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This dissertation addresses regression models with missing covariate data. These meth-

ods are shown to be signi�cant to public health research since they enable researchers to use

a wider spectrum of data. Unbiased estimating equations are the focus of this dissertation,

predominantly semiparametric methods utilized to solve for regression parameters in the

presence of missing covariate data. The �rst aim of this dissertation is to evaluate the prop-

erties of an e�cient score, an inverse probability weighted estimating equation approach, for

logistic regression in a two-phase design. Simulation studies showed that the e�cient score

is more e�cient than two other pseudo-likelihood methods when the correlation between the

missing covariate and its surrogate is high.

The second aim of this dissertation is to develop a methodology for left truncated co-

variate data with a binary outcome. To address this problem, we proposed two methods,

a likelihood-based approach and an estimating equation approach, to estimate the coe�-

cients and their standard errors for a regression model with a left truncated covariate. The

estimating equation technique is close to completion, and once solved should be the most

e�cient method. The likelihood-based method is compared to standard methods of �lling

in the truncated values with the lower threshold value or using only the nontruncated values.

Simulation studies demonstrated that the likelihood-based method has the best variance
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correction and moderate bias correction. The application of this method is illustrated in

a sepsis study conducted at the University of Pittsburgh.
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CHAPTER 1

INTRODUCTION

The problem of missing data plagues many di�erent studies. While the issue of missing

data in the longitudinal setting has been examined in some detail, cross-sectional and case-

control designs have not received as much attention. With the advent of new and more

expensive technologies in medicine, the need for innovative approaches to the handling of

missing data at both the design and analysis stage is necessary. The work of Robins et

al. (1994), Bickel et al. (1993), and Lawless et al. (1999) points to the generality of the

"missing data" problem. They discuss that outcome-based sampling schemes, errors-in-

variable, censored data, and truncated data can be viewed as "missing data". Viewing the

problem more generally has led to the development of an updated approach to estimation

in the semiparametric literature. Through the clever use of estimating equations, one can

provide statistical methods for the analysis of missing data from many di�erent settings.

The goal of these estimating equation techniques is to obtain an estimator of the param-

eter of interest. These estimating equations sum to zero and are a function of the parameter

and data. Ideally, it is of interest to �nd an estimating equation that is unbiased and
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optimal (Godambe, 1991). A bene�t of the unbiased estimating equation is a reduction in

bias. The optimality property implies e�ciency. The solution of these unbiased estimating

equations is in fact the estimate of the parameter of interest. Once the optimal unbiased

estimating equation is found, it has been shown that the estimator is consistent, asymp-

totically normal, and e�cient, all desirable properties (Godambe, 1991; Bickel et al., 1993;

Robins et al., 1994).

Estimating equations are a rich class of estimators 
exible enough to model normal and

non-normal data under various types of designs and frameworks. These techniques were

introduced to the missing data literature to obtain e�cient estimators of the parameter of

interest in the presence of nuisance parameters. In an attempt to gain e�ciency, information

is drawn from both the complete and incomplete cases. Semiparametric methods have

predominantly focused on estimation rather than model building, thereby limiting available

inferential techniques. Thus, the only tool developed for inference with semiparametric

techniques is the Wald test, while no tools comparable to the likelihood ratio test (LRT) or

Akaikes Information Criterion (AIC) are available. These techniques are newer and gaining

popularity due to their 
exibility; however, the conceptual complexity can be a deterrent.

A majority of the estimating equation techniques for missing data have been developed as a

result of design issues, since the amount of incomplete data can be reduced by addressing it

during the study design phase.

Sampling based approaches are applied to case-control and cohort studies to either bal-

ance data or reduce the cost of data collection; thereby, improving precision and eliminating

the bias of coe�cient estimates. As a motivational example for sampling by design, a sepsis

study initiated by the University of Pittsburgh was designed to determine the relationship
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between severe sepsis status and biomarker data. As new biomarkers became available

it was not feasible to measure the biomarker for all subjects in the cohort. To design a

meaningful sub-study, data were collected for a subset of subjects within categories of severe

sepsis status, death status, and initial health state.

Another common example of missing data is truncated data. Truncated data arise when

a variable is observed within a prespeci�ed range of values. This is a common occurrence

with laboratory data such as measuring blood samples for immunology assays. An example

of truncated data in the above mentioned sepsis study is that of the in
ammatory marker

data. A panel of in
ammatory markers was collected in a large portion of the cohort;

however, assays for most of these markers are not very sensitive. This data will serve as an

example for analysis.

Most consider "missing data" to be missingness by happenstance. Missing by happen-

stance occurs when at least one of the variables is not completely observed/reported for

all subjects and the reason for the missing data is not exactly known. The in
ammatory

marker data in the above mentioned sepsis study provides an example of missingness by

happenstance. Some of the marker data is missing with the reason unknown possibly due

to administrative reasons.

A missing data mechanism is a tool which explains the cause for missing data and de-

scribes the relationship between the missing data indicator and the variables. Two types

of missing data mechanisms are ignorable and nonignorable missing data (Rubin, 1976).

Ignorable missing data include data that are missing completely at random (MCAR) and

data that are missing at random (MAR).

3



For descriptive purposes, we specify R as the missing data indicator and the complete

data as (Y; Z), where Z = (X;V ) and X is incomplete. If missingness is independent of

all the variables, then P (R = 1jY; Z) = �, where � is a constant, and the data are MCAR.

Under MCAR the observed values, Xobs; are a simple random sample of X; that is the

distribution of the missing values, Xmis; is the same as Xobs: If missingness is dependent on

the fully observed variables, then P (R = 1jY; Z) = P (R = 1jY; V ) and the data are MAR.

Within each subclass of (Y; V ) the observed values are a random sample of X; that is within

each subclass of (Y; V ) the distribution of Xmis is equivalent to Xobs.

Not missing at random (NMAR) falls under nonignorable missing data. If conditioned

on the observed data, missingness is dependent on the unobserved values, then the data are

NMAR. This dissertation is concerned with covariates that are MAR and NMAR. The

missing by design problem will be de�ned as MAR and the truncated problem is de�ned as

NMAR.

The main types of missing data methodology include imputation methods, likelihood-

based approaches, estimating equation procedures, and complete and available case analysis

methods. Two naive approaches are exclusion of the missing covariate and complete case

analysis. Excluding the missing covariate can lead to model misspeci�cation. Complete case

is de�ned as a case without a missing value. Complete case (CC) analysis is characterized

as performing standard statistical analysis on complete cases and is the simplest measure

to address incomplete data since no methodological modi�cations are necessary. However,

depending on the extent of incomplete cases and the cause for incomplete data there is a

potential for bias and a loss of precision. A loss of precision occurs when there is a loss in

information. Regardless of the cause of the missing data mechanism, as the loss of infor-
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mation increases so does the variance. If the data are MCAR, then the complete cases are

a simple random sample of all cases and estimates of parameters will be unbiased. Outside

of the MCAR framework potential bias should be addressed. Given a fully observed data

set, maximum likelihood estimates are asymptotically normal, asymptotically e�cient, and

consistent. Since regression models are the focus here and they often depend on likelihood

theory, we are interested in developing estimators from non-likelihood based methodology

that hold the same properties.

The missing data pattern and data type determine the type of method chosen to account

for missing data. A common approach for addressing missing data is likelihood methods.

However, when the covariate data are incomplete, speci�cation of a full likelihood is required.

In addition, the distribution of the covariates must also be speci�ed. The likelihood-based

approach proves di�cult with covariates of high dimension due to the complexity of the

distributions. Semiparametric methods, a class of estimating equations, are an alternative

approach to specifying a full likelihood. As opposed to a likelihood-based approach, spec-

i�cation of the missing data mechanism is required and the distribution of the covariates

is left unspeci�ed. Unbiased estimating equations are a general technique yielding e�cient

estimates for regular estimates under certain conditions to be speci�ed in Chapter 2.

Two comparable methods that address e�ciency utilizing estimating equations are the

e�cient score function (Nan et al., 2002) and the e�cient in
uence function (Robins et

al., 1994). The e�cient score function is considered a semiparametric approach where

information bounds are obtained via scores and score operators. The e�cient in
uence

function is considered a nonparametric approach where information bounds are obtained via

derivatives of functions. The e�cient score and in
uence function are functions of each
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other; thereby, construction of one can aid in construction of the other given the correct

functions.

The e�cient score approach has been developed for missingness by design where proper-

ties have been evaluated for a two-phase design with a time-to-event outcome. The in
uence

function method has been developed for data missing by design or by happenstance in a

general framework. Our intent is to apply the score function technique and extend it for

covariates missing by design and truncated with a binary outcome.

1.1 OBJECTIVES

Estimation and prediction in a wide application of statistical models for non-normal

data in the presence of missing data are the focus of this dissertation. Throughout this

thesis, historical and proposed techniques for estimation of coe�cient parameters and their

covariance matrix will be discussed and developed. Since the Wald test is the inference tool

utilized, properties such as consistency and asymptotic normality of an estimator must be

met for the Wald test to be valid. Semiparametric methods are in their infancy providing a

framework to address a wide class of additional problems that will be discussed in Chapter

6.

Regression models are a class of models commonly used to analyze medical studies. This

dissertation speci�cally focuses on a binary outcome. Regression parameters are biased and

ine�cient when covariates are MAR. The �rst aim of this thesis is to evaluate the prop-

erties of the e�cient score (Nan 2002), an inverse probability weighted estimating equation

approach, for logistic regression of a MAR covariate under missing by design. Prior to
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this publication large sample properties of this e�cient score had not been evaluated and

compared to other estimates under our framework.

The second aim of this thesis is to develop a methodology for truncated covariate data

with a binary outcome. To date no methods exist for regression models with truncated

covariates. We propose a likelihood-based approach and a semiparametric approach via

score functions to obtain estimates of regression parameters and the covariance matrix.

1.2 SUMMARY

The layout of the dissertation will be as follows. Chapter 2 will review literature to handle

MAR covariates in regression models and describe estimating equations in greater detail.

Chapter 3 will include simulation studies for logistic regression with missing covariate data

to evaluate and compare the properties of three estimators. Chapter 4 will review truncated

data and develop our proposed extensions for modelling a binary outcome while adjusting for

a truncated covariate. Chapter 5 will include simulation studies for logistic regression with

a truncated covariate to evaluate and compare the properties of three estimators. Chapter

6 will include a discussion and describe future work.
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CHAPTER 2

METHODOLOGY OF

REGRESSION AND MISSING

DATA

2.1 LOGISTIC REGRESSION

Logistic regression is a statistical tool that allows us to study relationships between a

binary outcome variable and covariates. The outcome, Y 2 f0; 1g, is binary and always

observed. The covariates, Z =(X;V), can be a mixture of discrete and continuous variables

where V is always observed and X is possibly missing. A method of estimation for param-

eters of the logistic model which yields desirable properties is maximum likelihood. The

likelihood function for (Y;Z) is

L(�; y; z) =
nY
i=1

�
exp(Z0i�)

1 + exp(Z0i�)

�yi �
1� exp(Z0i�)

1 + exp(Z0i�)

�1�yi
:
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The estimates of � are solved by di�erentiating the log likelihood with respect to � and

setting these equations equal to zero

l� =

nX
i=1

zi

�
yi �

exp(z0i�)

1 + exp(z0i�)

�
= 0: (2.1)

Equation 2.1 is also the score equation. The score functions are nonlinear in the param-

eters so an iterative procedure is employed to obtain maximum likelihood estimates of the

parameters. Further description of this iterative procedure can be found in McCullagh et

al. (1983). When the data are completely observed, the estimates of � are consistent,

asymptotically normal, and asymptotically e�cient. If the data are MCAR and complete

case analysis is used, then the above mentioned properties still hold with the exception of

e�ciency.

Logistic regression models are a member of the class of generalized linear models (GLM)

(McCullagh and Nelder, 1983). Generalized linear models use the following structure:

y = E(yjz) + " = u + " and �i = g(ui) = z0i�: The three components of a GLM are the

systematic component �; the random component ", and the link function g(u): The random

component, "; measures the variability of Y after accounting for all systematic variability

with inclusion of the covariates. Here, the "link" function g(u) is chosen by the analyst to

obtain a reasonable range for the linear function Z0� and to describe the data adequately.

Since the outcome is binary, Y 2 f0; 1g; the expectation of Y given Z, u = exp(Z0�)
1+exp(Z0�) ; is

bounded by 0 and 1. The conditional mean of Y given Z, u; is nonlinear in the parameters

indicating that it is necessary to choose the logit link for the transformation of u which is

de�ned as

g(u) = ln

�
u

1� u

�
= �0 + �1Z1 + :::+ �pZp: (2.2)
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The logit link function is strategically chosen since g(u) is continuous, can range from -1 to

1, and is linear in the �s:

The form of the random part, ", of the model will be chosen by the probability frequency

function which describes the distribution of the outcome variable. Depending on the prob-

ability model chosen, the variance may be a function of the mean. That is var(yi)=aV(u)

where a=�2 and V(u) is a function of the mean. The errors are binomially distributed with

mean zero and variance u(1� u):

2.2 MISSING DATA METHODOLOGY

Numerous approaches are available for regression of missing data problems. Three types

that will be discussed are likelihood-based, imputation, and estimating equation methods.

Estimating equation methods will be discussed in greater detail in the next section.

Likelihood-based procedures (Rubin, 1976; Little and Rubin, 1987) are a large class

of procedures commonly implemented by statisticians. The general notion is to de�ne a

model for the observed data and draw inferences from this model. The disadvantage of this

approach is that one has to specify a full likelihood and a distribution for the covariates. If

the covariates are of high dimension this can be di�cult. An advantage of this approach is

that the missing data mechanism need not be speci�ed under MAR.

Under simple missing data patterns and speci�ed distinct sets of parameters the likelihood

can be factored leading to simple inferences for the parameters. Under most conditions the

likelihood cannot be factored and the EM algorithm must be employed to solve for the

parameter estimates. The EM algorithm is computationally intensive, and will i) converge
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slowly if a large portion of data is missing and ii) have no solution if a closed form does not

exist during the maximization stage.

Imputation is a common approach for the handling of missing data and is an option in

standard statistical packages such as Stata. Imputation is characterized as �lling in missing

values. A predictive (or joint) distribution is de�ned for the missing data from which

values (draws) are randomly selected from this distribution. In 1987 Rubin introduced

multiple imputation, which is of Bayesian in
uence, to account for uncertainty of these

randomly selected values. Advantages of this method are that the parameters are permitted

to have high dimensions, the method is computationally and conceptually simpler than other

methods, and the distribution is exact and does not rely on asymptotic approximations

(Schafer 1997). The disadvantage of imputation is that it is model-based.

Estimating equations are desirable methods due to their applicability to a wide range of

missing data settings. Not only can the techniques address missing by happenstance, but

they can readily be extended to handle a general missing data setting including outcome-

based sampling schemes, errors-in-variable, censored data, and truncated data. The beauty

of these methods is that estimating equations are functions of the score equations which

are well understood. In addition, the full likelihood need not be de�ned. Essentially these

equations can be viewed as modi�cations, or functions, of the score equations. If one can

manipulate a function of the score equation to handle the type of missingness of interest,

then these estimating equations can be applied.

Weighted estimating equation techniques have been designed for missing by happenstance

and outcome-based sampling schemes. These include pseudo-likelihoods and semiparametric

methods, which will be reviewed more thoroughly and evaluated via simulations. The
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idea is to assign the same weight to a group of subjects who have similar characteristics

compensating for the subjects excluded from the analysis. These weights are inverted

probabilities of selection. For example, if 30% of subjects who are over 60 years old and

have disease are missing a CD8 count, then all subjects who are over 60 years old and have

disease are assigned a weight of 1.4.

Weighted estimating equations borrow estimating procedures from the survey sampling

literature applying the Horvitz-Thompson estimator. Lawless et al. (1999) cover semi-

parametric methods for response-selective and missing data problems for regression analysis.

The complexity of these methods vary, but the advantage is that the distribution of the

covariates does not need to be speci�ed. A complication of these techniques includes spec-

i�cation of the missing data mechanism and the conceptual aspect. Three methods that

will be discussed in greater detail under the logistic section and compared in the following

chapter are conditional maximum likelihood, weighted pseudo-likelihood, and the e�cient

score.

2.2.1 Survey Sampling

Survey sampling techniques have strongly in
uenced missing data methodology. It is

crucial to understand survey sampling methodology to gain insight into weighted estimating

equations. The landmark paper by Horvitz and Thompson (1952) set the stage for selective

design and missing data methodology. Horvitz et al. developed a general technique for

improving any statistic when a random sample with unequal probability within subclasses

of a �nite population is selected. The Horvitz-Thompson estimator, de�ned as a weighted
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mean

P
j
��1j yjP
j
��1j

; was originally intended to address survey biased sampling. The statistic was

restricted to descriptive statistics, such as the mean and variance.

Horvitz et al. developed an estimator under two cases. An unbiased linear estimator

and unbiased estimator of the sampling variance were developed for a one and two phase

sampling technique, where selection probabilities are de�ned a priori and used to select a

subsample from a �nite population. Studies that rely on these concepts were intended to

increase precision in the presence of information loss. Although Horvitz et al. were aware

that this method reduces the variance they did not address which estimator would yield a

minimum or "optimal" variance. As a result, various extensions were proposed over the

next 50 years.

Prior to 1974 these weighting techniques were restricted to descriptive statistics. Kish

and Frankel (1974) made a major contribution by extending the Horvitz-Thompson estimator

to complex statistics and designs such as con�dence intervals and inference for regression

models. Kish et al. also felt that "traditional" survey sampling methods, such as the

Horvitz-Thompson estimator, could be implemented outside of the realm of survey sampling

design. Survey samples tend to have large sample sizes so the asymptotic results often hold.

Sample size issues and asymptotics may pose a problem and need to be addressed with other

designs and types of missing data problems due to limited sample size.

Manski and Lerman (1977) developed a weighted estimating equation for complete data

which used the Horvitz-Thompson approach. Manski et al. clearly de�ned a general frame-

work and statistical model (estimating approach) for regression models under choice-based

sampling. This approach can cause a loss of e�ciency since it uses only complete data, but
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attempts to gain e�ciency by assigning larger weights to the complete pseudo-likelihood,

accounting for incomplete cases.

In an e�ort to increase e�ciency of the estimates of regression coe�cients, Robins, Rot-

nitzky, and Zhao (1994) developed a weighted estimating approach based on semiparametric

methods and in
uence functions. Robins et al. were the �rst to develop a semiparamet-

rically e�cient estimator for regression models with incomplete covariates. These inverse

probability weighted estimating equation (IPWE) methods were shown to have desirable

properties and to be 
exible enough to handle MAR data under any type of regression prob-

lem and missing by design/happenstance. This class of estimators is referred to as IPWE

and has prompted many other researchers to pursue extensions of Robins' IPWE method.

2.2.2 Response-Selective Designs

Response-selective designs can be considered missing data problems. In a conventional

case-control study the outcome is �xed and considered a strati�cation variable. Within each

strata, subjects are randomly chosen and covariate information is collected for all subjects.

Logistic regression is the standard analysis for a case-control study. In this case, the pro-

portion of case/control selection need not be known and speci�ed. If the disease is rare

these studies greatly reduce the amount of data collection. If balance issues or confounding

arises, it is bene�cial to stratify on the covariates to improve precision and eliminate bias of

coe�cient estimates. This is referred to as a strati�ed case-control study. Since the ratio

of the probabilities of cases and controls varies by strata, alternative statistical methods to

standard logistic regression must be utilized.
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Cohort studies are prospective by design and covariate information is initially collected

on all subjects, who are followed for a set time in which the outcome is measured. In

many cohort studies thousands of subjects are enrolled to determine the risk factors of the

outcome. Collection of data can be an arduous and expensive task possibly inducing missing

data. Response-selective designs are e�cient methods preventing loss of information.

Numerous designs fall under the cohort design. A common cohort design is a case-

cohort design. A typical case-cohort design measures covariate information on all cases and

a subset of controls. Another option is to fully measure a set of covariates V and outcome

Y and randomly sample a subset of subjects within each strata de�ned by (Y; V ). This is

considered a strati�ed case-cohort study. A condition of these cohort studies is that the

variable collected for the subsample of patients cannot be time-varying.

2.2.3 Missing Data Mechanism

For application of weighted estimating equation techniques the mechanism that generates

missing data must be speci�ed. Under the sampling based scheme, prespeci�ed selection

probabilities are often used, where pj =
nj
Nj
; nj is the total number of subjects selected

within each strata j, and Nj is the total number of subjects within each strata j. Other

suggestions for estimating these probabilities after data collection are i) to use a ratio of the

number of fully observed subjects to the number of subjects within each strata epj = enjeNj ; or
ii) to use the logit model adjusting by the fully observed data P (R = 1jY; V ; �) where � is

unknown. Under missing by happenstance, one could use speci�ed probabilities suggested

by a clinician familiar with the type of data being analyzed or estimate the probabilities
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by either an empirical or a model based estimate. Robins et al. (1994) and Lawless et al.

(1999) claim that there is a gain in the e�ciency of the estimate of � if �, the probability of

missingness, is estimated since more information is drawn from the data. This result also

holds if � is known.

2.3 EFFICIENT SCORE AND INFORMATION

BOUND FOR REGRESSION MODELS

This section will describe the e�cient score in a general setting. In order to obtain a

better understanding, the e�cient score is described in greater detail in a general setting

prior to describing the three methods speci�cally applied for logistic regression. Most of

the concepts in this section are based on research from Robins et al. (1994) and Nan et al.

(2002). They used di�erent approaches to develop comparable methods. Robins utilized

in
uence functions to solve the e�cient in
uence function while Nan employed the score

operator approach. For more details and proofs refer to Nan et al. (2002) and Robins et al.

(1994).

The complete data are U o = (U01 ; U
0
2 ) � Q, where U01 is fully observed and U02 is partially

observed. In this dissertation we will only deal with a parametric (logistic regression)

model Q= fQ�;
 : � 2 � �Rk; 
 2 Gg, where 
 is the nuisance parameter and � is the

parameter of interest. The observed data are U = (U01 ; U
0
2 ; R)

R(U01 ; R)
1�R � P and the

model is semiparametric where P= fP�;
 : � 2 � �Rk; 
 2 Gg. Note that R is a missing

data indicator, where R = 1 indicates fully observed and R = 0 indicates partially observed.
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Since the data are MAR, the probability of missingness is modelled by �(R = 1jU01 ) with a

restriction that this probability be greater than zero.

The density and likelihood of the observed data are

p�;
(u) = (q(r; uo))r
�Z

q(r; uo)d�(u02)

�1�r
(2.3)

=
�
�(u01)q�;
(u

o)
�r ��

1� �(u01)
� Z

q�;
(u
o)d�(u02)

�1�r
(2.4)

L(�; 
) =

nY
i=1

p�;
(ui);

where q�;
(u
o) is the density of the complete data. Equation 2.3 is general enough to be

applied to any missing data setting. One can de�ne R and the density q(r; uo) to suit their

missing data problem. We will show throughout this thesis the 
exibility of this model

and the range of problems that can be solved using this approach. Note that Equation 2.4

includes the probability of selection and the distribution of the covariates.

Typically, the above likelihood does not require one to model g(z), the distribution of

the covariates, as Z is ancillary. However, if the probability of selection depends on the

outcome, then the covariates are no longer ancillary. Once Z is no longer ancillary the

distribution g(z) must be modelled. In addition, likelihood-based methods will force the

probability of selection, �, to drop out under MAR.

For estimation problems where the data are incomplete, complete case analysis is inef-

�cient and the score operator provides an alternative for this setting. The score for the

observed data for each subject i is de�ned as :

:

li;� = Ri
:

l
0

i;� + (1�Ri)E
�:
l
0

�jU0i;1
�
2

:

P

:

li;
 = Ri
:

l
0

i;
 + (1�Ri)E
�:
l
0


jU0i;1
�
2

:

P ;
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where
:

l
0

� and
:

l
0


 are scores for the complete data. However, the solutions to these score

equations do not give e�cient estimates since both score equations are contained in the

tangent space of P , denoted by
:

P =
:

P� +
:

P
. The tangent space of P is a linear span

of all scores of every submodel of P at P; which is basically a collection of scores for that

model. The tangent space for the complete data distribution, Q; is denoted
:

Q =
:

Q� +
:

Q
:

In Equation 2.4 the distribution of the covariates, g(z), must be estimated. However, 
 =

g(z) is not the inferential target, permitting g(z) to be estimated nonparametrically. Since

g(z) is nonparametric, Equation 2.4 is a semiparametric model. A semiparametric method

was used to solve this problem, and is a tool used to place a semiparametric estimating

equation in the appropriate space in order to estimate the parameter of interest. The

ultimate goal is to obtain an estimate of �; thereby, removing the in
uence of the nuisance

parameter 
. A solution is to restrict the score to the appropriate space. Following

semiparametric methodology, an approach is to use the e�cient score of the parameter of

interest, �, for estimation. The e�cient score of � is the orthogonal projection of the

observed score
:

l� onto
:

P
?

 ; where

:

P
?

 is the orthocomplement of the linear span of scores of

the nuisance parameters 
.

Score operators will be used to aid in calculating the e�cient score. A score operator

A can be used to map the complete scores to the observed scores (
:

Q to
:

P). A mean

zero square integrable space, or function, is denoted L02: According to Bickel et al. (1993),

the score operator A : L02(Q) ! L02(P ) is de�ned by Aa(U) = E(a(U0)jU) = Ra(U0) +

(1 � R)E(a(U0)jU01 ) for a 2 L02(Q): The adjoint of A, AT : L02(P ) ! L02(Q); is de�ned by

AT b(U0) = E(b(U)jU0) for b 2 L02(P ) ( Bickel et al., 1993). The basic idea is to rewrite Aa
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as a linear combination of f(ATAa), while still being in the correct space and then restricting

the space to obtain the e�cient score. The e�cient score l�� in model P is

l�� =
R

�
�� � R� �

�
E(��jU01 ) 2 K �

:

P
?



=
Y�

:

l�j
:

P
?



�
=
Y�

:

l�j
:

P \
:

P
?



�
=
Y�

:

l�jM \
:

P
?



�
since M is a closed subspace where

:

P � M �L02(P ): We de�ne K =M \
:

P
?

 which is

comprised of the closed subspace of all functions k(U) de�ned as:

k(U) =
R

�
�(U0)� R� �

�
E(�(U0)jU01 );

where �(U0) 2
:

Q
?

 : �

� is solved from

�

�
1

�
�� � 1� �

�
E(��jU01 )j

:

Q
?



�
= l�0� ;

where l�0� is the e�cient score in model Q.

The information bound of �, I��1� ,can be estimated with either the observed information

I�� = l
�
�l
�T
� or the expected information I�� = EP (l

�
�l
�T
� ). If there is uncertainty in the model

speci�cation it is preferable to use the observed information, since it is robust under model

misspeci�cation. Upon calculating the e�cient score and e�cient information bound, an

estimate of � can be found by one iteration of the Newton-Raphson estimator, also known

as the one step estimator, yielding:

b� = e� + I��1e� l�s�

l�s� =
X

l��;

where e� is an initial consistent starting value of �. Nan et al. (2002) showed that b� is
consistent, that

�b� � �� d! N(0; I��1e� ), and that b� is asymptotically semiparametrically
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e�cient. Nan demonstrated his method under a simulated two-stage design with lifetime

data and discrete covariates.

2.4 LOGISTIC REGRESSION APPLICATION

2.4.1 Framework

The following notation is derived from Nan (2002), Lawless (1999), and Breslow (2003).

Nan and Breslow developed the following notation speci�cally for a two-phase problem. Our

contribution is made by borrowing and combining their notation; and then applying it to

Nan's e�cient score, the pseudo-likelihood, and the weighted pseudo-likelihood method to

solve for missing by design data. Nan developed a general methodology for regression prob-

lems with missing data, but had not speci�cally �lled in the details for a logistic regression

problem. We will be the �rst to evaluate the properties of Nan's e�cient score for logistic

regression with incomplete covariate information.

The complete data are denoted by (Y;Z); where Y 2 f0; 1g is the outcome and Z =

(X;V) is a vector of covariates. The covariates consist of V = (V1; V2) where V1 is a

surrogate of X: V1 is de�ned as a pure surrogate with implications that V1 would not be

included in the conditional model of Y given Z (Robins, 1994) since f(Y jX;V ) = f(Y jX;V2).

The completely observed data are (Y ,V) and X is MAR. The observed data are denoted

by W = (Y;Z; R)R(S;R)1�R; where S = S(Z; Y ) is a function of Z and Y (Nan, 2002). The
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missing data indicator is de�ned by

R =

8>><>>:
1 if X is observed

0 if X is missing

: (2.5)

We de�ne S as a strata variable, where Sj, j = 1; :::; J , is speci�ed by a combination of

levels of Y and V where J is denoted J = max(Y ) �max(V) (Lawless et al., 1999). If V is

continuous, it would be necessary to categorizeV using prespeci�ed cuto� values to calculate

S. Typically strati�cation variables are used for analysis of strati�ed designs. Post-

strati�cation can be imposed for other types of missingness such as missing by happenstance.

Assume that the missing data mechanism only depends on the stratum de�ned by Y and

V , where

Sj = Sa;m = f(Y;Z) : (Y;V) 2 (Y = a;V = m) ; a = 0; 1;m = 1; ::;Mg : (2.6)

A stratum indicator is de�ned as �ij = I f(yi; zi) 2 Sjg i = 1; :::; N; j = 1; :::; J (Breslow,

2003): A stratum level variable assigns the corresponding stratum level and is de�ned by

Si =
JX
j=1

jI(�ij = 1); i = 1; :::; N , or Si = j if I(�ij = 1) (Lawless, 1999): (2.7)

The probability of being observed is modeled by

�(S) = P (R = 1jS) =
JX
j=1

pj�ij = psi (Lawless, 1999). (2.8)

Depending on the sampling scheme it is necessary to either use prespeci�ed probabilities

or estimate pj, where
s
pj =

nj
Nj
, nj =

NP
i=1

I(�ij = 1; Ri = 1) and Nj =
NP
i=1

I(�ij = 1) or

pj = P (R = 1jy; v) where (Y;Z) 2 Sj. In the case of missing by happenstance, one could

use a logit model to estimate the probability of missingness.
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The model for the complete data is

q�;g(y; z) = f(yjz)g(z) =
�

exp�
0z

1 + exp�
0z

�y �
1

1 + exp�
0z

�1�y
g(z) (Breslow, 2003), (2.9)

where g is some density of z. The distribution of being in the jth strata, Sj; is Qj(�;G) =

P ((Y;Z) 2 Sj) where j = 1; :::; J . The conditional distribution of being in the jth strata,

Sj; given the covariates is

Q�j(z; �) = P ((Y; z) 2 SjjZ = z)IS�j (z) (Breslow, 2003)

=
X

Y :(Y;z)2Sj

f(yjz)IS�j (z) = f(yjz)IS�j (z)

=

�
exp�

0z

1 + exp�
0z

�y �
1

1 + exp�
0z

�1�y
IS�j (z);

where j = 1; :::; J and S�j = fz 2 Z : for some y; (y; z) 2 Sjg. The indicator function for

S�j (Breslow, 2003) is

IS�j (z) =

8>><>>:
1 if Z = z and (y; z) 2 Sj

0 if Z 6= z or (y; z) =2 Sj
. (2.10)

The distribution of Sj is the summation of the conditional distribution of Sj given the

covariates over all values of z,

Qj(�;G) =
X
z

Q�j(z; �)g(z) (Breslow, 2003)

=
X
z

f(yjz)IS�j (z)g(z)

=
X
z

�
exp�

0z

1 + exp�
0z

�y �
1

1 + exp�
0z

�1�y
IS�j (z)g(z):

Since z contains missing observations, estimation of the distribution of z must take this

into account to avoid an invalid distribution. Since g(v) will fall out of the score equation,
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we only need to estimate g(xjv) by implementing the Horvitz-Thompson estimator. The

empirical distribution of xjv is estimated by

G(XjV = vj) =
1

n�j

X
i2F �j

Ri
�(yi; vj)

I(Xi � x) (Nan, 2002), (2.11)

where n�j =
P
i2Fj

1
�(yi;vj)

; F �j = fi : Vi = vj; i = 1; :::; ng; and Fj = fi : Ri = 1; Vi = vj; i =

1; :::; ng:

2.4.2 Conditional Maximum Likelihood

For a strati�ed case-control study the default analysis is to include the stratum-speci�c

terms. An alternative approach known as conditional maximum likelihood, also known

as pseudo-likelihood, was developed by Fears and Brown (1986) based on the sampling

probabilities. Fears et al. showed that the likelihood is properly modelled when including

a ratio of the sampling probabilities of the cases to the control within each strata. In fact,

this ratio is a constant within each strata and only a�ects the baseline coe�cient. This led

to the discovery of including the logarithmic transformation of this ratio as an o�set term in

the GLM setting. Intuitively, this makes sense since this reduces to the logit model being

weighted by the ratio of selection probabilities of cases by controls within each strata. Only

complete cases are included in the analysis and each case is assigned an o�set term. Using

these weights this method compensates for those subjects not included in the analysis.

Breslow and Cain (1988) and Wild (1991) improved and further developed this method

for other designs. A requirement is that the probability of selection for cases and controls

within each strata be known. Wild (1991) established that the estimate of � is consistent and

asymptotically normal using Hsieh's (1985) method. The conditional maximum likelihood
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can be used for a missing data problem, but with caution since it would be necessary for the

missing data mechanism to depend on the outcome and other covariates. An advantage to

this method is that standard software can be used.

The pseudo-likelihood is de�ned as (Breslow uses subscripts fi; j; kg and we use subscripts

fg; k; lg):

L1L2 =
Y
g;k

P
Ngk
gk

Y
g;k;l

pgkl (Breslow 1988,1999),

g = f0; 1g for controls and cases

k = f1; :::; Kg for the level of V

l = f1; ::::; ngkg

where

Pg;k =
exp(g�k)

1 + exp(g�k)
= Pr(Y = gjSV = k); SV is the strata variable for V

and

pgkl =
ngk exp

�
g(�0 � �k + xTgkl�)

	
n0k + n1k exp(�0 � �k + xTgkl�)

:

A pseudo-likelihood estimate is found by �rst maximizing
Q
g;k

P
Ngk
gk to obtain an estimate of

�k; b�k = log(N1k=N0k): Then
Q
g;k;l

pgkl is maximized with the estimate b�k: In practice this
pseudo-likelihood estimate is found by performing logistic regression with the phase two data

including an o�set log(n1kN0k=n0kN1k): The covariance matrix must be corrected with the

following formula

�
XTAX

��1 �
XTAX � C�

	 �
XTAX

��1
(Breslow 1988, 1997),

where A is a diagonal matrix with elements ngklp0klp1kl along the diagonal,

C� =
P
g;k

�
n�1gk �N�1

gk

�
WgW

T
g ; and Wg =

P
l

n+klp0klp1klxkl.
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2.4.3 Weighted Pseudo-likelihood

In 1974 Kish and Frankel suggested a weighted pseudo-likelihood approach. This ap-

proach borrows estimating procedures from the survey sampling literature applying the

Horvitz-Thompson estimator. Only complete cases are included in analysis. Each case

is assigned an inverted selection probability weight. In e�ect, the individual score equation

is multiplied by this weight to compensate for the individuals excluded to implicitly draw

information from the incomplete cases.

The form of the weighted log pseudo-likelihood is speci�ed as:

lw� =
JX
j=1

p�1j
X

i:(yi;zi)2Sj

log f(yijzi;�) (Lawless 1999) (2.12)

with score function

Sw(�) =
NX
i=1

RiUwi(yi; zi; ep;�) (Lawless 1999),
where Uwi(yi; zi; ep;�) = JP

j=1

p�1j �ij
@ log f(yijzi;�)

@�
. The covariance must be corrected by using

the equation

V arw(�) =

�
@Sw

@�T

��1 bBw(�)�@Sw
@�

��1
(Breslow 1999),

where bBw(�) =
JX
j=1

p�2j

8<: X
i:(yi;zi)2Sj

eUwi
eUT
wi �

1� pj
pjNj

0@ X
i:(yi;zi)2Sj

eUwi

1A0@ X
i:(yi;zi)2Sj

eUwi

1AT9=; :
Wild (1991) proved that the estimate of � is consistent and asymptotically normal using

Hsieh's (1985) method. The weighted approach has been found to perform reasonably well in

terms of consistency, e�ciency, and bias under MAR provided the missing data mechanism is

properly de�ned. However, the large sample properties have not been thoroughly evaluated.

This approach can easily be used for design and missing data problems. An advantage of

implementing this method is that standard software can be used.

25



2.4.4 E�cient Score and Information Bound

An extension of the weighted pseudo-likelihood, known as IPWE estimating equations,

was proposed by Nan (2002), Robins (1994), and Breslow (2003). Although, the weighted

pseudo-likelihood method is generally found to be consistent and unbiased it is not always

the most e�cient. IPWE estimating equations attempt to gain more information from in-

complete cases while placing one in the appropriate solution space. However, these methods

are more complex than a simple weighting procedure.

The model for the observed data is

pB;g(u) = (�(s)q�;g(y; z))
r

�
(1� �(s))

Z Z
(y;z):S(z;y)=s

q�;g(y; z)d�(z)d�(y)

�1�r
(2.13)

=

"(�
expz

0�

1 + expz0�

�y �
1

1 + expz0�

�1�y
g(z)

JX
j=1

pj�j

)r
�

0B@ JX
j=1

(1� pj)�j

!
�

JQ
j=1

0@X
Z

IS�j (z)
X

Y :(Y;z)2Sj

f(yjz)g(z)

1A�j
1CA
1�r375

=

(�
expz

0�

1 + expz0�

�y �
1

1 + expz0�

�1�y
g(z)

JX
j=1

pj�j

)r  JX
j=1

(1� pj)�j

!
JQ
j=1

Q
�j
j

!1�r
,

where �j = 1 if (y; z) 2 Sj. All equations in the observed density (2.13) can be found in

Section 2.4.1. Speci�cally, �(s) (2.8) is the probability of missingness; q�;g(y; z) (2.9) is the

model for complete data; S (2.6) is a stratum variable; IS�j (z) (2.10) is a strata covariate

speci�c indicator; S (2.7) is a strata level variable; p is the probability of missingness for

the speci�ed strata; R (2.5) is the missing data indicator; and g(z) (2.11) is the covariate

distribution. The score function in model Q for � is _l0� =
@l
@�
. The score function in model

P for � is
�
l� = R

�
l
0

� � (1�R)E(
�
l
0

�jS).
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The e�cient score, l��; of � is the orthogonal projection of the score function of � for the

observed model onto the orthocomplement of the nuisance parameter. The e�cient score is

(Nan et al. 2002):

l�� =
Q
(
�
l�jK) =

R

�
c�(Z; Y )� R� �

�
E (c�(Z; Y )jS) ;

where c� is

c� = �(S)

�
�
l
0

� � E
�
�
l
0

�jZ; R = 1
��

+ (1� �(S))E (c�jS)�

�(S)E

�
1� �(S)
�(S)

E (c�(Z; Y )jS) jZ; R = 1
�
:

One can solve E (c�jS) = �(S) by

�(S) = E

�
�
l
0

� � E
�
�
l
0

�jZ; R = 1
�
jS
�
� E

�
E

��
1� �(S)
�(S)

�
�(S)jZ; R = 1

�
jS
�
;

where S = S(Z; Y ) is a function of the fully observed data.

The information bound, I��1� , can be estimated with either the observed information I�� =

l��l
�T
� or expected information I�� = EP (l

�
�l
�T
� ). Using one iteration of the Newton-Raphson

estimator the solution for the coe�cients is b� = e� + I��1� l�s� (c(Z; Y )); where l
�s
� (c(Z; Y )) =

nP
i=1

l��(c(Z; Y )):

2.5 SUMMARY

If one of the covariates in a regression application is missing at random, the regres-

sion coe�cients must be adjusted to obtain consistent and e�cient estimates. Pseudo-

likelihood methods and the e�cient score method for logistic regression were reviewed in

detail. Asymptotic properties of these methods for logistic regression will be evaluated and

compared in the next chapter.
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CHAPTER 3

SIMULATION STUDY FOR

COVARIATES MISSING BY

DESIGN

3.1 INTRODUCTION

The goal of this chapter is to evaluate properties of estimators for missing data prob-

lems. It is of interest to determine the asymptotic properties of these estimators. Bias and

precision of the estimators are evaluated by calculating the mean of the coe�cient, mean of

the variance, mean squared error (MSE), and asymptotic relative e�ciency. The MSE is a

measure that combines variance and bias, and thus, will aid in the selection of an estimator.

It is preferable to have an estimator with minimal MSE. Validity of these methods under

various distributional assumptions is also studied.
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Summary statistics facilitate comparison of six methods. The summary statistics of

the estimators of � calculated were: the mean of the coe�cient of the replicates, mean of

the variance of the coe�cient of the replicates, MSE, ARE(full cohort, estimates) and 95%

coverage. The ARE is the ratio of the empirical variance of the estimate from the full cohort

by the empirical variance of the estimate from the corresponding method. The sample size

and subset size varied. One thousand simulations were performed for logistic regression,

where the model is logit(Pr(Y = 1jx)) = �0 + �x; fX; Y; V g are binary, and V is a pure

surrogate of X. On average 10% of the population are cases and 90% are controls. A

case-cohort and strati�ed cohort study are generated where 200 subjects are selected with

100 cases and 100 controls. A sample of each strata j is randomly selected according

to �xed probabilities. The strata j are de�ned by levels of the combinations of y and v

where fj = 1g = fy = 0; v = 0g ; fj = 2g = fy = 0; v = 1g, fj = 3g = fy = 1; v = 0g, and

fj = 4g = fy = 1; v = 1g : Simulations were run for missing by design under 24 scenarios

(Tables 3.1-3.24): �x = f0; 1; 2g ; P (X = 1) = f0:3; 0:5g, P (V = kjX = k) = f0:8; 0:5g,

k = f0; 1g; N = f5000; 1000g; and n = 200. When N = 5000; the sample selected for

complete data to be reported is 200 which is equivalent to 4% of the cohort. In this case,

100 of the 500 (20%) cases are selected and 100 of the 4500 (2%) controls are selected with

additional strati�cation on V . When N = 1000; the sample selected for complete data to

be reported is 200 which is equivalent to 10% of the cohort. In this case, 100 of the 100

(100%) cases are selected and 100 of the 900 (11%) controls are selected with additional

strati�cation on V . Probability of selection for each strata are reported in the tables.

The �rst estimator (LR1) is for the full cohort, which will be used as a comparison

measure to the other estimators. The full cohort includes all data for all subjects; that
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is (Y;X; V ) will be completely observed for all subjects. The remaining estimators will

treat X as incomplete and (Y; V ) as fully observed. The complete case (LR2) includes only

those subjects with complete data. The complete case is known as the naive estimator,

since standard logistic regression is performed with no further modi�cation. Conditional

maximum likelihood (PL) includes only those subjects with complete data but introduces

an o�set term in the logistic model. This o�set term is a log function of the ratio of the

probability of case selection within strata k by the probability of control selection within

strata k, log
�
�1k
�ok

�
: Weighted logistic regression (WPL) includes subjects with complete

data and standard logistic regression is performed introducing a weight that is an inverse

probability of selection within the strata. An initial value for the e�cient score method is

obtained from weighted logistic regression. The e�cient score is modi�ed as described in

Chapter 2. The e�cient score with the observed information is denoted as ESO and the

e�cient score with the expected information as ESE. If the model is incorrect, then the

observed information is robust.

Although we developed code for the pseudo-likelihood and weighted pseudo-likelihood

methods, we discovered after the fact that Breslow developed code for these methods. Since

his software was written in a much more e�cient fashion we used his code for this simulation

study which is available at http://faculty.washington.edu/norm/software.html.

3.2 RESULTS

The e�cient score performs as well or better than the other pseudo-likelihood methods.

As anticipated, the complete case approach overestimates the variance and is biased towards
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zero in all cases, where the bias is much worse for the intercept. Since the complete case

performs so poorly, we will focus on comparing the e�cient score to the two pseudo-likelihood

methods PL and WPL. When data is completely reported for a small percentage of the

populations, the e�cient score (ESO and ESE) outperforms PL and WPL. In addition,

ESO and ESE performed comparably.

Results for �x = 0 can be found in Tables 3.1-3.8. We will �rst review results for

P (X = 1) = f:5; :3g and P (V = kjX = k) = :8: When N = 5000 (Tables 3.1, 3.3), all 4

methods produce unbiased estimates with the e�cient score estimates more biased. The

e�cient score produces smaller variances, smaller MSEs, and more e�cient estimators than

the PL and WPL methods. The variances and MSE for the e�cient score method are

reduced by more than one half. When the sample size is reduced to N = 1000 (Tables 3.2,

3.4), the results hold with the exception that the the variances for PL and WPL method have

been greatly reduced since a higher proportion of the data is available. As the correlation

between X and V decreases, P (V = kjX = k) = :5, the results are the same for all four

methods when P (X = 1) = f:5; :3g and N = f5000; 1000g (Tables 3.5-3.8). All methods

have unbiased estimates. When N = 5000 (Tables 3.5 and 3.7), the e�cient score produces

slightly less biased estimates when P (X = 1) = :5, slightly smaller variances and MSEs

when P (X = 1) = f:5; :3g, and slightly more e�cient estimates when P (X = 1) = :5.

Results for �x = 1 can be found in Tables 3.9-3.16. Results for P (X = 1) = f:5; :3g ;

P (V = kjX = k) = :8; and N = 5000 (Tables 3.9 and 3.11) are the same as �x = 0 except

the variance and MSE for the intercept are reduced by less than one-half of the pseudo-

likelihood methods. When P (X = 1) = f:5; :3g ; P (V = kjX = k) = :8; and N = 1000

(Tables 3.10 and 3.12) the results are the same as �x = 0 except the e�cient score produces
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slightly less biased estimates. As with �x = 0; all methods produce similar results when the

correlation between X and V is reduced (P (V = kjX = k) = :5); P (X = 1) = f:5; :3g ; and

N = f5000; 1000g (Tables 3.13-3.16). When N = 5000 (Tables 3.13 and 3.15), the e�cient

score produces slightly less biased estimates and slightly smaller variances and MSEs.

Tables 3.17-3.24 contain results for �x = 2. An overall assessment is that as the rela-

tionship between the missing covariate and the outcome increases the variance reduction is

not as large. When P (X = 1) = f:5; :3g ; P (V = kjX = k) = :8; and N = 5000 (Tables

3.17 and 3.19), the results are the same as �x = 0 except that the variance and MSE for

the intercept are reduced by less than one-quarter of the pseudo-likelihood methods and,

for the coe�cient of X; by less than one-half. The e�cient score is still more e�cient

than the PL and WPL but the e�ciency has been reduced from when �x = f0; 1g : When

P (X = 1) = f:5; :3g ; P (V = kjX = k) = :8; and N = 1000 (Tables 3.18 and 3.20), the

results are the same as �x = 0 except that the e�cient score produces slightly less biased

estimates when P (X = 1) = :5. Results are similar to �x = 0 when the correlation between

X and V is reduced (P (V = kjX = k) = :5); P (X = 1) = f:5; :3g ; and N = f5000; 1000g

(Tables 3.21-3.24). All methods produce similar results. When N = 5000 (Tables 3.21 and

3.23), the e�cient score produces slightly less biased estimates and slightly smaller variances

and MSEs.

We have also summarized the results according to sample size and correlation. When

N = 5000 and the correlation is high between X and V (Tables 3.1, 3.3, 3.9, 3.11, 3.17,

3.19), all four approaches are unbiased but the e�cient score approach produces smaller

variances, de
ating them by at least one-half. Also the MSE is the lowest for the e�cient

score. The pseudo-likelihood methods have slightly less bias than the e�cient score. As
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N decreases, N = 1000, and the correlation is high between X and V (Tables 3.2, 3.4, 3.10,

3.12, 3.18, 3.20) the variance is reduced for all methods since more subjects have complete

data. However, the e�cient score is still the most e�cient method and reduces variance the

most. Once again, the four approaches are unbiased and the e�cient score has the smallest

MSE and slightly less bias. When the correlation between X and V is low (Tables 3.5-3.8,

3.13-3.16, 3.21-3.24), all four approaches are comparable. However, when N is larger, the

e�cient score is still slightly more e�cient and has less biased estimates. As before, there is

no bias and the MSE is about the same across all methods. The various distributions of the

covariate produced similar results in all cases. It does not appear to matter whether X is

equally distributed or skewed. The 95% coverage probability was accurate in all scenarios.

Overall, the e�cient score is an improvement if the correlation is high between X and its

surrogate.
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Table 3.1: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 5000, P(X=1)=.5, P(V=k|X=k)=.8, �0=-2.197, �x=0, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=5000 n=200

�0

Coef -2.197 -0.005 -2.199 -2.199 -2.203 -2.201

Var 0.0044 0.0409 0.0161 0.0161 0.0077 0.0077

MSE 0.0049 4.8484 0.0166 0.0166 0.0084 0.0083

ARE(full cohort,est) 1 0.292 0.292 0.580 0.586

95% Cov 0.932 0 0.949 0.945 0.944 0.944

�x

Coef -0.00006 0.00434 0.00510 0.00469 0.00599 0.00608

Var 0.0089 0.0816 0.0550 0.0551 0.0214 0.0216

MSE 0.0096 0.0851 0.0571 0.0572 0.0240 0.0237

ARE(full cohort,est) 1 0.169 0.169 0.403 0.408

95% Cov 0.933 0.939 0.951 0.950 0.940 0.943

Note: Probabilities of being observed are P (R = 1jj) = f0:0222; 0:0222; 0:2; 0:2g
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Table 3.2: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 1000, P(X=1)=.5, P(V=k|X=k)=.8, �0=-2.197, �x=0, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=1000 n=200

�0

Coef -2.205 -0.002 -2.203 -2.203 -2.206 -2.205

Var 0.0225 0.0407 0.0284 0.0284 0.0272 0.0271

MSE 0.0236 4.8593 0.0289 0.0291 0.0275 0.0274

ARE(full cohort,est) 1 0.816 0.812 0.859 0.861

95% Cov 0.946 0 0.951 0.953 0.949 0.947

�x

Coef 0.003 0.006 0.004 0.004 0.004 0.004

Var 0.0449 0.0814 0.0681 0.0683 0.0633 0.0632

MSE 0.0454 0.0796 0.0663 0.0665 0.0598 0.0597

ARE(full cohort,est) 1 0.685 0.683 0.759 0.761

95% Cov 0.954 0.945 0.953 0.955 0.959 0.957

Note: Probabilities of being observed are P (R = 1jj) = f0:1111; 0:1111; 1; 1g
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Table 3.3: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 5000, P(X=1)=.3, P(V=k|X=k)=.8, �0=-2.197, �x=0, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=5000 n=200

�0

Coef -2.198 -0.005 -2.198 -2.197 -2.198 -2.197

Var 0.0032 0.0320 0.0104 0.0082 0.0047 0.0047

MSE 0.0032 4.8353 0.0103 0.0082 0.0051 0.0051

ARE(full cohort,est) 1 0.313 0.393 0.631 0.633

95% Cov 0.944 0 0.961 0.954 0.935 0.937

�x

Coef 0.004 0.007 0.004 0.001 -0.006 -0.002

Var 0.0106 0.0883 0.0640 0.0654 0.0274 0.0276

MSE 0.0108 0.0903 0.0643 0.0664 0.0289 0.0285

ARE(full cohort,est) 1 0.169 0.163 0.375 0.380

95% Cov 0.941 0.944 0.945 0.943 0.944 0.948

Note: Probabilities of being observed are

P (R = 1jj) = f0:0179; 0:0292; 0:1613; 0:2632g
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Table 3.4: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 1000, P(X=1)=.3, P(V=k|X=k)=.8, �0=-2.197, �x=0, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=1000 n=200

�0

Coef -2.202 0.094 -2.203 -2.203 -2.205 -2.205

Var 0.0160 0.0303 0.0191 0.0185 0.0180 0.0180

MSE 0.0174 5.2807 0.0204 0.0198 0.0194 0.0193

ARE(full cohort,est) 1 0.853 0.879 0.901 0.901

95% Cov 0.934 0 0.950 0.948 0.944 0.945

�x

Coef -0.006 -0.283 0.006 0.007 0.004 0.006

Var 0.0537 0.0929 0.0805 0.0812 0.0757 0.0756

MSE 0.0553 0.1705 0.0810 0.0818 0.0745 0.0744

ARE(full cohort,est) 1 0.682 0.676 0.741 0.743

95% Cov 0.961 0.857 0.953 0.952 0.951 0.954

Note: Probabilities of being observed are P (R = 1jj) = f0:0896; 0:1462; 1; 1g
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Table 3.5: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 5000, P(X=1)=.5, P(V=k|X=k)=.5, �0=-2.197, �x=0, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=5000 n=200

�0

Coef -2.197 -0.005 -2.198 -2.197 -2.197 -2.197

Var 0.0044 0.0407 0.0227 0.0228 0.0218 0.0217

MSE 0.0049 4.8481 0.0240 0.0242 0.0240 0.0240

ARE(full cohort,est) 1 0.202 0.201 0.202 0.203

95% Cov 0.932 0 0.952 0.950 0.948 0.948

�x

Coef -0.000060 0.001329 0.001195 0.000002 -0.001617 -0.001622

Var 0.0089 0.0816 0.0812 0.0817 0.0778 0.0774

MSE 0.0096 0.0858 0.0869 0.0874 0.0867 0.0865

ARE(full cohort,est) 1 0.111 0.110 0.111 0.111

95% Cov 0.933 0.949 0.946 0.951 0.946 0.945

Note: Probabilities of being observed are P (R = 1jj) = f0:0222; 0:0222; 0:2; 0:2g
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Table 3.6: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 1000, P(X=1)=.5, P(V=k|X=k)=.5, �0=-2.197, �x=0, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=1000 n=200

�0

Coef -2.205 -0.003 -2.203 -2.203 -2.203 -2.203

Var 0.0225 0.0407 0.0317 0.0317 0.0318 0.0316

MSE 0.0236 4.8546 0.0300 0.0301 0.0300 0.0300

ARE(full cohort,est) 1 0.787 0.784 0.786 0.786

95% Cov 0.946 0 0.969 0.966 0.967 0.967

�x

Coef 0.003 0.007 0.007 0.007 0.006 0.006

Var 0.0449 0.0814 0.0810 0.0814 0.0816 0.0811

MSE 0.0454 0.0733 0.0736 0.0741 0.0738 0.0738

ARE(full cohort,est) 1 0.617 0.613 0.615 0.615

95% Cov 0.954 0.967 0.967 0.966 0.964 0.963

Note: Probabilities of being observed are P (R = 1jj) = f0:1111; 0:1111; 1; 1g
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Table 3.7: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 5000, P(X=1)=.3, P(V=k|X=k)=.5, �0=-2.197, �x=0, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=5000 n=200

�0

Coef -2.198 -0.006 -2.199 -2.199 -2.199 -2.199

Var 0.0032 0.0290 0.0110 0.0110 0.0106 0.0105

MSE 0.0032 4.8323 0.0114 0.0115 0.0113 0.0113

ARE(full cohort,est) 1 0.282 0.281 0.284 0.285

95% Cov 0.944 0 0.951 0.950 0.944 0.944

�x

Coef 0.004 0.008 0.008 0.007 0.008 0.008

Var 0.0106 0.0981 0.0976 0.0982 0.0935 0.0930

MSE 0.0108 0.1047 0.1055 0.1065 0.1040 0.1038

ARE(full cohort,est) 1 0.103 0.102 0.104 0.104

95% Cov 0.941 0.943 0.945 0.946 0.943 0.942

Note: Probabilities of being observed are P (R = 1jj) = f0:0222; 0:0222; 0:2; 0:2g
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Table 3.8: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 1000, P(X=1)=.3, P(V=k|X=k)=.5, �0=-2.197, �x=0, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=1000 n=200

�0

Coef -2.202 0.001 -2.200 -2.200 -2.200 -2.200

Var 0.0160 0.0289 0.0200 0.0200 0.0200 0.0199

MSE 0.0174 4.8603 0.0212 0.0214 0.0213 0.0213

ARE(full cohort,est) 1 0.819 0.815 0.817 0.817

95% Cov 0.934 0 0.952 0.951 0.951 0.951

�x

Coef -0.0061 0.0009 0.0012 0.0011 0.0021 0.0022

Var 0.0537 0.0976 0.0971 0.0975 0.0978 0.0971

MSE 0.0553 0.0970 0.0975 0.0976 0.0971 0.0971

ARE(full cohort,est) 1 0.567 0.566 0.569 0.569

95% Cov 0.961 0.956 0.956 0.954 0.956 0.956

Note: Probabilities of being observed are P (R = 1jj) = f0:1111; 0:1111; 1; 1g
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Table 3.9: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 5000, P(X=1)=.5, P(V=k|X=k)=.8, �0=-2.787, �x=1, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=5000 n=200

�0

Coef -2.790 -0.381 -2.791 -2.791 -2.803 -2.796

Var 0.0072 0.0488 0.0234 0.0260 0.0145 0.0147

MSE 0.0084 5.8420 0.0262 0.0284 0.0165 0.0161

ARE(full cohort,est) 1 0.320 0.295 0.516 0.525

95% Cov 0.933 0 0.946 0.941 0.938 0.941

�x

Coef 1.005 0.664 1.005 1.006 1.021 1.015

Var 0.0104 0.0855 0.0588 0.0610 0.0283 0.0285

MSE 0.0120 0.2095 0.0666 0.0679 0.0328 0.0320

ARE(full cohort,est) 1 0.180 0.177 0.371 0.378

95% Cov 0.936 0.771 0.933 0.936 0.943 0.947

Note: Probabilities of being observed are

P (R = 1jj) = f0:0216; 0:0229; 0:2663; 0:1583g
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Table 3.10: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 1000, P(X=1)=.5, P(V=k|X=k)=.8, �0=-2.787, �x=1, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=1000 n=200

�0

Coef -2.798 -0.582 -2.799 -2.798 -2.799 -2.798

Var 0.0370 0.0551 0.0429 0.0428 0.0419 0.0418

MSE 0.0386 4.9196 0.0441 0.0443 0.0429 0.0428

ARE(full cohort,est) 1 0.875 0.872 0.901 0.902

95% Cov 0.943 0 0.949 0.951 0.947 0.942

�x

Coef 1.008 0.982 1.015 1.014 1.012 1.011

Var 0.0534 0.0902 0.0768 0.0771 0.0725 0.0724

MSE 0.0552 0.0905 0.0764 0.0769 0.0710 0.0708

ARE(full cohort,est) 1 0.724 0.719 0.778 0.780

95% Cov 0.947 0.955 0.955 0.953 0.949 0.951

Note: Probabilities of being observed are P (R = 1jj) = f0:1081; 0:1145; 1; 1g
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Table 3.11: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 5000, P(X=1)=.3, P(V=k|X=k)=.8, �0=-2.577, �x=1, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=5000 n=200

�0

Coef -2.580 -0.288 -2.581 -2.580 -2.588 -2.584

Var 0.0043 0.0362 0.0134 0.0123 0.0074 0.0076

MSE 0.0048 5.2789 0.0144 0.0133 0.0089 0.0088

ARE(full cohort,est) 1 0.333 0.361 0.546 0.550

95% Cov 0.938 0 0.944 0.943 0.935 0.939

�x

Coef 1.006 0.674 1.011 1.010 1.019 1.017

Var 0.0090 0.0861 0.0594 0.0618 0.0280 0.0282

MSE 0.0099 0.1931 0.0608 0.0638 0.0316 0.0312

ARE(full cohort,est) 1 0.163 0.155 0.316 0.319

95% Cov 0.936 0.790 0.943 0.940 0.932 0.936

Note: Probabilities of being observed are

P (R = 1jj) = f0:0175; 0:0304; 0:2007; 0:1962g
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Table 3.12: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 1000, P(X=1)=.3, P(V=k|X=k)=.8, �0=-2.577, �x=1, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=1000 n=200

�0

Coef -2.580 -0.279 -2.580 -2.580 -2.581 -2.581

Var 0.0217 0.0360 0.0248 0.0242 0.0238 0.0237

MSE 0.0231 5.3181 0.0259 0.0253 0.0247 0.0247

ARE(full cohort,est) 1 0.892 0.911 0.933 0.933

95% Cov 0.947 0 0.942 0.947 0.950 0.949

�x

Coef 0.999 0.684 1.006 1.008 1.003 1.005

Var 0.0455 0.0854 0.0725 0.0742 0.0679 0.0678

MSE 0.0480 0.1854 0.0745 0.0763 0.0691 0.0690

ARE(full cohort,est) 1 0.645 0.630 0.695 0.696

95% Cov 0.953 0.789 0.946 0.950 0.957 0.957

Note: Probabilities of being observed are P (R = 1jj) = f0:0877; 0:1520; 1; 1g

45



Table 3.13: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 5000, P(X=1)=.5, P(V=k|X=k)=.5, �0=-2.787, �x=1, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=5000 n=200

�0

Coef -2.790 -0.620 -2.806 -2.806 -2.793 -2.793

Var 0.0072 0.0556 0.0376 0.0377 0.0368 0.0367

MSE 0.0084 4.7557 0.0414 0.0416 0.0413 0.0412

ARE(full cohort,est) 1 0.204 0.203 0.203 0.204

95% Cov 0.933 0 0.953 0.952 0.945 0.944

�x

Coef 1.005 1.030 1.030 1.028 1.007 1.007

Var 0.0104 0.0913 0.0909 0.0914 0.0887 0.0884

MSE 0.0120 0.0965 0.0973 0.0979 0.0971 0.0970

ARE(full cohort,est) 1 0.125 0.124 0.124 0.124

95% Cov 0.936 0.950 0.947 0.948 0.941 0.939

Note: Probabilities of being observed are

P (R = 1jj) = f0:0222; 0:0222; 0:1986; 0:1986g
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Table 3.14: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 1000, P(X=1)=.5, P(V=k|X=k)=.5, �0=-2.787, �x=1, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=1000 n=200

�0

Coef -2.798 -0.597 -2.796 -2.796 -2.795 -2.795

Var 0.0370 0.0548 0.0458 0.0459 0.0461 0.0459

MSE 0.0386 4.8500 0.0437 0.0440 0.0437 0.0437

ARE(full cohort,est) 1 0.882 0.878 0.882 0.882

95% Cov 0.943 0 0.957 0.957 0.957 0.957

�x

Coef 1.008 1.012 1.012 1.012 1.010 1.010

Var 0.0534 0.0902 0.0899 0.0903 0.0906 0.0901

MSE 0.0552 0.0821 0.0824 0.0831 0.0826 0.0826

ARE(full cohort,est) 1 0.670 0.664 0.668 0.668

95% Cov 0.947 0.970 0.969 0.969 0.970 0.969

Note: Probabilities of being observed are P (R = 1jj) = f0:1112; 0:1112; 1; 1g
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Table 3.15: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 5000, P(X=1)=.3, P(V=k|X=k)=.5, �0=-2.577, �x=1, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=5000 n=200

�0

Coef -2.580 -0.399 -2.585 -2.585 -2.578 -2.578

Var 0.0043 0.0349 0.0168 0.0169 0.0163 0.0164

MSE 0.0048 4.7802 0.0198 0.0200 0.0199 0.0199

ARE(full cohort,est) 1 0.242 0.240 0.240 0.240

95% Cov 0.938 0 0.933 0.927 0.925 0.924

�x

Coef 1.006 1.026 1.026 1.026 1.007 1.006

Var 0.0090 0.0925 0.0922 0.0928 0.0888 0.0891

MSE 0.0099 0.1050 0.1057 0.1074 0.1063 0.1063

ARE(full cohort,est) 1 0.094 0.092 0.093 0.093

95% Cov 0.936 0.940 0.935 0.939 0.930 0.931

Note: Probabilities of being observed are

P (R = 1jj) = f0:0222; 0:0222; 0:1984; 0:1984g
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Table 3.16: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 1000, P(X=1)=.3, P(V=k|X=k)=.5, �0=-2.577, �x=1, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=1000 n=200

�0

Coef -2.580 -0.380 -2.579 -2.579 -2.579 -2.579

Var 0.0217 0.0345 0.0255 0.0255 0.0256 0.0255

MSE 0.0231 4.8623 0.0262 0.0264 0.0263 .02628

ARE(full cohort,est) 1 0.879 0.876 0.878 0.878

95% Cov 0.947 0 0.944 0.946 0.950 0.950

�x

Coef 0.999 1.012 1.012 1.012 1.009 1.010

Var 0.0455 0.0916 0.0912 0.0917 0.0919 0.0913

MSE 0.0480 0.0898 0.0899 0.0900 0.0893 0.0893

ARE(full cohort,est) 1 0.535 0.534 0.538 0.538

95% Cov 0.953 0.962 0.959 0.958 0.959 0.958

Note: Probabilities of being observed are P (R = 1jj) = f0:1112; 0:1112; 1; 1g
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Table 3.17: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 5000, P(X=1)=.5, P(V=k|X=k)=.8, �0=-3.557, �x=2, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=5000 n=200

�0

Coef -3.561 -0.920 -3.573 -3.578 -3.576 -3.562

Var 0.0147 0.0685 0.0432 0.0516 0.0351 0.0363

MSE 0.0156 7.0274 0.0454 0.0548 0.0350 0.0341

ARE(full cohort,est) 1 0.346 0.287 0.451 0.459

95% Cov 0.946 0 0.947 0.950 0.957 0.949

�x

Coef 2.005 1.431 2.020 2.025 2.032 2.018

Var 0.0175 0.1029 0.0760 0.0848 0.0505 0.0517

MSE 0.0185 0.4320 0.0825 0.0916 0.0531 0.0510

ARE(full cohort,est) 1 0.225 0.203 0.354 0.364

95% Cov 0.943 0.548 0.948 0.945 0.948 0.950

Note: Probabilities of being observed are

P (R = 1jj) = f0:0212; 0:0223; 0:3509; 0:1381g
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Table 3.18: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 1000, P(X=1)=.5, P(V=k|X=k)=.8, �0=-3.557, �x=2, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=1000 n=200

�0

Coef -3.586 -1.359 -3.586 -3.586 -3.576 -3.572

Var 0.0777 0.0961 0.0841 0.0843 0.0838 0.0850

MSE 0.0829 4.9306 0.0895 0.0894 0.0846 0.0842

ARE(full cohort,est) 1 0.926 0.927 0.975 0.978

95% Cov 0.953 0 0.946 0.941 0.950 0.948

�x

Coef 2.026 1.978 2.033 2.033 2.021 2.018

Var 0.0917 0.1293 0.1158 0.1166 0.1128 0.1137

MSE 0.0958 0.1337 0.1209 0.1213 0.1131 0.1124

ARE(full cohort,est) 1 0.794 0.792 0.844 0.849

95% Cov 0.954 0.951 0.952 0.954 0.955 0.960

Note: Probabilities of being observed are P (R = 1jj) = f0:1060; 0:1169; 1; 1g
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Table 3.19: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 5000, P(X=1)=.3, P(V=k|X=k)=.8, �0=-3.157, �x=2, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=5000 n=200

�0

Coef -3.160 -0.662 -3.163 -3.164 -3.171 -3.165

Var 0.0073 0.0442 0.0209 0.0224 0.0157 0.0160

MSE 0.0079 6.2700 0.0227 0.0247 0.0186 0.0183

ARE(full cohort,est) 1 0.347 0.319 0.428 0.433

95% Cov 0.949 0 0.943 0.946 0.937 0.942

�x

Coef 2.005 1.349 2.014 2.017 2.026 2.019

Var 0.0110 0.0913 0.0621 0.0695 0.0393 0.0397

MSE 0.0118 0.5189 0.0651 0.0736 0.0453 0.0445

ARE(full cohort,est) 1 0.181 0.160 0.263 0.266

95% Cov 0.947 0.408 0.957 0.953 0.932 0.939

Note: Probabilities of being observed are

P (R = 1jj) = f0:0172; 0:0316; 0:2688; 0:1584g
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Table 3.20: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 1000, P(X=1)=.3, P(V=k|X=k)=.8, �0=-3.157, �x=2, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=1000 n=200

�0

Coef -3.162 -1.220 -3.162 -3.162 -3.164 -3.162

Var 0.0371 0.0462 0.0395 0.0396 0.0396 0.0395

MSE 0.0384 3.8006 0.0407 0.0410 0.0403 0.0402

ARE(full cohort,est) 1 0.943 0.937 0.955 0.956

95% Cov 0.947 0 0.945 0.945 0.952 0.947

�x

Coef 2.001 2.379 2.014 2.013 2.015 2.013

Var 0.0556 0.1057 0.0938 0.0938 0.0895 0.0891

MSE 0.0554 0.2542 0.0939 0.0927 0.0876 0.0873

ARE(full cohort,est) 1 0.591 0.598 0.634 0.635

95% Cov 0.960 0.806 0.954 0.956 0.956 0.957

Note: Probabilities of being observed are P (R = 1jj) = f0:1578; 0:0858; 1; 1g
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Table 3.21: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 5000, P(X=1)=.5, P(V=k|X=k)=.5, �0=-3.557, �x=2, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=5000 n=200

�0

Coef -3.561 -1.409 -3.594 -3.593 -3.578 -3.577

Var 0.0147 0.0973 0.0796 0.0801 0.0795 0.0794

MSE 0.0156 4.7131 0.0869 0.0875 0.0871 0.0870

ARE(full cohort,est) 1 0.183 0.181 0.180 0.180

95% Cov 0.946 0.001 0.954 0.946 0.945 0.944

�x

Coef 2.005 2.047 2.047 2.046 2.021 2.020

Var 0.0175 0.1314 0.1313 0.1320 0.1306 0.1302

MSE 0.0185 0.1426 0.1432 0.1443 0.1443 0.1441

ARE(full cohort,est) 1 0.131 0.130 0.128 0.128

95% Cov 0.943 0.946 0.945 0.944 0.936 0.936

Note: Probabilities of being observed are

P (R = 1jj) = f0:0222; 0:0222; 0:1982; 0:1982g
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Table 3.22: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 1000, P(X=1)=.5, P(V=k|X=k)=.5, �0=-3.557, �x=2, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=1000 n=200

�0

Coef -3.586 -1.383 -3.583 -3.583 -3.581 -3.581

Var 0.0777 0.0955 0.0867 0.0872 0.0875 0.0873

MSE 0.0829 4.8212 0.0886 0.0885 0.0884 0.0885

ARE(full cohort,est) 1 0.934 0.934 0.934 0.934

95% Cov 0.953 0.001 0.954 0.952 0.954 0.954

�x

Coef 2.026 2.027 2.027 2.028 2.023 2.023

Var 0.0917 0.1293 0.1291 0.1299 0.1303 0.1298

MSE 0.0958 0.1246 0.1253 0.1255 0.1252 0.1252

ARE(full cohort,est) 1 0.764 0.763 0.763 0.763

95% Cov 0.954 0.966 0.964 0.963 0.965 0.964

Note: Probabilities of being observed are P (R = 1jj) = f0:1112; 0:1112; 1; 1g
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Table 3.23: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 5000, P(X=1)=.3, P(V=k|X=k)=.5, �0=-3.157, �x=2, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=5000 n=200

�0

Coef -3.160 -0.987 -3.177 -3.177 -3.167 -3.167

Var 0.0073 0.0502 0.0321 0.0323 0.0316 0.0319

MSE 0.0079 4.7638 0.0363 0.0366 0.0365 0.0365

ARE(full cohort,est) 1 0.220 0.218 0.216 0.216

95% Cov 0.949 0 0.950 0.949 0.944 0.945

�x

Coef 2.005 2.044 2.044 2.044 2.023 2.022

Var 0.0110 0.1056 0.1050 0.1057 0.1034 0.1039

MSE 0.0118 0.1193 0.1198 0.1216 0.1212 0.1212

ARE(full cohort,est) 1 0.100 0.098 0.098 0.097

95% Cov 0.947 0.939 0.937 0.937 0.930 0.930

Note: Probabilities of being observed are

P (R = 1jj) = f0:0222; 0:0222; 0:1994; 0:1994g
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Table 3.24: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 1000, P(X=1)=.3, P(V=k|X=k)=.5, �0=-3.157, �x=2, expected

subsample of 200

LR1 LR2 PL WPL ESO ESE

n=1000 n=200

�0

Coef 3.162 -0.963 -3.162 -3.163 -3.162 -3.162

Var 0.0371 0.0494 0.0403 0.0404 0.0405 0.0404

MSE 0.0384 4.8627 0.0412 0.0413 0.0412 0.0412

ARE(full cohort,est) 1 0.933 0.931 0.931 0.932

95% Cov 0.947 0 0.953 0.951 0.954 0.954

�x

Coef 2.001 2.020 2.020 2.020 2.016 2.016

Var 0.0556 0.1044 0.1038 0.1044 0.1047 0.1042

MSE 0.0554 0.0977 0.0978 0.0983 0.0978 0.0978

ARE(full cohort,est) 1 0.568 0.566 0.567 0.567

95% Cov 0.960 0.960 0.960 0.959 0.960 0.961

Note: Probabilities of being observed are P (R = 1jj) = f0:1112; 0:1112; 1; 1g
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CHAPTER 4

TRUNCATED DATA

4.1 INTRODUCTION

Medical studies are frequently interested in determining the relationship between bio-

logical markers and other variables. Many of these biological markers are measured with

assays that have a lower threshold for detection of the substance. When this is the case, the

measurement is recorded to be that of the lower threshold value and the reading is assumed

to be \normal". This results in left truncated data.

In this setting, regression models are the analysis tool of choice with logistic, survival,

and linear models seeing the greatest use. Each of these modeling techniques places di�erent

assumptions on the outcome variables, while requiring that the covariates be �xed. These

assumptions can create problems when data are truncated since the models do not explicitly

handle truncated covariate data. In addition, a limited number of modeling approaches are

available for the modeling of truncated outcome data. The Tobit (Tobin 1958) model is the

most popular approach for regression modelling with truncated data.
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In many studies, the observed level of truncated data may be quite low since most of

the observed values are above the threshold level, particularly for markers of \illness". In

this instance, truncation may have little impact on data analysis results. A sepsis study

conducted at the University of Pittsburgh has motivated us to determine the impact of

a large amount of truncation. One aim of this study was to determine the relationship

between severe sepsis status and measures of in
ammation such as tumor necrosis factor,

interleukin-10, and interleukin-6.

Thirty-eight hospitals participated in this study from November 2001 and November

2003, enrolling 2320 patients. Patient eligibility criteria included being at least 18 years

old and having both a clinical diagnosis of pneumonia and a new pulmonary in�ltrate on

chest x-ray. During a patient's stay in the hospital, blood was drawn for cytokine assays

at enrollment, and on days 2-8, 15, 22 and 30. Baseline in
ammatory marker samples were

collected for 1815 subjects, of which 1809 samples were collected for IL-10 and TNF and

1811 samples for IL-6. The detectable limit for IL-10 and IL-6 was 5 and for TNF was 4,

indicating that the concentration of the sample for these markers was below the detectable

limit. After a majority of the IL-6 samples were assayed, a more sensitive assay was devel-

oped for it and the new detection limit was 2. Of the 1809 patients, 714 (39%) were below

the detectable limit for TNF and 900 (50%) were below the detectable limit for IL-10. Of

the 1811 patients, 278 (15%) were below the detectable limit for IL-6 where 25 (1%) were

below the detectable limit of 2 and 253 (14%) were below the detectable limit of 5. Of the

1815 patients, 477 (26%) developed severe sepsis during their stay in the hospital. Upon

discharge, 78 of the 1815 patients (4%) died.
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The Tobit model can handle truncated outcome data in a regression model. A gen-

eralization of the Tobit model known as the censored normal regression model can handle

truncated outcomes when multiple thresholds exist. We demonstrate how inference and

prediction are a�ected if appropriate measures are not taken to adjust an analysis for trun-

cated data. We also demonstrate how the data analysis results are impacted when the

data are analyzed using the Tobit model, standard regression with �lling in the truncated

values, and standard regression with complete cases. The Tobit model is used for TNF and

IL-10 and the censored normal regression (CNREG) model for IL-6. Results are reported

in Table 4.1. Inference is the same regardless of the method chosen. But the predicted

value of the in
ammatory markers conditional on severe sepsis status increases with both

standard regression methods. This is occurring because the Tobit/CNREG model assumes

that truncated values are below the detectable limit and that the slope is not as steep. The

other two methods produce steeper slopes due to either assuming that all truncated values

are equivalent to the detectable limit, or discarding the data. These results should convince

one to use appropriate modelling techniques to handle truncated data. This implies that if

covariate data is also truncated the inference and prediction could potentially be impacted.
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Table 4.1: Linear Regression and Tobit Model Results for Cytokines

TNF N E(tnfjno sssoap) E(tnfjsssoap) p-value

Tobit Model 1809 4.8 6.5 <.0001

LR �lling in truncated value 1809 6.6 8.2 <.0001

LR with nontruncated values 1095 9.4 11.9 <.0001

IL-10 N E(IL-10jno sssoap) E(IL-10jsssoap) p-value

Tobit Model 1809 4.4 7.1 <.0001

LR �lling in truncated value 1809 9.1 11.9 <.0001

LR with nontruncated values 909 17.8 21.9 <.0001

IL-6 N E(IL-6jno sssoap) E(IL-6jsssoap) p-value

CNREG 1811 3.4 4.2 <.0001

LR �lling in truncated value 1811 3.6 4.3 <.0001

LR with nontruncated values 1533 4.0 4.6 <.0001

Note: LR=Linear Regression, SSSOAP= Severe Sepsis SOAP

Truncated and censored data methodology have been developed for the last 30 years with

the focus on the outcome variable. This has lead to the development of models such as the

Tobit regression model for truncated data in addition to numerous models for censored data.

Another commonly encountered problem is that of truncated covariate data. This type of

data is generally observed in the laboratory setting, where the lower limit of detection of

an assay is often observed. Currently two methods exist to handle a truncated covariate.

The �rst method is a complete case method. Estimates from this approach will be consistent
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but have in
ated variances due to deletion of cases. The second approach includes all

subjects �lling in the truncated values with the lower threshold value.

To address this problem, we propose two methods to estimate the coe�cients and their

standard errors for a regression model with a left truncated covariate. The �rst method

is a likelihood-based approach. The second approach uses estimating equation techniques.

The likelihood-based method is solved and will be compared to a standard method of �lling

in the truncated values with the lower threshold value in the next chapter. The estimating

equation method is close to completion and once solved should be the most e�cient method.

The application of the likelihood-based method is illustrated in the sepsis study conducted

at the University of Pittsburgh, referenced above. One aim of this study was to determine

the relationship between severe sepsis status and measures of in
ammation such as tumor

necrosis factor, interleukin-10, and interleukin-6.

4.2 LITERATURE REVIEW

The goal of this chapter is to develop a regression model for a binary outcome adjusting

for a truncated variable. Very little literature has been devoted to regression with trun-

cated variables. Henery (1981) is the only known author to develop a normal conditional

distribution for a random variable given a truncated variable. Tobin (1958) developed the

Tobit model for regression modelling with a truncated outcome for both a truncated and

censored sample. The Tobit model is the most popular approach for regression modelling

with truncated data. Breen (1996) reviews truncated and censored samples as well as the

Tobit model in greater detail.
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Dempster et al. (1977) developed an EM algorithm approach for truncated variables in a

general framework. McLaren et al. (1986, 1991) has extended the EM algorithm approach

to handle truncated immunology data. McLaren has focused on descriptive and regression

modelling tools where the truncated variable is the outcome. We base our �rst approach

on a likelihood-based method covered in the next section.

Bickel et al. (1983) developed an e�cient score approach for regression with a truncated

sample where the outcome is truncated. Bickel chose an estimating equation method to

adjust for this biased sampling. We base our second proposed approach on estimating

equations for a censored sample with a truncated covariate. Our proposed extension will be

described in Section 4.4.

4.3 LIKELIHOOD-BASED EXTENSION

Truncated data are de�ned as data that are observed within a �xed interval. A random

variable that is observed above a threshold is known as left truncation; whereas, right trun-

cation is de�ned as observing a random variable below a threshold. Double truncation is

de�ned as observing a random variable between lower and upper thresholds. Left truncation

is the focus of this chapter. A left truncated variable is denoted by

xc =

8>><>>:
x if x > c

c if x � c
:

Two types of samples involving truncated variables are censored samples and truncated

samples (Breen, 1996). For de�nition purposes, let X be truncated and Z = (Y; V ) be

fully observed where (X;V ) are covariates and Y is the outcome. In the case of a censored

63



sample, Z is observed for all subjects and X is observed for some subjects. In the case of a

truncated sample, Z is observed only for those subjects who have an observed value for X.

Censored samples will be addressed in this chapter.

The likelihood-based approach will reduce bias and variance in the coe�cients but will

not produce an e�cient estimate partially due to bias. The full likelihood must be speci�ed

including a distribution of the covariate space. The truncated indicator is de�ned as R =8>><>>:
1 if x > c

0 if x � c
: To simplify matters, a speci�c example will be used whereW = (Y; V;X;R)

and X is truncated. We assume that X and V are independent. The density of the data

are

p(Y; V;X;R) = q(Y; V;X)R
�Z

x�c
q(Y; V;X)d�(x)

�1�R
;

where q(Y; V;X) = f(yjv; x)f(v; x) = f(yjv; x)f(v)f(x). The �rst part of the likelihood

contributes to the nontruncated data and the second part to the portion that is truncated.

The second component of the likelihood is an average of the density over all values X � c:

The log likelihood is

log p(w) = R log q(Y; V;X) + (1�R) log
�Z

x�c
q(Y; V;X)d�(x)

�
= R flog f(yjv; x) + log f(x) + log f(v)g

+(1�R) log
�Z

x�c
f(yjv; x)f(x)f(v)d�(x)

�
:
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The derivative of the log-likelihood wrt � is de�ned as:

@

@�
log p(w) =

@

@�
R log q(Y; V;X) +

@

@�
(1�R) log

�Z
x�c
q(Y; V;X)d�(x)

�
= R

:

l(y; x; vj�)

+ (1�R)
R
x�c

:

l(y; x; vj�)f(yjv; x)f(x)f(v)d�(x)R
x�c f(yjv; x)f(x)f(v)d�(x)

= R
:

l(y; x; vj�) + (1�R)E(
:

l(y; x; vj�)jx � c; y; v): (4.1)

In our speci�c case, we have a binary outcome and the covariate data is in
ammatory

marker data which implies that we are concerned with only the logistic model and we can

assume the covariate log(X) is normally distributed. The score of the logistic model is

:

l1(y; z; vj�) =

0BBBBBB@
1

x

v

1CCCCCCA
�
y � exp(�0+�x+�vv)

1+exp(�0+�x+�vv)

�
: In other scenarios, one may not be able to

assume a distribution for the covariate space which is another reason for choosing a semi-

parametric approach over the likelihood-based approach.

Solving for the parameters from 4.1 directly is intractable so an alternative method must

be used. The Newton-Raphson estimator is used to solve for the coe�cient parameters �.

The following steps are taken:

� Step 1: Obtain a consistent estimate, e�, of � to use as an initial starting value. A

consistent estimate can be obtained from the analysis using only nontruncated values.

� Step 2: Di�erentiate the log-likelihood wrt � which reduces to Equation 4.1 denoted
�
l
o

:

65



� Step 3: Use the Newton-Raphson estimator to solve for an estimate of �, b�, where0BBBBBB@
b�0
b�X
b�V

1CCCCCCA =

0BBBBBB@
e�0
e�X
e�V

1CCCCCCA + Io�1e�

0BBBBBBB@

nP
i=1

�
l
oe�0;i

nP
i=1

�
l
oe�X ;i

nP
i=1

�
l
oe�V ;i

1CCCCCCCA
and the information bound Io�1e� is

Ioe� =

0BBBBBBB@

0BBBBBB@

�
l
oe�0
�
l
oe�X
�
l
oe�V

1CCCCCCA

0BBBBBB@

�
l
oe�0
�
l
oe�X
�
l
oe�V

1CCCCCCA

T
1CCCCCCCA
:

4.3.1 Extension for multiple truncated variables

The likelihood-based approach can be extended to handle more than one truncated co-

variate. We have discussed such a scenario in the sepsis study where cytokines TNF, IL-10,

and IL-6 are truncated. We de�ne Y as the outcome and (X;V ) as the covariates where

(Y; V ) are fully observed and X = (X1; X2) are truncated. The truncated indicator is de-

�ned as R1 =

8>><>>:
1 if x1 > c1

0 if x1 � c1
for the �rst truncated variable X1 and R2 =

8>><>>:
1 if x2 > c2

0 if x2 � c2
for the second truncated variable X2. The density of the data is

p(w) = q(Y; V;X)R1R2
�Z

x1�c1
q(Y; V;X)d�(x)

�(1�R1)R2
��Z

x2�c2
q(Y; V;X)d�(x)

�R1(1�R2)
��Z

x1�c1;x2�c2
q(Y; V;X)d�(x)

�(1�R1)(1�R2)
;

where q(Y; V;X) = f(yjv; x)f(v; x) = f(yjv; x)f(v)f(x) = f(yjv; x1; x2)f(v)f(x1)f(x2):
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The log likelihood is

log p(w) = R1R2 log q(Y; V;X) + (1�R1)R2 log
�Z

x1�c1
q(Y; V;X)d�(x)

�
+R1(1�R2) log

�Z
x2�c2

q(Y; V;X)d�(x)

�
+(1�R1) (1�R2) log

�Z
x1�c1;x2�c2

q(Y; V;X)d�(x)

�
= R1R2 flog f(yjv; x) + log f(x) + log f(v)g

+(1�R1)R2 log
�Z

x1�c1
f(yjv; x)f(x)f(v)d�(x)

�
+R1(1�R2) log

�Z
x2�c2

f(yjv; x)f(x)f(v)d�(x)
�

+(1�R1) (1�R2) log
�Z

x1�c1;x2�c2
f(yjv; x)f(x)f(v)d�(x)

�
:

The derivative of the log-likelihood wrt � is de�ned as: @
@�
log p�;
(w) =

R1R2
:

l(y; z; vj�)

+ (1�R1)R2

R
x1�c1

:

l(y; x1; x2; vj�)f(yjv; x1; x2)f(x1)f(x2)f(v)d�(x1)R
x1�c1 f(yjv; x1; x2)f(x1)f(x2)f(v)d�(x1)

+R1(1�R2)
R
x2�c2

:

l(y; x1; x2; vj�)f(yjv; x1; x2)f(x1)f(x2)f(v)d�(x2)R
x2�c2 f(yjv; x1; x2)f(x1)f(x2)f(v)d�(x2)

+ (1�R1) (1�R2)
R
x1�c1;x2�c2

:

l(y; x1; x2; vj�)f(yjv; x1; x2)f(x1)f(x2)f(v)d�(x1)d�(x2)R
x1�c1;x2�c2 f(yjv; x1; x2)f(x1)f(x2)f(v)d�(x1)d�(x2)

= R1R2
:

l(y; z; vj�)

+ (1�R1)R2E
�:
l(y; x1; x2; vj�)jy; x1 � c1; x2; v

�
+R1(1�R2)E

�:
l(y; x1; x2; vj�)jy; x1; x2 � c2; v

�
+(1�R1) (1�R2)E

�:
l(y; x1; x2; vj�)jy; x1 � c1; x2 � c2; v

�
:
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4.4 ESTIMATING EQUATION EXTENSION

For the estimating equation approach, an e�cient score approach will be used via the

inverse operator technique. The type of data is as before with an outcome Y which is fully

observed and a cytokine variable X that is truncated at c: The remaining covariates V are

fully observed. The complete data are (Y;X; V; C) where c is a constant value. Since X

is truncated we claim X is either x; where X > c; or c; where X � c. We are treating the

problem as a Type I �xed censoring problem. The complete data areW o = (Y;X; V; C) � Q.

The following assumptions are needed: 1) X and C are conditionally independent, given

(V; Y ) and 2) X ? V and C ? V . We observe W = (Y;max(X;C); V; I(C � X)) =

(Y;D; V;�) � P:

The density f(Y;X; V; C) can be expressed as

q(Y;X; V; C) = e(X;CjY; V )h(Y; V )

=
f(Y jX;V )g(X)e(V )

e(Y jV ) e(Y jC; V )e(C):

The log-likelihood for model Q is

logf(Y;X; V; C) = log
f(Y jX;V )f(X)f(V )

f(Y jV ) f(Y jC; V )f(C)

= log f(Y jX;V ) + log f(X) + log f(V )� log f(Y jV ) + log f(Y jC; V ) +

log f(C):
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The score for � in model Q is

:

Q1 =
:

l1(y; z; vj�;Q)

=
@

@�
log f(Y jX;V )

=

0BBBBBB@
1

x

v

1CCCCCCA
�
y � exp (�0 + �x+ �vv)

1 + exp (�0 + �x+ �vv)

�
:

Correctly identifying the nuisance parameters and determining the nuisance parameters

that add information to the observed score is crucial to construction of the e�cient score.

The following parameters are treated as nuisance parameters: � = (log f(X); log f(V );

log f(C); log f(Y jC; V ); log f(Y jV )). The scores for the nuisance parameters f(X); f(V );

f(C); f(yjc; v); and f(Y jV ) in model Q are
:

Q2 =
:

l2a2(xjQ) = a2(X) =
@
@k
log gk(X);

:

Q3 =
:

l3a3(vjQ) = a3(V ) =
@
@k
log fk(V ),

:

Q4 =
:

l4a4(cjQ) = a4(c) =
@
@k
log gk(C);

:

Q5 =

:

l5a5(Y; V; CjQ) = a5(Y; V; C) =
@
@k
log gk(Y; V; C); and

:

Q6 =
:

l6a6(Y; V jQ) = a6(Y; V ) =

@
@k
log gk(Y; V ), respectively. We assume that

:

Q2;
:

Q3;
:

Q4;
:

Q5;
:

Q6 are mutually orthogonal

and
:

Q
�
=
n :

Q1 +
:

Q2 +
:

Q3 +
:

Q4 +
:

Q5 +
:

Q6

o
= fh1(y; x; c; v) + h2(x) + h3(v) + h4(c) +

h5(y; v; c) + h6(y; v)g. The only nuisance parameter that is not orthogonal to
:

Q1 is
:

Q2: To

solve the e�cient score we must �nd the function a(X) 2 L02(G).

Our problem is a left censoring problem which leads us to discuss counting process con-

cepts. Counting processes will be used to aid in solving the e�cient score. The following

counting process notation is from Keiding (1992) which describes the left censoring process

as a left �ltering process by use of the Aalen �lter. According to Andersen et al. (1993) we
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can analyze left censored data by handling the counting process as being left-�ltered or

as being observed with delayed entry.

The counting process for left �ltering is (Keiding uses notation ft; C; Y g and we use

fd;H;Eg respectively)

NH
i (d) =

dZ
0

Hi(u)dNi(u) = IfXi � d;Hi(Xi�) = 1g;

where the superscript H represents left censoring, Hi(u) = IfCi < u � Xig, and N(d) =
nP
i=1

Ni(d) =
nP
i=1

I(Xi � d): In this case, Hi(u) is the �ltering process for left �ltering and right

censoring. N(d) is the counting process for right censoring studied by Aalen. The intensity

process of NH
i (d) is

�(u)Hi(u)Ei(u) = �(u)E
H
i (u);

where Ei(u) = I(Xi � u) and EHi (u) = IfHi(u) = 1; Xi > ug. Note that Ei(u) represents

the subjects at risk at time u under the �ltering process Hi(u): The sigma �eld is de�ned

as

Gd = �fI(C � d); CI(C � d); I(X � d); XI(X � d); Y; V g:

Keiding has proven that left �ltering is independent, that is, f(C;XjC < X) = g(c)f(x)

(Andersen et al.,1993, p. 49 and 166).

The �(u) from the intensity process of NH
i (d) is de�ned as

� =
f(Djy; v)
S(Djy; v)

=
f(yjD; v)f(D)

f(yjv)
F (yjv)

F (yjv)� F (yjD; v)F (D)
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where S(Djy; v) = 1� F (Djy; v). We de�ne the martingale for left censored data as

M = NH(d)� �H(d; �)

=
nX
i=1

IfXi � d;Hi(Xi�) = 1g �
Z d

0

�(s; �)IfXi � ugds:

More speci�cally we de�ne the martingale and the adjusted martingale for the observed data

as:

M(d) = I(c < X � d)�
Z d

0

�(u; �)IfX � dgds

and

Muc(d) = I(X _ C � d;� = 1)�
Z d

0

�(u; �)IfX _ C � ugds:

Let the score be de�ned as 	(X; y; v) = @
@�
log f(Y jX;V ): Let the operator R be de�ned

as R	(u; y; v) = 	(u; y; v)�E(	(X; y; v)jy; v;X > u) (Bickel et al., 1993). The L operator

is de�ned as Lb(U) =
1R
�1

bdM: The conditional expectation E(	(X; y; v)jy; v;X > u) is

de�ned as

E(	(X; y; v)jy; v;X > u) =

R1
u
	(X; y; v)f(y; v; x)dxR1

u
f(y; v; x)dx

=

R1
u
	(X; y; v)f(yjv; x)f(x)f(v)dxR1

u
f(yjv; x)f(x)f(v)dx

:

Conditioning on the �ltration process, the conditional expectation of the observed score

for the parameter of interest and nuisance parameter are:

E(
:

l1(W
0j�;Q)jGd) = E(	(X; y; v)jGd) =

Z d

0

R	(X; y; v)dM

E(
:

l2a(W
0j�;Q)jGd) = E(a(X; y; v)jGd) =

Z d

0

Ra(X; y; v)dM:
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For model P the score for the estimation of � is also the observed score:

:

l1(W j�;P) = E(
:

l1(W
0j�;Q)jW )

=

Z d

c

R	(X; y; v)dM

=

Z 1

0

R	(X; y; v)dMuc

= �	(d; y; v) + (1��)E(	(X; y; v)jX > d; y; v):

The observed score for the estimation of a is:

:

l2a(W j�;P) = E(
:

l2a(W
0j�;Q)jW )

=

Z d

c

Ra(X; y; v)dM

=

Z 1

0

Ra(X; y; v)dMuc

= �a(X; y; v) + (1��)E(a(X; y; v)jX > d; y; v):

The above are true since the following holds:Z 1

0

R	(X; y; v)dMuc

=

Z 1

0

R	(X; y; v)d

�
I(X _ C � d;� = 1)�

Z d

0

�(u; �)IfX _ C � ugdu
�

=

Z 1

0

[(R	(X; y; v)dI(X _ C � d;� = 1)dt�R	(X; y; v)d�(djy; v))]

= �R	(d; y; v) + E(	(X; y; v)jX > d; y; v)�
since

Z 1

0

R	(X; y; v)d�(djy; v) = E(	(X; y; v)jX > d; y; v) due to L �R = identity
�

= �(	(d; y; v)� E(	(X; y; v)jX > d; y; v)) + E(	(X; y; v)jX > d; y; v)

= �	(d; y; v) + (1��)E(	(X; y; v)jX > d; y; v):

The e�cient score for estimation of � is
:

l
�
1(W;P j�;P) =

:

l1 � �0
�:
l1j

:

P�

�
: The following

theorems are from Bickel et al. (1993). We will use the method via inversion (Bickel
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et al. p.79) of ATA and projection �0

�:
l1j

:

P�

�
by applying theorem A.2.2 to solve for

:

l
�
1(W;P j�;P): According to theorem A.2.2, �0 (�jH0) = A

�
ATA

��1
AT �, implying that

�0

�:
l1j

:

P�

�
= A

�
ATA

��1
AT

:

l1. According to Theorem 3.4.1, the e�cient score can be

solved by
:

l
�
1(W;P j�;P) =

:

l1 � �0
�:
l1j

:

P�

�
:

The �rst step is to determine the projection of the score of the parameter of interest,
:

l1,

onto the score of the nuisance parameter
:

P�: This will enable us to calculate the e�cient

score of the parameter of interest,
:

l
�
1(W;P j�;P) =

:

l1 ��0
�:
l1j

:

P�

�
: A few items are needed

to calculate �0

�:
l1j

:

P�

�
: We �rst need to de�ne the operator A :

:

Q� !
:

P by

Aa = E(a1(X)jW ) =
Z 1

0

a(D)dMuc

= �a(d) + (1��)
Z 1

0

a(D)Ifd � ug�(ujy; v)ds:

Now we de�ne the adjoint of A as AT :
:

P!
:

Q� by

AT b = E(b(W )jX)� E(b(W )) = E(b(W )jX)

= E(b(Y;D; V;�)jX):

The adjoint of the observed score is de�ned as AT
:

l1 where

AT
:

l1 = AT
Z 1

0

R	(X; y; v)dMuc

= AT [�	(d; y; v) + (1��)E(	(X; y; v)jX > d)]

= E [�	(d; y; v) + (1��)E(	(X; y; v)jX > d)jX]

=

Z
v

Z
y

Z
�

[�	(d; y; v) + (1��)E(	(X; y; v)jy; v;X > d)] q(y; v;�; djx)dydvd�

=

Z
v

Z
y

2664 �	(d; y; v)q(y; v;� = 1; djx)

+(1��)E(	(X; y; v)jy; v;X > d)q(y; v;� = 0; djx)

3775 dydv:
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For the adjoint there are two scenarios for our case: 1) X > c and 2)X � c. For the �rst

scenario, when X > c; we have � = 1 and

AT
:

l1 =

Z
v

Z
y

�	(d; y; v)q(y; v;� = 1; djx)dydv

=

Z
v

Z
y

	(d; y; v)q(y; v;� = 1; djx)dydv where d = x is �xed.

For the second scenario, when X � c; we have � = 0 and

AT
:

l1 =

Z
v

Z
y

[(1��)E(	(X; y; v)jy; v;X > d)q(y; v;� = 0; djx)] dydv

=

Z
v

Z
y

[E(	(X; y; v)jy; v;X > d)q(y; v;� = 0; djx)] dydv

with

q(y; v;� = 0; djx) = q(y; v;� = 0; d)=F (x � c)

= q(y; v;� = 0; d)=F (c):

To obtain the adjoint of the observed score, we need to calculate q(y; v;�; d); where

the notation is borrowed from Andersen et al. (1993). According to Andersen (p.142 and

p.166), the full likelihood is

L�t (�; �) = Lc
0

t (�)L
00

t (�; �)

=

�
Sx(X; �jy; v)
Sx(C; �jy; v)

ax(X; �jy; v)
��

�

Sc(C; �jy; v)ac(C; �jy; v)Sx(C; �jy; v)1��Fx(C; �jy; v)�f(y; v)

=

�
fx(X; �jy; v)
Sx(C; �jy; v)

Fx(C; �jy; v)
��

fc(C; �jy; v)Sx(C; �jy; v)1��f(y; v):

The density q(y; v;�; d) should be equivalent to the likelihood L�t (�; �) :

q(y; v;�; d) =

�
fx(X; �jy; v)
Sx(C; �jy; v)

Fx(C; �jy; v)
��

fc(C; �jy; v)Sx(C; �jy; v)1��f(y; v):
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The pieces of q(y; v;�; d) can be calculated the following way. First to derive the density

fx(X; �jy; v) :

fx(X; �jy; v) =
fx(X; y; v)

f(y; v)

=
fx(yjX; v)f(X)

f(yjv) :

The detailed derivation of the density q(y; v;�; d) is:

q(y; v;�; d) =

�
fx(X; �jy; v)
Sx(C; �jy; v)

Fx(C; �jy; v)
��

fc(C; �jy; v)Sx(C; �jy; v)1��f(y; v)

=

 fx(yjX;v)fx(X)
f(yjv)

1� Fx(yjC;v)Fx(C)
F (yjv)

Fx(yjC; v)Fx(C)
F (yjv)

!�
fc(yjC; v)fc(C)f(v)

f(y; v)
�

�
1� Fx(yjC; v)Fx(C)

F (yjv)

�1��
f(y; v)

/
�

fx(yjX; v)fx(X)
f(yjv) [F (yjv)� Fx(yjC; v)Fx(C)]

Fx(yjC; v)Fx(C)
��

f(yjv)f(v)��
F (yjv)� Fx(yjC; v)Fx(C)

F (yjv)

�1��
(since C is constant fc(yjC; v) = f(yjv) and fc(C) = k) :

Since C is a constant, fc(C)=
P
I(X�c)
n

and fc(yjC; v) = fc(yjv): A consistent estimate

of � is based on a model with f(yjx; v; �). For f(yjx; v; �); we would �t a logistic model

including x and v to estimate �: We de�ne the density of X as fx(c) = Fx(c) =
P
I(X�c)
n

and fx(x) = Fx(x)� Fx(x�); where Fx(x) =
P
I(X�x)
n

and n is the total sample size. More

precisely recalling that y = f0; 1g:

F (yjv)� Fx(yjC; v)Fx(C) = f(y = 0jv)� fx(y = 0jC; v)
P
I(X � c)
n

if y = 0

and

F (yjv)� Fx(yjC; v)Fx(C) = 1� 1
P
I(X � c)
n

= 1�
P
I(X � c)
n

if y = 1.
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Also, since C is a constant, fx(c) and Fx(C) are always the same value. Since C is the same

value for all subjects, Fx(yjC; v) varies for each combination of (y; v).

We need to calculate the adjoint of A onto A which is de�ned as ATAa :
:

Q2 !
:

Q2:

ATAa = E(AajX)

= E(E(ajW )jX)

= E

��
�a(d) + (1��)

Z 1

0

a(D)Ifd � sg�(sjy; v)ds:
�
jX
�

= �a(d) + E

�
(1��)

Z 1

0

a(D)IfX _ C � Dg�(Djy; v)dDjX
�
:

The next step is to calculate the inverse operator of ATA s.t.
�
ATA

��1
ATAa = a: It

can be very di�cult to solve an inverse operator of an integral operator. If we can assume

it is acceptable to sum rather than integrate over v; y;D then we can solve a linear operator.

ATAa = �a(d) + (1��)
Z
v

Z
y

Z 1

0

a(D)IfX _ C � Dg�(Djy; v)dDq(y; v; d;� = 0jx)dydv

= �a(d) + (1��)
X
V

X
Y

X
D

a(D)IfX _ C � Dg�(Djy; v)q(y; v; d;� = 0jx)

!
�
ATA

��1
=

0BBBBBBBBBB@

P
V

P
Y

q(d1; y; v;� = 0)�(d1jy; v) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCCCCCCCCCA

�1

:

To obtain
�
ATA

��1
one calculates the conditional expectation of b(x) conditioning on X and

not truncated (� = 1) �
ATA

��1
b(x) = E(b(x)j� = 1; X):
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Using the above solution, the inverse operator of the adjoint of A onto A of the adjoint

of A onto the observed score gives:

�
ATA

��1
AT

:

l1 = E

�Z
v

Z
y

Z
�

[�	(d; y; v) + (1��)E(	(X; y; v)jy; v;X > d)]�

q(y; v;�; djx)dydvd�j� = 1; X]

=

Z
v

Z
y

	(d; y; v)q(y; v;� = 1; djx)dydv:

The last step needed to calculate �0

�:
l1j

:

P�

�
is to calculate theA operator onto

�
ATA

��1
AT

:

l1

which is de�ned as A
�
ATA

��1
AT

:

l1 = E(
�
ATA

��1
AT

:

l1jW ): We can now reach our ultimate

goal which is the e�cient score. To do this, we use the projection of the score of the pa-

rameter of interest onto the score of the nuisance parameter space, �0

�:
l1j

:

P�

�
; to calculate

the e�cient score of �: The e�cient score is:

l� =
:

l1 � A
�
ATA

��1
AT

:

l1 =

:

l1 � E(
�
ATA

��1
AT

:

l1jW )

=
:

l1 �
Z 1

0

�
ATA

��1
AT

:

l1dMuc:

We solve for the new estimates of � by the Newton-Raphson estimator b� = e�+I�1

0BBBBBBBBBBB@

P
i

l��0;i

:

:P
i

l��k;i

1CCCCCCCCCCCA

where I =

0BBBBBBBBBB@

l��0;i

:

:

l��k;i

1CCCCCCCCCCA

0BBBBBBBBBB@

l��0;i

:

:

l��k;i

1CCCCCCCCCCA

T

:
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CHAPTER 5

SIMULATION STUDIES AND

EXAMPLE FOR TRUNCATED

COVARIATE DATA

This chapter demonstrates the utility of the likelihood-based method compared to stan-

dard methods. The �rst section covers simulation studies. The following section uses the

sepsis study as an example.

5.1 SIMULATION STUDIES

Simulation studies have been performed to compare four methods in the presence of

truncated covariate data. The outcome, Y , is binary and the one covariate, log(X), in the

model is normally distributed with mean � and variance �2, i.e. log(x) � N(�; �2).
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Logistic regression is the model of choice for this setting, where we model logit(Pr(Y =

1jx)) = �0 + �x log(x): Summary statistics facilitate comparison of four di�erent modeling

approaches for this problem. The summary statistics of the estimators of � calculated were

the mean of the coe�cient of the replicates, mean of the variance of the coe�cient of the

replicates, MSE, and 95% coverage.

The four approaches are presented in the following tables. In each case, the �rst column

is standard logistic regression (LR) with all true values of X; here nothing is truncated. The

second column is our likelihood-based approach. The starting values used for the likelihood-

based approach are from standard logistic regression with log(X) in the model, including

only nontruncated values. The third column is standard logistic regression with log(X) in

the model, including only nontruncated values. In this case, the sample size will be reduced

to including subjects who have a value of X above the threshold value. The fourth column

is a standard logistic regression with log(D) in the model where D = max(X;C); i.e. D is

the maximum of X and C, the threshold value. In this case, all subjects are included in the

analysis with either their observed value or a truncated value.

Twelve scenarios have been simulated. The �rst three tables use data generated from

log(X) � N(2; 1) and the last three tables use data generated from log(X) � N(3; :7): In

Table 5.1, �0 = 1 and �x = �0:5 with 50% and 35% truncation. In Table 5.2, �0 = �2 and

�x = 1 with 50% and 35% truncation. In table 5.3, �0 = �4 and �x = 2 with 50% and 35%

truncation. In Table 5.4, �0 = 0 and �x = 0 with 50% and 35% truncation. In Table 5.5,

�0 = �3 and �x = 1 with 50% and 35% truncation. In table 5.6, �0 = �6 and �x = 2 with

50% and 35% truncation.
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5.1.1 Results

Our simulation studies demonstrate that our likelihood-based method has better variance

correction than the two competitors. The likelihood-based method is less biased than the

method using standard logistic regression with d = max(x; c); but is more biased than the

complete case method. The complete case method has no bias, but results in an in
ated

variance. The standard logistic regression with d has better variance correction than the

complete case. Our method has the smallest MSE due to some bias and variance reduction.

As the amount of truncation decreases, the likelihood method becomes less biased. When

the relationship between the outcome and covariate is small, �x = 0, there is no bias for any

of the methods. The likelihood-based method does not perform as well when the relationship

between the outcome and the covariate is large, �x = 2: When �x = 2; the likelihood method

performs better when there is less truncation. In this scenario, the likelihood method has

a larger bias, but the smallest variance causing the MSE to be larger than the complete

case method. Overall, the 95% coverage probabilities are accurate for the likelihood-based

method, except when �x = f1; 2g and the amount of truncation increases (50%).

The likelihood-based method is an improvement but still needs a bias correction. The

coe�cients are overestimated in the likelihood-based method and the standard method using

the truncation value. The method of �lling in the truncation values assumes all truncated

values equal the truncation value, forcing a steeper slope and larger intercept term (in ab-

solute terms). The likelihood-based method assumes that the truncated values are between

the smallest value possible (X = 0) and the truncated point. The likelihood method is

averaging the scores over this range which essentially yields a coe�cient value somewhere
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between the complete case coe�cient and the �ll-in truncated method. The slopes and

intercept are being weighted down for LB but not as much as with �lling in the truncated

value. This issue is known as the bias-variance trade-o�. We have reduced the variance

in exchange for bias. We are still in the process of solving the e�cient score approach and

suspect the e�cient score will correct for both the bias and variance.

Table 5.1: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 200, log(X)�N(2,1), 50% and 35% truncation, �0=1, �x=-.5

P (X < c) = :50 P (X < c) = :35

LR1 LB LR2 LR3 LB LR2 LR3

n = 200 n = 200 n = 100 n = 200 n = 200 n = 130 n = 200

�0

Coef 1.017 1.504 1.031 1.817 1.239 1.011 1.460

Var 0.120 0.290 1.108 0.444 0.184 0.554 0.255

MSE 0.124 0.548 1.105 1.122 0.243 0.543 0.471

95% Cov 0.949 0.857 0.951 0.782 0.924 0.963 0.860

�x

Coef -0.505 -0.666 -0.513 -0.761 -0.584 -0.505 -0.656

Var 0.024 0.053 0.141 0.076 0.037 0.082 0.049

MSE 0.024 0.082 0.141 0.147 0.044 0.081 0.074

95% Cov 0.957 0.907 0.956 0.861 0.948 0.959 0.912
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Table 5.2: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 200, log(X)�N(2,1), 50% and 35% truncation, �0=-2, �x=1

P (X < c) = :50 P (X < c) = :35

LR1 LB LR2 LR3 LB LR2 LR3

n = 200 n = 200 n = 100 n = 200 n = 200 n = 130 n = 200

�0

Coef -2.040 -3.058 -2.141 -3.759 -2.476 -2.073 -2.934

Var 0.169 0.422 1.515 0.665 0.258 0.706 0.344

MSE 0.172 1.586 1.566 3.872 0.485 0.710 1.239

95% Cov 0.961 0.643 0.960 0.433 0.885 0.957 0.649

�x

Coef 1.019 1.371 1.060 1.598 1.180 1.034 1.339

Var 0.036 0.082 0.209 0.123 0.054 0.113 0.071

MSE 0.036 0.233 0.221 0.507 0.088 0.117 0.193

95% Cov 0.954 0.780 0.959 0.631 0.911 0.950 0.783
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Table 5.3: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 200, log(X)�N(2,1), 50% and 35% truncation, �0=-4, �x=2

P (X < c) = :50 P (X < c) = :35

LR1 LB LR2 LR3 LB LR2 LR3

n = 200 n = 200 n = 100 n = 200 n = 200 n = 130 n = 200

�0

Coef -4.111 -6.276 -4.343 -7.965 -4.894 -4.170 -5.796

Var 0.390 1.067 3.242 1.731 0.578 1.253 0.697

MSE 0.457 6.583 3.474 18.409 1.416 1.310 4.077

95% Cov 0.942 0.404 0.963 0.085 0.836 0.959 0.446

�x

Coef 2.055 2.871 2.154 3.485 2.369 2.082 2.720

Var 0.089 0.223 0.519 0.359 0.130 0.235 0.162

MSE 0.107 1.073 0.577 2.787 0.285 0.254 0.728

95% Cov 0.941 0.571 0.962 0.282 0.879 0.959 0.611
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Table 5.4: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 200, log(X)�N(3,.7), 50% and 35% truncation, �0=0, �x=0

P (X < c) = :50 P (X < c) = :35

LR1 LB LR2 LR3 LB LR2 LR3

n = 200 n = 200 n = 100 n = 200 n = 200 n = 130 n = 200

�0

Coef -0.005 -0.031 -0.055 -0.040 -0.020 -0.020 -0.024

Var 0.400 1.016 3.144 1.375 0.659 1.728 0.860

MSE 0.395 1.021 3.235 1.394 0.660 1.792 0.865

95% Cov 0.956 0.959 0.949 0.957 0.948 0.957 0.952

�x

Coef 0.005 0.013 0.019 0.015 0.009 0.010 0.011

Var 0.042 0.097 0.246 0.126 0.067 0.147 0.084

MSE 0.042 0.098 0.254 0.128 0.067 0.152 0.085

95% Cov 0.948 0.958 0.951 0.960 0.954 0.957 0.955
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Table 5.5: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 200, log(X)�N(3,.7), 50% and 35% truncation, �0=-3, �x=1

P (X < c) = :50 P (X < c) = :35

LR1 LB LR2 LR3 LB LR2 LR3

n = 200 n = 200 n = 100 n = 200 n = 200 n = 130 n = 200

�0

Coef -3.063 -4.439 -3.179 -5.085 -3.724 -3.095 -4.193

Var 0.541 1.396 4.104 1.957 0.883 2.151 1.134

MSE 0.520 3.467 4.058 6.329 1.361 2.052 2.526

95% Cov 0.961 0.800 0.958 0.694 0.927 0.964 0.829

�x

Coef 1.019 1.392 1.054 1.559 1.205 1.030 1.331

Var 0.057 0.136 0.332 0.185 0.091 0.189 0.114

MSE 0.054 0.291 0.328 0.502 0.128 0.181 0.222

95% Cov 0.956 0.855 0.956 0.780 0.942 0.964 0.884
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Table 5.6: Summary statistics for logistic regression coe�cients based on 1000 replications

with a sample size of 200, log(X)�N(3,.7), 50% and 35% truncation, �0=-6, �x=2

P (X < c) = :50 P (X < c) = :35

LR1 LB LR2 LR3 LB LR2 LR3

n = 200 n = 200 n = 100 n = 200 n = 200 n = 130 n = 200

�0

Coef -6.120 -9.125 -6.375 -10.635 -7.441 -6.202 -8.407

Var 0.969 2.703 7.054 3.854 1.582 3.327 1.916

MSE 0.951 13.053 7.531 26.494 3.676 3.417 7.919

95% Cov 0.955 0.532 0.952 0.331 0.839 0.959 0.594

�x

Coef 2.039 2.883 2.118 3.295 2.423 2.067 2.697

Var 0.104 0.270 0.604 0.382 0.166 0.311 0.202

MSE 0.103 1.120 0.654 2.185 0.353 0.324 0.716

95% Cov 0.955 0.621 0.947 0.448 0.871 0.954 0.672

5.2 SEPSIS STUDY

The sepsis study described earlier serves as an example. It is of interest to assess

the relationship between in
ammatory markers and severe sepsis status. The literature

suggests using the in
ammatory markers for prediction. For this data, IL-6 has the lowest

amount of truncation at 15% and parameter estimates from regression models including IL-

6 should not be greatly impacted by the truncation. Overall descriptive statistics of the
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three in
ammatory markers, TNF, IL-10, and IL-6, are reported in Table 5.7. Descriptive

statistics are reported for both the nontruncated samples (NT) and all samples using the

�ll-in truncated samples with detection limit D; where D = max(X;C). As expected, all

of the in
ammatory markers are negatively skewed, also known as skewed to the left. If a

predictor in a regression model is highly skewed, the linear relationship between it and the

outcome can be violated and particular points may exert in
uence on the coe�cients and/or

may be poorly �t in the model. If the �t of the model is a�ected, then transformation of

the covariate or removal of points is suggested. We do not suggest removal of any points

so transformation is the optimal choice. Traditionally, the transformation of cytokine data

chosen is the natural logarithm. As can be seen from Table 5.7, the raw cytokine data are so

highly skewed to the left that the mean is twice the median for both the nontruncated and

all other samples. The log transformation draws the values in the upper range closer to a

feasible range. Descriptive statistics by sepsis status for in
ammatory markers are reported

in Table 5.8.

Since we are using a likelihood-based method, we need to determine the distribution of

the covariate. In this section, we will only deal with a simple logit model, i.e. only include

one covariate. Since we know that the log transformation of the cytokine data is normally

distributed, the cytokine data has a lognormal distribution. This indicates that we should

analyze the data two ways: 1) include the log transformation of the data in the model and

assume it is normally distributed (Table 5.9) and 2) include the raw data in the model and

assume it is lognormally distributed (Table 5.10). Based on the regression results there is

a greater improvement for the likelihood-based method for Interleukin 10 and 6 when the

log transformation of the data is included rather than the raw data. For IL-10 and IL-6,
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the likelihood-based method corrects for the coe�cients and the variance more than the

�ll-in method when the data is log transformed. It should be noted that if the raw data

is used the likelihood-based method and �ll-in method are comparable for the interleukin

data. For TNF it appears to matter whether the data are transformed or not. When the

data are log transformed the likelihood-based method produces more biased estimates but

smaller variances than the �ll-in method. When the raw data are used in this model, the

likelihood-based method corrects for bias and the variance more so than the �ll-in method.

Diagnostics were reviewed. A few raw data points exerted in
uence and possible poor �t.

Even with this occurring, it may be that the correct distribution is the lognormal and not

the normal distribution of the transformed data. This suggests the best approach for TNF

is to analyze the raw data and assume the data are lognormally distributed.

Inference is the same for all of the methods when the data are log transformed (Table

5.9); that is, all baseline in
ammatory markers are found to be (statistically) signi�cantly

associated with the development of severe sepsis. When the raw data are used in the

models inference varies by method for TNF but does not for IL-6 and IL-10. According

to LB (p=.0006) and LR3 (p=.0513), TNF is (statistically) signi�cantly associated with

the development of severe sepsis. Although, according to LR2, TNF is not statistically

associated (p=.1053) with the development of severe sepsis. Regardless of the transforma-

tion or method, the risk of developing severe sepsis increases with the concentration of the

in
ammatory markers.

In conclusion, the nontruncated method is the most conservative method of all due to

it having the largest variance. The nontruncated method is more likely to not reject due

to the larger variance; i.e. the power is probably smaller with the nontruncated method.
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The likelihood-based method still appears to have the best variance and moderate bias

correction.

Table 5.7: Descriptive statistics for cytokines

Raw Log Transformed

NT D NT D

TNF

N 1095 1809 1095 1809

Mean (SD) 15.0 (38.2) 10.7 (30.2) 2.31 (0.69) 1.95 (0.70)

Median 8.8 5.4 2.17 1.69

(Min, Max) (4.1, 944) (4, 944) (1.41, 6.85) (1.39, 6.85)

IL-10

N 909 1809 909 1809

Mean (SD) 40.8 (96.5) 23.0 (70.7) 2.94 (1.05) 2.28 (1.00)

Median 14.8 5.1 2.69 1.63

(Min, Max) (5.1, 1519) (5, 1519) (1.63, 7.33) (1.61, 7.33)

IL-6

N 1533 1811 1533 1811

Mean (SD) 506.7 (3604.6) 429.6 (3321.2) 4.15 (1.71) 3.75 (1.84)

Median 51.0 35.4 3.93 3.57

(Min, Max) (2.1, 126000.0) (2.0, 126000.0) (0.74, 11.74) (0.69, 11.74)

Note: NT=Not truncated values, D = max(X;C)
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Table 5.8: Descriptive statistics for cytokines by severe sepsis status

NT D

No SS SS No SS SS

TNF*

N 782 313 1334 475

Mean (SD) 2.24 (0.65) 2.48 (0.78) 1.89 (0.65) 2.10 (0.81)

Median 2.13 2.31 1.63 2.60

(Min, Max) (1.41, 6.85) (1.41, 6.34) (1.39, 6.85) (1.39, 6.34)

IL-10*

N 631 278 1334 475

Mean (SD) 2.88 (1.02) 3.09 (1.11) 2.21 (0.95) 2.47 (1.12)

Median 2.63 2.83 1.61 1.93

(Min, Max) (1.63, 7.33) (1.63, 6.84) (1.61, 7.33) (1.61, 6.84)

IL-6*

N 1103 430 1336 475

Mean (SD) 3.99 (1.63) 4.57 (1.84) 3.56 (1.75) 4.29 (1.96)

Median 3.77 4.37 3.35 4.17

(Min, Max) (0.74, 9.56) (0.88, 11.74) (0.69, 9.56) (0.69, 11.74)

* The log transformation was taken of each cytokine value.

Note: SS=severe sepsis, NT=Not truncated values, D = max(X;C)
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Table 5.9: Logistic regression results for cytokines with transformed data

LB LR2 LR3

ln(TNF) n = 1809 n = 1095 n = 1809

�0 (SE) -1.69 (0.129) -2.00 (0.236) -1.84 (0.156)

�x (SE) 0.35 (0.061) 0.46 (0.095) 0.40 (0.072)

p� value for �x <0.0001 <0.0001 <0.0001

ln(IL-10) n = 1809 n = 909 n = 1809

�0 (SE) -1.48 (0.107) -1.35 (0.210) -1.60 (0.131)

�x (SE) 0.21 (0.043) 0.18 (0.067) 0.24 (0.050)

p� value for �x <0.0001 0.0077 <0.0001

ln(IL-6) n = 1811 n = 1533 n = 1811

�0 (SE) -1.78 (0.121 ) -1.77 (0.155) -1.85 (0.128)

�x (SE) 0.20 (0.027) 0.19 (0.033) 0.21 (0.029)

p� value for �x <0.0001 <0.0001 <0.0001

Note: log(X) � N(�; �2)

91



Table 5.10: Logistic regression results for cytokines with raw data

LB LR2 LR3

TNF n = 1809 n = 1095 n = 1809

�0 (SE) -1.073 (0.055) -0.966 (0.073) -1.080 (0.059)

�x (SE) 0.0037 (0.0011) 0.0033 (0.0020) 0.0043 (0.0022)

p� value for �x 0.0006 0.1055 0.0513

IL-10 n = 1809 n = 909 n = 1809

�0 (SE) -1.086 (0.056 ) -0.880 (0.079) -1.084 (0.057)

�x (SE) 0.0020 (0.0006) 0.0014 (0.0007) 0.0021 (0.0008)

p� value for �x 0.0009 0.0552 0.0057

IL-6 n = 1811 n = 1533 n = 1811

�0 (SE) -1.104 (0.056) -1.013 (0.060) -1.102 (0.056)

�x (SE) 0.00017 ( 0.00004) 0.00015 (0.00004) 0.00017 (0.00004)

p� value for �x <0.0001 <0.0001 <0.0001

Note: X � LogN(�; �2)
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CHAPTER 6

DISCUSSION

Unbiased estimating equations are the focus of this dissertation: predominantly semi-

parametric methods utilized to solve for regression parameters in the presence of missing

covariate data. The scope of our research ranges from covariates missing by design and

missing by happenstance to truncated covariates. In the event of expensive covariate data or

di�culty of covariate data collection, sampling based approaches are applied to case-control

and cohort studies to either balance data or reduce the cost of data collection. A semi-

parametric approach is used to solve missing data problems since these estimating equations

produce an e�cient estimator. A bene�t to this approach is the avoidance of specifying a full

likelihood. Misspeci�cation of the likelihood can lead to incorrect estimates. However, di�-

culties with the e�cient score approach arise in specifying a density, identifying the nuisance

parameters, and construction of the score equations and score operators.

The �rst half of this dissertation discussed in detail semiparametric methodology and

methodology developed to handle logistic regression with missing covariate information. The

�rst aim of my dissertation was to evaluate the properties of an e�cient score, an inverse
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probability weighted estimating equation approach, for logistic regression with a covariate

missing by design. In our simulation study, data was generated to mimic a case-cohort design

where the covariate was missing by design. The e�cient score was compared to two other

pseudo-likelihood methods, and as anticipated the e�cient score improved bias and e�ciency

of the estimators. Analysis of the results from our simulation study demonstrates that the

e�cient score approach yields the most improved estimates when a correlated surrogate of

the missing covariate is available.

A future extension to the e�cient score methodology is to address a missing continuous

covariate in a regression model. Due to the high dimensions of the covariate data, smoothing

techniques would be used to aid in solving a model with this type of data. An additional ex-

tension is a regression model with covariate data missing by happenstance. A third proposed

extension is addressing multiple missing covariates in a regression model. Semiparametric

methods will be used to address these three extensions.

The second aim of my dissertation was to develop a methodology for truncated covariate

data with a binary outcome. To address this problem, we have developed two methods,

a likelihood-based method and a semiparametric method, to handle a truncated covariate

in a logistic regression model. The likelihood-based approach is solved, but the e�cient

score approach is still in the process of being solved. In our case, the truncated covariate is

continuous. Simulation studies and a sepsis study from the University of Pittsburgh demon-

strated and proved the properties of the estimator for the likelihood-based method compared

to methods of using only the nontruncated samples and the �ll-in method. Our simulation

studies for the likelihood-based approach provide con�rmation of our expectations. This

method improves precision but does not eliminate bias of the coe�cient estimates, increas-
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ing the importance of continuing to solve the semiparametric component. Possible bias

corrections include the bootstrap and jackknife methods. At this time, the approach yield-

ing the most accurate inferences and the best bias-variance correction is the likelihood-based

method. Future extensions of interest that we may pursue for the truncated piece are:

multiple truncated covariates, (randomly) censored covariates, and a continuous outcome.

The original focus of my dissertation was the development of survival methods for missing

data. This research was set aside temporarily to focus on truncated data. Often times the

hypothesis of a study is to determine the predictors of a time-to-event outcome. The e�cient

score was developed for case-cohort designs. However, Nan demonstrated the properties

for a discrete covariate in the presence of a surrogate of the covariate. In many studies

the covariate of interest is continuous. We have recently solved the case-cohort problem

with a continuous covariate to be discussed in a future paper. Smoothing techniques were

implemented to solve for the case-cohort problem with a continuous covariate. Another

possible extension is solving the e�cient score for the Cox model when a covariate is missing

by happenstance. In the event of data missing by happenstance, surrogates of the covariate

may be unavailable.

Two other areas of interest are two survival endpoints and repeated measures data with

missing covariate information (see Appendix for details). Modelling two survival endpoints is

gaining popularity. Modelling two endpoints is often of interest from a design standpoint, for

example, determining the sequence of events, or for predictive purposes. The main interest

is to draw inferences on the relationship between the survival endpoints, but the endpoints

may be in
uenced by covariates. We propose a two-stage approach via copulas (Shih and

Louis, 1995), incorporating weighted pseudo-likelihoods, to solve for the marginal estimates.
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A proposed extension is to model two endpoints in the presence of missing covariates. The

goal is to measure the dependence between these two endpoints.

Since the advent of repeated measures methods, mainly generalized estimating equations,

studies are often designed to collect repeated measures to determine changes over time,

increasing the chances of data not being reported. It is conceivable that data is missing with

the reason unknown, also known as missing by happenstance. We propose an extension of a

method developed by Wei and Stram (1988) to handle data missing at random. The proposed

method is a two-stage quasi-likelihood approach that employs estimating the parameters from

the marginal estimating equations at each time point and the variance-covariance from the

sandwich estimator. Our focus will be on two types of outcomes, continuous and binary,

narrowing the applications to linear regression and logistic regression.

Based on our �ndings we suggest using a semiparametric approach for missing data. Our

likelihood approach for truncated covariate data is an adequate starting point. Our results

for the truncated problem suggest the need for modi�cations to regression models in the

presence of truncated covariate data. As we have discussed there are numerous problems

that need to be solved.
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APPENDIX A

FUTURE WORK

METHODOLOGY FOR TWO ENDPOINTS AND MISSING COVARIATE

INFORMATION

Modelling two survival endpoints is gaining popularity. Modelling two endpoints is often

of interest from a design standpoint, for example determining the sequence of events, or for

predictive purposes. The main interest is to draw inferences on the relationship between

the survival endpoints, but the endpoints may be in
uenced by covariates. We propose

a two-stage approach via copulas (Shih and Louis, 1995), incorporating weighted pseudo-

likelihoods, to solve for the marginal estimates. A proposed extension is to model two

endpoints in the presence of missing covariates. The goal is to measure the dependence

between these two endpoints. Methods exist for modelling two endpoints adjusting for

covariates and for modelling one endpoint adjusting for missing covariate data. However,

at this juncture no method exists for modelling two endpoints with missing covariate data.

This problem is of a practical nature since missing data is an every day nuisance that cannot

be ignored. The main interest is to draw inferences on the relationship between two survival
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endpoints. However, the endpoints may be in
uenced by covariate information. If covariates

are missing at random, it has been shown in other literature (Chen and Little, 1999; Herring

and Ibrahim, 2001) that the marginal model will be ine�cient, unbiased, and inconsistent,

which has implications for the bivariate model.

Modelling two endpoints is also of interest from a design standpoint, such as determining

the sequence of events as well as for predictive purposes. Types of multiple endpoints include

competing risks, recurring events, and di�erent events. Methodology for di�erent events

will be addressed. A practical and straightforward method to model multiple endpoints is

through the use of copulas. Copulas were �rst developed in the 1950s (Sklar, 1959) and their

usefulness has gained attention in recent years. Multivariate distributions can be calculated

with ease via copulas. However, as with any other method, drawbacks exist. One drawback

which will need to be addressed is model selection in copulas.

Two-Stage Method

Event times are denoted as (T1i; T2i) and censored times are denoted as (C1i; C2i), where

survival times (Y1i; Y2i) = (min(T1i; C1i);min(T2i; C2i)) and censoring indicators (�1i; �2i) =

(I fY1i = T1ig ; I fY2i = T2ig) are observed for each subject, i = 1; ::::n. It is also assumed

that (C1i; C2i) and (T1i; T2i) are independent. Due to the simplistic nature and statistical

properties of the Shih and Louis two-stage method, it is the method of choice for analyzing

bivariate survival data and will be extended to account for missing covariate information.

Two-stage parametric estimation is performed if one chooses a parametric form for the

marginal distributions and bivariate distribution. For two-stage parametric estimation the
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likelihood of � is

n

�
i=1
f(Y1i; Y2i; �)

�1i�2i
@S(Y1i; Y2i; �)

�1i(1��2i)

@Y1i

@S(Y1i; Y2i; �)
(1��1i)�2i

@Y2i
� (A.1)

S(Y1i; Y2i; �)
(1��1i)(1��2i):

Two-stage semiparametric estimation is performed if one chooses a nonparametric form for

the marginal distributions and a parametric form for the bivariate distribution. For the

two-stage semiparametric estimation the likelihood of � is

L(�; uj; vj) = �c�(ui; vi)
�1i�2i

@C(ui; vi)
�1i(1��2i)

@ui

@C(ui; vi)
(1��1i)�2i

@vi
� (A.2)

C(ui; vi)
(1��1i)(1��2i);

where ui = S1(Y1i) and vi = S2(Y2i) are the Kaplan-Meier estimates. The score function is

the derivative of the log likelihood (A.2) wrt �:

U�(�; bS1(y1i); bS2(y2i)) =X
i

@l(�; bS1(y1i); bS2(y2i))
@�

: (A.3)

The solution of this estimating equation obtained by setting A.3 equal to 0 is an estimate of

�: The Newton-Raphson estimator can be used to solve for �:

e� = b�+ X
i

UTj�Uj�

!�1
U�(�; bS1(y1i); bS2(y2i)):

According to Shih et al., if bS1 and bS2 are consistent estimates of S1 and S2 then
p
n(e� � �) d! N(0; � 2), implying that e� is asymptotically normal. This two-stage ap-

proach is a pseudo-likelihood approach. A loss of e�ciency occurs when nonparametric

survival functions are chosen for the margins.
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Bivariate Extension For Missing Covariate Information

Since the marginal estimates have to be consistent in Shih's two-stage method, the non-

parametric survival functions can be estimated from the weighted Cox model. The weighted

Cox model is

lw� =

nX
i=1

Z 1

0

Ri
�i

8>><>>:Zi �
nP
h=1

Rh
�h
I (Yh � t)Zh exp f�0Zhg

nP
h=1

Rh
�h
I (Yh � t) exp f�0Zhg

9>>=>>; dNi(t) (Pugh et al., 1993): (A.4)
The modi�ed marginal distributions to incorporate missing covariate information are bSk(y) =
exp

�
�b�k(y)� where the cumulative hazards are de�ned by:

b�k(y) =
8>>>>><>>>>>:

nP
i=1

I fYik � yg �ik
nP
j=1

IfYjk�YikgRjk�jk
e
�kZjk

, if max(YikjR=0) < max(Yik)

n�P
i=1

I fYik � yg �ik
nP
j=1

IfYjk�YikgRjk�jk
e
�kZjk

, if max(YikjR=0) � max(Yik)
; (A.5)

where n� = n� I
�
(YikjR=0) � max(YikjR=1)

	
.

The simulations for the logistic model indicated that the weighted score may perform as

well as the e�cient score approach. In this case, the interest is in solving for (�1;�2) from

the two models f(y1jx) and f(y2jx). If the e�cient score approach were used instead, it

would be necessary to de�ne the complete and observed data. Conditioning on the observed

data would be necessary, and this is extremely complex to calculate since the complete data

is (Y1; Y2; X; V ) where (Y1; Y2; V ) is observed. We propose obtaining marginal parameter

estimates from the weighted pseudo-likelihood (A.4) and solving Equation A.5 for each k.

The survival margins are then treated as �xed while obtaining an estimate for the association

parameter.
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LONGITUDINAL DATA

Since the advent of repeated measures methods, mainly generalized estimating equations,

studies are often designed to collect repeated measures to determine changes over time,

increasing the chances of data not being reported. It is conceivable that data is missing with

the reason unknown, also known as missing by happenstance. We propose an extension of a

method developed by Wei and Stram (1988) to handle data missing at random. The proposed

method is a two-stage quasi-likelihood approach that employs estimating the parameters from

the marginal estimating equations at each time point and the variance-covariance from the

sandwich estimator. Our focus will be on two types of outcomes, continuous and binary,

narrowing the applications to linear regression and logistic regression. This section will

focus on the latter.

Data collected over a period of time are de�ned as repeated measures and longitudinal

data. Standard regression procedures assume observations are independent. However,

since measurements are obtained at multiple time points, the repeated measurements within

each patient are no longer independent. This within-patient correlation must be taken into

account during analysis. The assumption of independence between patients is still valid.

Data of interest is repeated binary outcome data, baseline covariates, and time-varying

covariates with ignorable nonresponse. This means that subjects can miss a visit at any time

with the exception that baseline covariates must be fully observed for the nonresponse to be

ignorable. We propose a quasi-likelihood approach that employs estimating the parameters

from marginal estimating equations at each time point and the variance-covariance from the

sandwich estimator.
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Methodology For Repeated Measures And Missing Data

Various methods have spun o� of quasi-likelihood theory that are in the class of estimating

functions. McCullagh and Nelder (1983) introduced quasi-likelihood theory as an alternative

to GLM. Since the GLM is a likelihood-based speci�cation of the full likelihood, quasi-

likelihood is an estimation tool of choice when one is uncertain about the mechanism for

generating data or when there is insu�cient data to specify an accurate likelihood. In a

missing data framework, one is rarely 100% certain of the data generation mechanism, and

once data is incomplete, model speci�cation becomes unstable. This approach reduces the

assumptions needed for model speci�cation since only the �rst two moments are required to

be speci�ed for the quasi-likelihood. McCullagh et al. naturally developed a quasi-likelihood

methodology for independent observations. Recognizing the need for methods that can

accommodate dependent observations, McCullagh et al. extended the quasi-likelihood to

handle such data.

Zeger and Liang developed a generalized estimating approach (GEE) for longitudinal data

in 1986. The GEE is an extension of the GLM implementing the multivariate quasi-score

approach. Dependent upon the hypothesis, there are three main types of models to choose

from: marginal, random e�ects, and transitional models. Marginal models are concerned

with the population average and model the regression of the outcome on the covariates and

dependence structure separately. Random e�ects models allow the coe�cient to vary by

subject taking into account heterogeneity for latent variables. Transitional models include

prior outcome measurements in the model, assuming that prior outcomes will predict the

current outcome. Only the �rst two moments, the mean and variance, are required to be

speci�ed for GEE. Zeger and Liang have shown that the GEE is robust to speci�cation of
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the within subject correlation matrix. The GEE is not unbiased given MAR data. For

complete data, � is estimated from the following equation

S�(�; �) =

nX
i=1

�
@ui
@�

�0
V ar(Yi)

�1(Yi � ui) = 0:

Lang (2000) proposed a parametric approach based on copulas for modelling repeated

measures outcome data. He developed the copula methodology for normally distributed and

binary outcome data. Based on simulation results, Lang concluded that the copula based

model produced marginal parameter estimates which are robust to marginal distributional

misspeci�cation and the copula model chosen. Lang also extended this method to handle

nonignorable missing outcomes since the copula approach is a more powerful inferential tool,

due to the fact that one can apply likelihood-based methods.

Lipsitz et al. (1999) developed a likelihood-based method incorporating the EM algorithm

for a nonignorable response problem. This likelihood approach forces one to specify the full

likelihood and a distribution for covariates. As has been previously mentioned, speci�cation

of the distribution for covariates can be complex due to the high dimension of the covariates.

An advantage of this approach is the 
exibility of the missing data patterns. Any of the

time-varying variables and baseline covariates are permitted to be missing.

Wei and Stram (1988) chose a two-stage approach to estimate the coe�cient parameters

and their covariance matrix. At the �rst stage, the coe�cients are estimated from the quasi-

score equation at each time point independently. The variance is estimated at the second

stage. An advantage of the quasi-score is that no parametric model is speci�ed for the data

and only the �rst two moments are speci�ed. A parametric model is not speci�ed for the

covariance matrix. The joint estimation of
�b� � �� is shown to be multivariately normal,
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and the covariance is estimated by the Information-sandwich (Huber-White) estimator. Wei

et al. extended this method to accommodate MCAR data and time-dependent covariates.

Stram, Wei, and Ware (1988) speci�cally evaluated properties of their estimating approach

for ordinal data under MCAR. Since each coe�cient is estimated at every time point, a

linear combination of these estimates can give one a population average of �.

Carlin (1999) reviews weighted estimating equation approaches, known as weighted GEE

(Flanders and Greenland, 1991; Clayton et al., 1998). The goal of weighted estimating

equations is to weight each observation by an assigned/estimated inverted probability of

selection. Only complete cases are included in analysis. Although these unbiased equa-

tions lead to consistent estimates, they are not the most e�cient. Robins et al. (1995, 1997)

further modi�ed and developed these inverse probability weighted estimating equation meth-

ods by drawing more information from the incomplete cases. Robins et al. developed these

methods to yield more e�cient estimates for ignorable and nonignorable missing data.

Two-Stage Approach

The assumptions needed to specify a quasi-likelihood are the mean and variance of the

response. The form of the quasi-likelihood is

Q(u;y) =

nX
i=1

Z u

y

yi � t
�2V (t)

dt

E(Y ) = u

V ar(Y ) = �2V (u):

For the binomial case:

� uit = expZ�

1+expZ�
is the mean of Y and logit(uit) = �0 + �1z1it + :: + �pzpit is the link

function
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� V ar(Yit) = uit(1� uit) is the variance of Y:

The quasi-score function is de�ned as

U(�)=DTV�1(Y � u) = 0;

where D = @u=@� and V = cov(y): Wei solves the score equation at each time point inde-

pendently, indicating at each time point u = expxB

1+expxB
; @u=@� = Zu(1� u); V (u) = u(1� u);

and DTV�1 = Z: The quasi-score equation at each time point reduces to RZ(Y � u) = 0;

where R is the missing indicator de�ned in Section 2.4: The estimates of � are used to solve

the variance-covariance. The variance-covariance chosen is the robust estimator constructed

from the information-sandwich (Huber-White) estimate of the variance.

Two-Stage Extension

We propose to extend the Wei et al. (1988) two-stage approach to accommodate MAR

data. It is a well known fact that under MAR the complete quasi-score is not unbiased.

In an e�ort to �nd an unbiased estimating equation as was indicated in Chapter 2 the

weighted pseudo-likelihood (2.12) can ful�ll this criteria. Although these equations are not

the optimal unbiased estimating equation, they can serve as a simple estimating equation

and building block for estimators with desirable properties. At each time point, k; Equation

2.12 can be expressed as a quasi-score function letting DT
i V

�1
i = ZiWiRi, where Wi = �

�1
i :

Once the quasi-score function is speci�ed, one can solve for a consistent and asymptotically

normal estimator of �k. The variance-covariance matrix of (�1; :::; �k) is constructed in the
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following fashion. The variance-covariance matrix of (�1; :::; �k) is

G = n�1

266666666664

D11(�1; �1) D12(�1; �2) D1k(�1; �k)

Dk1(�k; �1l) Dk2(�k; �2) Dkk(�k; �k)

377777777775
;

where

Dkl(�k; �l) = A
�1
k (�k)Ckl(�k; �l)A

�1
l (�k):

The components of Dkl(�k; �l) are de�ned as

Ak(�k) = n
�1

nX
i=1

lwT�k;il
w
�k;i

and

Ckl(�k; �l) = n
�1

nX
i=1

lwT�k;il
w
�l;i
:

According to Wei and Stram (1988) and Fahrmeir and Kaufman (1985), G is a consistent

estimator of the true covariance matrix. Since Ak ! c as n ! 1 and by the multivariate

central limit theorem, (�1; :::; �k) is asymptotically normal,
p
n
�b�1 � �1; :::; b�k � �k� d!

N(0;G) (Wei and Stram, 1988): An average coe�cient can be estimated by � =
KP
k=1

ck�k;

where c = (c1; ::; ck) = (e0G�1e)�1G�1e, e = (1; ::; 1)0, and var(�)=(e0G�1e)�1 (Wei and

Johnson, 1985).

The MAR assumption de�ned by Mark and Gail (1994) will be applied to our data. The

complexity of de�ning and modelling the missing data mechanism can be a barrier. The

outcomes and other time-varying covariates are permitted to be missing. According to our

de�nition of MAR, the missingness is dependent on the baseline data, outcome, and time-

varying covariate data from prior time points. The data up to time point t � 1 for (Y; V )
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and R is de�ned as H ti = (Y1; :::; Yt�1; V1; ::; Vt�1) and Rti = (R1; :::; Rt�1): The missing data

mechanism is de�ned as

P (R1ijXi; V1i; Y1i) = P (R1ijXi)

P
�
RtijXi; (Rti �H ti; Rti = 0); (Rti �H ti; Rti = 1)

�
= P (RtijXi; (Rti �H ti; Rti = 1); Rti = 0)

for t > 1:
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