations was tested and had the same energy savings trends.

Because these results are similar, we present only the results for the 4-way issue machine.

We extended the sim-outorder simulator with a module to compute the CPU and memory energy

consumption of running an application as Etot = Ecpu + Emem. We mainly focus on optimizing

the CPU dynamic energy given that there are efficient architectural solution that efficiently reduce

leakage energy [76] [77] [78]. CPU energy, Ecpu, is a function of the number of cycles, C, spent at

40

Table 4.6: The power levels in the Transmeta processors model.

Frequency(MHz) 700 666 633 600 566 533 500 466

Voltage (V) 1.65 1.65 1.60 1.60 1.55 1.55 1.50 1.50

Frequency(MHz) 433 400 366 333 300 266 233 200

Voltage (V) 1.45 1.40 1.35 1.30 1.25 1.20 1.15 1.10

Table 4.7: The power levels in the Intel XScale processor model.

Frequency(MHz) 1000 800 600 400 150

Voltage (V) 1.8 1.6 1.3 1.0 0.75

each voltage level, V (Ecpu = Pt = CV 2, since fα1
t and Ecpu = kCV 2, where k is a constant–in this

chapter, we consider only k = 1). C includes the cycles for executing the application as well as the

cycles for computing the speed in PMPs and wcri in PMHs. Since energy consumed during memory

data access is not a function of the CPU operating frequency, we focus only on the memory idle

power. Hence, the memory energy, Emem, is the integration of the idle power dissipated in memory

over time. When memory is idle (not servicing any requests), we assume an average memory idle

power equals 20% of the maximum CPU power, and 0 W while shut-down [79].

We also consider the overhead of setting the speed by adding a constant energy overhead for each

speed-change to the total energy consumption. In the experiments below, we used the Transmeta

Crusoe and the Intel XScale CPU cores. The Transmeta Crusoe has 16 speed levels and the Intel

XScale has five levels. Tables 4.6 and 4.7 show the different speeds and the corresponding voltages

for both the Transmeta and Intel models. Energy consumed in other subsystems is beyond the

scope of this evaluation.

We emulate the effect and overhead of the ISR in SimpleScalar by flushing the pipeline at

the entry and exit of each ISR. The PMP (i.e., the ISR) computes a new frequency every PMP-

interval and then sets the corresponding voltage. The no-power-management (NPM) scheme always

executes at the maximum speed, and static power management (SPM) slows down the CPU based

on static slack [80]. SPM scales down the frequency according to the ratio of deadline to WCET. It

is proved to be a static optimal [80]. In addition, we evaluate our Greedy and Proportional power

41

management described in Section 4.5.1.

We show the no power management (NPM) scheme that always executes at the maximum speed

and the static power management (SPM) scheme that slows down the CPU based on static slack

[80]. To demonstrate the potential benefit of using PMHs, we compare the collaborative technique

(PMP+PMH) with two schemes that use only PMPs: the first (PMP-pcall) places a PMP before

each procedure call, and the second (PMP-plcmnt) inserts PMPs according to the PMH-placement

algorithm.

In our benchmarks, the most frequently called procedures have simple code structures and are

less likely to generate slack due to their small sizes. To be fair to the PMP-call scheme (i.e., to

reduce its overhead), we do not place PMPs before small procedures that do not have any call

to other procedures. We show experimental results for three time-sensitive real-life applications:

automatic target recognition (ATR), an MPEG2 decoder, and a sub-band tuner. In the simulation,

all the application deadlines were met for the tested data sets.

4.6.0.1 Impact on energy and performance Our results show that, as the time allotted

(or the deadline) for an application to execute is increased, less dynamic energy is consumed due

to the introduction of more slack that can be used to reduce the speed/voltage. However, as we

extend the deadline, more memory idle energy is consumed. Hence, the total energy is reduced due

to savings in dynamic energy, but it can be increased due to the increase in the memory energy.

This is especially obvious when extending the deadline does not result in enough slack to lower the

speed. When an application runs at the same frequency as with a tighter deadline, it consumes the

same CPU dynamic energy, but higher memory idle energy. This is clear with the ATR application

in the Intel case when the deadline exceeds 12 ms; the application consumes constant dynamic

energy, but the memory energy consumption increases as the deadline increases.

Automatic target recognition. The ATR application3 does pattern matching of targets

in input image frames. We experimented with 190 frames, the number of target detections in each

frame varies from zero to eight detections, and the measured frame processing time is proportional

to the number of detections within a frame. Figures 4.9 and 4.10 show the energy consumption

of the Transmeta and Intel models when using memory-oblivious (top row) and memory-aware

(bottom row) speed computations. When we compare the top rows of Figure 4.9 and Figure 4.10,

the static scheme for Intel is flat for several consecutive deadline values; e.g., for deadlines larger

3The original code and data for this application were provided by our industrial research partners.

42

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 8 10 12 14 16 18 20 22 24

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Transmeta - Proportional

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 8 10 12 14 16 18 20 22 24

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Transmeta - Greedy

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

(a) Memory-oblivious CPU speeds

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 8 10 12 14 16 18 20 22 24

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Transmeta - Proportional

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 8 10 12 14 16 18 20 22 24

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Transmeta - Greedy

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

(b) Memory-aware CPU speeds

Figure 4.9: ATR: Total (CPU+memory) energy consumption normalized to no power management

on Transmeta Crusoe.

43

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 8 10 12 14 16 18 20 22 24

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Xscale - Proportional

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 50

 60

 70

 80

 90

 100

 110

 8 10 12 14 16 18 20 22 24

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Xscale - Greedy

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

(a) Memory-oblivious CPU speeds

 50

 55

 60

 65

 70

 75

 80

 85

 8 10 12 14 16 18 20 22 24

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Xscale - Proportional

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 50

 55

 60

 65

 70

 75

 80

 85

 8 10 12 14 16 18 20 22 24

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Xscale - Greedy

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

(b) Memory-aware CPU speeds

Figure 4.10: ATR: Total (CPU+memory) energy consumption normalized to no power management

on Intel XScale.

44

than 12 ms, the operating frequency is the same. This is because Transmeta has more power levels

than Intel. All schemes experience increase in total energy consumption at relaxed deadlines when

memory energy consumption exceeds CPU energy savings. At tight deadlines (up to 8 ms), the

static scheme for the Transmeta processor executes the application at the highest speed, fmax; this

yields a higher-than-NPM energy consumption due to the overhead of the PMP executed at each

data frame processing. This is not true for our Proportional and Greedy schemes because of the

dynamic slack reclamation. On the other hand, the same workload constitutes only about 80% of

the Intel processor load due to a higher fmax than Transmeta. Next, we discuss the results for the

memory-aware speed computations, since this is the novelty of this work.

When using the PMP-plcmnt and PMP+PMH schemes in the Transmeta model, Greedy and

Proportional consume less energy than the static scheme because of dynamic slack reclamation.

However, when using the Intel model, static power management may consume less energy for

deadlines beyond 12 ms. At those deadline values, the dynamic schemes operate most of the time

on the same frequency as static power management. These schemes can not operate at a lower

performance level; however, the overhead of code instrumentation and voltage scaling increase the

energy consumption of the dynamic schemes with respect to the static scheme.

The energy savings of the Greedy scheme relative to the Proportional scheme vary based on

the deadline. When deadlines are short, Greedy consumes less energy than Proportional. Because

Greedy is more aggressive in using slack than Proportional, it is more likely to select a lower

speed earlier in the execution than Proportional. Once Greedy transitions to a low speed, the

dynamic slack reclaimed from future intervals helps Greedy stay at a relatively low speed later in

the execution. On the other hand, Proportional selects a medium range of speed levels throughout

the execution. When increasing the deadline (more than 10 ms), Greedy exploits most of the static

slack early in the execution to reach low speeds. However, the amount of dynamic slack generated

later in the execution is not large enough to maintain these low speeds. Thus, the power manager

needs to increase the speed causing Greedy to consume more energy than Proportional. In the case

of the Intel processor, Greedy’s energy consumption is lower than Proportional at more relaxed

deadlines (≥15 ms). This is due to the minimum speed level that prevents Greedy from exploiting

all the slack at the beginning of execution.

In the Intel case, the static scheme outperforms the Greedy scheme for 12-16 ms deadlines. This

is because most of the speeds computed by Greedy are slightly higher than 150MHz but can only

operate on 400 MHz, which is the same operating frequency for static power management in this

45

deadline range. Hence, both schemes run with almost the same power but because of the overhead

incorporated with the dynamic PMP-only schemes, Greedy consumes more energy than the static

scheme.

The energy consumption of the PMP-plcmnt scheme is close to our PMP+PMH scheme for

ATR. There are two reasons for this result: high overhead because of the large number of called

procedures and the higher accuracy of the finer-granularity PMP invocation. It is also the case

that most of the executed PMPs do not lead to a speed change, and thus there is no energy savings

achieved from executing these PMPs.

MPEG video decoder. We collected timing information about the MPEG2 decoder [81]

using a training data set of six movies and tested it on 20 different movies. Our scheme inserts

PMHs in the decoder’s code based on profile information about frames of the training set movies.

We run experiments for four different frame rates: 15, 30, 45 and 60 frame/sec that correspond to

deadlines 66, 33, 22, and 16 ms per frame.

Figures 4.11 and 4.12 show the normalized energy consumption for three of the test movies for

Transmeta and Intel models. For presentation simplicity, we only show the energy consumption

for the Greedy scheme because Greedy outperforms the Proportional scheme. Similar to the ATR

results, our proposed PMP+PMH scheme consumes less energy than the other schemes. Unlike the

ATR results in the memory-oblivious speed computation case, the energy trade-off is less obvious

because most of the time the computed speed is higher than the break-even frequency.

The MPEG decoder code includes mainly a set of nested loops, most of which have large

variation in their execution times. As a result, in our scheme, the number of executed PMHs is

much larger than the invoked PMPs. Hence, the WCR estimation is improved over having only

one PMH for each PMP invocation. In comparison with the PMP-plcmnt technique (replacing the

PMHs with PMPs), PMP execution’s energy overhead is higher, which overshadows the energy

saving from the few extra speed adjustments. This is especially true for the Transmeta model.

Because of the large number of speed levels that are close in range, this creates the chance for

large number of speed changes in PMP-plcmnt. Each speed change results in small energy savings

compared to the PMP energy overhead. The PMP-pcall scheme has the highest energy consumption

due to the large number of procedure calls within loops in this application.

Sub-band Tuner. A sub-band tuner4 is a signal processing application that accepts signals as

input events. It uses time and frequency domain analysis to extract and process signals of interest,

4The original code and data trace files for this application were also provided by our industrial research partners.

46

 50

 60

 70

 80

 90

 100

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

 Transmeta - memory-oblivious speed

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 50

 60

 70

 80

 90

 100

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

 Transmeta - memory-aware speed

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

(a) input file: BigE.mpg

 50

 60

 70

 80

 90

 100

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

Transmeta - memory-oblivious speed

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 50

 60

 70

 80

 90

 100

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

Transmeta - memory-aware speed

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

(b) input file: atom.mpg

 50

 60

 70

 80

 90

 100

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

Transmeta - memory-oblivious speed

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 50

 60

 70

 80

 90

 100

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

Transmeta - memory-aware speed

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

(c) input file: robot.mpg

Figure 4.11: MPEG2 decoder: Total energy consumption normalized to no power management

scheme on Transmeta Crusoe.
47

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

XScale - memory-oblivious speed

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

XScale - memory-aware speed

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

(a) input file: BigE.mpg

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

XScale - memory-oblivious speed

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

XScale - memory-aware speed

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

(b) input file: atom.mpg

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

XScale - memory-oblivious speed

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 15 20 25 30 35 40 45 50 55 60

%
 E

ne
rg

y
C

on
su

m
pt

io
n

frame rate (frame/sec)

XScale - memory-aware speed

Static
PMP-pcall

PMP-plcmnt
PMP+PMH

(c) input file: robot.mpg

Figure 4.12: MPEG2 decoder: Total energy consumption normalized to no power management

scheme on Intel XScale.
48

Figure 4.13: Size distribution (in million cycles) for the sub-band filter events.

called peaks and ridges, from those events. The number of cycles per event processed varies based

on the number of peaks and ridges detected in each event but the deadline for each event is fixed.

We experimented with a trace of 9,853 events. From the collected timing information about each

event processing time, we noticed a large variation between the average and worst case execution

times. An event’s average execution time is 200 times smaller than its worst case execution time.

The size distribution is shown in Figure 4.13 (note the logarithmic scale for the Y-axis). To make

good use of the dynamic slack for the average event, the scheme tailors the frequency of invoking

a speed-change (PMP-interval) based on the event’s average execution time, and PMHs are placed

accordingly. As a result, events larger than the average size would experience more PMH executions

and speed-change invocations. This effect is prominent in case of very long events.

Figures 4.14 and 4.15 show the energy consumption for the tested schemes. Among the dynamic

schemes, PMP+PMH performs best. When comparing PMP+PMH with static, PMP+PMH per-

forms well in high system loads (small deadlines). As the system load decreases, the difference

in energy consumed by static and PMP+PMH decreases. For the Intel model, the static scheme

performs better than PMP+PMH for very small loads, due to the large difference between the

lowest two speed levels (400 MHz and 150 MHz). When the static operates at 400 MHz, the dy-

namic schemes may have dynamic slacks to operate on less than this frequency but not enough

slack to operate at 150MHz; therefore, the 400MHz frequency is selected to avoid missing deadlines.

The difference in energy consumption is due to the extra instrumentation added by the dynamic

49

schemes; this is particularly true when there is a large variation in the execution times among

different events as with the sub-band tuner. In the Transmeta model, this does not happen since

there are several frequencies between 200MHz and 400MHz, allowing for the dynamic schemes to

actually execute at lower frequencies.

Although PMP-plcmnt performs almost as well as PMP+PMH for the ATR and MPEG bench-

marks, PMP-plcmnt performs much worse for this application. This is due to the large variation

in execution times described earlier that required inserting relatively large number of PMHs. The

overhead effect is significant in PMP-plcmnt, because the amount of dynamic slack between 2 con-

secutive PMPs is too small to compensate this overhead. Table 4.8 compares the two techniques

in terms of the number of executed PMHs, PMPs and actual speed change that takes place. We

conclude that the work done by most of the executed PMPs (in PMP-plcmnt) was not useful. In

contrast, the overhead of placed PMHs in our scheme is minimal (few cycles) compared to PMP-

plcmnt. Thus, the total energy consumption using PMHs is much less than inserting PMPs directly

in the code.

4.6.0.2 Run-time Overhead Our scheme introduces overhead due to PMPs and PMHs. In

this section, we further investigate the impact of each on the overall performance (number of cycles

and number of instructions).

Number of instructions. Increasing the number of instructions in the application by

inserting PMPs and PMHs could have a negative effect on (1) the cache miss rate and (2) the total

number of executed instructions. Both these factors could degrade performance. We measured

their effects through an implementation in SimpleScalar. In our scheme, the measured effect of

increasing the code size on the instruction cache miss rate is minimal since the inserted PMH code

is very small. We did not measure a significant increase in cache misses (instruction and data) for

our benchmarks, hence we do not expect a negative effect on the memory energy consumption due

to our scheme. A static PMH takes 36 instructions to execute. Index-controlled PMHs are reduced

to static PMHs inserted inside the loop with the addition of a division operation executed only once

for each loop to compute the size of a loop body. The value of wcri is decremented in each iteration

by the size of the loop body. In comparison, our measurements indicated that a PMP takes from

74 to 463 instructions to compute and select a speed (excluding the actual voltage change).

The number of executed instructions is kept minimal by (1) invoking the PMP at relatively large

PMP-intervals (it ranges from 50 K to 580 K cycles in the presented applications) and (2) avoiding

50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 16 18 20 22 24 26 28 30

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Transmeta - Proportional

PMP-pcall
Static

PMP-plcmnt
PMP+PMH

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 16 18 20 22 24 26 28 30

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Transmeta - Greedy

PMP-pcall
Static

PMP-plcmnt
PMP+PMH

(a) Memory-oblivious CPU speeds

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 16 18 20 22 24 26 28 30

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Transmeta - Proportional

PMP-pcall
Static

PMP-plcmnt
PMP+PMH

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 16 18 20 22 24 26 28 30

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

Transmeta - Greedy

PMP-pcall
Static

PMP-plcmnt
PMP+PMH

(b) Memory-aware CPU speeds

Figure 4.14: Sub-band Tuner: Total energy consumption normalized to no power management

scheme on Transmeta Crusoe.

51

 40

 50

 60

 70

 80

 90

 100

 16 18 20 22 24 26 28 30

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

XScale - Proportional

PMP-pcall
Static

PMP-plcmnt
PMP+PMH

 40

 50

 60

 70

 80

 90

 100

 16 18 20 22 24 26 28 30

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

XScale - Greedy

PMP-pcall
Static

PMP-plcmnt
PMP+PMH

(a) Memory-oblivious CPU speeds

 40

 50

 60

 70

 80

 90

 100

 16 18 20 22 24 26 28 30

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

XScale - Proportional

PMP-pcall
Static

PMP-plcmnt
PMP+PMH

 40

 50

 60

 70

 80

 90

 100

 16 18 20 22 24 26 28 30

%
 E

ne
rg

y
C

on
su

m
pt

io
n

Deadline (ms)

XScale - Greedy

PMP-pcall
Static

PMP-plcmnt
PMP+PMH

(b) Memory-aware CPU speeds

Figure 4.15: Sub-band Tuner: Total energy consumption normalized to no power management

scheme on Intel XScale model.

Table 4.8: The number of executed PMPs, PMH and speed changes for the sub-band tuner.

no. PMHs executed no. PMPs executed no. speed changes

PMP-plcmnt – ≈ 19× 106 ≈ 13.5× 103

PMP+PMH ≈ 19× 106 ≈ 77.5× 103 ≈ 11.8× 103

52

the excessive insertion of PMHs. For example, in the ATR application, for each PMP-interval, only

505 extra instructions are executed on average (including all executed PMHs and a PMP in this

PMP-interval5). The total increase in the number of executed instructions due to the overhead is

0.05% for ATR, 0.25% for MPEG, and 3.7% for sub-band tuner. With respect to other intra-task

DVS schemes, like PMP-plcmnt, the average increase in the number of executed instructions is

<1% in ATR, 1.4% in MPEG, and 47% in sub-band tuner. The large increase in the number of

executed instructions in sub-band tuner when using PMP-plcmnt is due to the excessive execution

of PMPs (as described in Section 4.6.0.1).

Number of cycles. The extra inserted code (PMHs and PMPs) increases the number of

cycles taken to execute an application. The average execution of each PMH takes about 13 cycles

and PMP takes from 22 to 229 cycles to execute6, excluding the actual voltage change). The total

increase in the number of cycles ranges between 0.19% to 0.4% for ATR, 0.4% to 1.7% for MPEG,

and 4.6% to 4.8% for sub-band tuner (the range corresponds to the low to high deadlines selected).

In comparison to PMP-plcmnt, the average increase in the number of executed instructions is <1%

in ATR, 1.5% in MPEG, and 64% in sub-band tuner. When using PMP-plcmnt, the execution of a

large number of PMPs in sub-band tuner causes a relatively larger increase in the number of cycles.

We also note that the total overhead, in terms of number of cycles, decreases when the pro-

cessor frequency is decreased. This is because the memory latency becomes relatively small when

compared to the CPU frequency; that is, the CPU stalls for fewer cycles (but still stalls for the

same amount of time) waiting for data from memory.

4.7 CONCLUSION

In this chapter, we present a memory-aware collaborative compiler-operating system intra-task DVS

scheme for reducing the energy consumption of time-sensitive embedded applications. The operat-

ing system periodically invokes Power Management Points (PMPs) to adapt processor performance

based on the dynamic behavior of an application and memory energy consumption. Information

about run-time temporal behavior of the application is gathered by very low cost power manage-

ment hints (PMHs) inserted by the compiler in the application. We describe our collaborative

5An inserted PMH can be executed more than once in a single PMP-interval, for example if placed inside a loop.
6Note this is a 4-way architecture, executing about 2 instructions per cycle.

53

scheme and its advantages over a purely compiler-based approach. We also present an algorithm

for inserting PMHs in the application code to collect accurate timing information for the operat-

ing system. Considering the relatively expensive overhead of a voltage/speed-change, our scheme

reduces the energy consumption by controlling the number of speed-changes based on application

behavior. The algorithm computes the break-even frequency, which acts as a limitation on the

CPU operating frequency in order to avoid extra energy consumption in other subsystems. Finally,

we present results that show the effectiveness of our scheme. Our results show that our scheme is

up to 58% better than no power management and up to 45% better than static power management

on several embedded applications.

54

5.0 INTEGRATED DVS POLICIES FOR CPU AND CACHE POWER

MANAGEMENT

5.1 INTRODUCTION

Embedded systems are evolving to accommodate a new and diverse set of applications. Such

applications require increased processor computational power, larger storage capacity, and longer

operation time. The advancement in processor technology creates the opportunity for embedded

processors to approach the performance of general purpose processors by adopting performance so-

lutions like large caches, superscalar, and multiple cores. However, adopting most of these solutions

leads to more power consumption. Unfortunately, with the plethora of embedded system designs

and their applications, it is hard to construct a power management policy that can be directly

applied to a variety of embedded systems.

Multiple Clock Domain chip design has been proposed to allow fine grain power management

of each domain, especially when using dynamic voltage and frequency scaling (DVS) [82]. Since

each domain has its own clock and voltage (i.e., independent of the other domains), DVS can be

applied in each domain for an extra level of power management (rather than applying DVS at the

chip level). Power and energy can be reduced with minimal impact on performance by dynamically

reducing the clock speed and voltage in domains with low activity.

In this chapter, we introduce the idea of managing the power consumption of more than one

component using integrated DVS scheme, IDVS. We focus on the CPU core and cache power

management. We first present a general heuristic based online-IDVS and show its advantage over

a DVS policy that locally manages the CPU and cache frequency independent of each other. We

then propose a machine learning approach, ML-IDVS, which can automatically synthesize IDVS

policies that efficiently manage power in multiple domains. Our ML-IDVS tailors the generated

polices to the behavior of a class of applications running on the system under consideration.

55

The contribution of this part of the work is fourfold. First, we identify a significant inefficiency in

current online DVS policies, and show the sources and implications of this inefficiency. Second, we

propose a heuristic-based online integrated DVS policy that adapts the core and L2 cache speeds in

a way that avoids these inefficiencies, taking into account domain interactions. Third, we present

a more flexible machine learning based integrated DVS approach. The approach automatically

generates integrated DVS policies customized for a given class of applications running on a given

system. Fourth, we experimentally evaluate the two integrated DVS techniques against a local-DVS

policy, which forms its decisions based on local information collected about each domain. Both

integrated DVS techniques show positive gains with respect energy-delay product with minimal

impact on performance.

The chapter is organized as follows. We first introduce the idea and motivation behind IDVS

in Section 5.2. We then present our online-IDVS in Section 5.3. Its counterpart, the ML-IDVS

approach is presented in Section 5.4. Detailed evaluation of both techniques is presented in Sec-

tion 5.5.

5.2 INTEGRATED DVS (IDVS) POLICY

5.2.1 Motivation

A typical application goes through phases throughout its execution. An application has varying

cache/memory access patterns and CPU stall patterns. In general, application phases correspond

to loops, and a new phase is entered when control branches to a different code section. We are

especially interested in managing the power of the CPU-core and the on-chip L2 cache, as they

consume a large fraction of the total power in current processors. For this, we characterize each

code segment in a program using performance monitors that relate to the activity in each of these

domains. Figure 5.1 shows the variations in three performance counters as examples of monitors

that can be used to represent a program behavior. The figure shows: cycles per instruction (CPI),

number of L2 accesses per instruction (L2PI), and memory accesses per instruction (MPI). CPI

and L2PI are selected as indications of the amount of workload in the CPU-core and L2 cache,

respectively. On the other hand, L2PI and MPI can be used to indicate the idleness in the CPU

core and the L2 cache domains, respectively.

56

 0

 1

 2

 3

 4

 5

 6

 0 250 500 750 1000

 c
ou

nt
er

/in
st

n
#

 # instn (x500K)

gcc

CPI
L2PI
MPI

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 250 500 750 1000

 c
ou

nt
er

/in
st

n

 # instn (x500K)

gzip

CPI
L2PI
MPI

 0

 0.5

 1

 1.5

 2

 2.5

 0 250 500 750 1000

 c
ou

nt
er

/in
st

n

 # instn (x500K)

equake

CPI
L2PI
MPI

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 250 500 750 1000

 c
ou

nt
er

/in
st

n

 # instn (x500K)

art

CPI
L2PI
MPI

Figure 5.1: Variations in application phases throughout execution.

57

Intuitively, each program phase has a different requirement and preference toward a certain

“configuration” of the CPU-core and L2 cache frequencies. For example, if a section of code is

CPU bound, it will benefit from running at high CPU frequencies, and may be insensitive to

L2 cache latency (as with most phases for equake in Figure 5.1). On the other hand, a memory

bound phase benefits the most from reducing the gap between the core and cache performance (as

with most phases for art in Figure 5.1). Typical applications alternate between CPU and memory

bound phases (as shown for gzip in Figure 5.1). This is precisely the intuition behind our approach.

Our goal is to construct an integrated CPU-core and L2 cache DVS, IDVS, policy that identifies

application phases and selects appropriate frequencies for the CPU and L2 cache domains for each

code section.

The “best frequencies” to use for the CPU-core and L2 cache domains are defined in terms of

some optimization metric. There are three natural metrics: energy, performance, and energy-delay

product. When the metric is energy, it would seem that the most energy-efficient frequencies are the

minimum ones, due to the well-known quadratic relationship between frequency and power [83].

However, when looking at the system as a whole, this is no longer true [84]. Reducing the fre-

quency of one component (e.g., the CPU-core) increases execution time, which increases the energy

consumption of other components (due to static power dissipation for longer periods). Thus, the

problem of identifying the optimal frequencies that minimize the system energy is far from trivial.

When performance is the main requirement, we are interested in minimizing energy while main-

taining execution time within a specified percentage of full performance (which corresponds to the

highest frequencies available for both CPU and L2 cache). When energy and performance are

equally important, the optimization metric is defined as the energy-delay product.

5.2.2 Integrated DVS architecture

Figure 5.2 shows a schematic diagram of an example processor with two domains and a micro-

controller that manages the voltages of the domains according to our IDVS policies. During run-

time, the microcontroller periodically monitors the activity in each domain by recording a set of

performance counters. The microcontroller executes the policy to determine the best frequency

combination based on the values of the latest performance counters read.

58

L2 Cache L1 Cache

Functional Units

L2 DOMAIN CPU DOMAIN

PROCESSOR CHIP

Main Memory

V_cpuV_cache

Micro−
controller

Figure 5.2: Example of an MCD processor design with integrated DVS control.

5.2.3 MCD inter-domain interactions

Applying DVS independently in an MCD processor creates domain interactions that may negatively

affect the performance and/or energy of other domains. We present an example to illustrate the

cause of these effects and their undesired implications; the reader is encouraged to follow the

numbered steps in Figure 5.3. (1) Assume an MCD processor is running an application that

experiences some pipeline stalls (e.g., due to branch misprediction). The increased number of stalls

results in reduced IPC. (2) The local DVS policy triggers a lower speed setting in the core domain.

Slowing down the core will reduce the rate of issuing instructions, including L2 accesses. (3) Fewer

L2 accesses per interval causes the local policy to lower the speed in the L2 cache domain. (4)

This, in turn, increases the cache access latency, which (5) causes more stalls in the core-domain.

Hence, this interaction starts a vicious cycle, which spirals downward.

The duration of this positive feedback1 depends on the application behavior. For benchmarks

with low activity/load variations per domain, this feedback scenario results in low speeds for both

domains. While these low speeds reduce power, they clearly hurt performance and do not necessarily

reduce the total energy-delay product. Analogously, positive feedback may cause increased speeds

in both domains, which potentially improves delay at the expense of increasing energy consumption.

1A positive feedback control is where the response of a system is to change a variable in the same direction of its
original change.

59

Figure 5.3: Example of positive feedback in local power management in each domain

These two scenarios illustrate that local DVS policies may not properly react to a domain’s true

workload.

These undesired positive feedback scenarios arise from the fact that the local DVS policy mon-

itors only the local performance of a given domain to set its speed. This local information does

not identify whether the source of the load variability is local to a domain or induced by other

domains. As a result, the policy cannot take the correct action. In our example, the variation in

IPC can be induced by local effects such as executing a large number of floating point instructions

or suffering many branch mispredictions. Alternatively, effects from other domains such as higher

memory and L2 access latency can induce variations in IPC. Although the effect on IPC is similar,

the DVS policy should behave differently in these two cases.

Table 5.1: Percentage of time intervals that experience positive feedback scenarios in some MiBench

and SPEC2000 benchmarks.

adpcm dec adpcm enc basicmath crc32 gsm toast gsm untoast lame rsynth

12.28% 7.13% 2.40 % 10.8% 27.7% 20.09% 22.56% 27.56%

bzip equake gcc gzip parser twolf vortex vpr

8.18% 0.02% 20.97 % 4.59% 9.06% 25.79% 6.5% 16.12%

60

To find how often applications experience such undesired positive feedback, we analyzed ap-

plications under Semeraro et. al’s local DVS policy [35]. Table 5.1 illustrates the percentage of

time intervals where positive feedback occurs in some MiBench and SPEC2000 benchmarks. The

data is collected over a window of 500M instructions (after fast-forwarding simulations for 500M

instructions). We divide the execution into 100K instruction intervals then count the percentage of

consecutive intervals that experience positive feedback in both the CPU and L2 domains simulta-

neously. The table shows that some applications experience high rates of positive feedback, while

others are largely unaffected. In the former (e.g., gsm, lame, rsynth, bzip, parser, and vpr), we

expect that the local policy will result in relatively high delays or high energy because it reacts

with inappropriate speed setting for more than 20% of the time.

To have a better indication of the core and L2 cache workloads, the policy has to be aware

of the status of both domains, because each domain may indirectly influence the workload in the

other domain. This motivates the need for run-time policies that take into account the core and

the L2 cache interactions to appropriately set the speeds for both domains in a way that minimizes

total energy, delay or energy-delay product.

5.3 ONLINE IDVS POLICY

In our first proposed IDVS policy, we monitor the IPC and the number of L2 accesses with perfor-

mance counters [85]. The speeds are driven by the change in the combined status of IPC and the

number of L2 accesses in a given execution interval. The rate of increase or decrease in speed is

based on the rate of increase or decrease in the monitored counters subject to exceeding a threshold

as proposed by Zhu et al. [40]. We introduce a new set of rules (listed in Table 5.2) to be executed

by the DVS policy for controlling the speeds. The symbols ⇑, ⇓, and − depict an increase, decrease,

and no-change in the corresponding metric. Columns 2 and 3 in the table show the change in the

monitored counters while columns 4 and 5 show the action taken by the local policy. Columns 6

and 7 show the action taken by our online-IDVS.

Given the evidence from Table 5.1, we decided to focus on the positive feedback cases described

in Section 5.2.3. These cases only cause a change in Rules 1 and 5 in Table 5.2, and maintain

the other rules exactly the same. The policy only changes the rules when there is a simultaneous

increase or decrease in IPC and L2 cache accesses. As a result, our policy requires minimal changes

61

Table 5.2: Rules for adjusting core and L2 cache speeds in local DVS policy and proposed policy.

Event to Action by Action by our

rule monitor local-DVS policy integrated policy

IPC L2access Vc V$ Vc V$

1 ⇑ ⇑ ⇑ ⇑ ⇓ ⇑
2 ⇑ ⇓ ⇑ ⇓ ⇑ ⇓
3 ⇑ − ⇑ − ⇑ −
4 ⇓ ⇑ ⇓ ⇑ ⇓ ⇑
5 ⇓ ⇓ ⇓ ⇓ − ⇓
6 ⇓ − ⇓ − ⇓ −
7 − ⇑ − ⇑ − ⇑
8 − ⇓ − ⇓ − ⇓
9 − − − − − −

to existing policies (i.e., it can be readily supported without any additional cost), yet it achieves

better energy savings. Contrary to the local policy, which seems intuitive, our IDVS policy does

not increase (or decrease) the speed if both counters show an increase/decrease during a given

interval. Instead, the policy changes speeds as shown in the table. Next, we describe both cases

and the reasons behind the counter-intuitive actions of our policy.

Rule 1 reacts to the first positive feedback case by reducing the core speed rather than increasing

it, as in the local policy. This decision is based on the observation that the increase in IPC was

accompanied by an increase in the number of L2 cache accesses. This increase may indicate a start

of a program phase with high memory traffic. Hence, we preemptively reduce the core speed to

avoid overloading the L2 cache domain with excess traffic. In contrast, increasing the core speed

would exacerbate the load in both domains. We choose to decrease the core speed rather than

keeping it unchanged to save core energy, especially with the likelihood of longer core stalls due to

the expected higher L2 cache traffic.

In Rule 5, we target the second undesired positive feedback scenario where the local policy

decreases both core and cache speeds. From observing the cache workload, we deduce that the

decrease in IPC is not due to higher L2 traffic. Thus, longer core stalls are a result of local

62

core activity such as branch misprediction. Hence, increasing or decreasing the core speed may not

eliminate the source of these stalls. By doing so, we risk unnecessarily increasing in the application’s

execution time or energy consumption. Hence, we choose to maintain the core speed without any

change in this case, to break the positive feedback scenario without hurting delay or energy.

5.3.1 Limitation of the online IDVS policies

There are two main shortcomings in an online heuristic IDVS policy. First, with a larger number

of domains, it is harder to discover and model the interactions among domains. Some domain

interactions are intuitive such as correlation between CPI and L2PI; however, others are very hard

to model such as the interaction between the FPU and the branch prediction unit. Second, a policy

is not customizable for a certain class of applications or systems. Optimizing the policy based the

knowledge of the target system and the expected class of applications that run on this system is

often more effective than using a general policy. The optimized policy can take into account the

behavior of applications on the target system under consideration. To solve these problems, we

present next a machine learning approach that generates IDVS policies that are customized for a

given class of applications running on a target system.

5.4 MACHINE LEARNING BASED IDVS APPROACH

To overcome the shortcoming of online IDVS policies, we use a learning-based approach first in-

troduced by Rusu et al. in [86]. We further developed the technique to apply for a realistic

architectural model with multiple clock domains. We call the technique ML-IDVS. ML-IDVS uses

supervised machine learning to automatically generate a custom power management policy for

each set of applications. ML-IDVS provides a novel methodology to automatically derive an IDVS

policy for CPU-core and L2 cache power management. The derived policy dynamically adapts

the domains’ voltages and frequencies to current workload in an MCD processor. Our approach

identifies application phases at runtime and takes corresponding actions (i.e., setting the voltage

and frequency of both the processor and the L2 cache).

In ML-IDVS, the automated generation of power management policies relies on given system

settings. Our ML-IDVS technique takes as an input a state description of the system, which includes

63

the architectural and application behaviors, and an optimization criterion. Based on this input, it

generates a custom policy for this particular system. ML-IDVS uses a supervised learning process

on a set of representative training workloads to derive the DVS policy [87].

One of the advantages of using the ML-IDVS approach is its ability to automatically construct a

power-management policy for different architectures (embedded and general-purpose) and different

classes of applications. This technique also can be used to optimize for different metrics (such as

energy and energy-delay product) that can be set by the user. This is useful with systems that use

different optimization metric for different operational modes. For each mode, our approach derives

a policy that can be loaded at the time of the mode switch to optimize the system for a given

optimization criteria. All policies are derived using the same methodology.

Next, we present an overview of ML-IDVS in Section 5.4.1. We describe the essential phases of

our approach for obtaining a policy using supervised learning technique in Section 5.4.2, followed

by a discussion of some practical design issues in Section 5.4.3.

5.4.1 Overview of ML-IDVS approach

Our power management approach consists of two main stages. First, an offline stage where our

ML-IDVS approach constructs a power management policy. Second, a run-time stage where an

embedded microcontroller monitors the system (including the application behavior) and accordingly

reacts by setting domain voltages as defined by the policy.

Figure 5.4.1 shows the information flow in ML-IDVS during the offline and online stages. In

the offline stage, ML-IDVS learns the power management policy using sample applications. For

this, the technique (a) analyzes the behavior of sample applications then (b) develops runtime DVS

policy according to a given optimization metric. The analysis takes into account the architectural

behavior while executing the given applications. ML-IDVS derives a policy using a supervised

machine learning technique introduced in [86]. ML-IDVS derives separate policies for different

optimization metrics. For systems that operate at different modes, the operating system loads the

policy that corresponds to the current system mode. Only one analysis phase is needed for all

optimization criteria. During runtime, the microcontroller executes the policy to determine the

best frequency combination based on the values of the latest performance counters read. In the

next section we focus on the policy construction process.

64

system
description

objective
training

applications

performance
monitors

Voltage
Settings DVS policy

policy
Generator

Figure 5.4: Information flow in ML-IDVS

5.4.2 Construction of IDVS Policy

To automatically construct a power management policy, ML-IDVS relies on a description of the state

of the system under different program behaviors and run-time system characteristics. A program

behavior description captures the instruction-level parallelism and cache/memory demands of the

application. A separate run-time characteristics description captures program latencies during a

given program phase. The goal is to identify for each possible system state the correct action.

For example, an action determines how the CPU-core and L2 cache frequencies should be adjusted

to minimize the energy-delay product. The power manager outputs a policy that maps states to

actions with the objective of optimizing a performance metric (for example, energy and/or delay).

The power manager creates the DVS policy in two stages: data analysis and policy learning.

Figure 5.5 illustrates the main tasks for deriving the power management policy. Below, we describe

the tasks performed in each of these two stages.

5.4.2.1 Stage I: Data analysis In this stage, we represent all possible system states by a set

of performance counter readings. The power manager discovers the best operating frequencies for

each state through an exhaustive search of the training data. The power manager then uses the

training data to construct a table that maps a state to a CPU and cache frequency combination.

65

Training States States

Table

PM

policy

Optimization metric

ConstructionApplications
Learning

Architectural setting

Obtain
Training

Data

Training

Samples

Rule GenerationData Analysis

Figure 5.5: Stages for automatic DVS policy generation.

State representation

To train our policy, we need a representation of the system state that encapsulates the program

and architectural behavior with simple performance metrics. We can select the CPI, L2PI, and

MPI, which can be determined from hardware performance counters. The CPI indicates the CPU

utilization; however, it does not by itself fully describe program phases. For example, a high

CPI corresponds either to a high cache miss ratio, high cache access latency, or long instruction

latencies (such as division). Adding both L2PI and MPI into the state description can identify the

reason behind the high/low CPI, and hence more fully describe application behavior. However,

the CPI, L2PI and MPI do not take into account the effective latency of instruction execution or

cache accesses (hits and misses), and to fully characterize the program, these latencies have to be

factored into the state description. We describe the effective latency as a tuple of CPU-core and

L2 cache frequencies. If there exist a technique that changes the memory speed, we can include

the memory frequency in the state description. However, we still add MPI to the state description

because of the significance of the memory traffic in defining an application behavior, especially

memory-intensive ones.

Since we do not modify the memory speed, we do not include the memory frequency in our

state representation. This representation (CPI, L2PI, MPI, CPU-core and cache frequencies) not

only captures the timing characteristics of a given segment, but it also provides an estimate of the

total energy, since it is closely related to the operating frequencies.

Obtaining Training Data

The data used to learn the policy is obtained from training benchmarks in the following manner.

66

Let Ncpu and N$ be the number of CPU and cache frequencies, respectively. We run all training

benchmarks at all CPU and cache frequency combinations (Ncpu · N$ combinations). A sample

is defined as a continuous code section of fixed number of instructions equal to size. Thus, each

training benchmarks with a total of inst instructions will generate K = inst/size code samples

for one particular CPU/cache frequency, and Ncpu ·N$ ·K samples for all frequency combinations.

We denote the samples by Sij = {CPIij , L2PIij ,MPIij , Mij}, where i and j are frequency indexes

(0 ≤ i < Ncpu and 0 ≤ j < N$). Let Mij be the metric to be optimized. Based on the user setting,

the ML-IDVS substitutes Mij by optimization metric of choice, for example, the segment’s energy

consumption (Eij) or energy-delay product (EDkij).

Thus, a state is described by five parameters: CPI, L2PI, MPI, CPU-core frequency and L2

cache frequency. CPI, L2PI, and MPI are continuous variables and need to be discretized. We

choose a number of discrete intervals, discretization bins, in a way that the sample densities in

each bin are almost equal. For example, because of the L2 cache efficiencies in current designs, if

most samples have low L2PI, it consequently creates more L2PI ranges with lower values (i.e., finer

granularity where the density is higher).

As an illustrative example, consider a system with two CPU and L2 cache frequencies: 0.5GHz

and 1GHz. For ease of presentation, we use values for two performance monitors: CPI and L2PI.

To reduce the state space, we discretize CPI and L2PI values into two bin intervals. CPI bins cover

values [0,1.39] and]1.39,∞], and L2PI bins cover [0,0.02] and]0.02,∞]. Each sample lists its CPI

and L2PI bin indexes and the energy-delay product when running at each frequency combination.

Table 5.3 shows the collected samples in our example.

ST construction

After collecting data for all samples, Sij , we construct the state table ST, which contains the

correct action for each state as determined by the training data. ST includes all possible system

states. Let Bcpi, Bl2pi, and Bmpi be the number of discrete values (bins) of the CPI, L2PI, and MPI,

respectively. The state table is defined as: ST [CPIc][L2PIl][MPIm][i][j], where CPIc, L2PIl, and

MPIm are the discretized values and 0 ≤ c < Bcpi, 0 ≤ l < Bl2pi, and 0 ≤ m < Bmpi . For

each state we want to determine the action that minimizes a user-selected optimization metric; for

example, the energy-delay product.

We construct the table as follows. Since for each section of code all the possible frequency combi-

nations are available, the best action can be determined by adding the energy-delay product of each

67

Table 5.3: Eight training samples: CPI (C), L2PI (L) and energy-delay product (ED) at all fre-

quency combinations.

fcpu 0.5GHz 0.5GHz 1GHz 1GHz

f$ 0.5GHz 1GHz 0.5GHz 1GHz

s C L ED C L ED C L ED C L ED

1 0 1 200 0 1 354 1 1 183 1 1 187

2 0 1 242 0 1 428 1 1 223 1 1 226

3 0 0 436 0 0 768 1 0 395 1 0 403

4 0 1 274 0 1 481 1 1 252 0 1 250

5 0 0 473 0 0 826 1 1 430 0 0 430

6 1 1 330 0 1 588 1 1 309 1 1 317

7 1 0 361 0 0 642 1 0 327 1 0 339

8 1 0 401 0 0 709 1 0 363 1 0 374

sample running at the new frequency. Since different sections of code may have the same state, an

array that accumulates all values for the same state is used: Acc[CPIij][L2PIij][MPIij][i][j][x][y],

where CPIij , L2PIij ,MPIij , i, and j are the state parameters and x and y are the new CPU and

cache frequencies (that is, the action). For each training sample Sij and each possible action x,

y (x is the next CPU frequency, y is the next cache frequency), we update the array as shown in

Figure 5.6.

The array Acc accumulates the values of the optimization metric, Mxy, for all training samples

and under all possible actions. After updating the array for all training samples, the action for each

state in ST is the one that optimizes the metric stored Mxy. To find the best action, we iterate

over all possible state values. We couple each possible state with one of all the possible actions

(〈newfx
cpu, newfy

$ 〉). We then search in Acc for any possible entry that matches each state + action.

We then select the best action that achieves the optimum metric stored in the table. Hence, the

construction of ST is subject to the optimization metric of the system. As an illustrative example,

Figure 5.7 shows the algorithm for constructing ST to minimize the energy-delay product. The

resulting state table is a five dimensional table (three features and frequencies for two domains)

68

1: for all sample do

2: for all CPU frequency, f i
cpu, where i = 0 . . . Ncpu do

3: for all Cache frequency, f j
$, where j = 0 . . . N$ do

4: for all future CPU frequency, newfx
cpu, where x = 0 . . . Ncpu do

5: for all future Cache frequency, newfy
$, where y = 0 . . . N$ do

6: Acc[CPIij][L2PIij][MPIij][i][j][x][y]+ = Mxy

7: end for

8: end for

9: end for

10: end for

11: end for

Figure 5.6: Acc construction pseudocode

that represents all possible system states. ST maps a state to the best frequency that optimizes

the metric under consideration.

In Figure 5.7, Lines 1 and 2 iterate over all possible state values. Line 3 initializes the minimum

energy-delay product, minEDP, and Line 4 initializes the best frequency combination (action) by

equating it to the maximum CPU and cache frequencies, 〈fmax
cpu , fmax

$ 〉. Line 5 iterates over all

possible actions. Lines 6 to 9 find the action with the least energy-delay product among all possible

actions. The best action resulting is stored in its corresponding location in ST in Line 10.

Table 5.4 shows the state table for the training samples shown in Table 5.3. State description

is composed of CPI, L2PI and the two domain frequencies (fcpu and f$). The table shows the best

frequency combinations (newfx
cpu and newfy

$) for each state description. Note that not all of the

ST states are populated (unpopulated states are marked by -).

Since the training data do not cover all possible states in the table (because some states may

not be discovered from the training applications/data). We use a supervised machine learning

algorithm to derive the DVS policy that can react (select new CPU and cache frequencies) to any

possible system state. This includes actions to unseen states as well as already discovered states

during training.

69

1: for all CPIc, L2PIl, MPIm, where c = 0 . . . Bcpi, l = 0 . . . Bl2pi, m = 0 . . . Bmpi do

2: for all current CPU f i
cpu and cache frequency, f i

$ where i = 0 . . . Ncpu, j = 0 . . . N$ do

3: initialize minEDP

4: initialize bestFreq = 〈fmax
cpu , fmax

$ 〉
5: for all next CPU frequency, fx

cpu, and next cache frequency fy
$ where x = 0 . . . Ncpu,

y = 0 . . . N$ do

6: if minEDP > Acc[CPIc][L2PIl][MPIm][f i
cpu][f j

$][fx
cpu][fy

$] then

7: minEDP = Acc[CPIc][L2PIl][MPIm][f i
cpu][f j

$][fx
cpu][fy

$]

8: bestFreq = 〈fx
cpu, fy

$ 〉
9: end if

10: ST [CPIc][L2PIl][MPIm][f i
cpu][f j

$]= bestFreq

11: end for

12: end for

13: end for

Figure 5.7: ST construction pseudocode to minimize energy-delay product.

70

Table 5.4: Constructed ST from samples in Table 5.3.

State Action

CPI L2PI fcpu(GHz) f$(GHz) newfcpu(GHz) newf$(GHz)

0 0 0.5 0.5 1 0.5

0 1 0.5 0.5 1 1

1 0 0.5 0.5 1 0.5

1 1 0.5 0.5 1 0.5

0 0 0.5 1 1 0.5

0 1 0.5 1 1 1

1 0 0.5 1 - -

1 1 0.5 1 - -

0 0 1 0.5 - -

0 1 1 0.5 - -

1 0 1 0.5 1 0.5

1 1 1 0.5 1 1

0 0 1 1 - -

0 1 1 1 1 1

1 0 1 1 1 0.5

1 1 1 1 1 0.5

71

5.4.2.2 Stage II: IDVS policy learning There are many supervised learning techniques,

including logistic classification, neural network, decision tree, and propositional rule. We prefer the

propositional rule approach because it is more compact, more expressive, and more human readable

than the other techniques. Furthermore, propositional rules are easy to implement in hardware.

In fact, we tried all the aforementioned techniques on the training data and the propositional rule

approach most closely models ST .

We use the Repeated Incremental Pruning to Produce Error Reduction (RIPPER) learner [88].

The RIPPER algorithm is known to achieve low error rates while being efficient on large data

sets. RIPPER represents the collected states in the form of propositional (if-then) rules. Each

rule specifies the desirable CPU frequency and cache frequency for the next program interval based

on the current state. The learner is based on the Incremental Reduced Error learning IREP

algorithm [89]. RIPPER repeatedly calls IREP to construct the rule set with low error rates.

IREP iteratively builds its rule set in a greedy fashion; that is, one rule at a time. IREP works

in two phases: growing and pruning. First, it randomly partitions the data set in to two subsets:

the growing and pruning sets. The rule growth phase constructs an initial rule set. It starts with

an empty clause and then repeatedly adds sub-conditions to the antecedent. The sub-conditions

maximize the coverage of the rule (represents more states). The stopping criterion for adding sub-

conditions is either covering all the input states or not being able to improve the rule coverage.

After growing a rule, the rule is immediately pruned in the pruning phase. Pruning is an attempt

to prevent the rules from being too specific. IREP chooses the candidate literals for pruning based

on a score that is applied to all the sub-conditions of the antecedent and evaluate the score using

the pruning data. This process is repeated until all states are covered or the learned rules have

very small error.

The resulting rules are generated in the form of: IF <cond> THEN <set freq>, where cond is a

conjunction of one or more of the following sub-conditions. (CPIcur ≤ CPIc), (CPIcur ≥ CPIc),

(L2PIcur ≤ L2PIl), (L2PIcur ≥ L2PIl), (MPIcur ≤ MPIm), (MPIcur ≥ MPIm), (cf = i), and

(mf = j) where CPIcur, L2PIcur, MPIcur, cf and mf are the current CPI, L2PU, MPI, CPU

frequency and cache frequency, respectively. set freq specifies the value of the next CPU or cache

frequencies. Rules learned from ST in Table 5.4 are shown in Table 5.5. Note that the number of

rules is very small because of the simplified system setting chosen in our hypothetical example.

72

Table 5.5: Example of a policy to minimize energy-delay product.

Rule

1 if (L2PI ≥ 1) and (CPI ≤ 0) then newf$=1GHz

2 else newf$=0.5GHz

3 newfcpu=1GHz

5.4.3 Design Issues

Feature Selection: Ultimately, all DVS policy decisions are based entirely on the current system

state. It is important, therefore, to characterize the state in terms of features which provide relevant

information about the current application phase. Our hypothesis, based on architectural knowledge,

is that CPI, L2PI, and MPI (along with the current CPU-core/cache frequencies) capture enough

about the behavior of the application to make informed choices, while still being inexpensive to

gather at runtime.

Optimization metrics: Once the training samples are collected, the data used to learn the

DVS policy can be obtained for different metrics. The collection of training samples is a one-time

step and is independent to the optimization metric. Thus, metrics can later be changed by simply

updating Mkxy in Figure 5.6. One of the strengths of our approach is that the power manager

needs to train the system only once and therefore generate different policy for each optimization

metric.

Training applications: Training applications are selected based on the diversity of the states

each application can produce. Applications in the training set should exhibit a large number of

different states to populate the majority of ST . The more ST is populated, the more accurate

the policy can derive actions for the unseen states. In general, it is desirable to use representative

applications that include memory-bound and CPU-bound phases to cover more states in the table.

Also, applications that have a large variation of the behavior in its phases, such as gcc, will highly

contribute to ST population.

73

5.5 EVALUATION

In this section, we evaluate the efficacy of our online-IDVS and ML-IDVS approaches. We compare

both against a DVS policy that controls each domain independently. In both IDVS approaches, we

evaluate the effect of considering domain interactions on reducing a chip’s energy and energy-delay

product.

5.5.1 Experimental setup

We use the SimpleScalar and Wattch architectural simulators with an MCD extension by Zhu et

al. [40] that models inter-domain synchronization events and speed scaling overheads. To model

the MCD design in Figure 2.1, we altered the simulator provided by Zhu et al. by merging different

core domains into a single domain and separating the L2 cache into its own domain.

Since our goal is to devise a DVS policy for an embedded processor with MCD extensions, we use

Configuration A from Table 5.6 as a representative of a simple embedded processor (SimpleScalar’s

StrongARM configuration [90]). We use MiBench benchmarks with the long input datasets. Since

MiBench applications are relatively short, we fastforward only 500 million instructions and simulate

the following 500 million instructions or until benchmark completion.

To extend our evaluation and verify if our policy can be extended to different arenas (in par-

ticular, higher performance processors), we also use the SPEC2000 benchmarks and a high-end

embedded processor [40] (see Configuration B in Table 5.6). We run the SPEC2000 benchmarks

with the ref data set. We use the same execution window (500M) for uniformity.

To show the benefit of accounting for domain interactions, we compare our IDVS techniques with

a technique that uses a local policy in each domain similar to one presented in [91]. We call it local-

DVS technique. The local-DVS policy periodically sets the speed of each domain independently

based on the activity of the domain, which is measured through performance counters in that

domain. We use IPC (or CPI) and L2PI as an indication of the activity in the core and L2

cache domains. Other performance counters are used to measure other domains’ activity, such as

number of integer and floating points instructions. The policy periodically monitors the variations

in performance counter in each domain across interval periods. Based on the direction of change

in a counter, the policy decides to change the speed of the corresponding domain. This scheme is

efficient because it can be done locally and with very little overhead.

74

Table 5.6: Simulation configurations

Parameter Config. A Config. B

(simple embedded) (high-end embedded)

Dec./Iss. Width 1/1 4/6

dL1 cache 16KB, 32-way 64KB, 2-way

iL1 cache 16KB, 32-way 64KB, 2-way

L2 Cache 256KB 4-way 1MB DM

L1 lat. 1 cycles 2 cycles

L2 lat. 8 cycles 12 cycles

Int ALUs 2+1 mult/div 4+1 mult/div

FP ALUs 1+1 mult/div 2+1 mult/div

INT Issue Queue 4 entries 20 entries

FP Issue Queue 4 entries 15 entries

LS Queue 8 64

Reorder Buffer 40 80

75

We use the same policy parameters and thresholds used by Zhu et al. [40]. The power manage-

ment controller is triggered every 500K instructions.

5.5.2 Evaluation of online-IDVS policy

5.5.2.1 Impact on performance and energy consumption We first evaluate the policies

using an embedded processor (Configuration A in Table 5.6). Figure 5.8-a shows the improvement in

energy-delay product over no-power management (higher is better). For the MiBench applications,

the energy-delay product improvement is 15.5% on average (up to 21% in rsynth) over no-DVS

policy. For the SPEC2000 benchmarks, the improvement in the energy-delay product is 18% on

average (up to 26% in twolf) over no-DVS policy. Most of the improvement is a result of energy

savings (an average of 21% across applications) as seen in Figure 5.8-b, with much less performance

degradation as seen in Figure 5.8-c.

The integrated, interaction-aware policy achieves an extra 7% improvement in energy-delay

product above local-DVS gains. These savings are beyond what local-DVS can achieve over the no-

DVS policy2. The improvement over local-DVS comes from avoiding the undesired positive feedback

scenarios by using coordinated DVS control in the core and L2 cache domains. However, the

energy-delay product improvement beyond the gain achieved by local-DVS is highly dependent on

the frequency of occurrence of the positive feedback scenarios, the duration of the positive feedback

and the change in speed during these positive feedback cases throughout the application execution.

From Table 5.1, we notice that the frequency of the positive feedback in adpcm, basicmath, and

crc32 is almost negligible; accordingly, there are significantly smaller benefits from our policy as

shown in Figure 5.8. On the other hand, applications like gsm, rsynth, gcc, parser, and twolf show

high energy savings due to repeated occurrence of positive feedback cases.

With respect to performance, we note that our proposed integrated policy has a slowdown of

5% on average for MiBench (7% on average for SPEC2000). This slowdown is only 1% more than

the slowdown of local-DVS.

To test whether a different policy that avoids the undesired positive feedback scenarios using

alternative actions (specifically, different actions for rules 1 and 5 in Table 5.2) would perform

better, we experimented with different rules for these two cases. Table 5.7 shows the actions of

2As also noted in [41], reported results of the local policy are not identical to the one reported in [35] due to few
reasons. The latest distribution of the MCD simulation tool set has a different implementation of the speed change
mechanism. We simulate two-domain processor versus five-domain processor in the original local-DVS policy. We
execute applications with different simulation window, as well.

76

(a) Improvement in energy-delay product

(b) Energy savings

(c) Performance degradation

Figure 5.8: Energy and delay of Local-DVS and our online-IDVS relative to no-DVS policy in

configuration A and two voltage domains processor.

77

Table 5.7: Variants of our proposed policy: actions of setting the core voltage (Vc) and the cache

speed (V$) in rules 1 & 5 from Table 5.2.

rule P0 P1 P2 P3 P4 P5 P6 P7

Vc V$ Vc V$ Vc V$ Vc V$ Vc V$ Vc V$ Vc V$ Vc V$

1 ⇓ ⇑ ⇓ − ⇓ − ⇓ − − ⇑ − − − ⇑ − ⇑
5 − ⇓ − ⇓ − − ⇑ − − ⇓ ⇑ − ⇑ − − −

seven policy variants, in addition to our proposed integrated policy P0. Figure 5.9 shows the

average degradation in energy-delay product relative to local-DVS. It is clear that other actions for

dealing with positive feedback scenarios are not as effective in reducing the energy-delay product.

The degradation in energy-delay product of the policy variants ranges from 2% to 12% over our

proposed policy, P0.

5.5.2.2 Varying system configurations We study the benefit of using a domain interaction-

aware DVS policy under different system configurations. We explore the state space by varying key

processor configurations and the granularity of DVS control (that is, number of MCD domains). In

addition to a simple embedded single-issue processor (configuration A in Table 5.6), we experiment

with a more complex embedded processor (configuration B); the same processor configuration used

in [40]. This test should identify the benefits of the interaction-aware policy in a simple embedded

processor versus a more powerful one. This more powerful processor, such as Intel’s Xeon 5140 and

Pentium M, are used in portable medical, military and aerospace applications [92]. Figure 5.10-a

compares configuration A versus configuration B in terms of energy-delay product, energy saving,

and performance degradation. The figure shows the average values over the MiBench and SPEC2000

benchmarks for 2 domains. One observation is that we achieve larger energy-delay improvement

in embedded single-issue processor (Config A) than the more complex one (Config B). This larger

improvement is mainly due to higher energy savings. In single-issue processors, cache misses cause

more CPU stalls (due to lower ILP) than in higher-issue processors. This is a good opportunity

for the DVS policy to save energy by slowing down domains with low workloads while having small

impact on performance.

Comparing our results with local-DVS, we notice that the average benefit of considering domain

78

Figure 5.9: Average degradation in energy-delay product relative to the local-DVS policy

interactions decreases with the increase in issue width. This is because processors with small issue

width are more exposed to stalls from the memory hierarchy, which makes it important to consider

the core and L2 cache domain interaction. In contrast, with wider issue width, these effects are

masked by the core’s higher ILP.

Because we are also interested in the effect of interactions across multiple domains on energy

savings, we test the effect of increasing the number of clock domains. To perform this test, we

simulated the five domains used in [35], but added a separate domain for the L2 cache. The resultant

domains are: reorder buffer domain, fetch unit, integer FUs, floating point FUs, load/store queue,

and L2 cache domains. We use our policy to control the fetch unit and L2 domains, and set the

speeds of the remaining domains using the local policy [35, 40]

Figure 5.10-b shows the results for the two processor configurations when dividing the chip

into the six domains mentioned above. Comparing Figures 5.10-a and 5.10-b, we find that DVS in

processors with large number of domains enables finer-grain power management, leading to larger

energy-delay improvements. However, for embedded systems, a two-domain processor is a more

appropriate design choice when compared to a processor with a larger number of domains (due

to its simplicity). Figure 5.10 shows that increasing the number of domains had little (positive or

negative) impact on the difference in energy-delay product between our policy and local-DVS. This

indicates that the core-L2 cache interaction is most critical in terms of its effect on energy and

delay, which yielded higher savings in the two-domain case. We can conclude that a small number

of domains is the most appropriate for embedded processors, not only from a design perspective

79

(a) 2 domains (b) 6 domains

Figure 5.10: Energy and delay for local-DVS and online-IDVS policy relative to no-DVS policy for

processors with (a) two domains and (b) six domains.

but also for improving energy-delay.

5.5.3 Evaluation of ML-IDVS approach

Similar to the online-IDVS evaluation, we test the ML-IDVS approach under different settings:

different application classes and different processor architectures. We first focus on the embedded

domain that commonly use simple single-issue processors with two clock domains.

To reduce the state space for the profiling and table construction (described in Section 5.4.2),

we use the discrete values for the collected performance counters. We discretize CPI values into 11

bins, L2PI into 8 bins, and MPI into 4 bins. The simulated frequencies for both domains vary from

250MHz to 1GHz with 250MHz steps. Voltage scales linearly with the frequency in the specified

range. Memory is considered an external domain with a fixed latency.

To obtain the propositional rules, we use JRip from the WEKA data mining software pack-

age [93]. JRip is an optimized implementation of the RIPPER learner. The rules are produced

based on the data collected for the given architectural configuration. Each rule specifies the desir-

able CPU frequency and cache frequency for the next program interval based on the current state

(that is, CPI, L2PI, MPI, old CPU and cache frequencies).

80

An important aspect of using JRip is the format of the training data, which affects the quality

of the generated rule set. Although all the state parameters of the training data are discrete (cache

and CPU frequencies are discrete in nature, while CPI, L2PI, and MPI are discretized into bins), we

specify in the input to JRip that all parameters are continuous to get a more compact rule set. Using

JRip also involves tuning the parameters for the RIPPER algorithm. For instance, the RIPPER

algorithm needs to partition the training data into a growing set and a pruning set. We choose

the partition size to be two thirds for the growing set. Since RIPPER is a randomized algorithm,

different randomization seeds will lead to different results. We experimented with different values

and chose a seed value that reduced the error rate and rule set size for our input.

5.5.3.1 Impact on performance and energy consumption In this section, we show the

energy-delay product results of the policies learned from ML-IDVS in comparison with a local CPU-

core and L2 cache DVS policy [1]. We show how ML-IDVS is affected by the class of applications,

architectural configurations, and optimization metric (as shown in Figure 5.4.1).

Energy-delay product improvement: Figure 5.11 shows the energy-delay product for local-

DVS versus the ones generated by ML-IDVS. The generated policy (with the use of MPI) contains

33 rules. On average, ML-IDVS’s policy improves energy-delay product over local-DVS by 21%

and 22% for the MiBench and SPEC2000, respectively. The local policy being a heuristic-based

can perform badly with some applications as seen in crc32, dijkstra and mesa. This is because the

policy was unable to select the best frequency to minimize the energy-delay. It rather reacts to the

CPI and L2PI changes by changing the frequencies in the same direction of their change, which

does not guarantee operating on an efficient frequency.

State description: Figure 5.11 also shows the energy-delay product in case of removing the

MPI feature from ML-IDVS state description (that is, only using CPI and L2PI). We test this

case to show the significance of observing the memory activity and its impact of considering it

in selecting the DVS decisions, even though we do change its speed. In case of not accounting

for MPI, ML-IDVS generates a policy with fewer rules: 27 rules. In MiBench, using MPI does

not improve the energy-delay product because most of the applications’ data accesses occur in

the caches. So, memory latency has trivial effect on the application’s performance and energy.

In contrast, SPEC2000 benchmarks have larger memory footprints, thus using MPI in the state

81

Figure 5.11: Energy-delay product for SPEC2000 and MiBench benchmarks when using local-DVS

versus ML-IDVS.

description enables the rule learner to distinguish between memory bound versus L2 cache bound

phases. Hence, ML-IDVS with MPI further improves energy-delay product by 1.8% on average and

up to 8.6% (in mgrid).

Optimization metric: ML-IDVS analyzes the application and the architectural behavior once,

and then it can generate policies geared toward optimizing a given metric. To show this, we use

the same training samples obtained for energy-delay product and construct ST to select the best

frequency combination that minimizes the energy while maintaining the delay within a given bound.

We show results for a new policy generated with 10% bound on performance degradation objective.

Figure 5.12 shows the energy-delay product of our benchmarks (when accounting for MPI). On

average, we achieve 21% and 14% improvement over local-DVS for the MiBench and SPEC2000,

respectively.

Processor configuration: ML-IDVS can be used with different architectural configurations. To

show the impact of using ML-IDVS with wide range of processor configurations, we experiment with

a high-performance processor configuration. For this experiment, we use an Alpha-like configuration

shown in Table 5.6 (Config B). Figure 5.13 shows an improvement of 22% and 31% for the MiBench

and SPEC2000 benchmarks, respectively.

Control Granularity: One important parameter of a DVS policy is how often to trigger a speed

82

Figure 5.12: Energy-delay product when optimizing energy with delay bound.

Figure 5.13: Energy-delay product for policies running on system with configuration Config B in

Table 5.6.

83

change. Few speed changes reduce overhead but also eliminate the fine grain control to adapt to

shorter program phases, and vice versa. In this experiment, we vary the period of triggering the

DVS policy. We report the average energy-delay product– normalized to no-power management– of

all reported MiBench and SPEC2000 benchmarks. Figure 5.14 shows that by increasing the control

interval size, local-DVS reduces the number of speed changes, which reduces the policy overhead

and thus reduces its energy-delay product. On the other hand, our DVS policy naturally has fewer

speed changes because it selects the best frequencies for a given state rather than changing the

frequency based on reaction to a change in feature value as in local-DVS. Hence, increasing the

control interval size has minimal impact on the energy-delay product in the tested range.

Figure 5.14: Average energy-delay product at different DVS control-interval sizes (using Config A).

From the results in this section, we conclude that our learning methodology is capable of

generating policies that can used to optimize different systems. The policies being aware of the

system state are effective in optimizing the system (for example, by reducing the energy-delay

product or energy with limited performance degradation).

5.5.3.2 Analysis of the training process We further investigate the effectiveness of the

training data in discovering the possible states in ST, which are used in generating the policy rules

(as described in Section 5.3). The objective is to discover most of ST from the training sample. Each

of the applications used in training covers a number of states in the table with some applications

having larger coverage than others. Figure 5.15 shows the number of distinct states that each

application can discover. The applications are sorted in descending order by number of states. The

84

Figure 5.15: ST coverage.

line graph in the figure represents the number of new states contributed to ST by each application.

Intuitively, using applications with a higher number of discovered states is more beneficial in the

training process as they add more information to ST. For example, the first four applications (gcc,

gzip, bzip and twolf) were responsible for 82% of the ST coverage. However, using applications with

large number of distinctive states but populating states that were already discovered in ST is not

useful. For example, bzip, exhibits similar behavior to gzip, thus, few new states were populated in

ST by bzip. Conversely, art is very useful to populate an area not covered by the other applications.

Hence, a desired characteristic for applications to use in training is to exhibit large variations in

program behavior (phases) that are different than other training applications used. By carefully

choosing a few applications with varying behavior, ST can be covered with relatively small number

of training applications.

5.5.4 Online-IDVS versus ML-IDVS

5.5.4.1 Energy and delay savings Figure 5.16 compares online-IDVS and ML-IDVS. Fig-

ure 5.16-a shows that savings in energy-delay product of online-IDVS diminishes compared to

results in Section 5.5.2. This is primarily because of using limited number of discrete speed levels.

At each interval, online-IDVS computes the magnitude of speed change which is proportional to

the change in CPI or L2PI. Actual speed change does not occur unless the difference in speeds

85

(computed minus current) is high/low enough to select the next available speed level. Accordingly,

the number of speed changes in online-IDVS is much fewer then in ML-IDVS policy.

Figure 5.16-b shows that both IDVS techniques achieve energy savings for all tested appli-

cations at the expense of longer execution times as shown in Figure 5.16-c. Some applications

experience higher than desired performance degradation (≥50%) as in galgel and mgrid. In ML-

IDVS, this delay can be bounded by choosing different optimization metric, such as delay-bound,

when constructing the state table. In online-IDVS, delay penalty can be reduced by reducing the

aggressiveness of magnitude of the speed change. In general, it is hard to provide guarantees on

the delay since both techniques predict the future behavior of the application to be similar to the

past. Table 5.8 summarizes the main differences between online-IDVS and ML-IDVS.

5.5.4.2 Discussion

Training overhead. The major difference between online-IDVS and ML-IDVS is the training

phase. Training gives ML-IDVS some knowledge of which operating frequency results in minimum

energy consumption when executing application with certain behavior. However, this requires an

extra phase for every class of applications. Training time is function of the number of applications

used in training, p, the number of frequency levels, f , and the number of clock domains, d. The

time complexity for training is O(p · fd) for each class of applications. The exponential function

makes the training and rule generation phases time consuming in case of dealing with large number

of frequency levels and large number of domains. In such case, online-IDVS is a less expensive

solution, but also with lower energy savings.

Speed change overheads. The overhead of a frequency change is typically just a few microsec-

onds. However, voltage change overheads are higher, ranging from a few dozen microseconds to a

few milliseconds (e.g., for StrongARM SA-1100 the voltage change overhead is 140µs [94]). The

sample size should be selected based on the total overhead: a small sample size may have high

frequency/voltage change overheads, while a large sample size may exceed typical code phases of

applications. For example, changing the frequency/voltage every 1ms with an overhead of 140µs

yields an overhead as large as 14%. The overhead can be mitigated by enforcing a limit on the

number of speed changes. A simple scheme would be to enforce at most one speed change say every

10ms, without changing the sample size. Alternatively, the sample size can be increased.

86

(a) Energy-delay product

(b) Energy consumption

(c) Execution time

Figure 5.16: Online-IDVS versus ML-IDVS normalized to no-DVS

87

Table 5.8: Comparison of online-IDVS and ML-IDVS

ML-IDVS Online-IDVS

E.D improvement Higher - due to offline profiling Less efficient

High order of domains (offline) Time-consuming rule

generation

Less intuitive domain interac-

tions

Diverse set of applications in

the system

higher training overhead Same policy

Optimizations Work with multiple objectives Not studied

Inefficient operating points. Processors may have inefficient frequency/voltage combinations [95].

A frequency is inefficient if there exist a higher frequency that results in lower energy consumption.

One advantage of ML-IDVS is that the power manager can determine the best action and inefficient

operating points are naturally eliminated if they exist. This is not true in case of online-IDVS since

it is oblivious to the available operating frequencies.

Measurement-based versus theoretical models. We use a measurement-based approach

(i.e., experiments are run to derive a policy), as opposed to an analytic model-based approach.

Thus, there is no implicit assumption of theoretical power models (such as power relationship with

the voltage and frequency). This means that the policy works well in identifying the correct actions

without assumptions about whether the system supports DVS or just frequency scaling (for exam-

ple) and without assumption about the relationship among voltage, frequency and power. While a

model can be inaccurate and difficult to construct, measurement-based approaches eliminate this

problem from the start, at the expense of one-time offline measurements.

Sample size unit. We chose DVS control intervals measured in number of instructions instead

of number of cycles (or time) to evaluate different actions for the same code sample. The table

describing the derived policy can actually be used with a periodic timer-based mechanism. Different

sample size values result in the same policy rules, as long as size is not larger than the application

phases.

88

5.6 CONCLUSION

In MCD processors, applying DVS in each domain can significantly reduce energy consumption.

However, varying the voltage and clock speed independently in each domain indirectly affects the

workload (and hence power) in other domains. This results in an inefficient DVS policy. In this

chapter, we identified these inefficiencies and proposed two integrated DVS techniques that account

for inter-domain interactions. Our policies separately assign the voltage and clock of the core and

L2 cache domains based on activity in both domains.

We present a heuristic-based online-IDVS policy and a machine learning approach to generate

IDVS policies tailored toward a given class of applications. Our results show that both policies

achieve higher energy and energy-delay savings than a local MCD DVS policy that is oblivious to

domain interactions.

The online-IDVS uses a heuristic for controlling the clock of each domain based on the change in

the monitored performance counters. The policy consists of few simple rules that are independent

of the underlying architecture. Online-IDVS achieves average savings in energy-delay product of

7% for SPEC2000 and 3.5% for MiBench benchmarks over past local DVS approaches using the

same hardware.

The ML-IDVS approach characterizes the system state by the running applications and collect-

ing their behavior on a given architectural configuration. ML-IDVS approach constructs policies

to optimize the system power according to a user selected optimization metric. The ML-IDVS

approach generates efficient policies that save 22% on average (up to 46%) in energy-delay product

over a DVS technique that apply local DVS decisions in each domain.

Results show that ML-IDVS is better than online-IDVS. This is primarily due to the extra in-

formation acquired by ML-IDVS during the training phase that helps in predicting the application

behavior. ML-IDVS requires training for each different class of applications to generate accurate

predictions for wide range of applications. Thus, ML-IDVS is best suited for systems running ap-

plications belonging to a few set of classes. Since online-IDVS does not assume any prior knowledge

about applications in the system, it better suits systems running a diverse set of applications in

which offline learning of all application classes is too expensive.

89

6.0 POWER-AWARE CACHED DRAM

With the continuing advancement in the design and manufacturing of faster and more powerful

computing systems, more performance is demanded from the memory system. For example, in cur-

rent chip multiprocessing (CMP) and simultaneous multithreading (SMT) processors, concurrent

applications or threads allow the CPU(s) to issue more load and store requests in each cycle. Even

with large caches, this higher demand, coupled with a slow memory access time, creates a potential

performance bottleneck.

On the other hand, Memory has a huge internal bandwidth compared to its external bus band-

width. Internal memory bandwidth can reach 1.1 TB/s while fast external memory bus is in

the range of 10 GB/s [96]. To exploit the wide internal bus, cached DRAM (CDRAM) adds an

SRAM cache to the DRAM array on the memory chip [97]. Such a near-memory cache acts as an

extra memory hierarchy level, whose fast latency improves the average memory access time and

potentially improves system performance, provided that the near-memory cache is appropriately

configured. Moreover, in case of a cache miss, transferring a cache block over an external bus

consumes four times more energy than transferring the same data over the internal bus (that is, it

does not cross a chip boundary). This reduction is due to the smaller capacitance of internal buses

(0.5pf) compared to external buses (20pf) [98].

In this chapter, we show how to reduce the combined energy consumption in DRAM memory

and off-chip caches by placing SRAM caches closer to the memory, rather than closer to the CPU.

We integrate a moderately sized cache within the chip boundary of a power-aware multi-banked

memory. We call this organization power-aware cached DRAM (PA-CDRAM) [99]. In addition

to improving performance, PA-CDRAM significantly reduces energy consumption in caches and in

main memory. Cache energy is reduced because (1) using small caches distributed to the memory

chips reduces the cache access energy compared to using a large non-distributed cache, and (2) near-

memory caches allow the access of relatively large blocks from memory, which is not affordable with

90

near-processor caches. Memory energy consumption is reduced by having longer memory idle period

during which DRAM banks can be powered off. PA-CDRAM improves the original CDRAM by

tackling the interplay of the cache and memory organizations to optimize the memory’s performance

and energy consumption.

The innovation of this work is the use of near memory caches to further reduce the memory’s

energy consumption beyond the savings achieved from traditional DRAM dynamic power manage-

ment. CDRAM was proposed to improve performance; however, it may hurt energy consumption

(as demonstrated in Section 6.2). Combining CDRAM and DRAM power management would

potentially benefit from the performance gains and save energy.

The contribution of this chapter is threefold. First, we propose near-memory caches for en-

ergy reduction in the memory hierarchy. This reduction comes without affecting the performance

gain provided by CDRAM. Second, we describe an implementation of PA-CDRAM that integrates

a near-memory cache in a Rambus chip (RDRAM). This description includes the changes made

to a RDRAM chip, the near-memory cache controller, and the communication protocol. We also

describe how our implementation can maintain backward compatibility with existing Rambus mem-

ories. Finally, the chapter experimentally evaluates PA-CDRAM and shows that PA-CDRAM is

more energy efficient than a traditional Rambus memory hierarchy employing a time-out power

management policy.

6.1 CACHED DRAM

To decrease the average memory access time, Hsu et al. [97] proposed to integrate a small SRAM

cache within the memory chip next to the DRAM-core, as shown in Figure 6.1. Due to high internal

bandwidth, large chunks of data can be transferred between the DRAM-core and the near-memory

cache with low latency. Average memory access time is improved by accessing the data through the

fast near-memory cache rather than the slower DRAM. CDRAM chips were first manufactured by

Mitsubishi [7], and are typically implemented using Synchronous DRAM (SDRAM). Each memory

bank has its own cache.

Hsu et al. evaluated the performance of CDRAM in vector supercomputers. They showed an

improvement in CPI compared to traditional memory without this extra cache. To improve the

CDRAM performance, Koganti et al. [100] proposed a cached-DRAM with wide cache line ranging

91

de
co

de
r

Sense Amplifier

R
ow

 d
ec

od
er

Column decoder

D
R

A
M

−
core

C
ontrol logic

DRAM
bank

address

address

address

row

cache Line

column

in/out
Data

SRAM cache

cache
on−

m
em

ory

Figure 6.1: Functional block diagram of a CDRAM

from 4KB to 8KB interleaved across multiple DRAM banks. Although the SRAM cache’s miss

rate is reduced, the authors did not account for the extra delay and energy spent accessing these

large cache block sizes, which may degrade the performance and increase the memory’s energy

consumption. Hegde et al. [101] proposed using variable width cache lines that fit the application

access pattern to save energy consumed in unnecessary traffic between the DRAM-core and the

near-memory cache. Zhang et al. [102] showed that cached DRAM is able to improve performance

as the ILP degree increases. Past work did not explore the energy savings that can be achieved

over a currently available alternative such as power-aware memory with the same overall system

cache and memory capacity.

6.2 PA-CDRAM

CDRAM was originally proposed to improve system performance; however, it was not designed

as a replacement to power-aware memory. Figure 6.2 shows the average performance and energy

consumption of CDRAM versus a traditional memory hierarchy for the same near-memory cache

configuration used by Hedge et al. [101].1 Each CDRAM chip has a fully associative 4 KB cache.

We show the results for different cache block sizes (256, 512 and 1024 bytes) for the embedded

1Data produced when running the SPEC2000 benchmarks on SimpleScalar.

92

SRAM cache. While CDRAM has a good performance improvement over traditional memory, the

memory’s total energy suffers dramatically, with an increase of 1.5x to 3.0x. This increase is due

to the extra energy consumed from accessing the near-memory caches and transferring more data

from the DRAM-core at large block sizes.

We propose to overcome the energy penalty of CDRAM by decreasing the miss rate of the

near-memory cache and using power management for the DRAM-core. As we will show, making

the CDRAM power-aware not only decreases the energy penalty of CDRAM, but also significantly

improves overall memory energy in comparison to a traditional power-aware memory hierarchy.

Because DRAM power management typically relies on idleness to select power states, an im-

proved miss rate in the near-memory cache increases the amount of idleness in the DRAM-core,

leading to more effective power management. One way to improve miss rate is to increase the

capacity of the near-memory cache. However, the total energy of the whole memory hierarchy is

increased due to greater overall cache capacity. Instead, we propose to re-allocate existing cache

capacity from the memory hierarchy’s lowest cache level to near-memory cache. For example, it

may be possible to allocate the capacity of the L3 cache to CDRAM’s near-memory cache. The

L3 cache could then be eliminated, possibly without harming application performance. Moving

cache capacity to the near-memory cache has three advantages. First, the near-memory caches are

distributed among the memory chips, which lead to lower energy consumption because the individ-

ual caches are smaller than one monolithic cache. Second, large data transfers are possible from

the DRAM-core to the near-memory cache (i.e., there is more memory bandwidth, which makes

large block sizes feasible). Finally, the near-memory caches can filter and avoid accesses to the

DRAM-core. Since near-memory caches can achieve lower miss rates than near-processor caches,

such filtering increases idleness and lets the DRAM-core stay in a low power state for longer periods

of time.

To build a power-aware cached DRAM, there are two main challenges that must be addressed:

(1) how to configure the DRAM-core’s power management, assuming the use of multiple power

states? and (2) what is the best configuration for the near-memory cache to balance energy and

performance? We describe each of these challenges and our way of addressing them below.

93

Figure 6.2: Average performance and energy consumption for different near-memory cache block

sizes.

6.2.1 DRAM-core power management

With a near-memory cache, we propose applying aggressive power management in the DRAM-core.

During a chip’s idle time, the memory controller can immediately transition the DRAM-core to

the idle state after servicing all outstanding requests. This is equivalent to the use of a timeout

policy with an idle threshold of zero seconds. Although a zero-threshold policy increases the total

inactive time, it can degrade performance and increase the total energy consumption when too

many requests are directed to a memory chip. The extra delay and energy overheads are due to

the transitional cost between power states.

In PA-CDRAM, we avoid this problem by choosing the near-memory cache configuration in a

way that increases the hit rate while reducing the DRAM-core’s energy consumption.2 When most

data requests are serviced as cache hits in the near-memory cache, the longer inter-arrival time

between requests that reach the DRAM-core make it cost effective to immediately deactivate banks

after servicing outstanding requests. We choose to keep the near-memory cache active all the time

to avoid delays that may be caused by on-demand activation of the cache at each request.

2Different configurations for the L3 cache would not have the same effect: near-memory caches have a much wider
bandwidth to memory than L3 caches.

94

6.2.2 DRAM-core versus near-memory cache energy trade-off

To reduce the memory’s energy consumption, we need to consider the effect of the near-memory

cache configuration on the energy consumption of both the near-memory cache and the DRAM-

core. The two factors that affect the cache energy consumption and access latency —for a given

cache size and fixed number of cache subbanks —are the associativity and the block size [66].

The cache associativity directly affects miss rate. Increasing associativity reduces cache miss

rate and vice versa. One goal of PA-CDRAM is to keep the near-memory cache miss rate as

low as possible because it directly influences memory energy consumption in two ways. First, the

higher the miss rate, the more activity in the DRAM in terms of transitioning from idle to active

state, performing address decoding, and transfer of data. Second, the lower the miss rate, the

longer the DRAM-core idle time. To keep the miss rate at a minimum, we use fully associative

caches to eliminate any conflict misses. Note that the hardware complexity of fully associative

caches and their effect on access latency and power is not a limiting factor since we use relatively

small caches with small number of blocks as shown in Section 6.5. We demonstrate that in most

cases, performance improvement and energy saving from reducing near-memory miss rates (given

the appropriate cache configuration) can outweigh extra delay and energy consumed in accessing

higher associative caches [103].

Reducing the miss rate only is not sufficient to reduce the memory’s energy consumption and

application’s overall delay. Thus, in PA-CDRAM, we account for the effect of the cache configura-

tion on the overall memory’s energy (in contrast to Koganti et al. [100]). After selecting the cache

associativity, choosing a near-memory cache block size creates a trade-off between the near-memory

cache and DRAM-core energy consumption. Small cache blocks have the advantage of fast hit time

and low energy per access. However, smaller blocks imply frequent accesses and consequently in-

creasing the DRAM-core energy due to the increased activity. The increase in the DRAM-core

energy rises as a result of increasing the memory activity (such as power-state transitions, address

decoding, and data transfer). Conversely, larger near-memory cache block sizes reduce the DRAM-

activity but increase the near-memory cache energy consumption and latency due to accessing these

large blocks.

This trade-off is illustrated in Figure 6.3. The figure shows the energy consumption in near-

memory cache and DRAM-core at different cache block sizes. Energy values are obtained using

a simplified energy model. The model estimates the near-memory cache energy consumption,

95

Ecache, and DRAM-core, EDcore as a function of the number of near-memory cache and DRAM-

core accesses. Per-access energy of near-memory cache is obtained from Cacti 3.0 [66] for a 256KB

fully associative cache. We use Rambus 32MB memory chip specifications to compute the per-access

energy in DRAM [46]. From this model, given the number of cache accesses and the approximate

execution time for an application, we can roughly estimate the memory energy consumption at

different block sizes. We use SimpleScalar [75] to estimate the input parameters (number of cache

accesses and execution time).

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 64 128 256 512 1024 2048

E
ne

rg
y

block size (bytes)

total energy
DRAM-core

near-mem cache

 0

 10

 20

 30

 40

 50

 60

 70

 64 128 256 512 1024 2048

E
ne

rg
y

block size (bytes)

total energy
DRAM-core

near-mem cache

Figure 6.3: The effect of different cache block sizes on the memory energy consumption for the

CPU-intensive bzip (left) and the memory-intensive mcf (right).

In Figure 6.3, we show estimated energy for two of the SPEC2000 benchmark: bzip and mcf as

an example of CPU and memory intensive applications, respectively. In bzip, the DRAM-core idle

energy dominates the PA-CDRAM energy, while in mcf, the frequent accesses to the near-memory

caches makes the cache energy dominate the total energy at large block sizes. From the figure, we

see that the trade-off between the near-memory cache and DRAM-core energy consumption creates

a sweet spot between block sizes 256 and 512 bytes. Note that finding ideal block size is application

dependent. However, from our simulation (shown in Section 6.5), in most of the applications, the

minimum energy-delay product can be achieved at, or within a slight margin of, one of these two

block sizes [104].

From this section, we conclude that for the given cache size, the near-memory cache should

be fully associative (to reduce the miss rate) and have a block size of either 256 or 512 bytes (to

balance the memory’s energy and delay). For the DRAM-core, setting the chip to the idle state

96

after servicing outstanding requests (that is, timeout = 0) is expected to save the memory energy

consumption. The implementation described in the next section uses such configuration.

6.3 PA-CDRAM IMPLEMENTATION

In this section, we describe the architectural and operational modifications needed to integrate

a near-memory cache in RDRAM. First, we describe the organizational issues of integrating a

near-memory cache in the memory chip. Next, we discuss the design of the controller for the

near-memory cache because it has energy, performance and backward compatibility implications.

Finally, we describe the operation of the controller, including some changes needed to Rambus’ bus

protocol.

6.3.1 PA-CDRAM architecture

Our PA-CDRAM design modifies the original RDRAM design for power efficiency. Beside the

addition of the near-memory cache, some alterations are needed in the main components of the

RDRAM, namely: the DRAM-core, the control logic, and the memory and cache controllers (in

Section 6.3.2).

We add a fully associative cache (depicted as dark blocks in Figure 6.4) with its data divided

array into two sections. Since the original RDRAM design has a divided data bus, each section of

the cache is connected to one of two internal data buses (DQA and DQB). Each cache section stores

half of each cache block. We keep the original RDRAM write buffers before the sense amplifiers.

The write buffers are used to store replaced dirty blocks from the near-memory cache to be written

to the DRAM-core. The power state of this cache is independent of the power state of the other

chip components. In the nap state, the RDRAM internal clock is periodically synchronized with

the external clock [46]. Thus, the near-memory cache is accessible even when the DRAM is in the

nap state.

To accommodate the large transfer sizes between the DRAM-core and the near-memory cache,

wider internal data buses are required to connect the sense amplifiers with the near-memory cache.

The width of each bus connecting the DRAM and near-memory caches is b/2 bits, where b is the

size of a cache block. The buses DQA and DQB remain at an 8-bit width.

97

8

8

bufferwrite

SRAM cache

bufferwrite

boundary
Chip

DQB

R
am

bu
s

C
ha

nn
el

: f
ro

m
/to

 M
em

or
y

C
on

tr
ol

le
r

D
R

A
M

 c
or

e

B
an

k
2

Sense amps

Sense amps

B
an

k
31

B
an

k
30

B
an

k
3

B
an

k
1

B
an

k
0

C
ac

he
ro

w
 &

 c
ol

.
de

co
de

rs

column addr

column addrb/2

b/2

SRAM cache

DQA

D
R

A
M

ro
w

 &
 c

ol
.

de
co

de
rs

Control
Logic

Row &
Column
bus

bus
Control

Control
registers

Pa
ck

et
 d

ec
od

er
C

on
tr

ol
re

gi
st

er
s

Po
w

er
m

od
es

row addr

row addr

b/2

Figure 6.4: Functional block diagram of a PA-CDRAM. Dark blocks are the added components to

an RDRAM architecture.

Extra cache row and column decoders are added in the chip’s control logic for decoding cache

addresses. In addition, the existing RDRAM packet decoder in each chip is modified to decode

new cache commands. The new cache commands indicate whether the access is a hit/miss in the

cache, and whether replacement is needed. The new commands and their fields are defined in

Section 6.3.3.

6.3.2 Near-memory cache controller

In the design of PA-CDRAM, a controller is needed to handle hits and misses in the near-memory

cache. An important design question is where this controller should be placed. One alternative

is to have a single near-memory cache controller (called a centralized controller) that is integrated

into the main Rambus memory controller. Another alternative is to have a near-memory cache

controller per Rambus chip (called a distributed controller), with that controller integrated in the

Rambus chip itself.

In the centralized controller case, there is a tag array for each memory chip. The centralized

98

controller keeps track of the control data for each block such as a valid bit, dirty bit and LRU

counters. This way, the cache controller is able to locally decide on replacement policies and

update the tag arrays. The centralized controller communicates with cache data arrays by sending

cache commands through the channel (as described in Section 6.3.3). In the distributed controller

case, the cache controller is integrated more tightly with the near-memory cache (they are on the

same chip). This design provides backward compatibility with current Rambus memory controller

chips, as well as flexibility of connecting PA-CDRAM and RDRAM chips in the same channel.

In the distributed design, each controller has its own tag array and the same functionality as the

centralized controller. The distributed design has to intercept the control packets received from

the memory controller through the channel and issue consequent command sequences to either the

near-memory cache or the DRAM core.

The centralized controller has the advantage of performing a relatively faster tag comparison

because it is implemented in the same technology as the memory controller. Thus, the centralized

controller has a faster average memory access time compared to the distributed design, where the

controller runs at a slower speed (due to the mixed use of logic and DRAM). For example, a delay

penalty of 25% for logic cells with the distributed design has a 25% slower cache hit time versus

roughly 16% penalty with a centralized controller design.3 On the other hand, the bus activity

(and hence the energy) in the Rambus channel is reduced by using a distributed design since only

memory control packets are sent across the Rambus channel. Where as, in the centralized design,

cache and memory control packets have to be sent across the channel. Hence, the distributed design

uses less bus energy but suffers a performance penalty relative to the centralized design. In our

evaluation (in Section 6.5), we examine the trade-off between these two alternatives. Next, we

describe PA-CDRAM’s operation.

6.3.3 PA-CDRAM operation

In the PA-CDRAM distributed cache controller design, after receiving the data request on the

Rambus channel, the cache controller performs the tag-comparison and reads data from the near-

memory cache if the tags match. Otherwise, the cache controller internally sends a sequence of

control signals to activate a DRAM bank, read data and precharge the data line according to the

DRAM-core timing constraints.

3According to Cacti, tag comparison takes around 35% of the total cache hit time for the selected configuration.
That is: x + (1− 0.35)x · 0.25 = 1.16x.

99

For PA-CDRAM with centralized cache controller, we need to extend the Rambus communi-

cation protocol between the memory/cache controllers and the memory chips. This extension is

needed because the cache controller resides within the memory controller chip; thus, it needs to

drive the caches (invalidate lines, evict lines, etc) in the PA-CDRAM chips through the Rambus

channel. For that, we define three new commands to communicate with the near-memory caches

as shown in Table 6.1.

Table 6.1: PA-CDRAM cache commands send across the control bus

command description

cache read addr

(CRA)

Issues a read request for block addr; data is sent on the data bus only if there

is a hit in the tag comparison. A command packet is sent through the row bus.

Format: opcode(4b), chip id(4b), block addr(15b).

cache write addr

(CWA)

Issues a write request for block addr (data is sent later on the data bus). A

command packet is sent through the row bus.

Format: opcode(4b), chip id(4b), block addr(15b).

cache tag test

(CTT)

Sends the tag comparison result (tag flag can be hit or miss). If hit, subsequent

fields are ignored. If miss, it indicates, in subsequent fields, the address of block

to be replaced and whether it is dirty or not. Command packet is sent through

the column bus.

Format: opcode(4b), chip id(4b), block addr(15b), tag flag(1b), dirty flag(1b),

replaced addr(15b)

To perform a data read/write request from the memory, a sequence of commands is issued along

the Rambus channel. A read (write) can result in either a near-memory cache hit or miss. Figure 6.5

illustrates the sequence of commands and data on the row, column and data buses (timing diagrams)

in the channel for a read hit and read miss. The communication protocol for command packets for

a write hit/miss is similar to the read hit/miss, respectively, with the substitution of CRA by CWA

command and the direction of data. The figure also shows the timing constraints imposed by the

Rambus protocol on the earliest time to send subsequent packets to the same chip.

For each request, the memory controller identifies which chip the requested data resides in, and

then lets the cache controller search the tag array corresponding to this target chip. During the

tag comparison, the cache controller sends the requested block address through the channel using

100

CRA

CTT

data

R
ea

d
H

it

col. bus

data bus

row bus

clock

data

tag comparison delay

clock

cache read hit

col. bus

data bus

CRAPRER

RD CTT

row bus

CTT

DRAM read access

Device
Activation

row to row delay

CRA

data

ACT
tag comparison delay

RAS delay

RAS to CAS delay tag comparison delay

R
ea

d
m

is
s

Figure 6.5: Timing diagram of the Rambus channel for near-memory cache read hit (upper) and

read miss (lower) transactions.

the CRA command. After the comparison, the cache controller sends the comparison result using

the CTT packet. In the case of a near-memory cache hit (tag flag is set), data is read directly

from the near-memory cache. In case of an near-memory cache miss, the cache controller uses

the CTT packet to send the address of the block to be replaced and whether it is dirty or not.

If the block is dirty (i.e., dirty flag is set), then it is written to the write buffer. Meanwhile, the

memory controller sends a packet to activate the chip (ACT), followed by a read command for a

memory address (RD) then an optional command to precharge the data line (PRER). The memory

command sequence RD-ACT-PRER is part of the original Rambus protocol. After data is read from

the memory address, it is copied to the near-memory cache through the sense amplifiers. The cache

controller then sends another command sequence requesting the new block, which is treated as a

cache hit.

If there are no outstanding requests to a chip, then the RDRAM chip does an automatic copy

of the write buffers to the correct banks during the chip idle periods. After writing the contents

of the write buffers, the memory controller issues a command to send the chip to the nap state.

Note that the cache commands use both the row and column control buses. This is to increase the

memory pipelining, and decrease the delays for memory access (even if it is near-memory cache

accesses).

101

6.4 ENERGY AND DELAY MODELING OF PA-CDRAM

In this section we develop a simple analytical energy model to highlight the main factors that affect

PA-CDRAM energy savings compared to traditional memory. The memory hierarchy consists of L1,

L2 caches, L3 or near-memory caches, and DRAM-core. PA-CDRAM uses the same cache capacity

as in traditional memory; however, the capacity of the L3 cache is distributed on near-memory

caches. Our model is based on system parameters (such as caches’ access energy and latency, as

well as time and power consumed by DRAM in each power state) and application parameters (such

as number of L2, L3 and near-memory cache misses).

The model accounts for energy consumed in the caches (Ecache), the DRAM-core (EDcore), and

system buses (Ebus). We do not account for the cache leakage energy (proportional to the size of

the SRAM) as we compare our results against a base case with equal cache capacity, and we assume

it to be negligible.

Ecache = Ec accs ·#c accs

EDcore = Ed accs ·#d accs + Etrans ·#trans + Pidle · Tidle

Ebus = Eb accs ·#b accs

where #c accs, #d accs, and #b accs are the number of L3 (or near-memory) cache accesses,

DRAM-core accesses, and bus transactions, respectively. The cache energy per access, Ec accs, is

obtained from the Cacti tool [66] for both the L3 and near-memory caches, while the DRAM-core’s

energy per access (Ed accs), the power state transition energy (Etrans), and the idle power (Pidle)

are specifications of the particular RDRAM memory chip used [46]. Tidle is the time spent in the

DRAM idle state. To simplify the memory’s energy estimation, we assume an application with

limited number of write-backs and capacity misses in the L3 or near-memory caches. We also

assume a memory power management technique that immediately transitions DRAM-core to a low

power state after each access. The low power state consume Pstatic. In other words, the number of

memory power state transitions is double the number of DRAM accesses: #trans = 2 ·#d accs.

We derive the number of cache and DRAM-core accesses as follows:

#c accsB = #c accsPA = #L2 misses

#d accsB = #L3 misses = #c accsB · L3 miss rate

#d accsPA = η ·#c accsPA · L3 miss rate

102

where the superscript indicates whether the metric represents PA-CDRAM (PA) or traditional

memory (called B, the base case). η = #d accsPA

#d accsB = near−memory miss rate
L3 miss rate represents the improve-

ment in the near-memory average miss rate with respect to the traditional L3. η is affected by the

spatial and temporal locality of the application’s data, and can be estimated using cache models

that predict cache miss rates [105].

To compute the amount of energy spent in the DRAM core, we estimate the time spent at

each of the DRAM busy and idle periods. We compute Tidle in terms of the execution time of

an application (Texec) and the time spent while the DRAM is reading or writing data (Tbusy) as

shown in the equations below. Td accs is the average DRAM access time. Texec is derived from

the execution time of an application with access latency equals zero for data accesses beyond L2

(Tperfect),4 and the average access time of the combined DRAM and L3 (or near-memory) cache

(Tmem accs).

Tidle = Texec − Tbusy

Tbusy = Td accs ·#d accs

Texec = Tperfect + µ (Tmem accs ·#d access)

Where µ is the fraction of memory access time that does not overlap with processor’s computation

(resulting in CPU stalls). µ is affected by the processor’s design (e.g., issue width, depth of

Load/Store queue) and its effect on hiding memory latency. Both η and µ are application dependent

and their values range from 0 to 1 under the above assumptions. η can exceed one in case of high

capacity misses and large write-back traffic.

Figure 6.6 shows the effect of varying the number of L2 misses, η and µ on the energy-delay

product. PA-CDRAM memory consists of 256KB near-memory cache with 512B blocks versus

2MB L3 cache with 128B blocks in the base case.5 The results shown for a duration of Tperfect =

250msec and fixed L3 miss rates: 20% and 5% as examples for moderately high and moderately

low miss rates. The graphs show that varying η highly affects the savings in the energy-delay

product in PA-CDRAM compared to the traditional memory. This is due to the fewer accesses to

the DRAM-core and consequent idle time in memory. On the other hand, µ has less visible impact

on the energy-delay product primarily because the majority of the L2 misses can be serviced by

either the L3 or the near-memory caches, which have similar cache access latency. For smaller L3

miss rates, the PA-CDRAM energy-delay savings is smaller due to the lower memory traffic.
4Tperfect is the execution time when using perfect memory and L3 (or near-memory) caches
5Cache hierarchies used are same as in the evaluation section (Section 6.5).

103

(a) L3 miss rate = 20% (b) L3 miss rate = 5%

Figure 6.6: The effects of varying η and µ on the energy-delay product

Thus, given the application’s L2 misses, cache and memory power and delay characteristics, and

estimation of the L3 and the near-memory miss rates, we can estimate whether using PA-CDRAM

is more efficient than using traditional memory hierarchy under the above assumptions.

The intention of the above model is to highlight the runtime factors affecting PA-CDRAM

energy and delay with respect to traditional memories. Other static factors such as per-access

cache and DRAM energy and latency (considered as fixed parameters in the above model) play a

role in evaluating the effectiveness of PA-CDRAM. Next, we present detailed analysis of the two

memory models using simulation, and discuss the effect of the different system parameters on the

energy and delay of PA-CDRAM.

6.5 EVALUATION OF PA-CDRAM

In this section, we describe several experiments that explore the energy and performance of PA-

CDRAM. We evaluate the different PA-CDRAM configurations and their impact on energy and

performance. Then, we analyze the performance and energy benefits of PA-CDRAM compared to

conventional power-management employed by Rambus. We also evaluate the energy and perfor-

mance implications of the centralized and distributed near-memory cache controller designs, and

how well PA-CDRAM works in a multi-tasking environment, where Rambus memories are most

likely to be used. Finally, we present a sensitivity analysis of PA-CDRAM with respect to varying

104

the different system parameters. We begin with a discussion of our experimental methodology.

6.5.1 Methodology

To evaluate PA-CDRAM, experiments are performed using the SimpleScalar architecture simulator

[75] combined with a memory module [106] that models a set of RDRAM chips connected to

a single Rambus channel. The memory model also simulates the memory controller (MC) and

its request scheduling. We extended the memory model by implementing the CDRAM memory

structure and RDRAM’s power management scheme with multiple power levels and a timeout

policy for power mode transitions.6 Simulations are performed using a set of applications from

the SPEC2000 benchmark suite. To avoid the cold start effect, we fast forward the simulation two

billion instructions and simulate the following 200 million instructions as in [107].

Our study evaluates the energy consumption and delay of PA-CDRAM against a base case

that employs traditional power saving policies implemented by Rambus. Since we are concerned

with the memory subsystem, we measure the energy-delay product accounting for memory energy

consumption and overall delay. This metric would improve if we account for the CPU energy. Since

we do not apply any processor power management and PA-CDRAM reduces execution time (as

will be shown in Section 6.5.3), PA-CDRAM reduces the processor static energy by reducing the

application’s runtime; however, we only include memory energy in our results.

Figure 6.7 illustrates the memory models evaluated in our experiments. Table 6.2 summarizes

the system configurations used in the two memory models. The base case is illustrated using a

specific cache hierarchy configuration similar to the Pentium4 EE processor [108]. Latency values

are given in terms of CPU cycles. Note that this is a more current cache hierarchy setting that is

different than the one used in Figure 6.2. In the base case, data allocation is done linearly to keep

the least number of chips in the active state [53, 54]. In PA-CDRAM, we use interleaved memory

mapping to make use of all near-memory caches and use the same L1 and L2 configurations as the

base case. DRAM power management in the base case uses a timeout policy for the deactivation

of the RDRAM chips to the nap state.

We compute the energy consumption in the DRAM-core, caches and buses. During DRAM-core

accesses, dynamic energy is consumed, which is proportional to the number of DRAM accesses.

Otherwise, the DRAM-core consumes static energy that is proportional to the time spent in each

6We limit our approach to use the nap state as the only low power state, because the results in [53] and [54]
showed that the nap state is energy efficient and has relatively low transition delay.

105

CPU and CPU and

on−memory
cacheL3 PA−CDRAM

devices
cache

DRAM−core

L2 L3 bus

L3 MC bus
Rambus
Channel

RDRAM
devices

L2 MC bus

on−chip caches on−chip caches

MC MC

on−mem DRAM

bus

Figure 6.7: Memory organizations of the base case (left) and the proposed PA-CDRAM (right).

power state. The timing and power characteristics of the simulated RDRAM chip are for a typical

RDRAM chip, namely the 256Mb/1066MHz/32 split bank architecture [46].

Access energy and latency for each cache configuration is obtained using Cacti 3.0 for 130 nm

(same manufacturing technology as the Pentium EE). In Cacti, the per-access energy and latency is

divided into portions consumed in tag-array and data-array (including sense amplifiers and output

latches). In n-way set associative caches, tag and data arrays are accessed concurrently to reduce

the total access time. In fully associative caches, tag array is replaced by fully associative decoder,

after which the data array is accessed. Tag comparison takes place in the decoder. Then, the

decoder drives the wordline associated with the cache entry. This optimization reduces cache per-

access energy; however, it increases per-access latency. We obtain access latencies and energy when

operating at cache voltage Vdd = 1.3 V. As discussed in Section 6.1, we add a conservative delay

penalty of 35% for accessing logic cells in the memory chip [60]. We also add four cycles delay

penalty for accessing off-chip caches.

We refer to a bus (address and data) by the two memory elements that the bus connects; for

example L2↔L3 is the bus connecting L2 and L3 caches. In our evaluation, we account for L2↔L3,

L3↔MC, and the Rambus channel in the base case, while accounting for L2↔MC, the Rambus

channel, near-memory↔DRAM in PA-CDRAM as shown in Figure 6.7. Energy of external and

internal buses are computed using the model presented in [98] and [109]. Unless stated otherwise,

we evaluate a centralized cache controller design. PA-CDRAM and the base case energy models

106

Table 6.2: System configuration

Processor: 4-issue out-of-order, 2GHz

Cache hierarchy:

L1: on-chip 32KB iL1 & dL1 caches, DM, 32B, 2 cyc. lat.

L2: on-chip 256KB, 8-way, 64B, 5 cyc. lat.

L3: off-chip 2MB, 8-way, 128B, 15 cyc. lat

near-memory: 8x256KB, FA, 512B, 19 cyc.(14+5 slowdown)

DRAM-core: 8 x 32MB RDRAM , 85-120 cyc. lat

Buses: address width = 32b, Cin = 0.5 pF, Cex= 10pF

are detailed in [110].

We set our experiments using memory/cache configurations that exhibited the best energy-

delay product results across all applications. From experiments with different timeout values (0,

100, 500, 1000 and 5000 and 10000 cycles), we found that a timeout of 1000 cycles is the best

fixed threshold for the base case, while a zero timeout threshold achieved the lowest energy-delay

product on average for the PA-CDRAM. Experimenting with the cache block sizes (128, 256, 512

and 1024 bytes) and associativity (8-way and fully associative), the least energy-delay product for

the L3 cache in the base case was realizable using an 8-way cache with 128B blocks. The best

configuration for the PA-CDRAM was the fully associative with 512B blocks.

6.5.2 Energy and delay

Across all Spec2000 benchmarks, Figure 6.8 shows the average savings in energy-delay product is

28% (shown in the last column) and up to 84% (in ammp). The energy-delay product is an aggregate

behavior; to analyze the benefits of PA-CDRAM on energy and performance independently, we

decompose the energy-delay product into execution time and energy consumption. Figure 6.8

shows these metrics for each application normalized to the base case.

6.5.2.1 Effect on delay For most applications, there is no significant improvement in the delay

over the base case due to two reasons. First, in most of the applications, L2 can service a large

107

Figure 6.8: PA-CDRAM energy-delay break down normalized to the base case.

number of the memory requests. Second, most of the CPU stalls resulting from L3 misses can be

masked by the execution of other independent instructions in the pipeline, that is, µ is very small.

Three exceptions in Figure 6.8 are ammp, art and mcf. For these benchmarks, the total number of

DRAM-core accesses is two orders of magnitude larger than the other applications. With so many

memory accesses, a reduction in average memory access time significantly improved performance.

This shows that near-memory caching is well suited for memory intensive applications.

Compared to the motivational example presented in Section 6.2, there is a difference in per-

formance improvement. This difference is due to the use of a different cache hierarchy in each

experiment. In Figure 6.2, we use the same cache hierarchy used in [101], which proposes a differ-

ent cache configuration. Additionally, the results in Figure 6.2 use an extra cache level in memory

chips for CDRAM (resulting in larger overall cache capacity than the base case). The extra cache

capacity improves execution times. However, for a more fair comparison we use the same overall

capacity in both memory models and a more current cache hierarchy that includes L2 cache. Hence,

the overall execution time becomes less sensitive to the memory latency, which is a desirable effect

in system design.

6.5.2.2 Effect on energy consumption From Figure 6.8, we also see that savings in energy

consumption alone reached up to 76% (for ammp). All applications exhibit energy savings except

for art and twolf. To analyze these savings (and higher consumption in art and twolf), we further

108

Figure 6.9: PA-CDRAM and the base case energy break down and cache miss rates

decompose the energy consumption to show where the energy is spent in each of the memory’s

individual components. Figure 6.9 shows the relative consumption of the DRAM-core dynamic

energy (DRAM-dynamic), DRAM-core static energy (DRAM-static), cache access energy (cache-

dynamic), and bus energy. The bottom of Figure 6.9 shows the cache miss rates for L3 in the

base case and average miss rate of all near-memory caches in PA-CDRAM. Note that miss rates in

PA-CDRAM are lower than the base case in all applications. Thus, there exist fewer accesses to

the DRAM-core in case of PA-CDRAM. From figure, η ranges from 0.25 to 0.5 (except in ammp

= 0.002), which indicate a potential for energy saving as discussed earlier.

In all applications, the DRAM-static energy was reduced due to the increase in the duration of

DRAM idle periods versus active periods in the base case. With respect to the DRAM dynamic

energy, some applications, namely ammp, bzip, gcc, gzip, mesa, twolf, and vpr, have lower energy

due to lower miss rates in the near-memory cache that filter some of the accesses to the DRAM-core.

All the above applications have relatively small η (around 0.26). Note the effect of the extremely

low value of η on reducing the energy-delay product of ammp. However, applications like art,

equake, mcf, parser, and vortex, suffer an increase in DRAM dynamic energy, even though near-

memory cache miss rates were reduced (η values around 0.42). This increase is due to the relatively

large near-memory cache block size that caused these applications to access unnecessary data from

the DRAM-core.7 During these excessively large transfers, the DRAM consumes extra energy by

7This factor was not considered in the model in Section 6.4 for simplicity.

109

Table 6.3: Per-access latency and energy break down of L3 and near-memory caches.

cache tag-array data-array total

L3 latency (ns) 3.69 5.41 5.41

L3 energy (nJ) 0.388 4.614 5.00

PA latency (ns) - 4.94 4.94

PA energy (nJ) - 3.084 3.44

reading/writing data that is never used by the application. We deduce that increasing the spatial

locality for an application saves further energy in PA-CDRAM dynamic energy compared to the

base case, and vice versa.

As cache access energy is proportional to the length of activated bitlines and wordlines at each

access, dividing the cache into smaller near-memory caches reduces energy. Table 6.3 lists the

breakdown of per-access energy and delay for both L3 and near-memory caches as obtained from

Cacti. For near-memory caches, tag decoder latency and energy is included in the data-array side.

Near-memory access latency in the table excludes the 35% slowdown penalty. The figure shows

that when using PA-CDRAM there is a decrease in cache energy across all applications, even with

small reduction in miss rates.

The total energy of a bus depends on its capacitance and activity. PA-CDRAM can reduce

bus energy consumption (as in ammp, art, equake, mcf, and mesa) by reducing the total bus

capacitances compared to the base case (three external buses versus two external and one internal

bus for PA-CDRAM). However, in the other applications, bus energy increases due to the increased

Rambus channel activity. Thus, applications with high L2 misses and low L3 misses consume more

bus energy in PA-CDRAM. On the other hand, for applications with relatively high L3 misses,

frequent activity occurs in L3↔MC and the channel, resulting in higher bus energy in the base

case.

6.5.3 Near-memory versus near-processor caches

In this study, we evaluate the potential energy and performance benefit of allocating the capacity

of L3 cache closer to the processor versus closer to the memory. In our experiments, we compared

110

Figure 6.10: Energy-delay product of near memory versus near-processor cache organizations

normalized to the base case.

PA-CDRAM with systems where the majority of the cache capacity is allocated as: (1) large on-

chip L2 cache and no L3 cache (not shown here), (2) large on-chip L3 cache, or (3) large off-chip

cache. The capacity of the large cache in each of these systems is equal to 2MB. In the first case,

we observed that the energy-delay product is much higher than having a large L3 cache (our base

case described earlier). The increase is, on average, 2.97 times and up to 5.34 times the base case.

Larger L2 size causes longer access latency and energy per access than a smaller L2. Since L2 is very

frequently accessed, increasing its access latency and energy results in a significant degradation in

performance and increase in the total energy consumption. Thus, we show the more fair comparison

against a system with a large L3 cache.

Figure 6.10 compares the energy-delay product of using traditional memory with off-chip L3 or

on-chip L3 caches versus PA-CDRAM with near-memory caches. On-chip L3 improves over off-chip

L3 as it saves the energy consumption and the extra delay spent in accessing the L2↔L3 external

bus. Comparing PA-CDRAM against a memory hierarchy with large on-chip L3 cache shows that

most of the applications achieve lower energy-delay product. This is due to the use of smaller

near-memory caches and the lower miss rates in PA-CDRAM. On the other hand, gcc, twolf, and

vpr experience high L2↔MC and MC↔near-memory bus traffic which overshadow savings in the

other memory components. However, across all applications, PA-CDRAM improves the average

energy-delay product over using a large on-chip L3 cache by 17%.

Moreover, we compare the benefit of using an L3 cache (on-chip and off-chip) that is divided

111

into 8-banks. We find that even when compared with 8-banks on-chip L3 cache (configuration

with lowest energy consumption in the base case), PA-CDRAM achieves 15% lower energy-delay

product.

6.5.4 Cache controller location

We quantify the trade-offs of choosing the location of the near-memory cache controller with respect

to the overall performance and energy consumption. We simulate the centralized and distributed

cache controllers and penalize the near-memory cache access latency accordingly. For the centralized

controller, we use Cacti’s latency computation to slowdown the access latency, except for the tag

comparison (done outside the DRAM chip). For the distributed design, we apply the penalty

(slowdown) to the entire near-memory access latency (including tag comparison which takes place

inside the DRAM chip). As expected, the total execution time of an application is slightly faster

(by up to 1.5%) when using a centralized controller. On the other hand, the energy consumed in

the memory buses is up to 5% less for the distributed controller design. Figure 6.11 shows the effect

of the cache controller location on the bus energy, the application’s execution time and the overall

energy-delay product. Although the distributed design consumes less bus energy, the overall energy

was actually increased. This is due to the longer execution times that increases the DRAM-static

energy, which overshadows the bus energy saving. Although the centralized design has an 0.4%

average improvement in energy-delay, the distributed design has the advantage of being backward

compatible. Hence, we stress an important feature of the distributed controller: it enables the use

of traditional Rambus and PA-CDRAM chips interchangeably while connected to the same memory

controller. In that sense, it is possible to do incremental/partial deployment of the PA-CDRAM

chips, if it is not possible to do it homogeneously. We leave further study of this issue for future

work.

6.5.5 Effect of multiprocess and multithreaded environments

The energy profile of an application running in a single task environment may differ from running the

same application in a multi-process system with preemption or in a multi-threaded environment

with multiple processors. This difference arises from the fact that an application’s locality of

reference is disturbed by the execution of other applications, which will populate the cache with

their own data. The result is higher miss rates experienced by each application. It is important

112

Figure 6.11: Energy-delay product of distributed controller normalized to centralized cache con-

troller design.

to evaluate how these higher miss rates affect energy-delay of PA-CDRAM since it is intended for

such environments.

We start first with single processors running multiple applications. Although our simulation

infrastructure does not directly support a multi-tasking workload, we can approximate the effect

of context switches. Our approximation uses a task scheduler that invalidates all the cached data

for the expiring application (task) before resuming execution of the ready task.8 The invalidation

writes back all the dirty cache blocks to memory. We trigger an interrupt service routine every

10ms (similar to the time slice in Linux). The interrupt drains the processor pipeline and flushes

the data in the caches. Upon the interrupt termination, the application’s execution is resumed.

Figure 6.12 illustrates the overhead of context switching compared to single task execution. In

all applications except mesa and vortex, the overhead of context switching is lower in PA-CDRAM

than in the base case, for two reasons. First, the time overhead of flushing the L3 cache is larger than

the near-memory caches as flushing all the small near-memory caches can be done simultaneously,

while flushing the L3 cache serializes the write backs to the memory chips. Second, since the number

of blocks in the L3 cache (2MB/128B) is larger than the near-memory caches (2MB/512B), the

L3 cache has more address decoding and thus more energy is consumed. In mesa and vortex, the

8This is a worse-case behavior since usually the cache will not be completely flushed.

113

Figure 6.12: Energy-delay product with and without pre-emption, normalized to the base case

without preemption.

energy-delay product of the context switching overhead is higher in PA-CDRAM due to an increase

in DRAM dynamic energy that exceeds the time savings from the cache invalidation as mentioned

above. This energy increase is due to the relatively large number of near-memory cache writebacks

factored by the large block size to be written to the DRAM-array.

Furthermore, we evaluate PA-CDRAM energy consumption when used in a multi-processor

environment. To emulate the multi-processor effect, we generate traces of L3 accesses for all

applications. For each application pair, we merge their traces based on the timestamp of each

cache access. We divide the memory address space such that each application has access to half of

the total memory size. To have all data resident in memory, we increase the memory size to 512MB

divided among 8 chips. We maintain the L3 (in the base case) and near-memory (in PA-CDRAM)

caches at the same capacity.

Table 6.4 shows the results of running pairs of application traces on our simulator. We re-

port energy values normalized to the base case. Delay results are irrelevant since we are running

time-stamped traces rather than actual execution of applications. As expected, running multiple

applications simultaneously increases the number of cache misses compared to the sum of cache

misses when running each application individually. This observation is true for both PA-CDRAM

and the base case. Although the number of misses in near-memory caches is higher than the sin-

114

gle processor case, the total number of near-memory cache misses is still lower than L3 misses.

The lower misses in PA-CDRAM is because PA-CDRAM originally achieves much lower miss rates

than the base case when running single application as shown in Figure 6.9. From Table 6.4, most

application pairs experience lower energy consumption by using PA-CDRAM memory than base

case. In the base case, access to multiple DRAM chips (from the two applications) increases the

number of active chips, hence increases the DRAM-core static energy. However, less energy impact

is noticed in PA-CDRAM due to the interleaved data allocation and the immediate deactivation of

the DRAM-core. Average energy savings across all application-pairs is 20%. Memory intensive ap-

plications like art and mcf have a large memory working set that reside in the near-memory cache.

When running another application concurrently, large number of conflict misses occur. The higher

miss rate increase the performance degradation as well as the energy consumed in DRAM-core and

near-memory caches. The effect is less severe in the base case because L3 cache has larger number

of cache blocks.

6.5.6 Sensitivity to design parameters

We investigate the effect of varying the different system parameters on the energy and performance

of PA-CDRAM with respect to traditional memory. We vary the following parameters: (1) cache

capacity for both the L3 and the near-memory caches to study the effect of the capacity misses

on the system, (2) the CPU frequency to study the effect of improving the average memory access

time on the total performance, and (3) the slow-down experienced by the logic embedded in the

DRAM chip.

6.5.6.1 Effect of varying the cache size Varying the cache size affects both the miss rate

and the cache access costs (latency and energy). Figure 6.13 shows the average delay, energy, and

energy-delay product of PA-CDRAM while varying the total near-memory cache size from 512KB

to 4MB (excluding L1 and L2). The results are normalized to the base case with L3 cache of

corresponding size. Note that while the small cache sizes tested (512KB and 1MB) are too small

for a typical L3 cache, we test at those sizes to demonstrate the trend. Increasing the cache size

reduces the L3 (or near-memory) miss rates, thus better performance is achieved in both cases.

When the miss rate is reduced, lower accesses to the DRAM-core occur, and accordingly, the relative

savings in delay of PA-CDRAM to the base case is lower for large cache sizes.

115

Table 6.4: PA-CDRAM energy consumption normalized to the base case when running application

pairs interleaved.

ammp art bzip equake gcc gzip mcf mesa parser twolf vortex vpr

ammp 1.82 0.94 0.14 0.16 0.66 0.14 1.10 0.14 0.13 0.73 0.17 0.80

art 0.94 1.48 1.31 1.30 1.24 1.23 1.36 1.18 1.26 1.35 1.19 1.32

bzip 0.14 1.31 0.63 0.80 0.65 0.66 1.01 0.72 0.69 0.75 0.71 0.70

equake 0.16 1.30 0.80 1.00 0.69 0.74 1.06 0.73 0.75 0.82 0.74 0.81

gcc 0.66 1.24 0.65 0.69 0.63 0.66 1.01 0.61 0.66 0.64 0.66 0.70

gzip 0.14 1.23 0.66 0.74 0.66 0.72 1.02 0.67 0.72 0.71 0.70 0.70

mcf 1.10 1.36 1.01 1.06 1.01 1.02 1.06 0.79 0.81 0.92 0.90 0.95

mesa 0.14 1.18 0.72 0.73 0.61 0.67 0.79 0.73 0.70 0.60 0.73 0.63

parser 0.13 1.26 0.69 0.75 0.66 0.72 0.81 0.70 0.75 0.72 0.75 0.74

twolf 0.73 1.35 0.75 0.82 0.64 0.71 0.92 0.60 0.72 0.77 0.66 0.89

vortex 0.17 1.19 0.71 0.74 0.66 0.70 0.90 0.73 0.75 0.66 0.71 0.70

vpr 0.80 1.32 0.70 0.81 0.70 0.70 0.95 0.63 0.74 0.89 0.70 0.97

116

With respect to energy consumption, the effect of varying the cache capacity is not as trivial.

The general trend is that increasing the cache size reduces the capacity misses; thus, less energy

is consumed due to fewer cache replacements and DRAM accesses. However, when increasing the

cache size, the cache energy per hit access increases causing an increase in the total memory energy

consumption. Comparing the energy consumption of the base case versus PA-CDRAM, we find

that applications are divided into two groups: (1) where PA-CDRAM consumes less energy at all

cache sizes as in bzip, gzip, mesa, parser, and vortex, or (2) where PA-CDRAM consumes less

energy only at large cache sizes. For the first group, PA-CDRAM performs better due to accessing

smaller individual caches (with lower per-access energy). For the second group, at the small cache

sizes tested (512KB and 1MB), too many near-memory cache replacements takes place due to the

limited number of blocks (512KB
8·512B = 128 blocks) per individual near-memory cache. Results for

individual applications can be found in [110].

Figure 6.13: The effect of varying the cache size on execution time, energy and energy-delay

product normalized to the base case.

6.5.6.2 Effect of varying the CPU frequency Increasing the CPU frequency increases the

speed gap between the memory and the CPU; thus, increasing the total execution cycles of an

application. Figure 6.14 shows the energy-delay product for PA-CDRAM at different clock rates

normalized to the base case at 2 GHz. We choose to fix the frequency at the base case to demonstrate

the effect on the energy consumption. In our experiments, most of the applications exhibit minimal

variation in execution times. These applications are mainly CPU bound where the processor is able

117

to mask most of the L2 miss stalls. Thus, the relative benefit of PA-CDRAM on delay is negligible

compared to the base case (as described in Section 6.5.3). In memory bound applications (ammp,

art and mcf), increasing the CPU frequency compounded with the larger average memory access

times in the base case, results in the base case suffering from significantly larger delays than PA-

CDRAM. That is, at higher CPU frequency the value of µ increases significantly in these memory

intensive applications, making PA-CDRAM an efficient solution.

From the energy perspective, increasing the CPU frequency reduces the application’s execution

time, and thus the duration of the idle periods in the DRAM. This reduces the consumption of

the static energy in the DRAM-core. In contrast, the dynamic energy in the DRAM and the

caches is not affected by the processor frequency as they are mainly dependent on the size of

the transfer rather than the frequency. Although higher processor frequencies – with all other

factors unchanged – reduces the memory’s total energy (shorter idle periods), memory’s energy

consumption can increase due to other factors like larger memory capacities and higher memory

traffic. Figure 6.14 shows the effect of varying the CPU frequency on the energy-delay product.

Figure 6.14: The effect of varying the CPU frequency for the PA-CDRAM, normalized to the base

case on execution time, energy and energy-delay product.

6.5.6.3 Effect of logic slowdown To show the effect of the embedded logic manufacturing

technology on the overall performance of systems using PA-CDRAM, we vary the logic slowdown

factor of the near-memory data array (assuming a slower distributed cache controller). We add a

delay penalty to the overall cache access delay obtained from Cacti. This penalty ranges from 0%

118

(fast SRAM) to 50%. The execution time is normalized to the PA-CDRAM case where there is no

performance penalty for the logic cells. From Figure 6.15, we notice that the performance degra-

dation in the near-memory cache controller design is relatively insignificant. Even when compared

to a centralized cache controller design (not shown here), the overall slowdown in performance over

fast SRAM is 1.5% on average (up to 6.3%) with a 50% slowdown penalty. This result shows that

delays resulting from manufacturing embedded logic in DRAM chips do not represent any critical

delays on the overall system when using PA-CDRAM memory.

Figure 6.15: The effect of the logic slowdown in the near-memory cache on the total execution time

normalized to fast SRAM case.

6.5.6.4 Effect of CPU and memory bus bandwidth External buses can pose performance

bottleneck for accessing external caches and memory. Our earlier results assume ideal external

buses with infinite bandwidth to avoid the impact of such a bottleneck. To study the impact of bus

latencies on the overall performance, we limit the bandwidths of the CPU and memory buses in the

base case and PA-CDRAM. The CPU bus bandwidth is limited by the bus speed, the bus width

and the data rate (single, dual, or quad). We assume a 64b width CPU bus. Intel uses quad-rate

(sends 4 bits/cycle) buses that operate at 200, 266, or 333 MHz [111]. Hence, CPU bus bandwidth

can range from 6.25 GB/s to 10.4 GB/s (64
8 ∗ bus freq ∗ 4). The limited bandwidth increases

the latency of filling an L2 block between 13 and 21 cycles in our setting. RDRAM memory bus

provides data bandwidth between 1.6 GB/s and 12.4 GB/s [67]. This range of bus bandwidth

increases the latency of reading an L2 block from memory by 11 to 80 cycles. It is typical for CPU

119

buses to be faster than memory buses.

Figure 6.16, shows the normalized energy-delay product using a mixture of CPU and memory

bus bandwidths. The figure shows that energy-delay saving is more sensitive to memory bus latency

since near-memory caches use this bus to fill the L2 cache. Although it is faster to transfer an L2

block from an L3 cache than from a near-memory cache (faster CPU buses), an L3 miss has a much

higher latency than a near-memory cache miss. Hence, PA-CDRAM can improve performance even

with limited bus bandwidth. In general, the larger the bandwidth of both buses, the higher the

saving PA-CDRAM can achieve.

Figure 6.16: The effect of different CPU and memory bus bandwidth.

6.6 DISCUSSION

Manufacturing of PA-CDRAM can benefit from new advances in embedded DRAM technology

(eDRAM). New fabrication technologies are successful in manufacturing eDRAM cells with signif-

icantly smaller size than traditional SRAM cells. Each eDRAM cell consists of a single transistor

and a single capacitor (1T1C cell) as opposed to six transistors in case of SRAM cell. eDRAM

from NEC and 1T-SRAM from Mosys are examples of technologies that apply the 1T1C concept.

Due to the smaller cell sizes, higher densities can be achieved. Hence, larger capacity in smaller

120

chip area is realizable. On the other hand, access latency of embedded DRAM is slightly higher as

mentioned in Section 2.5.

The smaller form factor of 1T1C reduces both active and leakage energy. The relatively large

SRAM cell size contains longer metal lines, which create higher capacitance than the ones found in

1T1C cell. Lower cell capacitance translates to lower current draw and power consumption; hence,

reducing the cell active power. In addition, 1T1C cell contains one leakage path as opposed to

four leakage paths in an SRAM cell. Hence, lower leakage current is drawn in an eDRAM cell.

Furthermore, the eDRAM optimized refresh current is significantly less than the leakage current of

an equivalent 6T memory array [112].

Looking for the impact of PA-CDRAM beyond off-chip memory and caches, we qualitatively

analyze the impact on the CPU energy consumption and performance. Since PA-CDRAM does

not influence the CPU activity or affect the number of accesses to on-chip caches, we expect that

the deployment of PA-CDRAM does not affect the dynamic energy in both. However, it does

affect their static power. Among the benefits of PA-CDRAM is improvement in overall system

performance. Hence, CPU-core and all on-chip units are expected to be powered up for smaller

periods of time. Accordingly, we can achieve a reduction in static energy due to the shorter active

periods of these components.

6.7 CONCLUSION

In this chapter, we propose an architectural optimization to CDRAM to save energy in DRAM

memory and off-chip caches. We explore the energy efficiency of near-memory caches rather than

conventional cache hierarchies, where most of the cache capacity is allotted “closer” to the CPU.

PA-CDRAM can be used as an alternative to traditional power-aware memories to conserve energy

and improve performance. PA-CDRAM reduces the memory’s energy consumption by (1) bringing

the cache closer to the memory to exploit the high memory bandwidth, and (2) distributing the

external cache into smaller caches that have a low access energy and latency, and (3) increasing the

DRAM-core idle periods due to the low miss rates of near-memory caches. Three main parameters

affect the degree of benefit of PA-CDRAM over traditional memory: higher L2 misses, lower η (miss

rate ratio), and higher µ (memory stalls), all lead to higher energy and delay benefits obtained from

PA-CDRAM. Compared to traditional memory using a time-out power management, PA-CDRAM

121

saves up to 76% energy consumption (19% on average). Moreover, PA-CDRAM reduces the energy-

delay product by up to 84% (28% on average), where the highest gains are for memory-intensive

applications and for applications with relatively high spatial locality.

Our evaluation shows that, PA-CDRAM is more energy-delay efficient than allocating a large

fraction of the total cache capacity to on-chip L2, on-chip L3 or off-chip L3. In a multi-tasking

environment, PA-CDRAM can lower the context switch overhead of cache invalidation through

simultaneous flushing of dirty blocks in all on-memory caches. With the increase in cache capacity

and CPU frequency in current and future processors, the energy savings in PA-CDRAM is expected

to increase.

122

7.0 CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

To achieve the maximum system power efficiency, it is desired to reduce the energy consumption

in most of the system components. The majority of power management techniques proposed in

the literature focus on reducing the energy consumption in a single component in the system. We

have shown examples to demonstrate that applying simultaneous power management policies to

independently save power in multiple components do not necessarily guarantee reducing the overall

system energy. This counter-intuitive result is due to policies being oblivious to their effect on

other components’ energy consumption, which may result in increasing the overall system energy.

This dissertation tackles the problem of optimizing the overall system energy by addressing

the system components that contribute to the majority of the system power consumption. We

focus on CPU, caches, and DRAM memory. The dissertation proposes three power management

techniques that optimize the combined energy consumption of at least two system components

at a time. First, we present a collaborative OS and compiler power management technique for

reducing the energy consumption in real-time systems. The technique focuses on reducing the

CPU (including on-chip caches) power while accounting for the memory energy consumption with

the objective of reducing their combined energy consumption. The collaborative approach enables

better detection of dynamic slack time in the system. To detect and utilize this slack, we use

compiler-inserted hints that evaluate–at run-time– the worst-case remaining number of cycles for

an application to finish execution at each hint location. At run time, information from hints is

passed to the operating system to periodically schedule the proper speed. The operating system

decides on the best operating frequency that reduces the combined energy consumption of the CPU

and the memory subsystems. The contribution of this work is threefold.

1. We present a novel technique that involves the collaboration between the OS and the compiler

123

to collect both run-time information and path-dependent information. The strength of our

collaborative scheme lies in three properties. First, a separate PMH placement algorithm can

be devised to supply the OS with the necessary timing information about an application at

a rate proportional to the PMP invocation. Second, the actual speed-change is done seldom

enough by the OS at pre-computed time intervals (every PMP-interval) to keep the overhead

low. Finally, by giving the OS control to change speed, our scheme controls the number of

executed PMPs independent of any execution path.

2. We show the effect of reducing the CPU frequency on increasing the memory energy consump-

tion. We present speed scheduling schemes that compute the proper CPU frequency such that

the sum of the CPU energy and the memory energy consumption is minimized.

3. We evaluate our technique on time-sensitive applications running on two commercially available

processors with dynamic voltage scaling. We show that our technique can achieve significant

energy reduction over no power management, OS-directed and compiler-directed power man-

agement techniques.

The main results of this work are:

• The number of speed changes during the application’s execution can be determined such that the

overhead of excessive speed changes is avoided. The best number of speed changes is dependent

on the overhead of each speed change and the variability in the execution times among each

program invocation.

• Collaboration between the operating system and compiler is more efficient than techniques

implemented in a single system-layer in terms of detecting slack that can be used to lower the

CPU power. The collaboration enables the detection of dynamic slack before the application

finishes execution.

• The speed scheduler can limit the static energy consumed by other components in the system by

preventing the operating frequency from going below a break-even frequency. That frequency

is chosen to avoid excessive energy consumption in different parts of the system.

Second, we propose an integrated DVS policy for reducing the energy consumption in chips

with Multiple-clock domains. We mainly focus on the CPU-core and L2 cache. We present two

techniques: (1) an online heuristic-based policy and (2) an offline machine learning based approach.

Both techniques follow an integrated power management approach that controls the speeds in each

domain based on the knowledge of activity in the other domains. The integrated approaches achieve

124

better energy savings than an local DVS approach that only have localized view of activities. The

contribution of this work is fourfold.

1. We identify a significant inefficiency in current online DVS policies, and show the sources and

implications of this inefficiency.

2. We propose a heuristic-based online integrated DVS policy that adapts the core and L2 cache

speeds in a way that avoids these inefficiencies and taking into account domain interactions.

3. We present a more flexible machine learning based integrated DVS approach. The approach

automatically generates integrated DVS policies customized for a given class of applications

running on a given system.

4. We experimentally evaluate the two integrated DVS techniques against a local-DVS policy,

which forms its decisions based on local information collected about each domain. Both inte-

grated DVS techniques show positive gains in terms reducing the energy-delay product with

minimal impact on performance.

The main results of this work are:

• There are interactions among different domains that affect the workloads in each domain espe-

cially when varying the domains’ frequency independently. These interactions can mislead the

DVS speed scheduler when applied in isolation.

• Simple embedded processors are more likely to benefit from integrated policy compared to a

local one. However, the energy savings from an integrated policy is higher in high-end processor

when compared to no-power management.

• As expected, online integrated DVS policies show lower energy savings over a learning-based

policy. This is due to more information obtained during the learning phase that enables the

learning-based policy to make better decisions. However, in case the learning phase in expensive

or infeasible, then an online policy represents a good solution.

Third, we address the energy consumption in off-chip DRAM memory and caches. We proposed

a Power-Aware Cached DRAM (PA-CDRAM) that exploits the wide internal bus to improve the

average memory latency, and to reduce energy consumption in main memory and external caches.

PA-CDRAM improves the original CDRAM model by managing the interaction of the cache and

memory. This improves the performance and energy consumption in the memory hierarchy. The

contribution of this work is threefold.

125

1. We propose near-memory caches for energy reduction in the memory hierarchy. This reduction

comes while maintaining part of the performance gains provided by CDRAM.

2. We describe an implementation of PA-CDRAM that integrates a near-memory cache in a Ram-

bus chip (RDRAM). This description includes the changes made to a RDRAM chip, the near-

memory cache controller, and the communication protocol. We also describe how our imple-

mentation can maintain backward compatibility with existing Rambus memories.

3. We experimentally evaluate PA-CDRAM and shows that PA-CDRAM is more energy efficient

than a traditional Rambus memory hierarchy employing a time-out power management policy.

The main results of this work are:

• Having near-memory caches can improve performance and energy consumption, given that they

are designed with the proper configuration.

• PA-CDRAM performs better than the traditional memory hierarchy for three reasons: (1)

PA-CDRAM exploits the high internal memory bandwidth by bringing the cache closer to the

memory, (2) it reduces the effective access energy and latency by distributing the external cache

into smaller caches that have low access energy and latency, and (3) it increases the DRAM-core

idle periods by lowering the miss rate of the near-memory caches.

• In a multi-tasking environment, PA-CDRAM can lower the context switch overhead of cache

invalidation through simultaneous flushing of dirty blocks in all on-memory caches.

7.2 FUTURE WORK

Building upon this doctoral thesis, we plan to pursue two orthogonal research directions. First, we

would like to investigate several open questions that were revealed during the course of this thesis

research. These issues are worth investigation to be used in improving the efficiency of most power

management techniques proposed in the literature. In particular, questions regarding the following

issues:

System-wide power management. Throughout this dissertation, we presented techniques that

optimize the energy consumption of two components in the systems. A natural extension to

this work is to explore the interaction of more than two components in the system to achieve

a system-wide power optimization. In this dissertation, we explored the interaction among the

126

CPU, cache, and memory. Are there other critical interactions among other components such

as: disks, buses or network devices that need to be accounted for?

Synergy of power management policies. An alternative way to system-wide power manage-

ment is to consider integrated multiple power management policies that target different system

components. In this dissertation, we proposed three techniques for different component combi-

nations in the system. It is interesting to discover what impact on the overall system power when

we integrated two or more of these techniques. Does integrating multiple power management

techniques introduce unnecessary complexity or achieve significant power savings compared to

using one power management technique in the system?

Dynamic- AND leakage- aware power management in deep submicron technology. With

the decreasing feature size, leakage power becomes increasingly the critical factor in a chip’s

total power dissipation. An important, yet currently open question is: How to effectively com-

bine schemes for the management of dynamic power and leakage power so that the total power

consumption is reduced with little impact on performance?

Cost-effective power management control granularity. Both temporal granularity (how of-

ten to trigger power management controls), and spatial granularity (what to control: entire

chip versus individual functional units) of power management decisions play a direct role in

the achievable power savings. In most cases, finer control results higher power savings at the

expense of higher design complexity. Is there a unified quantitative framework that applies to

wide range of power management designs and is powerful enough to express the power savings

versus complexity trade-offs in the process of selecting control granularity?

Second, we plan to further explore the application of statistical machine learning techniques

for providing solutions that adapt the hardware configurations based on the run-time behavior of

the workload. Our preliminary work with machine learning for dynamically adapting the proces-

sor and cache voltages showed significant energy savings over heuristic approaches. We believe

that there are plenty of computer architecture problems (such as adaptive power-management and

thermal-management) where machine-learning can improve over traditional techniques. For exam-

ple in memory-power management, building a machine learning technique that reacts to changes

in resource demands at run-time (e.g., due to increased request arrival rate) will likely outperform

the widely-used fixed timeout power-management policy. This direction is aligned with the idea

of self-optimizing, and self-managing autonomic systems proposed by IBM. This area is relatively

127

new, and is a fertile ground for novel applications of machine learning solutions to architectural

problems.

The ultimate goal of power management technique is to significantly reduce the overall system

energy. Toward this goal, we presented techniques that were able to reduce the energy consumption

in multiple system components. We focus mainly on the major power consumers in the system. The

techniques in this dissertation highlights the importance of designing power management schemes

that consider multiple components and their interactions (in terms of power and latency) in the

system rather than applying multiple isolated power management polices. This study should lay

the foundation for further research in the domain of integrated power management, where multiple

system components are controlled by a single power manager.

128

APPENDIX

DERIVATION OF DVS FORMULAS

A.1 DERIVATION FOR PROPORTIONAL CLOSED-FORM EQUATION

In this section we first present Lemma 1 (and its derivation), which we use to derive the closed-form

formula for Proportional speed scheduling scheme (Equation 4.3).

A.1.1 Derivation for Lemma 1

Lemma 1.

φi = Ai(B +
i−1∑

l=1

φl) =⇒ φi = AiBΠi−1
l=1(1 + Al) (.1)

Proof (by induction):

Base case: at i = 1, it is trivial to see that the left hand side (LHS) of Equation (.1) is the same

as the right hand side (RHS):

LHS = A1B = RHS

Induction step: Let Equation (.1) hold for all n < i. We prove that it also holds for n = i. By

substituting the RHS of Equation (.1) for φl, it is sufficient to prove that:

φi = Ai(B +
i−1∑

l=1

AlBΠl−1
k=1(1 + Ak)) = AiBΠi−1

l=1(1 + Al)

129

as below:

φi = Ai(B +
∑i−1

l=1 AlBΠl−1
k=1(1 + Ak))

= AiB(1 +
∑i−1

l=1 AlΠl−1
k=1(1 + Ak))

= AiB(1 + A1 +
∑i−1

l=2 AlΠl−1
k=1(1 + Ak))

= AiB((1 + A1) +
∑i−1

l=2 Al(1 + A1)Πl−1
k=2(1 + Ak))

= AiB((1 + A1) + A2 + (1 + A1) +
∑i−1

l=3 AlΠl−1
k=2(1 + Ak))

= AiB((1 + A1)(1 + A2) +
∑i−1

l=3 AlΠl−1
k=2(1 + Ak)))

=

= AiB((1 + A1)(1 + A2).....(1 + Ai−1))

= AiBΠi−1
l=1(1 + Al)

= RHS

End of Lemma 1.

A.1.2 Derivation of Proportional closed-form formula

Here, we use Lemma 1 to derive the formula for the Proportional speed scheduling scheme (Equa-

tion 4.3). We start from the Proportional scheme speed adjustment formula (Equation 4.1):

fi =
WCR/fmax

d− ct− Ttotal
fmax

Let avgc, aci be the average case, and actual case execution time of each execution segment i,

respectively, running at fmax. Recall that our assumption for the theoretical model asserts that

aci = avgc. Then ct equals the sum of the average execution times of the past segments di-

vided by the segments’ operating frequency normalized to the maximum frequency. Since d equals

WCET/load then d equals n wcc/load. Now, let α = avgc/wcc. Then,

fi =
Pn

i wcc

n wcc/load −Pi−1
l=1(avgc fmax/fl) −Ttotal

fmax

= (n−i+1)wcc

n wcc/load − avgc
Pi−1

l=1(fmax/fl) −Ttotal
fmax

= n−i+1
n/load −α

Pi−1
l=1 φl −(Ttotal/wcc)

fmax

fmax/fi = 1
n−i+1

[
n

load − α
∑i−1

l=1 φl − Ttotal
wcc

]

φi = −α
n−i+1

[
1
−α(n

load − Ttotal
wcc) +

∑i−1
l=1 φl

]

130

Let Ai = −α
n−i+1 and B = 1

−α(n
load − Ttotal

wcc). Starting from the above equation, we substitute in

Lemma 2 to obtain Equation 4.3

φi =
1

n− i + 1
(

n

load
− Ttotal

wcc
)Πi−1

k=1

[
1− α

n− k + 1
]

(.2)

A.2 DERIVATION FOR GREEDY CLOSED-FORM EQUATION

In this section we first present Lemma 2 (and its derivation), which we use to derive the closed-form

formula for Greedy speed scheduling scheme (Equation 4.4).

A.2.1 Derivation for Lemma 2

Lemma 2.

φi = i + D + C

i−1∑

l=1

φl =⇒ φi =
(1 + C)i − 1

C
+ D(1 + C)i−1 (.3)

Proof (by induction):

Base case: at i = 1, it is trivial to see that LHS of Equation (.3) is the same as the RHS:

LHS = φ1 = 1 + D = RHS

Induction step: Let Equation (.3) hold for all n < i. We prove that it also holds for n = i. By

substituting the RHS of Equation (.3) for φl, it is sufficient to prove that:

φi = i + D + C
i−1∑

l=1

(1 + C)l − 1
C

+ D(1 + C)l−1 =
(1 + C)i − 1

C
+ D(1 + C)i−1

as follows:
φi = i + D + C

∑i−1
l=1

[(1+C)l−1
C + D(1 + C)l−1

]

= i + D +
∑i−1

l=1((1 + C)l − 1) + DC
∑i−1

l=1(1 + C)l−1

= i + D − (i− 1) +
∑i−1

l=1(1 + C)l + DC
∑i−1

l=1(1 + C)l−1

= D + 1 + (1+C)i−1
C − 1 + DC (1+C)i−1−1

C

= (1+C)i−1
C + D(1 + C)i−1

= RHS

End of Lemma 2.

131

A.2.2 Derivation of the Greedy closed-form formula

Here, we use Lemma 2 to derive the formula for the Greedy speed scheduling scheme (Equation 4.4).

We start from the Greedy scheme speed adjustment formula (Equation 4.2):

fi =
wcc/fmax

d− ct− (WCR− wcc)/fmax − Ttotal
fmax

Using the same assumptions as in the Proportional scheme, we get:

fi = wcc
n wcc/load − Pi−1

l=1 avgc(fmax/fl) − (n−i)wcc−Ttotal
fmax

= wcc
(n/load −n+i) wcc − avgc

Pi−1
l=1 (fmax/fl) −Ttotal

fmax

= 1
(n/load −n+i) − α

Pi−1
l=1 (fmax/fl) −Ttotal/wcc

fmax

φi = i + (n
load − n− Ttotal

wcc)− α
∑i−1

l=1 φl

Let C = −α and D = n
load − n− Ttotal

wcc . Starting from the above equation, we substitute in Lemma

2 to obtain Equation 4.4.

φi =
1− (1− α)i

α
+ (

n

load
− n− Ttotal

wcc
)(1− α)i−1 (.4)

132

BIBLIOGRAPHY

[1] Grigorios Magklis, Greg Semeraro, David H. Albonesi, Steven G . Dropsho, Sandhya
Dwarkadas and Michael L. Scott, “Dynamic Frequency and Voltage Scaling for a Multi-
ple Clock Domain Microprocessor”, IEEE Micro, vol. 23, n. 6, pp. 62–68, 2003.

[2] Greg Semeraro, Grigorios Magklis, Rajeev Balasubramonian, David H. Albonesi, Sandhya
Dwarkadas and Michael L. Scott, “Energy-Efficient Processor Design Using Multiple Clock
Domains with Dynamic Voltage and Frequency Scaling”, in HPCA ’02: Proceedings of the 8th
International Symposium on High-Performance Computer Architecture, page 29, Washington,
DC, USA, 2002, IEEE Computer Society.

[3] Vincent W. Freeh, David K. Lowenthal, Feng Pan, Nandini Kappiah and Rob Springer,
“Exploring the Energy-Time Tradeoff in MPI Programs on a Power-Scalable Cluster”, in
IPDPD’05: Proc. International Parallel and Distributed Processing Symposium. IEEE Com-
puter Society, 2005.

[4] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael Kistler and
Tom W. Keller, “Energy Management for Commercial Servers”, Computer, vol. 36, n. 12,
pp. 39–48, 2003.

[5] Ozgur Celebican, Tajana Simunic Rosing and III Vincent J. Mooney, “Energy estimation of
peripheral devices in embedded systems”, in GLSVLSI ’04: Proceedings of the 14th ACM
Great Lakes symposium on VLSI, pp. 430–435. ACM Press, 2004.

[6] Todd Austin, David Blaauw, Scott Mahlke, Trevor Mudge, Chaitali Chakrabarti and Wayne
Wolf, “Mobile Supercomputers”, Computer, vol. 37, n. 5, pp. 81–83, 2004.

[7] Brian Davis, Moderan DRAM Architectures, PhD thesis, University of Michigan, Ann Arbor,
2000.

[8] Vinodh Cuppu, Bruce Jacob, Brian Davis and Trevor Mudge, “High-Performance DRAMs
in Workstation Environments”, IEEE Trans. Comput., vol. 50, n. 11, pp. 1133–1153, 2001.

[9] Bruce Childers, H. Tang and Rami Melhem, “Adapting processor supply voltage to
instruction-level parallelism”, in Koolchips 2000 Workshop, during 33th Annual International
Symposium on Microarchitecture (MICRO-33), 2000.

[10] H. Zeng, C. Ellis, A. Lebeck and A. Vahdat, “Ecosystem: Managing energy as a first class
operating system resource”, 2002.

[11] Krisztian Flautner, Steve Reinhardt and Trevor Mudge, “Automatic performance setting for
dynamic voltage scaling”, Wireless Networks, vol. 8, n. 5, pp. 507–520, 2002.

133

[12] Krisztian Flautner and Trevor Mudge, “Vertigo: automatic performance-setting for Linux”,
SIGOPS Oper. Syst. Rev., vol. 36, n. SI, pp. 105–116, 2002.

[13] Daniel Mossé, Hakan Aydin, Bruce Childers and Rami Melhem, “Compiler-assisted dynamic
power-aware scheduling for real-time applications”, in COLP’00: Workshop on Compilers
and Operating Systems for Low Power, 2000.

[14] Flavius Gruian, “On energy reduction in Hard Real-Time Systems Containing Tasks with
stochastic Execution times”, in IEEE Workshop on Power Management for Real-Time and
Embedded Systems, 2001.

[15] Jacob R. Lorch and Alan Jay Smith, “Improving dynamic voltage scaling algorithms with
PACE”, in SIGMETRICS ’01: Proceedings of the 2001 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, pp. 50–61, New York, NY,
USA, 2001, ACM Press.

[16] Padmanabhan Pillai and Kang G. Shin, “Real-Time Dynamic Voltage Scaling for Low-Power
Embedded Operating Systems”, in 18th ACM Symposium on Operating Systems Principles,
2001.

[17] Hakan Aydin, Rami Melhem, Daniel Moss and Pedro Meja-Alvarez, “Determining Optimal
Processor Speeds for Periodic Real-Time Tasks with Different Power Characteristics”, in
ECRTS ’01: Proceedings of the 13th Euromicro Conference on Real-Time Systems, page 225,
Washington, DC, USA, 2001, IEEE Computer Society.

[18] Trevor Pering, Thomas Burd and Robert Brodersen, “Voltage scheduling in the lpARM
microprocessor system”, in ISLPED ’00: Proceedings of the 2000 international symposium
on Low power electronics and design, pp. 96–101, New York, NY, USA, 2000, ACM Press.

[19] Chung-Hsing Hsu and Ulrich Kremer, “Single vs multiple regions: A comparison of differ-
ent compiler-directed dynamic voltage scheduling approaches”, in Power Aware Computer
Systems (PACS), 2002.

[20] Chung-Hsing Hsu and Ulrich Kremer, “The design, implementation, and evaluation of a com-
piler algorithm for CPU energy reduction”, in PLDI ’03: Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and implementation, pp. 38–48, New York,
NY, USA, 2003, ACM.

[21] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum and A. Nicolau,
“Profile-Based Dynamic Voltage Scheduling Using Program Checkpoints”, in DATE ’02:
Proceedings of the conference on Design, automation and test in Europe, page 168, Washing-
ton, DC, USA, 2002, IEEE Computer Society.

[22] Dongkun Shin, Jihong Kim and Seongsoo Lee, “Intra-Task Voltage Scheduling for Low-
Energy, Hard Real-Time Applications”, IEEE Des. Test, vol. 18, n. 2, pp. 20–30, 2001.

[23] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C-H. Hsu and U. Kre-
mer, “Energy-conscious compilation based on voltage scaling”, in LCTES/SCOPES ’02:
Proceedings of the joint conference on Languages, compilers and tools for embedded systems,
pp. 2–11, New York, NY, USA, 2002, ACM Press.

134

[24] Woonseok Kim, Dongkun Shin, Han-Saem Yun, Jihong Kim and Sang Lyul Min, “Perfor-
mance Comparison of Dynamic Voltage Scaling Algorithms for Hard Real-Time Systems”,
in RTAS ’02: Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS’02), page 219, Washington, DC, USA, 2002, IEEE Computer
Society.

[25] Nam Sung Kim, Todd Austin, David Blaauw, Trevor Mudge, Krisztián Flautner, Jie S.
Hu, Mary Jane Irwin, Mahmut Kandemir and Vijaykrishnan Narayanan, “Leakage Current:
Moore’s Law Meets Static Power”, Computer, vol. 36, n. 12, pp. 68–75, 2003.

[26] Rajiv Ravindran, Michael Chu and Scott Mahlke, “Compiler-managed partitioned data caches
for low power”, in LCTES ’07: Proceedings of the 2007 ACM SIGPLAN/SIGBED conference
on Languages, compilers, and tools, pp. 237–247, New York, NY, USA, 2007, ACM.

[27] Ozcan Ozturk and Mahmut Kandemir, “Energy management in software-controlled multi-
level memory hierarchies”, in GLSVSLI ’05: Proceedings of the 15th ACM Great Lakes
symposium on VLSI, pp. 270–275, New York, NY, USA, 2005, ACM Press.

[28] G. Edward Suh, Larry Rudolph and Srinivas Devadas, “Dynamic Partitioning of Shared
Cache Memory”, J. Supercomput., vol. 28, n. 1, pp. 7–26, 2004.

[29] Kimish Patel, Luca Benini, Enrico Macii and Massimo Poncino, “STV-Cache: a leakage
energy-efficient architecture for data caches”, in GLSVLSI ’06: Proceedings of the 16th ACM
Great Lakes symposium on VLSI, pp. 404–409, New York, NY, USA, 2006, ACM.

[30] Ismail Kadayif, Mahmut Kandemir and Feihui Li, “Prefetching-aware cache line turnoff for
saving leakage energy”, in ASP-DAC ’06: Proceedings of the 2006 conference on Asia South
Pacific design automation, pp. 182–187, Piscataway, NJ, USA, 2006, IEEE Press.

[31] Ismail Kadayif, Mahmut Kandemir and Guilin Chen, “Studying interactions between
prefetching and cache line turnoff”, in ASP-DAC ’05: Proceedings of the 2005 conference on
Asia South Pacific design automation, pp. 545–548, New York, NY, USA, 2005, ACM.

[32] Xiangrong Zhou and Peter Petrov, “Low-power cache organization through selective tag
translation for embedded processors with virtual memory support”, in GLSVLSI ’06: Pro-
ceedings of the 16th ACM Great Lakes symposium on VLSI, pp. 398–403, New York, NY,
USA, 2006, ACM.

[33] Peter Petrov and Alex Orailoglu, “Energy frugal tags in reprogrammable I-caches for
application-specific embedded processors”, in CODES ’02: Proceedings of the tenth interna-
tional symposium on Hardware/software codesign, pp. 181–186, New York, NY, USA, 2002,
ACM.

[34] Mirko Loghi, Paolo Azzoni and Massimo Poncino, “Tag Overflow Buffering: An Energy-
Efficient Cache Architecture”, in DATE ’05: Proceedings of the conference on Design, Au-
tomation and Test in Europe, pp. 520–525, Washington, DC, USA, 2005, IEEE Computer
Society.

[35] Greg Semeraro, David H. Albonesi, Steven G. Dropsho, Grigorios Magklis, Sandhya
Dwarkadas and Michael L. Scott, “Dynamic frequency and voltage control for a multiple
clock domain microarchitecture”, in MICRO 35: Proceedings of the 35th annual ACM/IEEE
international symposium on Microarchitecture, pp. 356–367, Los Alamitos, CA, USA, 2002,
IEEE Computer Society Press.

135

[36] Anoop Iyer and Diana Marculescu, “Power and performance evaluation of globally asyn-
chronous locally synchronous processors”, in ISCA’02: Proc Intl Symp on Computer archi-
tecture, pp. 158–168, 2002.

[37] National Semiconductor, “PowerWise Technology”,
http://www.national.com/appinfo/power/powerwise.html, 2007.

[38] Juha Pennanen, “Optimizing the Power for Multiple Voltage Domains”, Spring Processor
Forum, Japan, 2006.

[39] G. Magklis, M.L. Scott, G. Semeraro, D.H. Albonesi and S. Dropsho, “Profile-based dynamic
voltage and frequency scaling for a multiple clock domain microprocessor”, in ISCA’03: Proc
Intl Symp on Computer Architecture, pp. 14–27, 2003.

[40] YongKang Zhu, David H. Albonesi and A. Buyuktosunoglu, “A High Performance, Energy
Efficient GALS Processor Microarchitecture with Reduced Implementation Complexity”, in
ISPASS’05: Proc Intl Symp on Performance Analysis of Systems and Software, pp. 42–53,
2005.

[41] Qiang Wu, Philo Juang, Margaret Martonosi and Douglas W. Clark, “Formal online methods
for voltage/frequency control in multiple clock domain microprocessors”, in ASPLOS-XI:
Proc Intl Conf on Architectural support for programming languages and operating systems,
pp. 248–259, 2004.

[42] Qiang Wu, Philo Juang, Margaret Martonosi and Douglas W. Clark, “Voltage and Frequency
Control With Adaptive Reaction Time in Multiple-Clock-Domain Processors”, in HPCA ’05:
Proceedings of the 11th International Symposium on High-Performance Computer Architec-
ture, pp. 178–189, Washington, DC, USA, 2005, IEEE Computer Society.

[43] John Oliver, Ravishankar Rao, Paul Sultana, Jedidiah Crandall, Erik Czernikowski, Leslie
W. Jones IV, Diana Franklin, Venkatesh Akella and Frederic T. Chong, “Synchroscalar:
A Multiple Clock Domain, Power-Aware, Tile-Based Embedded Processor”, in ISCA ’04:
Proceedings of the 31st annual international symposium on Computer architecture, page 150,
Washington, DC, USA, 2004, IEEE Computer Society.

[44] Philo Juang, Qiang Wu, Li-Shiuan Peh, Margaret Martonosi and Douglas W. Clark, “Co-
ordinated, distributed, formal energy management of chip multiprocessors”, in ISLPED ’05:
Proceedings of the 2005 international symposium on Low power electronics and design, pp.
127–130, New York, NY, USA, 2005, ACM.

[45] Sonia Lopez, Steve Dropsho, David H. Albonesi, Oscar Garnica and Juan Lanchares, “Dy-
namic Capacity-Speed Tradeoffs in SMT Processor Caches”, in High Performance Embedded
Architecure and Compilation (HiPEAC), January 2007.

[46] Rambus, “RDRAM products”, http://www.rambus.com/products.

[47] Anand Ramachandran and Margarida F. Jacome, “Xtream-Fit: an energy-delay efficient
data memory subsystem for embedded media processing”, in DAC ’03: Proceedings of the
40th conference on Design automation, pp. 137–142, New York, NY, USA, 2003, ACM Press.

[48] Jayaprakash Pisharath and Alok Choudhary, “An integrated approach to reducing power
dissipation in memory hierarchies”, in CASES ’02: Proceedings of the 2002 international

136

conference on Compilers, architecture, and synthesis for embedded systems, pp. 88–97, New
York, NY, USA, 2002, ACM Press.

[49] Xiaobo Fan, Carla Ellis and Alvin Lebeck, “Memory controller policies for DRAM power
management”, in ISLPED ’01: Proceedings of the 2001 international symposium on Low
power electronics and design, pp. 129–134, New York, NY, USA, 2001, ACM Press.

[50] Xiaobo Fan, Carla Ellis and Alvin Lebeck, “Modeling of DRAM Power Control Policies Using
Deterministic and Stochastic Petri Nets”, in Workshop on Power-Aware Computer Systems.
Springer-Verlag, 2002.

[51] Xiaodong Li, Zhenmin Li, Francis David, Pin Zhou, Yuanyuan Zhou, Sarita Adve and Sanjeev
Kumar, “Performance directed energy management for main memory and disks”, SIGOPS
Opererating Syststem Review., vol. 38, n. 5, pp. 271–283, 2004.

[52] Le Cai and Yung-Hsiang Lu, “Joint Power Management of Memory and Disk”, in DATE’05:
Design, Automation and Test in Europe. IEEE Press, 2005.

[53] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng and Carla Ellis, “Power aware page allocation”,
SIGPLAN Not., vol. 35, n. 11, pp. 105–116, 2000.

[54] Hai Huang, Padmanabhan Pillai and Kang G. Shin, “Design and implementation of power-
aware virtual memory”, in ATEC’03: Proceedings of the USENIX Annual Technical Con-
ference 2003 on USENIX Annual Technical Conference, pp. 5–5, Berkeley, CA, USA, 2003,
USENIX Association.

[55] V. De La Luz and Mary Jane Irwin, “DRAM Energy Management Using Software and Hard-
ware Directed Power Mode Control”, in Proc. Intl. Symp. on High-Performance Computer
Architecture, page 159. IEEE Computer Society, 2001.

[56] V. De La Luz, M. Kandemir and I. Kolcu, “Automatic data migration for reducing energy
consumption in multi-bank memory systems”, in DAC ’02: Proceedings of the 39th conference
on Design automation, pp. 213–218, New York, NY, USA, 2002, ACM.

[57] Ozcan Ozturk and Mahmut Kandemir, “Nonuniform Banking for Reducing Memory Energy
Consumption”, in DATE ’05: Proceedings of the conference on Design, Automation and Test
in Europe, pp. 814–819, Washington, DC, USA, 2005, IEEE Computer Society.

[58] Peter Grun, Nikil Dutt and Alexandru Nicolau, “Access pattern based local memory cus-
tomization for low power embedded systems”, in DATE ’01: Proceedings of the conference
on Design, automation and test in Europe, pp. 778–784, Piscataway, NJ, USA, 2001, IEEE
Press.

[59] M. Kandemir and A. Choudhary, “Compiler-directed scratch pad memory hierarchy design
and management”, in DAC ’02: Proceedings of the 39th conference on Design automation,
pp. 628–633, New York, NY, USA, 2002, ACM Press.

[60] Doris Keitel-Schulz and Norbert Wehn, “Embedded DRAM development: Technology, phys-
ical design, and application issues”, IEEE Trans. on Design & Test of Computers, vol. 18,
n. 3, pp. 7–15, 2001.

[61] NEC embedded DRAM, http://www.necelam.com/edram90/.

137

[62] Steve Tomashot, “IBM embedded DRAM approach”,
http://www-306.ibm.com/chips/techlib/techlib.nsf/products/Embedded DRAM.

[63] Transmeta, “Crusoe Processor Specification”, http://www.transmeta.com.

[64] Intel developers website, “Intel XScale processors”,
http://developer.intel.com/design/intelxscale.

[65] Rex Min, Travis Furrer and Anantha Chandrakasan, “Dynamic Voltage Scaling Techniques
for Distributed Microsensor Networks”, in WVLSI ’00: Proceedings of the IEEE Computer
Society Annual Workshop on VLSI (WVLSI’00), page 43, Washington, DC, USA, 2000, IEEE
Computer Society.

[66] Premkishore Shivakumar and Norman Jouppi, “CACTI 3.0: An Integrated Cache Timing,
Power, and Area Model”, Technical Report 2001.2, Compaq research labs, 2001.

[67] Rambus Memories, “RDRAM Technology Summary”,
http://www.rambus.com/assets/documents/products/RDRAMTechnology/Summary 091905-
.pdf, 2005.

[68] Nevine AbouGhazaleh, Daniel Mosse, Bruce Childers, Rami Melhem and Matthew Craven,
“Collaborative Operating System and Compiler Power Management for Real-Time Applica-
tions”, ACM Transactions on Embedded Computing Systems (TECS), 2006.

[69] Alexander Vrchoticky, “Compilation Support for Fine-Grained Execution Time Analysis”,
Technical report, Technical University of Vienna, 1994.

[70] Emilio Vivancos, Christopher Healy, Frank Mueller and David Whalley, “Parametric Tim-
ing Analysis”, in LCTES ’01: Proceedings of the ACM SIGPLAN workshop on Languages,
compilers and tools for embedded systems, pp. 88–93, New York, NY, USA, 2001, ACM.

[71] Nevine AbouGhazaleh, Bruce Childers, Daniel Mosse, Rami Melhem and Matthew Craven,
“Collaborative Compiler-OS Power Management for Time-sensitive Applications”, Technical
Report TR-02-103, Department of Computer Science, University of Pittsburgh, 2002.

[72] Nevine AbouGhazaleh, Bruce Childers, Daniel Mosse, Rami Melhem and Matthew Craven,
“Energy management for real-time embedded applications with compiler support”, in LCTES
’03: Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler, and tool for
embedded systems, pp. 284–293, New York, NY, USA, 2003, ACM Press.

[73] Nevine AbouGhazaleh, Daniel Mosse, Bruce Childers, Rami Melhem and Matthew Craven,
“Collaborative Operating System and Compiler Power Management for Real-Time Applica-
tions”, in RTAS’03: IEEE Real-Time Embedded Technology and Applications Symposium,
Piscataway, NJ, USA, 2003, IEEE Press.

[74] Tohru Ishihara and Hiroto Yasuura, “Voltage scheduling problem for dynamically variable
voltage processors”, in ISLPED ’98: Proceedings of the 1998 International symposium on
Low power electronics and design, pp. 197–202, New York, NY, USA, 1998, ACM Press.

[75] Todd Austin, Eric Larson and Dan Ernst, “Simplescalar: An infrastructure for Computer
System Modeling”, IEEE Computer, vol. 35, n. 2, pp. 59–67, February 2002.

138

[76] Stefanos Kaxiras, Zhigang Hu and Margaret Martonosi, “Cache decay: exploiting genera-
tional behavior to reduce cache leakage power”, in ISCA ’01: Proceedings of the 28th annual
international symposium on Computer architecture, pp. 240–251, New York, NY, USA, 2001,
ACM.

[77] Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw and Trevor Mudge, “Drowsy
caches: simple techniques for reducing leakage power”, in ISCA ’02: Proceedings of the 29th
annual international symposium on Computer architecture, pp. 148–157, Washington, DC,
USA, 2002, IEEE Computer Society.

[78] Yingmin Li, Mark Hempstead, Patrick Mauro, David Brooks, Zhigang Hu and Kevin Skadron,
“Power and thermal effects of SRAM vs. Latch-Mux design styles and clock gating choices”,
in ISLPED ’05: Proceedings of the 2005 international symposium on Low power electronics
and design, pp. 173–178, New York, NY, USA, 2005, ACM.

[79] Jason Clark and Ross Whitehead, “Low Power Server CPU Redux: Quad-Core Comes to
Play”, http://www.anandtech.com/printarticle.aspx?i=3095, 2007.

[80] Hakan Aydin, Rami Melhem, Daniel Mosse and P. Alvarez, “Determining Optimal Processor
Speeds for Periodic Real-Time Tasks with Different Power Characteristics”, in ECRTS’01:
IEEE Euromicro Conference on Real-Time Systems, Piscataway, NJ, USA, 2001, IEEE Press.

[81] MSSG, “MPEG Software Simulation Group, MPEG2 decoder source code”,
http://www.mpeg.org/MPEG/MSSG.

[82] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson, J. Oberg, P. Ellervee
and D. Lundqvist, “Lowering power consumption in clock by using globally asynchronous
locally synchronous design style”, in DAC ’99: Proceedings of the 36th ACM/IEEE conference
on Design automation, pp. 873–878, New York, NY, USA, 1999, ACM.

[83] T. D. Burd and R. W. Brodersen, “Energy Efficient CMOS Microprocessor Design”, in Proc.
of The HICSS Conference, Jan. 1995.

[84] X. Fan, C. S. Ellis and A. R. Lebeck, “The Synergy between Power-aware Memory Systems
and Processor Voltage Scaling”, in Proceedings of the Workshop on Power-Aware Computer
Systems (PACS’03), 2003.

[85] Nevine AbouGhazaleh, Bruce Childers, Daniel Mosse and Rami Melhem, “Integrated CPU
and Cache Power Management in Multiple Clock Domain Processors”, in HiPEAC’08: Proc.
of the International Conference on High Performance Embedded Architectues & Compilers,
January 2008.

[86] Cosmin Rusu, Nevine AbouGhazaleh, Alexandre Ferreria, Ruibin Xu, Bruce Childers, Rami
Melhem and Daniel Mossé, “Integrated CPU and L2 cache Frequency/Voltage Scaling using
Supervised Learning”, in Workshop on Statistical and Machine learning approaches applied
to ARchitectures and compilation (SMART), January 2007.

[87] Nevine AbouGhazaleh, Alexandre Ferreria, Cosmin Rusu, Ruibin Xu, Frank Liberato, Bruce
Childers, Rami Melhem and Daniel Mossé, “Integrated CPU and L2 cache Voltage Scaling
using Supervised Learning”, in LCTES’07: Proc. of ACM SIGPLAN on Language, compiler,
and tool for embedded systems, June 2007.

139

[88] William W. Cohen, “Fast Effective Rule Induction”, in Proceedings of the 12th International
Conference on Machine Learning, June 1995.

[89] Johannes Furnkranz and Gerhard Widmer, “Incremental Reduced Error Pruning”, in Inter-
national Conference on Machine Learning, pp. 70–77, 1994.

[90] SimpleScalar/ARM, “SimpleScalar-Arm Version 4.0 Test Releases”,
http://www.simplescalar.com/v4test.html/.

[91] Greg Semeraro, David H. Albonesi, Steven G. Dropsho, Grigorios Magklis, Sandhya
Dwarkadas and Michael L. Scott, “Dynamic frequency and voltage control for a multiple
clock domain microarchitecture”, in MICRO 35: Proceedings of the 35th annual ACM/IEEE
international symposium on Microarchitecture, pp. 356–367, Los Alamitos, CA, USA, 2002,
IEEE Computer Society Press.

[92] Intel Embedded products, “High-Performance Energy-Efficient Processors for Embedded
Market Segments”, http://www.intel.com/design/embedded/downloads/315336.pdf, 2006.

[93] I. H. Witten and E. Frank, Data Mining: Practical machine learning tools and techniques,
Morgan Kaufmann, San Francisco, 2005.

[94] Johan Pouwelse, Koen Langendoen and Henk Sips, “Application-Directed Voltage Scaling”,
IEEE Transactions on Very Large Scale Integration (TVLSI), vol. 11, n. 5, pp. 812–826,
September 2003.

[95] “Critical power slope: understanding the runtime effects of frequency scaling”, in ICS ’02:
Proceedings of the 16th international conference on Supercomputing, pp. 35–44, New York,
NY, USA, 2002, ACM.

[96] Duncan Elliott, Michael Stumm, W. Martin Snelgrove, Christian Cojocaru and Robert
McKenzie, “Computational RAM: Implementing Processors in Memory”, volume 16, pp.
32–41, Los Alamitos, CA, USA, 1999, IEEE Computer Society Press.

[97] W. Hsu and J. Smith, “Performance of cached DRAM organizations in vector supercom-
puters”, in Proc. Intl. Symp. on Computer Architecture, pp. 327–336. ACM Press, 1993.

[98] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykirsnan, M. J. Irwin and A. Sivasubramaniam,
“vEC: virtual energy counters”, in Workshop on Program analysis for software tools and
engineering, pp. 28–31. ACM Press, 2001.

[99] Nevine AbouGhazaleh, Bruce Childers, Daniel Moss and Rami Melhem, “Energy Conserva-
tion using Power-Aware Cached-DRAM”, IEEE Transaction on Computers (TC), vol. 56,
n. 11, pp. 1441–1455, 2007.

[100] Ram P. Koganti and Gershon Kedem, “WCDRAM: A Fully Associative Integrated Cached-
DRAM with Wide Cache Lines”, Technical report, Duke University, CS dept., 1997.

[101] Ananth Hegde, N. Vijaykrishnan, Mahmut Kandemir and Mary Jane Irwin, “VL-
CDRAM: variable line sized cached DRAMs”, in CODES+ISSS ’03: Proceedings of the
1st IEEE/ACM/IFIP international conference on Hardware/software codesign and system
synthesis, pp. 132–137, New York, NY, USA, 2003, ACM.

140

[102] Zhao Zhang, Zhichun Zhu and Xiaodong Zhang, “Cached DRAM for ILP Processor Memory
Access Latency Reduction”, IEEE Micro, vol. 21, n. 4, pp. 22–32, 2001.

[103] Nevine AbouGhazaleh, Bruce Childers, Daniel Mossé and Rami Melhem, “Near-memory
Caching for Improved Energy Consumption”, in ICCD’05: International Conference on
Computer Design, pp. 105–110, Washington, DC, USA, 2005, IEEE Computer Society.

[104] Nevine AbouGhazaleh, Bruce Childers, Daniel Mosse and Rami Melhem, “Energy Conser-
vation in Memory Hierarchies using Power-Aware Cached-DRAM”, in Proc. of the Dagstuhl
Seminar on Power-aware Computing Systems. Dagstuhl Research Online Publication Server,
April, 03–08 2005.

[105] Yutao Zhong, Steven G. Dropsho and Chen Ding, “Miss Rate Prediction across All Program
Inputs”, in PACT ’03: Proceedings of the 12th International Conference on Parallel Archi-
tectures and Compilation Techniques, page 79, Washington, DC, USA, 2003, IEEE Computer
Society.

[106] “SDRAM and RDRAM modeling for Simplescalar simulator”,
http://www.tik.ee.ethz.ch/˜ip3/software/simplescalar mem model.html.

[107] Wi fen Lin, S. Reinhardt and D. Burger, “Reducing DRAM Latencies with an Integrated
Memory Hierarchy Design”, in HPCA ’01: Proceedings of the 7th International Symposium
on High-Performance Computer Architecture, page 301, Washington, DC, USA, 2001, IEEE
Computer Society.

[108] Intel products website, “Pentium 4 EE processor”,
http://www.intel.com/products/processor/pentium4HTXE/index.htm, 2004.

[109] Y. Aghaghiri, F. Fallah, and M. Pedram, “Transition reduction in memory buses using
sector-based encoding techniques”, IEEE Trans. on Computer Aided Design, vol. 23, n. 8,
pp. 1164–1174, 2004.

[110] Nevine AbouGhazaleh, Bruce Childers, Daniel Mossé and Rami Melhem, “Energy Conserva-
tion in Memory Hierarchies using Power-Aware Cached-DRAM”, Technical Report TR-05-
123, Department of Computer Science, University of Pittsburgh, 2005.

[111] Intel products website, “Desktop Chipset datasheets”,
http://www.intel.com/products/desktop/chipsets/- index.htm, 2006.

[112] Jud Bond, “Memory Amnesia Could Hurt Low-Power Design”,
http://www.commsdesign.com/design corner/OEG20030730S0018, 2003.

141

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	2.1. Examples on CPU power management schemes
	4.1. Adverse combinations of code structure for some PMP placement strategies.
	4.2. Profiled wcc for each region in CFG shown in Figure 4.6
	4.3. Other profiled information for CFG shown in Figure 4.6
	4.4. The inserted PMHs details.
	4.5. Simplescalar configuration
	4.6. The power levels in the Transmeta processors model.
	4.7. The power levels in the Intel XScale processor model.
	4.8. The number of executed PMPs, PMH and speed changes for the sub-band tuner.
	5.1. Percentage of time intervals that experience positive feedback scenarios in some MiBench and SPEC2000 benchmarks.
	5.2. Rules for adjusting core and L2 cache speeds in local DVS policy and proposed policy.
	5.3. Eight training samples: CPI (C), L2PI (L) and energy-delay product (ED) at all frequency combinations.
	5.4. Constructed ST from samples in Table 5.3.
	5.5. Example of a policy to minimize energy-delay product.
	5.6. Simulation configurations
	5.7. Variants of our proposed policy: actions of setting the core voltage (Vc) and the cache speed (V$) in rules 1 & 5 from Table 5.2.
	5.8. Comparison of online-IDVS and ML-IDVS
	6.1. PA-CDRAM cache commands send across the control bus
	6.2. System configuration
	6.3. Per-access latency and energy break down of L3 and near-memory caches.
	6.4. PA-CDRAM energy consumption normalized to the base case when running application pairs interleaved.

	LIST OF FIGURES
	1.1. Proposed power management techniques targeting more than one system component.
	2.1. Example of domain partitions in MCD processors magklis02b, semeraro02b
	4.1. (a) Sample CFG. (b) Invocations of PMHs & PMPs for executing the bold path in (a).
	4.2. Some PMP placement strategies and their adverse cases of code structure (See Table 4.1 for description).
	(a).
	(b).
	(c).
	(d).
	(e).
	(f).
	4.3. Phases of the collaborative power management scheme.
	4.4. Examples on region segmentation for (a) branches and (b) loops, with and without procedure calls.
	(a).
	(b).
	4.5. PMH placement in loops when (a) ac+loop_segment > PMP-interval, (b) loop_body < PMP-interval < loop_segment, and (c) loop_body > PMP-interval.
	(a).
	(b).
	(c).
	4.6. Example of the PMH placement in a simple CFG.
	4.7. Lowest total energy consumption at break-even frequency.
	4.8. ISR pseudocode for PMPs.
	4.9. ATR: Total (CPU+memory) energy consumption normalized to no power management on Transmeta Crusoe.
	(a). Memory-oblivious CPU speeds
	(b). Memory-aware CPU speeds
	4.10. ATR: Total (CPU+memory) energy consumption normalized to no power management on Intel XScale.
	(a). Memory-oblivious CPU speeds
	(b). Memory-aware CPU speeds
	4.11. MPEG2 decoder: Total energy consumption normalized to no power management scheme on Transmeta Crusoe.
	(a). input file: BigE.mpg
	(b). input file: atom.mpg
	(c). input file: robot.mpg
	4.12. MPEG2 decoder: Total energy consumption normalized to no power management scheme on Intel XScale.
	(a). input file: BigE.mpg
	(b). input file: atom.mpg
	(c). input file: robot.mpg
	4.13. Size distribution (in million cycles) for the sub-band filter events.
	4.14. Sub-band Tuner: Total energy consumption normalized to no power management scheme on Transmeta Crusoe.
	(a). Memory-oblivious CPU speeds
	(b). Memory-aware CPU speeds
	4.15. Sub-band Tuner: Total energy consumption normalized to no power management scheme on Intel XScale model.
	(a). Memory-oblivious CPU speeds
	(b). Memory-aware CPU speeds
	5.1. Variations in application phases throughout execution.
	5.2. Example of an MCD processor design with integrated DVS control.
	5.3. Example of positive feedback in local power management in each domain
	5.4. Information flow in ML-IDVS
	5.5. Stages for automatic DVS policy generation.
	5.6. Acc construction pseudocode
	5.7. ST construction pseudocode to minimize energy-delay product.
	5.8. Energy and delay of Local-DVS and our online-IDVS relative to no-DVS policy in configuration A and two voltage domains processor.
	(a). Improvement in energy-delay product
	(b). Energy savings
	(c). Performance degradation
	5.9. Average degradation in energy-delay product relative to the local-DVS policy
	5.10. Energy and delay for local-DVS and online-IDVS policy relative to no-DVS policy for processors with (a) two domains and (b) six domains.
	(a). 2 domains
	(b). 6 domains
	5.11. Energy-delay product for SPEC2000 and MiBench benchmarks when using local-DVS versus ML-IDVS.
	5.12. Energy-delay product when optimizing energy with delay bound.
	5.13. Energy-delay product for policies running on system with configuration Config B in Table 5.6.
	5.14. Average energy-delay product at different DVS control-interval sizes (using Config A).
	5.15. ST coverage.
	5.16. Online-IDVS versus ML-IDVS normalized to no-DVS
	(a). Energy-delay product
	(b). Energy consumption
	(c). Execution time
	6.1. Functional block diagram of a CDRAM
	6.2. Average performance and energy consumption for different near-memory cache block sizes.
	6.3. The effect of different cache block sizes on the memory energy consumption for the CPU-intensive bzip (left) and the memory-intensive mcf (right).
	6.4. Functional block diagram of a PA-CDRAM. Dark blocks are the added components to an RDRAM architecture.
	6.5. Timing diagram of the Rambus channel for near-memory cache read hit (upper) and read miss (lower) transactions.
	6.6. The effects of varying and on the energy-delay product
	(a). L3 miss rate = 20%
	(b). L3 miss rate = 5%
	6.7. Memory organizations of the base case (left) and the proposed PA-CDRAM (right).
	6.8. PA-CDRAM energy-delay break down normalized to the base case.
	6.9. PA-CDRAM and the base case energy break down and cache miss rates
	6.10. Energy-delay product of near memory versus near-processor cache organizations normalized to the base case.
	6.11. Energy-delay product of distributed controller normalized to centralized cache controller design.
	6.12. Energy-delay product with and without pre-emption, normalized to the base case without preemption.
	6.13. The effect of varying the cache size on execution time, energy and energy-delay product normalized to the base case.
	6.14. The effect of varying the CPU frequency for the PA-CDRAM, normalized to the base case on execution time, energy and energy-delay product.
	6.15. The effect of the logic slowdown in the near-memory cache on the total execution time normalized to fast SRAM case.
	6.16. The effect of different CPU and memory bus bandwidth.

	1.0 INTRODUCTION
	1.1 Problem statement
	1.2 Contributions
	1.2.1 Memory-aware processor power management
	1.2.2 Integrated DVS policies for CPU and cache power management
	1.2.3 Power-aware Cached DRAM
	1.2.4 Summary of contributions

	1.3 Thesis roadmap

	2.0 BACKGROUND AND RELATED WORK
	2.1 CPU power management using DVS
	2.2 Cache power management
	2.3 Power management in Multiple clock domains chips
	2.4 DRAM power management
	2.5 Embedded DRAM

	3.0 MODELS
	3.1 Real-time applications
	3.2 CPU energy model
	3.3 Cache energy model
	3.4 Memory energy model

	4.0 COMPILER AND OS COLLABORATION FOR CPU AND MEMORY POWER MANAGEMENT
	4.1 Compiler and OS collaborative approach
	4.2 PMP versus PMH placement strategy
	4.3 Collaborative power management algorithm overview
	4.4 Compiler support for the Collaborative scheme
	4.4.1 Timing Extraction
	4.4.2 Placement of PMHs
	4.4.2.1 Sequential code
	4.4.2.2 Branches
	4.4.2.3 Loops
	4.4.2.4 Procedure calls

	4.4.3 PMH computation of wcri
	4.4.3.1 Static PMH
	4.4.3.2 Index-controlled PMH

	4.4.4 Example on the PMH placement and execution

	4.5 OS Support for the Collaborative Scheme
	4.5.1 Dynamic Speed Setting
	4.5.1.1 CPU speed computation
	4.5.1.2 Memory-aware speed setting

	4.5.2 Setting the PMP-interval
	4.5.3 OS extensions

	4.6 Evaluation
	4.6.0.1 Impact on energy and performance
	4.6.0.2 Run-time Overhead

	4.7 Conclusion

	5.0 INTEGRATED DVS POLICIES FOR CPU AND CACHE POWER MANAGEMENT
	5.1 Introduction
	5.2 Integrated DVS (IDVS) policy
	5.2.1 Motivation
	5.2.2 Integrated DVS architecture
	5.2.3 MCD inter-domain interactions

	5.3 Online IDVS policy
	5.3.1 Limitation of the online IDVS policies

	5.4 Machine Learning based IDVS approach
	5.4.1 Overview of ML-IDVS approach
	5.4.2 Construction of IDVS Policy
	5.4.2.1 Stage I: Data analysis
	5.4.2.2 Stage II: IDVS policy learning

	5.4.3 Design Issues

	5.5 Evaluation
	5.5.1 Experimental setup
	5.5.2 Evaluation of online-IDVS policy
	5.5.2.1 Impact on performance and energy consumption
	5.5.2.2 Varying system configurations

	5.5.3 Evaluation of ML-IDVS approach
	5.5.3.1 Impact on performance and energy consumption
	5.5.3.2 Analysis of the training process

	5.5.4 Online-IDVS versus ML-IDVS
	5.5.4.1 Energy and delay savings
	5.5.4.2 Discussion

	5.6 Conclusion

	6.0 POWER-AWARE CACHED DRAM
	6.1 Cached DRAM
	6.2 PA-CDRAM
	6.2.1 DRAM-core power management
	6.2.2 DRAM-core versus near-memory cache energy trade-off

	6.3 PA-CDRAM implementation
	6.3.1 PA-CDRAM architecture
	6.3.2 Near-memory cache controller
	6.3.3 PA-CDRAM operation

	6.4 Energy and delay modeling of PA-CDRAM
	6.5 Evaluation of PA-CDRAM
	6.5.1 Methodology
	6.5.2 Energy and delay
	6.5.2.1 Effect on delay
	6.5.2.2 Effect on energy consumption

	6.5.3 Near-memory versus near-processor caches
	6.5.4 Cache controller location
	6.5.5 Effect of multiprocess and multithreaded environments
	6.5.6 Sensitivity to design parameters
	6.5.6.1 Effect of varying the cache size
	6.5.6.2 Effect of varying the CPU frequency
	6.5.6.3 Effect of logic slowdown
	6.5.6.4 Effect of CPU and memory bus bandwidth

	6.6 Discussion
	6.7 Conclusion

	7.0 CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.2 Future Work

	APPENDIX. DERIVATION OF DVS FORMULAS
	A.1 Derivation for Proportional closed-form equation
	A.1.1 Derivation for Lemma 1
	A.1.2 Derivation of Proportional closed-form formula

	A.2 Derivation for Greedy closed-form equation
	A.2.1 Derivation for Lemma 2
	A.2.2 Derivation of the Greedy closed-form formula

	BIBLIOGRAPHY

