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MARKOV DECISION PROCESS MODELS FOR IMPROVING EQUITY IN

LIVER ALLOCATION

Zeynep Gözde İçten, PhD

University of Pittsburgh, 2011

In the United States, end-stage liver disease (ESLD) patients are prioritized primarily by

their Model for End-stage Liver Disease score (MELD) to receive organ offers. Therefore,

patients are required to update their MELD score at predefined frequencies that depend on

the patient’s last reported score. One aim of this dissertation is to mitigate inequities that

stem from patients’ flexibility regarding MELD score updates. We develop a Markov decision

process (MDP) model to examine the degree to which an individual patient can benefit from

the updating flexibility, and provide a menu of updating requirements that balance inequity

and data processing more efficiently than the current updating requirements. We also derive

sufficient conditions under which a structured optimal updating policy exists.

As the coordinator of the harvesting Organ Procurement Organization (OPO) extends

offers according to MELD score prioritization, the organ becomes less desirable. To avoid

not placing the organ, the OPO coordinator can initiate an expedited placement, i.e., offer

the organ to a transplant center, which can then allocate it to any of its patients. A second

aim of this dissertation is to mitigate inequities induced by the OPO coordinator’s premature

departure from the prioritized list of patients via an expedited placement.

As a preliminary step to studying the inequity induced by expedited liver placement,

we conduct an extensive analysis of the current expedited liver placement practice based on

recent data. We investigate different aspects of extending offers, e.g., the number of offers

iii



extended concurrently, and patients’ response characteristics. Several of the results from this

analysis serve as inputs for a second MDP model that examines how many concurrent offers

the OPO coordinator should extend and when the coordinator should initiate an expedited

placement. Numerical experimentation reveals a structured optimal policy, and we test

the sensitivity of the model outcomes with respect to changes in model inputs. Lastly, we

examine how our model outputs compare to the analogous measures observed in current

practice and how they can be used to improve current practice.

Keywords: Markov decision processes, dynamic programming, optimal stopping, struc-

tured optimal policies, Pareto optimality, sensitivity analysis, medical decision making,

organ transplantation, information asymmetry, societal welfare.
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1.0 INTRODUCTION

The health care industry is one of the world’s largest and fastest growing industries [24].

Consuming over 10% of gross domestic product (GDP) of most developed nations, health

care can form an enormous part of a country’s economy. It is one of the biggest industries in

the United States (US) and 10 of the 20 fastest growing occupations are health care related

[32]. In 2003, health care costs paid to hospitals, physicians, nursing homes, diagnostic

laboratories, pharmacies, medical device manufacturers and other components of the health

care system consumed 15.3% of the GDP of the US, the largest of any country in the world

[21]; in 2006, US health care expenditures totaled $2.2 trillion; and in 2008, health care

provided 14.3 million jobs for wage and salary workers [32]. Given the health care industry’s

upward rising trend, it is projected that its share of the GDP will reach 19.6 % by 2016 [12].

According to the Bureau of Labor Statistics of the US, health care will generate 3.2 million

new wage and salary jobs by 2018, more than any other industry, largely in response to rapid

growth in the elderly population. These tremendous expenditures have brought pressure on

the health care industry not only to minimize cost of services, but also to eliminate some of

the services.

This dissertation relates to the ultimate goal of improving the quality of health care

services, specifically transplantation of livers, the second most commonly transplanted major

organ after the kidney. Other types of organ transplants include the heart, intestine, kidney,

lung and pancreas. The organ transplant history started with the first successful kidney

transplant in 1954. The first successful pancreas and liver transplants were performed in

1966 and 1967 respectively, followed by the first successful heart transplant in 1968 [22]. A
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new name is added to the national waiting list for organs every 13 minutes [22] to be eligible

for a potentially life-saving transplant. Currently, there are 111,812 patients nationwide

waiting for an organ. However, the total number of transplants was only 28,662 in 2010 [34].

Due to the scarcity of available organs, an average of 18 people die every day in the U.S.

waiting for an organ [22].

Liver transplantation is the definitive form of treatment for end-stage liver disease (ESLD)

patients. ESLD is an irreversible condition that leads to the complete failure of the liver

which can occur rapidly, in a matter of weeks (acute liver failure), or slowly over months and

years (chronic liver failure). ESLD has many causes including liver cirrhosis, biliary duct

atresia, cystic fibrosis, early-stage liver cancer, hemochromatosis, primary biliary cirrhosis,

primary sclerosing cholangitis and Wilson’s disease [14], and it is the 12th leading cause of

death in the United States [20].

Liver donations come from either deceased or living donors. Living donor transplantation

has emerged in recent decades and has modestly helped to alleviate the widespread shortage

of deceased donor livers for patients awaiting transplant. Despite the efforts encouraging

living donor transplants and the surge in the number of transplant programs, the number

of living donor transplants remains very limited compared to the number of deceased donor

transplants. In 2010, 282 living donor transplants were recorded, whereas the corresponding

number for deceased donor transplants was 6009 (Figure 1.1). As of this writing, 16,278

people are on the national liver transplant waiting list. However, the total number of trans-

plants in 2010 was only 6291, which illustrates the large gap between the supply and demand

of transplantable livers (Figure 1.1).

In both living and deceased liver transplantation, the procedure of transplantation in-

volves the replacement of the native, diseased liver by the donor organ in the same anatomic

location as the original liver. It typically involves 3 surgeons and 1 anesthesiologist, with

up to 4 supporting nurses. The surgical procedure, which can range from 4 up to 18 hours

depending on outcome, is very demanding, and it is one of the most expensive treatments in

modern medicine. Typical expenses during the first year (everything included from surgery,

2



Figure 1.1: Liver transplantation activity between 1997-2010

hospitalization, lab testing, medications) are up to $315,000, excluding insurance or govern-

ment assistance [25]. The cost is considerably lower in countries like India where a living

donor liver transplant typically costs approximately $50,000. This considerably lower cost is

one of the driving forces for illegal organ trafficking and for “transplantation tourism,” one

of the many ethical issues relating organ transplantation.

The combination of (i) the absence of alternative therapies combined with the scarcity

of donated livers; (ii) the high organ waste rate (in 2010, the number of liver donations was

6890 while 6291 transplants were made resulting in the waste of nearly 9% of all donations

(Figure 1.1)); and (iii) the ethical dilemmas of the allocation procedure underscores the

importance of the efficient management of liver donations. Two different perspectives exist

in the decision making regarding the management of liver donations. First, there is society’s

perspective which looks at the entire system and aims to design an allocation mechanism

to optimize an objective or combination of objectives. Second, there is patients’ perspective

3



which focuses on how an individual patient with her transplant team should exercise the

prerogative decision to accept or decline organs over time. This accept/reject decision making

process is a complex optimal stopping problem which we discuss in greater detail in Section

1.1.1.

Operations Research (OR) provides a multitude of decision making tools which can be

utilized to assist the policy makers as well as individual patients regarding the management

of limited resources. The application of OR techniques dates back to the 1950’s and OR tools

have been widely applied to many different health care related problems. A recent survey

is presented by [11]. In the last decade however, there has been a significant increase in the

number of studies focusing on the management of liver transplantation. They primarily take

an individual patient’s perspective and deal with the optimization of liver accept/decline

decisions ([5], [6], [7], [42]). Studies from society’s perspective include works by [2], [19]

and [44]. Due to the set of realistic assumptions made, this body of literature on liver

transplantation has a greater appeal of real world applicability than the existing literature

on other organ transplantations which include studies by [1], [5], [6], [7], [16], [27], [28] from

the patient’s perspective and [17], [18], [37] [40], [47], [50], [51], [52], [53] from society’s

perspective.

We take both society’s and an individual patient’s points of views to investigate the de-

ceased donor liver transplantation for adult patients. From the patients’ perspective, we pro-

vide policies to obtain the maximum possible life expectancy under the current regulations;

from society’s perspective we attack different sources of inequity and provide suggestions to

mitigate their effects. We provide easy to implement guidelines for both the patients and

policy makers.

4



1.1 LIVER ALLOCATION SYSTEM

To structure the nationwide allocation of donated organs, the National Organ Transplant Act

(NOTA) of 1984 called for an Organ Procurement and Transplantation Network (OPTN) in

charge of (i) increasing and ensuring the effectiveness, efficiency and equity of organ sharing

in the national system of organ allocation, and (ii) increasing the supply of donated organs

available for transplantation. OPTN, as a unified transplant network, needed to be operated

by a private, non-profit organization under federal contract. The United Network for Organ

Sharing (UNOS) was awarded the initial OPTN contract in 1986, and has continued to ad-

minister the OPTN since then. As part of the OPTN contract, UNOS’ main responsibilities

are ensuring an organ sharing system that maximizes the efficient use of deceased organs

through equitable and timely allocation, maintaining a system to collect, store, analyze and

publish data on the patient waiting list, organ matching, and transplants, and informing,

consulting and guiding persons and organizations concerned with human organ transplanta-

tion in order to increase the number of organs available for transplantation. Recently, UNOS

has been improving its operations via the use of the internet; in 1999, it launched UNet, a

secure, Internet-based transplant information database system for all organ matching and

management of transplant data. In 2006, UNOS launched DonorNet, a secure, Internet-

based system in which organ procurement coordinators send out offers of newly donated

organs to transplant hospitals with compatible candidates.

To facilitate transplantation, the US is divided into 11 geographic regions represented

in Figure 1.2. Each region is further divided into subregions called donation service areas

(DSAs) of Organ Procurement Organizations (OPOs). Currently, there are 58 [33] OPOs

serving unique areas of varying sizes, population densities, donation rates, and transplan-

tation activities. UNOS handles all its activities through these OPOs which are responsi-

ble for approaching families about donation, evaluating the medical suitability of potential

donors, and coordinating the recovery, preservation, and transportation of organs donated for

transplantation within their harvesting DSA. Within each OPO there are several transplant
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centers where eligible candidates register to be considered for donation and transplantation

operations are realized. The total number of transplant centers continues to increase and

currently there are 254 centers for organ transplants, with 127 transplant centers accommo-

dating liver transplant programs [33].

Figure 1.2: UNOS regions

When an organ is donated, UNOS’ centralized computer network, UNet links all OPOs

and transplant centers in a real-time environment using the Internet. Then an OPTN com-

puter match program compares data on the organ donor with data on transplant candidates

and ranks candidates according to OPTN policies to determine the priority for allocating the

donor organ. The prioritization is based on two main factors; a patient’s medical urgency,

i.e., her level of sickness and a patient’s geographic location, i.e., her proximity to the OPO

where the organ is harvested.

At the geographical level, the ranking algorithm considers three types of patients: local

patients who are registered in the harvesting OPO, regional patients who are registered in

an OPO in the harvesting region, and national patients from any other region. The reason

patient geography is considered as a determinant is the limited length of time donated organs

and tissues can be kept chilled outside the body in the absence of blood supply, i.e., the cold

ischemia time (CIT). For livers, CIT is between 12-18 hours [34] beyond which the organs

lose their vitality and cannot be used for transplantation. Given this time constraint, local

patients are most favorable whereas the national patients are the least favorable.

6



At the medical urgency level, the prioritization is based on two patient categories: Status

1 patients and Model for End-stage Liver Disease (MELD) score patients. Status 1 patients

have fulminant liver failure with a life expectancy without a liver transplant of less than 7

days. The total number of candidates listed as Status 1 has not changed appreciably in past

years, representing only 0.1% of the total number of patients on the waiting list [34]. The

medical urgency of patients who do not qualify for classification as Status 1 is measured

by their MELD score which predicts their probability of pre-transplant death. The integer-

valued MELD score is calculated using a regression equation based on three clinical values

from the patient (bilirubin, INR and creatinine) and ranges from 6 (less ill) to 40 (gravely

ill). Candidates within Status 1 and each MELD score are stratified using “points” which

are assigned based on the compatibility of their blood type with the donors blood type.

Because a patient’s MELD score can vary over time depending on the status of her

disease, and prioritization is based primarily on MELD score, UNOS requires patients to

update their clinical lab values at a minimum frequency that depends on their most re-

cently reported MELD score (Table 1.1). Not surprisingly, sicker patients are required to

update more frequently than healthier patients. Patients can update more frequently than

the guidelines dictate; however, if they fail to update by the required time, then UNOS down-

grades their reported MELD score to the healthiest score of 6 until new results are received.

The transplant center caring for the candidate is responsible for sending this information to

UNOS, who then records it in their database. Processing this data is costly and Roberts et

al. [38] estimate the data processing cost at a large transplant center to be approximately

$175,000 per year; this figure is likely higher now and does not include the data processing

costs incurred by UNOS.

Table 1.1: Frequency of MELD score updates required by UNOS [22]

Last reported MELD score ≤ 10 11-18 19-24 ≥ 25

Minimum update frequency (days) 365 90 30 7
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Figure 1.3 represents the factors used to create the prioritized candidate list. As seen in

Figure 1.3, the combined set of local and regional Status 1 patients tops the priority ranking

whereas the set of national candidates, including all levels of medical urgency, comprises

the bottom of the prioritization. That is, all local and regional MELD score patients have

priority over national Status 1 and MELD score patients combined. For the local and

regional MELD score patients, the MELD score spectrum is split at MELD 15 and patients

with MELD≥15 are considered first among the local patients that have priority over regional

ones. Patients with MELD <15 are considered next, again making the local versus regional

distinction. Within each group, patients are ordered in decreasing severity and then by their

compatibility with the donor’s blood type, indicated by the blue arrows.

Figure 1.3: Candidate prioritization according to the current liver allocation system

There are a few types of liver disease for which exceptions are made to the MELD scoring

system because their prognosis depends upon factors other than liver disease severity. They

are termed recognized exceptional diagnoses (REDs) and include hepatocellular carcinoma

(HCC), hepatopulmonary syndrome (HPS), familial amyloid polyneuropathy (FAP), and
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primary oxaluria. Because the waiting list mortality of patients belonging to this category

may not be accurately represented by their MELD score [9], they may be assigned additional

MELD points beyond their calculated MELD score. For stage 2 HCC patients, UNOS

has a different set of prioritization rules [22]. Also, UNOS has a slightly different scoring

mechanism and allocation system for pediatric patients.

1.1.1 Match List Process

Once the prioritized match list is created, the harvesting OPO proceeds through this list by

making offers until a successful match is obtained. We refer to the process of following the

prioritized match list as the match list process, the offers made according to the match list as

“standard” offers and multiple standard offers extended simultaneously represent a “batch”

of offers. Initially, organ offers were distributed via fax and numerous phone calls which

involved the exchange of large amounts of clinical and biologic information. On April 30,

2007, UNOS launched a web-based system via DonorNet which enables the OPOs to send out

offers faster and to multiple transplant centers simultaneously. In the case of local offers, the

OPOs set their own limits on the number of concurrently outstanding offers and/or on the

number of transplant centers with concurrently outstanding offers. For regional or national

offers, offers can be made to an unlimited number of patients up to 3 programs simultane-

ously for pre-recovery offers and up to 5 programs simultaneously for post-recovery offers.

Although the establishment of the DonorNet electronic environment improved the standards

of the current practice, organ waste unfortunately still remains high; in 2010, approximately

10% of all donated organs went unused, mainly due to the limited CIT time of livers (Figure

1.1).

Once the electronic offer notification is sent out to a transplant center, the transplant

surgeon and/or physician in charge of the candidate has one hour to log into the electronic

environment and view the donor’s record. Then they have an additional hour to enter the

final response to the organ offer which is either an acceptance or a refusal. The transplant

surgeon and/or the physician responsible for the care of the patient, and the patient act as
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a single decision maker to make the final accept/reject decision which depends on several

factors, e.g., the patient’s current health, quality of the organ offered, underlying disease,

location, rank, presence or absence of a potential living donor.

If the response is an acceptance to the organ offer, responses to outstanding offers for

patients with higher priorities (if there are any) need to be taken into account before the

OPO makes the ultimate allocation decision. Eventually, the highest ranked patient with

an acceptance response receives the organ, and the match list process terminates. If the

response is a refusal, it is either in the form of an individual refusal or a range refusal.

A range refusal is realized when the surgeon and/or physician rejects the organ offer not

only for the patient receiving the offer notification but also for a range of the same trans-

plant center’s other patients, i.e., a block of patients from that transplant center’s por-

tion of the waiting list to whom the organ would have been offered sometime later in the

match list process. In the case of refusals of either type, the patients remain eligible for

future offers and their history of rejections does not affect their priority for the new of-

fers. Despite the scarcity of donated organs, almost half of the liver offers are rejected by

the first surgeon to whom the offer is made [28] and 60% of all liver offers are rejected

[3].

1.1.2 Expedited Liver Placement

Because of the perishable nature of donated livers, the match list process is executed un-

der considerable time pressure. If the procurement coordinator anticipates that proceeding

through the match list will not produce a match quickly enough, then the coordinator may

opt in to an “expedited placement.” The initiation of an expedited placement implies that

the coordinator of the harvesting OPO departs from the match list process and offers the

organ to a transplant center. If the transplant center receiving the expedited organ offer

accepts it, it is free to allocate the organ to any of the patients under its care without any

match list constraints. This premature termination of the match list process implies that
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some candidates having a higher match list priority than the candidate receiving the expe-

dited placement liver offer, do not receive standard offers for the related organ, i.e., these

higher ranked patients are bypassed.

The unpublicized, yet common practice of expedited placement of livers is described as

an escape mechanism from the tightly controlled transplant matching process [15] and is

intended to alleviate the allocation time constraint. Furthermore, there is a surge in the

availability of organs which qualify for expedited placement. O’Connor et al. [31] report

that the number of hepatitis C virus (HCV)+ donors and donors after cardiac death (DCD)

which are most likely to be considered for an expedited placement, have tripled in Region

1 between 2004 and 2005. Despite the strategic importance of expedited placement livers

in decreasing waste of donated organs, currently there are no allocation rules for expedited

placement livers. Therefore the coordinators find themselves without much support regarding

the timing and recipient of an expedited offer [15].

Recently OPTN/UNOS Liver and Intestinal Organ Transplantation Committee formed

the Liver Utilization Working Group tasked with (1) evaluating and assessing the practice

of expedited liver placement, and (2) formulating a transparent process for expedited liver

placement [22]. As of June 2011, the working group is still in the early phases of information

gathering.

In addition to the absence of regulations for expedited placement livers, there is also a

lack of literature about expedited liver placement practice. The most extensive study about

expedited liver placement is by O’Connor et al. [31] who study the utilization of expedited

placement livers in Region 1 between 2004 and 2005. They report that the percentage of

expedited offers that are accepted increased from 18.8% in 2004 to 61.3% in 2005. To our

knowledge, no other studies about the expedited liver placement practice exists.
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1.2 MOTIVATION, PROBLEM STATEMENT AND CONTRIBUTIONS

Because deceased donor livers are a scarce, lifesaving resource, policies for prioritizing the

allocation are of ultimate importance for patients whose lives depend upon liver transplanta-

tion. Therefore, the policies regarding the allocation of livers are continuously being refined

to target the patients in greatest need and scrutinized for their potential unfairness.

Most notably, there is criticism regarding the currently employed prioritization algorithm,

mainly because the definition of the “best” potential recipient cannot be agreed upon. On

the one hand, patients with the severest medical urgency should have the greatest priority.

However, the current measure of medical urgency, i.e., the MELD scoring system, does not

serve all potential liver transplant candidates equally well. On the other hand, proximity

needs to be taken into consideration as well because the travel distance of the organ impacts

the organ quality and thus the post transplant life expectancy of the recipient. The highly

variable densities of the regions and OPOs lead to highly variable patient waiting times

(Figure 1.4) and imply that sicker patients in some part of the country may die while waiting

on the list while some relatively healthier patients may receive a transplant [43], [48], [49].

To balance the efficiency and equity of the liver allocation system, Demirci et al. [19] and

Kong et al. [29] propose redesigning the regional network. Another study by Akan et al. [2]

proposes a new set of criteria for patient prioritization based on total quality adjusted life

years and the number of unused organs. The outcomes of both studies require major system

redesigns, and therefore seem impractical.

Additional proposed modifications to the allocation policy include prohibiting a patient

from joining several waiting lists simultaneously (also known as “multilisting”) [10], [30],

increasing priority for children, developing guidelines to determine admission to the waiting

lists which entails a series of medical evaluations by the transplant team, limiting or even

banning retransplantation [13], [30], managing direct donations [23].
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(a) (b)

Figure 1.4: Time from listing until transplant by year of transplant (a), the proportion of

liver transplant recipients with a waiting time of 90 days or less by region (b) [34]

We are interested in mitigating inequities in the current liver allocation system that stem

from two sources. The first is induced by patients’ ability to game the allocation system by

not reporting their MELD score to UNOS whenever their score changes. We measure this

inequity by the percentage increase in life expectancy for a patient who is exploiting the

flexibility in the current system by not reporting all MELD score changes. Mitigating the

resulting inequity by requiring very frequent updates, however, is impractical and would add

to the already significant data processing burden. Using a Markov decision process (MDP)

model parameterized by clinical data, we examine (i) the degree to which an individual

patient can benefit from the updating flexibility, and (ii) how the resulting inequities may

be mitigated by revising the updating frequencies without significantly adding to the data

processing burden. We provide a menu of updating requirements that balance inequity and

data processing more efficiently than the current updating requirements.

The second source of inequity that we consider is induced by the OPO coordinator’s

premature departure from the match list process via an expedited placement. To gain

insight about the mechanics of the current practice of expedited liver placement, we first
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conduct an extensive analysis of current liver allocation practices where we specifically focus

on the novel aspects of expedited placement activity. Using clinical data from OPTN, we

investigate the prevalence of expedited placement livers by region, the timing of expedited

offer initiation, the number of patients bypassed due to an expedited placement and the

acceptance probabilities of expedited liver offers. We also investigate different aspects of the

match list process within the current practice.

Using the insights gained by the assessment of current liver allocation practices, we for-

mulate the match list process, which can possibly culminate in an expedited offer initiation,

as an optimal stopping problem. Our model rewards reflect the OPO coordinator’s adher-

ence to the match list which is captured by the number of offers extended until a successful

match. Using an MDP model, we examine (i) how many standard electronic offers the OPO

coordinator should include in a batch during the match list process and (ii) when she/he

should depart from the match list process, i.e., initiate an expedited placement. The follow-

ing trade-off is involved in (i): Extending too many offers is impractical, whereas extending

too few offers increases the likelihood of organ waste. And the trade-off involved in (ii) is

as follows: Initiating expedited placement too soon implies a low level of adherence to the

waiting list and thus is undesirable, whereas a late initiation implies a high risk to waste

the donated organ. In our numerical experiments, we use different sets of model input and

identify optimal solutions for the related problem instances. Additionally, we test the sen-

sitivity of the model outcomes with respect to model input which we expect to vary across

the nation or which depend on model assumptions. Eventually, we examine how our model

outputs compare to the analogous measures observed in the current practice and how they

can be useful to improve the current practice.

14



1.3 OVERVIEW OF THE DISSERTATION

The remainder of this dissertation is organized as follows. Chapter 2 presents an MDP model

for the accept/reject/update (MELD score) decision problem faced by liver transplantation

candidates, given a specific set of updating requirements. First, we analyze structural and

numerical results relating to patient decision making. Then, we derive a menu of efficient

updating schemes that balance inequity and data processing more efficiently than the current

updating requirements. In Chapter 3, we assess the current allocation practice by analyzing

OPTN data with a focus on the novel aspects of the match list process, expedited liver

placement, and the patients’ response mechanism. Chapter 4 presents the results of an

MDP formulation for the optimal timing of an expedited liver placement initiation. We

present a detailed numerical study parameterized with clinical data from Chapter 3 and

conduct sensitivity analyses with respect to model inputs. In Chapter 5, we summarize

our results and discuss the underlying limitations as well as possible directions for future

research.
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2.0 MITIGATING INEQUITIES IN LIVER ALLOCATION VIA REVISED

HEALTH REPORTING FREQUENCIES

In Chapter 1, we explained that UNOS prioritizes patients awaiting liver transplantation

based primarily on their medical urgency, as measured by their model for end-stage liver

disease (MELD) score. Therefore, UNOS requires each patient to report their MELD score at

a frequency that depends on their last reported MELD score (the sicker, the more frequent).

As a result of this flexibility, patients may conceal changes in their MELD score and “game”

the system. Mitigating the resulting inequity by requiring very frequent updates, however,

is impractical and would add to the already significant data processing burden. In this

chapter, we examine (i) the degree to which an individual patient can benefit from the

updating flexibility, and (ii) how the resulting inequities may be mitigated by revising the

updating frequencies without significantly adding to the data processing burden. We use a

Markov decision process (MDP) model parameterized by clinical data and provide a menu

of Pareto-optimal updating policies that balance inequity and data processing and suggest

that requiring the sicker (healthier) patients to update more (less) frequently than they must

under the current policy can improve both metrics.

The rest of this chapter is organized as follows. In Section 2.1 we present a review of the

related literature. We illustrate our model formulation and analyze structural and numerical

results relating to patient decision making in Section 2.2. Using this model, we derive a

menu of efficient UNOS updating schemes in Section 2.3 before concluding in Section 2.4.
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2.1 LITERATURE REVIEW AND MOTIVATION

Several researchers address the liver accept/reject problem from the patient’s perspective as

defined in Chapter 1. We refer the reader to Sandikci [41] for a detailed discussion of the

organ transplantation literature. Within this body of work, the most relevant to our problem

is Alagoz et al. [5], which is therefore considered in greater detail.

Alagoz et al. [5] present a discrete-time, infinite-horizon MDP model which maximizes

total expected discounted life days associated with the accept/decline decision. The state

of the process is described by the current patient health, h ∈ SH = {1, 2, . . . , H,H + 1}
and the current organ quality, l ∈ SL = {1, 2, . . . , L, L + 1}. Increasing values of h and l

correspond to sicker health conditions and lower organ qualities, respectively, where H + 1

and L+1 correspond to patient death and no liver offer, respectively. For each possible state

(h, l), provided an offer is made, the patient chooses to either accept the offer and transplant,

or reject the offer and continue to the next time period. The authors assume however, as

do all other studies that examine the liver accept/reject decision process [6, 7, 42], that

UNOS knows the patient’s current MELD score at all times. This assumption implies that

unless the patient chooses to transplant in a time period, her current health is reported to

UNOS at every time period which correspond to days in Alagoz et al. formulation. If the

patient accepts an offer of quality l while in health state h, she receives a total expected post-

transplant reward, R(h, l) and the problem terminates. Otherwise, i.e., if the patient decides

to wait for another organ when her health state is h, she accrues the expected immediate

reward in the current time period, rh. Then, the maximum total expected discounted reward

that the patient can attain starting from state (h, l) is denoted by

v(h, l) = max





R(h, l),

rh + λ
∑

(h′,l′∈SH)

Pr(h′, l′|h)v(h′, l′)
(2.1)

for h ∈ SH and l ∈ SL where λ is a discount factor and Pr(h′, l′|h) is the probability that in

the next period the patient will be in health state h′ and receive a liver offer of quality l′,
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given that she is in health state h in the current time period. For this model, the authors

derive conditions for a monotone, control-limit policy which states that for a patient at

health state h it is optimal to accept an offer of type l if l ≤ l∗(h) and decline it otherwise.

Our model relaxes the assumption of updating at every time period and allows a patient

to either (i) transplant (if an organ is available), (ii) do nothing, or (iii) update. The

update action in our formulation is equivalent to the wait action in Alagoz et al. model.

The relaxation of this assumption and inclusion of an explicit do nothing action not only

represents the real world setting more accurately, but also enables us to capture a patient’s

gaming ability by not reporting all MELD score changes.

To illustrate this potential for gaming, consider two hypothetical, extreme situations:

(i) continuous MELD score updating and (ii) completely voluntary updating. Under (i),

inequity among the patients is eliminated; however, such continuous updating requirements

are impractical and would inflate the already costly data processing burden at transplant

centers and UNOS. Under (ii), the data processing burden would be minimized; however,

patients would be able to game the system to the maximum possible extent. Clearly, there

are two ways in which a patient may game the system by not reporting all MELD score

changes. First, if the patient’s health improves (i.e., her MELD score declines), she increases

her likelihood of receiving an offer by not reporting her MELD score change. Secondly, if the

patient’s health deteriorates (i.e., her MELD score increases), she may choose not to report

because updating to a sicker MELD score can leave her with a shorter amount of time until

the next required update. Both of these possibilities induce information asymmetry between

UNOS and the patient which we measure by the percentage increase in life expectancy for a

patient who is exploiting the flexibility in the current system by not reporting all MELD score

changes. An ideal updating scheme strikes a balance between these competing objectives,

i.e., system inequity and the data processing burden.
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2.2 PATIENT DECISION MAKING

2.2.1 Model Formulation

We assume that at the start of each discrete time period the patient knows her current

MELD score and chooses to either (i) transplant, T (if an organ is available), (ii) do nothing,

(DN), or (iii) update (U), i.e., report her current MELD score to UNOS, so as to maximize

her total expected discounted reward. Liver offers of various quality arrive at the end of each

time period according to probability distributions that depend on the patient’s last reported

MELD score. If the patient chooses to transplant, she receives a lump sum post-transplant

reward as a function of her current MELD score and the accepted liver’s quality, and the

process terminates. If she chooses not to transplant, she obtains a pre-transplant reward

that depends on her current MELD score and transitions to a new health state according

to a known probability distribution conditional on her current MELD score in the previous

period. If the patient does nothing, her last reported MELD does not change and the time

until the next required update decreases by one period. If the patient chooses to do nothing

with no time remaining, then her reported MELD score is downgraded to the healthiest

MELD score. If the patient chooses to update, her last reported MELD is updated to her

current score and the time until next required update is reset according to a given updating

scheme, e.g., Table 1.1, which dictates the minimum updating requirements for all MELD

scores.

We model this problem as an infinite horizon discrete time MDP. The state of the

MDP is defined by (h,m, τ, l). In this state definition, h ∈ SH = {6, 7, . . . , 40, 41} is

the patient’s current MELD score, where 41 represents death; m ∈ SM = {6, 7, . . . , 40}
is the patient’s last reported MELD score; τ̄ : SM → R+ is an updating scheme and

τ ∈ S τ̄(m) = {0, 1, 2, . . . , τ̄(m) − 1} is the number of periods remaining until the next re-

quired update, where τ̄(m) is the maximum time allowed between two consecutive MELD

updates when the last reported MELD score is m under the given updating scheme, τ̄ ;

l ∈ SL = {1, 2, . . . , L, L + 1} is the quality of the deceased-donor liver currently offered to
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the patient, where lower numbers represent better quality livers and L+1 represents no liver

offer. Let A(h,m, τ, l) be the set of actions in state (h,m, τ, l). Then, for all h,m, τ ,

A(h,m, τ, l) =





{T,DN,U}, l < L+ 1;

{DN,U}, l = L+ 1.

The immediate reward earned when the patient chooses not to transplant with current

MELD score h is defined as rh ∈ [0,∞) for h ≤ 40 and r41 = 0. The post-transplant reward

earned when the patient chooses to transplant with MELD score h given liver quality l is

defined as R(h, l) ∈ [0,∞) for h ≤ 40 and l < L + 1, and R(41, l) = R(h, L + 1) = 0,∀l, h.
Note that the patient does not accumulate any additional rewards once she is dead.

The transition probability matrix that governs health state changes is denoted by H
where the probability that the patient with current MELD score h transitions to MELD

score h′ in the next period given that she does not transplant is defined by H(h′|h) for all
h and h′. Note that H(41|41) = 1. The matrix of liver offer probabilities is denoted by L,
where the probability that the patient receives a liver offer of quality l given that her last

reported MELD score is m is defined by L(l|m) for all l and m.

Given a discount factor λ ∈ [0, 1], we define v(h,m, τ, l) as the patient’s maximum

expected total discounted reward starting from state (h,m, τ, l):

v(h,m, τ, l) =





max{vT (h, l), vDN(h,m, τ), vU(h)}, ∀h,m, τ and l < L+ 1;

max{vDN(h,m, τ), vU(h)}, ∀h,m, τ and l = L+ 1, where

(2.2)

vT (h, l) = R(h, l),∀h, l < L+ 1, (2.3)

vDN(h,m, τ) = rh + λ
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|m)v(h′,m, τ − 1, l′)

)
,∀h,m, and τ > 0,

(2.4)

vDN(h,m, 0) = rh + λ
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|6)v(h′, 6, τ̄(6)− 1, l′)

)
, ∀h,m, (2.5)

20



vU(h) = rh + λ
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|h)v(h′, h, τ̄(h)− 1, l′)

)
,∀h. (2.6)

Note that v(41,m, τ, l) = 0 for ∀m, τ, l.

2.2.2 Structural Results

In this section, we establish several structural properties of the MDP model presented in

Section 2.2.1. Specifically, we identify conditions on the model parameters that guarantee

structured value functions and optimal policies. These results may provide deeper insight

into the overall problem and help devise computationally faster solution approaches. The

corresponding proofs can be found in Appendix B.

Lemma 1 states that if the last reported MELD score is the healthiest score, then the

remaining time to the next required update, τ , is irrelevant.

Lemma 1. For all h, l, v(h, 6, τ, l) is constant in τ .

We make use of the following three assumptions, As1, As2 and As3 throughout the

remainder of this section.

As1. The post-transplant rewards, R(h, l), are decreasing in h and l.

As2. The intermediate reward, rh, is decreasing in h.

As3. The rows of the liver transition probability matrix L are in decreasing stochastic order,

i.e.,
∑L+1

l=k L(l|m) ≥ ∑L+1
l=k L(l|m+ 1),∀m and 1 ≥ k ≥ L+ 1.

As1 implies that the post-transplant reward does not increase as the patient deteriorates

and/or the quality of the liver degrades. Similarly, As2 implies that the intermediate reward

of waiting does not increase as the patient deteriorates. Finally, As3 implies that the greater

the last reported MELD score of a patient, the greater her chance of being offered a high

quality liver.
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Proposition 1 illustrates the intuitive facts that it is better to (a) be offered a higher-

quality organ, (b) have a higher MELD score in the UNOS system, and (c) have more time

until the next required MELD update.

Proposition 1.

(a) Under As1, v(h,m, τ, l) is decreasing in l for all h,m and τ .

(b) Under As1 and As3, v(h,m, τ, l) is increasing in m for each h, l, τ .

(c) Under As1 and As3, v(h,m, τ, l) is increasing in τ for each h,m, l.

Corollary 1 illustrates that (a) when no time remains, updating is always better than

doing nothing; (b) updating is always better than doing nothing if the reported MELD score

is the healthiest; (c) if the current MELD score is the healthiest and the last reported score

is not, then doing nothing is always better than updating; and (d) if the reported MELD

score and the current MELD score are equivalent, then updating is always better than doing

nothing.

Corollary 1. Under As1 and As3,

(a) vU(h) ≥ vDN(h,m, 0), ∀h,m, l.

(b) vU(h) ≥ vDN(h, 6, τ), ∀h, l, τ .
(c) vDN(6,m, τ) ≥ vU(6), ∀l, τ and m > 6.

(d) vU(m) ≥ vDN(m,m, τ), ∀m, l, τ.

Reporting a greater MELD score than the last reported score involves a tradeoff between

increasing the chance of obtaining an offer and decreasing the amount of time until the next

required MELD update. Clearly, this tradeoff is irrelevant if after updating the patent would

have a greater number of periods until the required update. Proposition 2 establishes this

result.

Proposition 2. Under As3, for h > m and τ̄(h) ≥ τ , vU(h) ≥ vDN(h,m, τ) for all l.

Definition 1. [26, 46] An n× n matrix P is called upper Hessenberg if ∀i = 1, . . . , n− 1,

it satisfies
∑i−1

j=1P(j|i+ 1) = 0.
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In the context of our model, if H is uppertriangular, i.e., patient health never improves,

then τ is irrelevant and updating always yields a larger value than doing nothing. If H is

upper Hessenberg, then a patient’s MELD score may improve by at most one per period,

i.e., improvements in health occur gradually (if at all). Our estimation of H nearly satisfies

the upper Hessenberg condition; see Section 2.2.3. Proposition 3 shows that if the rows of L
are in decreasing stochastic order and H is upper Hessenberg, then updating is better than

doing nothing when the patient is sicker than the reported MELD score indicates.

Proposition 3. Under As3 and if H is upper Hessenberg, then vU(h) ≥ vDN(h,m, τ) for

h > m, ∀l, τ .

The intuition behind Proposition 3 is that under an upper Hessenberg H, after the

patient updates in some state with h > m, if the patient’s health improves, then the patient

will always have the opportunity to update when their current health is m. That is, the

MELD score cannot “jump over” m and force the patient to report a healthier score.

Alagoz et al. [5] define a liver-based control-limit optimal policy to be a policy among

the optimal policies that, for a given health state h distinguishes a critical liver state l∗

and prescribes transplantation for all livers l ≤ l∗ and doing nothing for all livers l > l∗.

Analogously we define and establish the existence of control-limit optimal policies based

on the liver quality, number of periods remaining until the next required update and the

patient’s last reported MELD score in Proposition 4.

Proposition 4.

(a) Under As1, for a given h,m, τ there exists a liver quality l∗ such that transplanting is

optimal for l ≤ l∗ and doing nothing or updating is optimal otherwise.

(b) Under As1 and As3, for a given h,m, l there exists a time remaining until next required

update τ ∗ such that doing nothing is optimal for τ ≤ τ ∗ and transplanting or updating is

optimal otherwise.

(c) Under As1 and As3, for a given h, τ, l there exists a MELD score m∗ such that doing

nothing is optimal for m ≤ m∗ and transplanting or updating is optimal otherwise.
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Lastly, in Proposition 5 we prove that any non-continuous updating scheme, i.e., anything

other than updating in every period, results in more discriminating patients in terms of the

liver offers they are willing to accept.

Proposition 5. Consider the updating scheme A in which τ̄(h) = 1, ∀h, and another updat-

ing scheme B in which τ̄(h) > 1 for at least one h. Let the critical liver state to transplant

be l∗A and l∗B for updating scheme A and B, respectively. Then, l∗B ≤ l∗A for all h, m.

2.2.3 Numerical Results

In this section, we provide several numerical examples that provide additional insight. First,

we discuss parameter estimation and the scope of the numerical experimentation. Second,

we examine how the current updating scheme affects patient behavior and illustrate how

patients can benefit from this flexibility.

We define each period to be one day and consider the objective of maximizing the

patient’s total expected remaining lifetime. Therefore, we set rh = 1, and estimate the

patient-specific total expected post-transplant life days, R(h, l),∀h, l < L+1 using the post-

transplant survival model of [39]. The data set used is described in Alagoz et al. [5]. We

note that these estimates satisfy Assumptions As1 and As2.

To estimate H, we follow Alagoz et al. [5]. Because there is no large, multi-center study

that regularly collects data on the natural history of liver disease, they estimate health

transition probability matrices for different disease groups using the natural history model

(NHM) ([4]). The NHM is an empirical stochastic model which uses cubic spline functions to

estimate incomplete lab values needed for MELD score calculations. In this model patients

are stratified by disease group and patient location, i.e., for each disease group, cubic splines

are sampled at daily intervals for patients in the hospital and in the intensive care unit (ICU),

and at monthly intervals for patients at home to obtain a complete longitudinal history of

each patient. Then, MELD scores are calculated using the simulated lab values which are

validated using historical patient records, and are proven to be a fair approximation of the

real disease progression.
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We exclude Status 1 patients and consider only adult ESLD patients who are classified

by their MELD score. We consider Disease Groups 1 and 2 which include primary biliary

cirrhosis, primary sclerosing cholongitis, alcoholic liver disease, autoimmune disorders, and

hepatitis B and C, respectively. Due to sparsity of the available data, Alagoz et al. [5]

represent patient health by MELD scores aggregated in groups of two. We use a slightly

different aggregation scheme than [5] in order to facilitate computational tractability. More

specifically, the healthiest five MELD scores (6-10) are aggregated into one group and the

following eight MELD scores are aggregated into two groups of four (11-14 and 15-18). For

the remainder of the MELD scores, like [5], we aggregate in groups of two. We quantify the

violation of Definition 1, i.e., the upper Hessenberg property of H using the following metric:

ε1 = max
i

{
max{0,

i−2∑
j=1

H(j|i)}
}
, for i = 3, . . . , H + 1. (2.7)

The maximum violations are 0.0287 and 0.0081 for Disease Group 1 and 2, respectively and

the histograms of the corresponding ε1 values are displayed in Figure 2.1.

To estimate L, we also follow the liver quality classification scheme of [5], which considers

14 liver qualities as determined by the age, race, and gender of the donor [39]. The data

used in the estimations are obtained from UNOS and contain information about the patient

characteristics and deceased donor liver offers over a 15-month period. Detailed descriptions

of the liver quality assignment scheme is provided in [5]. We quantify the violation of As3

using the following metric:

ε2 = max
k,m

{
max{0,

L+1∑

l=k

L(l|m+ 1)− L(l|m)}
}
, (2.8)

for k = 1, . . . , L + 1 and m = 1, . . . , H − 1. The violation of As3 is only observed for two

rows of L and the maximum violation is 0.0128.
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Figure 2.1: Histogram of the violations of the upper Hessenberg property on H

We use an annual discount rate of 0.97, which translates into a daily discount rate,

λ=0.999917, and solve problem instances of the model presented in Section 2.2.1 using

policy iteration [35]. As in previous studies [5, 6, 7, 42], this approach determines an optimal

accept/reject/update policy for a single patient assuming that all other patients behave as

they do now.

Given these parameter estimates, we conduct our numerical experiments using data

corresponding to patients of three different ages: 22, 40 and 60 years old. Other patient

characteristics are fixed to those values most commonly occurring in the population, namely

caucasian patients, with no prior transplants, no cytomegalovirus (CMVGR) and no en-

cephalopathy. We consider both genders and both disease groups. Of the patients we con-

sider, the most likely is a 60-year old male from Disease Group 1 (in 2008, males comprised

60.7% of the active waiting list, more than 70% of all patients were in Disease Group 1 and
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62.5% of all the patients were between ages 50-64 [34]). For this reason, the majority of our

results are for this age, gender and disease group combination. First, we examine how the

current UNOS updating scheme affects patient decision making. We compare the optimal

policy for a 60-year old male from Disease Group 1 under the current scheme to the optimal

policy for the same patient under the continuous (i.e., daily) updating scheme as in [5]. This

benchmarking illustrates the deviation in patient behavior from the case in which UNOS has

perfect patient information. To facilitate this comparison, we restrict our attention to states

in which τ = 0 and the optimal action is therefore either update or transplant (Corollary

1(a)). Figure 2.2 illustrates that under the current UNOS updating requirements, the pa-

tient’s optimal liver threshold does not increase, i.e., the patient is no more likely to accept

livers of lesser quality, compared to the threshold under daily updating. For example, for

MELD score 24, under the current scheme the patient optimally switches from update to

transplant at liver quality 7, whereas she optimally switches from do nothing to transplant

at liver quality 8 for the same MELD score under the daily updating scheme.

Figure 2.2: Optimal transplant behavior under UNOS updating for τ = 0 as compared to

daily updating
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Next, we consider the degree to which a patient can benefit from the current updating

scheme. To do so, we evaluate the increase in total expected lifetime and the decrease in the

number of expected updates as compared to the same measures under the daily updating

scheme. For a patient with MELD score h at the time of listing who does not receive an

offer at that time, we calculate the percentage increase in expected lifetime under the current

scheme as compared to daily updates as

ω(h) =
v(h, h, τ̄(h), L+ 1)− vdaily(h, L+ 1)

vdaily(h, L+ 1)
× 100, (2.9)

where vdaily(h, L + 1) represents the total expected reward of the patient with MELD h at

the time of listing under the daily updating scheme [5]. The decrease in the expected number

of updates is calculated similarly using

µ(h) =
Udaily[h, L+ 1]− U [h, h, τ̄(h), L+ 1])

Udaily[h, L+ 1]
× 100, (2.10)

where U [h, h, τ̄(h), L+1] denotes the expected number of times a patient with MELD score

h with no liver offer at the time of listing updates while on the list and Udaily[h, L+1] is the

analogous value under the daily updating scheme.

Figure 2.3 shows these metrics as a function of initial MELD score averaged over male

patients of ages 22, 40 and 60 for Disease Groups 1 and 2. For both disease groups, patients

with relatively healthy and relatively sick initial MELD scores benefit less than patients with

mid-range initial MELD scores in both measures. The intuition behind this observation is

that MELD scores typically change slowly over time. That is, patients who are initially

healthy typically spend a fair amount of time having a MELD score in which they are

unlikely to receive offers, regardless of whether or not they report minor improvements in

their MELD score as they occur. Similarly, patients who are initially very ill are very close

to death and receive frequent organ offers, leaving them little room to benefit. Furthermore,

patients in Disease Group 2 experience a greater improvement in both measures than their

counterparts in Disease Group 1. The intuition behind this result is that the diseases in

Disease Group 2 are less aggressive than those in Disease Group 1, which leads patients
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in this group to benefit more from not reporting improvements in their MELD scores than

those in Disease Group 1. Our results for female patients are analogous and display the same

trends. As a final note, the bumpiness of the curves is due to data sparsity.

Figure 2.3: Patient benefits under UNOS updating: Increase in the expected patient life and

decrease in the expected number of updates

In summary, the results presented in this section indicate that UNOS’ current updating

scheme results in more discriminating patients with respect to organ quality. Our findings

suggest that by exploiting the updating flexibility, a typical patient can increase his life

expectancy by up to 1% (Figure 2.3) and his updating burden can decrease by up to 40% as

compared to daily updates (Figure 2.3).
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2.3 APPROXIMATING THE EFFICIENT FRONTIER OF UPDATING

SCHEMES

As demonstrated in Section 2.2.3, by exploiting the inherent flexibility in UNOS’ current

updating scheme, patients can increase their life expectancy and reduce their expected

number of updates. However, such increases in life expectancy can be interpreted as in-

creases in system inequity because when one patient uses this flexibility to improve their

chances of receiving a high quality organ, another patient who has a greater priority un-

der the current allocation algorithm, may suffer. Therefore, in this section we investigate

improved updating requirements which outperform the current UNOS requirements with

respect to system equity without resulting in an increased data processing burden, or vice

versa.

For a specific updating scheme τ̄ with updating frequencies τ̄(h), h = 1, . . . , 40, we cal-

culate the average percentage increase in system inequity as compared to daily updating

scheme using the weighted average of the ω(h) values given by (2.9) over all MELD scores

at the time of listing, h, by

γ(τ̄) =
40∑

h=6

ω(h)× p(h), (2.11)

where p(h) represents the probability that a patient has MELD score h at the time of listing.

We estimate the p(h) probabilities using data provided by UNOS for the 27,866 patients who

joined the list between 2001-2008. The average percentage decrease in the data processing

burden is calculated similarly, using µ(h) defined in (2.10), i.e.,

δ(τ̄) =
40∑

h=6

µ(h)× p(h). (2.12)

Finding an updating scheme τ̄(h) for all h, that optimizes some combination of these two

objectives, is computationally burdensome. Therefore, we implement a heuristic approach

that conducts a local search over a collection of intuitive and easy-to-implement updating

schemes. We restrict ourselves to monotone updating schemes, i.e., τ̄(h) decreasing in h.
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Moreover, to be consistent with UNOS’ current updating scheme, we restrict the updating

frequencies (in days) to the set {1, 3, 7, 14, 30, 60, 90, 180, 365} and fix the updating break-

points as specified in Table 1.1, i.e., at MELD scores {10, 18, 24}. (Numerical experimenta-

tion on schemes with different MELD score breakpoints showed no significant improvement.

See Appendix A for details.)

Table 2.1 represents the complete set of lexicographically ordered updating schemes eval-

uated on a 32-bit version operating system with Intel Core 2 Duo CPU, 3.00 GHz Pro-

cessor and 2.00 GB of RAM. In Figure 2.4(a) we provide the evaluation results for the

updating schemes in Table 2.1 for a 60-year old male from Disease Group 1. Also in-

cluded in the figure are the points corresponding to a continuous (daily) updating scheme,

the current UNOS scheme and a completely voluntary scheme. From this set of updating

schemes, we identify the set of dominant or efficient schemes as displayed by the black

points in Figure 2.4(a). The entries corresponding to efficient updating schemes are shaded

in light gray and numbered in Table 2.1 in the order in which they appear on the effi-

cient frontier from left to right. (The dark grey entries are addressed laster in this sec-

tion.)

In Figure 2.4(b), we illustrate how changes in the updating frequency requirement for

specific MELD scores affect the performance measures. We observe that changes in fre-

quencies corresponding to higher MELD scores (corresponding to sicker health states) have

a greater impact as evidenced by a steeper trend both in the increase in system inequity

as well as in the reduction in data processing burden. This observation is consistent with

the observation that patients with relatively lower initial MELD scores benefit less from the

updating flexibility than patients with higher initial scores (Figure 2.3).

Figure 2.5 provides the outcomes of the same set of 40 updating schemes for male pa-

tients of all ages across disease groups. The results for females are analogous. We note

that the set of efficient policies does not significantly vary with patient type or disease

group. However, for Disease Group 2 we observe a greater increase in system inequity

and a greater reduction in data processing burden for a specific updating scheme, i.e.,
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Table 2.1: List of the updating schemes evaluated

Figure 2.4: Evaluation of different updating schemes (a), sensitivity of the performance

measures to changes in frequency requirements (b)
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a shift of the complete set towards the upper right corner. This observation is driven

mainly by the fact that Disease Group 2 is less aggressive than Disease Group 1, giv-

ing patients in Disease Group 2 more opportunity to benefit from the updating flexibil-

ity.

Figure 2.5: Evaluation of updating schemes for all male patients considered

Next, consider the weighted averages of the performance measures over all patient types

for both disease groups (Figure 2.6). We observe that the updating schemes that are efficient

for Disease Group 1 are also efficient for Disease Group 2 which is the same set of schemes

identified to be efficient in Figure 2.4(a). The only deviation occurs in updating schemes 1′
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and 2′ which are efficient for Disease Group 2, but not for Disease Group 1 and they are

highlighted in darker gray in Table 2.1. Note that the current UNOS updating scheme is not

efficient and the menu of 15 efficient updating schemes improves both performance measures,

i.e., decreases the system inequity and decreases the data processing burden, by adjusting

the updating frequencies.

Figure 2.6: The performance of the updating schemes considering averages of all male and

female patients for each disease group

Note that schemes 5, 6 and 8 perform relatively better with respect to both objectives

(being “closest” to the lower right corner). If we consider the frequencies of these updating

schemes, we observe a common characteristic: The allowable time between required updates

for MELD scores 19 and greater is less than or equal to those dictated by the current

scheme, whereas the allowable time between required updates for MELD scores 18 and

smaller is greater than or equal to those dictated by the current scheme. That is, our

results suggest that relatively healthy (sick) patients should be required to update less (more)

frequently than the current requirements dictate. One potential explanation for this finding

is that the national average MELD score at transplantation is 20 [22]. Our results suggest

that tracking patients with MELD scores below 20 (above 20) less closely (more closely) may

avoid significant increases in inequity while achieving a relatively low data processing burden.
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2.4 CONCLUSION

In this chapter, we examine the current health reporting requirements for ESLD patients

from the individual patient’s and from UNOS’ perspective. We quantify the degree to which

patients can increase their life expectancy by optimally choosing when to update their MELD

scores with UNOS. We construct a menu of 15 updating schemes that render the current

UNOS updating scheme inefficient with respect to an increase in system inequity versus a

decrease in the data processing burden (Table 2.1). This menu suggests that requiring the

sicker (healthier) patients to update more (less) frequently than they must under the current

policy can improve both metrics. This menu appears to be insensitive to patient character-

istics. Furthermore, the resulting schemes are readily implementable by UNOS and easily

followed by patients. Related future research directions are discussed in Chapter 5.
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3.0 ASSESSMENT OF THE CURRENT PRACTICE OF EXTENDING

OFFERS AND RESPONDING TO OFFERS

In Chapter 1 we explained how the current liver allocation system works and we highlighted

the significance of the appropriate management of donated organs. Also, we pointed out

the lack of regulations for expedited placement livers which is accompanied by the lack of

existing literature about the expedited liver placement practice. The goal of this chapter is

to analyze various novel aspects of the current allocation practice using clinical OPTN data.

Most importantly, we aim to investigate the trends involved in expedited offer making which

have remained unexplored to date.

The rest of this chapter is organized as follows. In Section 3.1 we introduce a new measure

for organ availability which is used to explain our findings presented in the remainder of

this chapter. The clinical OPTN data are described in Section 3.2, and in Section 3.3 we

analyze various performance measures of the current practice of extending standard electronic

offers during the match list process. In Section 3.4 we investigate the current mechanics of

the expedited offer placement practice where we present how many expedited offers are

initiated by harvesting regions and how many expedited offers are accepted by recipient

regions. The distribution of the number of bypassed patients involved in an expedited offer

allocation is also explored within this section. Then in Section 3.5 we focus on the individual

transplant center/patient perspective and explore the distribution of the response times and

acceptance/rejection probabilities for standard and expedited offers.
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3.1 DONOR DENSITY

In this section we define a measure for organ neediness at a regional level which is utilized

to explain our findings in the following sections. The number of donors in a region during

a specific time interval is certainly an indicator of the organ availability. Therefore, we

consider the number of donors in a specific region in conjunction with the number of waiting

list additions in that region during the time interval between t and t and define a new metric,

donor density, ξi(t, t) as a measure of the level of organ shortage in Region i:

ξi(t, t) =
number of donors in Region i between t and t

number of waiting list additions in Region i between t and t

Table 3.1 illustrates the number of donors, the number of waiting list additions for t =

01/01/2008 and t = 12/31/2008, and the corresponding donor densities in decreasing order

for all regions.

Table 3.1: Calculation of donor density for regions in 2008

We observe that Region 3 has the highest number of donors as well as the highest donor

density value. However, consider Region 6 which has the second smallest number of donors

but its donor density indicates that the small number of donors is scaled down by the small

number of waiting list additions. Region 11 is the second region with the most generous

supply of livers relative to the waiting list additions while Region 9 has the least supply.
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3.2 DATA SOURCES

Throughout this chapter we use clinical OPTN data obtained from Donornet. The data

covers all liver match runs between May 1, 2007 and February 28, 2009, a total of 16883

match runs and 68816 batches of offers. The match runs are further broken down into the

individual offers made where there are 428255 records of electronic offers after the elimination

of manual offers and range refusals as defined in Chapter 1.

For each match run, the data contain the unique donor and match identification numbers,

date and time of the match run, and the region number of the recovering OPO. Within each

match run, we have the following information about each individual electronic offer: the

sequential order/rank and the distinct center identification number of the candidate receiving

the offer, the identification number and the limits of the corresponding batch of offers, date

and time the transplant center receives the offer, batch number when transplant center enters

a response, date, time and type of the response to the offer. We use this information to

estimate the distribution of patient response times, the acceptance probabilities to standard

offers, the number of electronic offers in each batch, the time between sequential batches of

offers and the length of a match run.

If an offer recipient responded with refusal, or if a waiting list candidate was bypassed, the

data provide information regarding the so-called refusal codes for the corresponding offers.

The refusals can be due to candidate-related reasons such as the candidate being too ill

and/or unavailable for a transplant, histocompatibility-related reasons such as unacceptable

antigens, program-related reasons such as when the response time of the patient exceeds

one hour, or donor-related reasons such as an anatomically damaged organ. A patient is

bypassed due to policy related reasons such as a directed donation or other reasons such

as the initiation of an expedited placement. We are interested in the match runs which

terminate due to the initiation of an expedited offer and use the information regarding the

refusal codes to identify the specific set of match runs culminating in expedited offers.
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If a match run terminated with a successful allocation via a standard offer or an expedited

offer, the data display the sequential order/rank of the organ recipient. In the case of a

match run which terminates without allocation, there is simply no indication. We use this

information to identify the expedited liver recipients and, subsequently, to estimate the

number of bypassed patients due to the expedited placement, as well as the acceptance rates

for expedited offers.

We mention in Chapter 1 that the electronic organ allocation environment was launched

on April 30, 2007. Therefore, the data we discuss here relate to the early implementation

era and some data inaccuracies exist because of the recording errors during this adaptation

phase.

3.3 THE PRACTICE OF EXTENDING ELECTRONIC OFFERS

Once an organ is harvested, the harvesting OPO coordinator is responsible for its allocation

by either extending a batch of standard electronic offers according to the prioritized match list

or by initiating an expedited placement. In this section, we are interested in the practice of

extending electronic offers during the match list process. Motivated by the lack of guidelines

as how long the OPOs should/can wait before proceeding to extending the next batch of

electronic offers and how many offers to include in a local batch, we aim to identify the

patterns underlying the standard offer making practice. To this end, we investigate the

distribution of the number of offers in a batch and the time between sequential batches.

Also, we provide an analysis of the total length of match runs and the average number of

batches per match, respectively.
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3.3.1 Length of a Match Run

As we mentioned before, liver match runs are inherently limited by the CIT of livers, 18-24

hours. Therefore, the timely allocation of the donated organ is critical and the OPOs are

under significant time pressure. In this section, we analyze the distribution of the match

length to gain insight about the time frame of organ allocation.

Figure 3.1 displays the histogram of the lengths of match runs. Because donated livers

are inviable after 18 hours of CIT [22], we suspect that data corresponding to match runs

longer than 18 hours are recorded incorrectly and thus excluded from this analysis. The

average, median, the 75th and 90th quantiles for the match runs are 4.36, 3, 6 and 11 hours,

respectively. The observed frequencies are almost monotone decreasing in the number of

hours, and the probability that a match run exceeds 11 hours is 0.1. These findings imply

that the majority of match runs terminate relatively quickly and much earlier than the time

limit imposed by liver CIT.

Figure 3.1: Histogram of match run lengths in hours
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3.3.2 Offer Batching

In this section, we explore the average number of batches per match as well as the distribution

of the number of electronic offers per batch, i.e., the batch size, for every region. Table 3.2

illustrates the average number of batches per match, average number of offers per batch and

the maximum observed batch size by region and Figure 3.2 displays the plots of the average

(a) and maximum batch size (b) by region. The average number of batches per match and

the average batch size over all regions is 4.18 and 5.94, respectively. Equality of the mean

batch sizes across regions is tested via t-tests assuming unequal variances at a 5% level of

significance. Among 55 pairwise comparisons, only the null hypothesis of equal means in

Region 1 and 2 is rejected.

Table 3.2: Average number of batches per match, average number of offers per batch and

maximum observed batch size
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(a) (b)

Figure 3.2: Average number (a), and maximum number (b) of offers in a batch for all regions

Next, we examine the distribution of batch size. Figure 3.3 displays the corresponding

histograms which illustrate that the batch size distribution does not significantly change by

region. We test the equality of the batch size distributions via Kolmogorov-Smirnov tests

at a 5% level of significance. Among 55 pairwise comparisons, the null hypothesis of equal

distributions is rejected between Region 1 and 2, 9, 10, Region 2 and 4, 6, 7, 8, 9, and Region

6 and 7, 9, 10, 11.

For all regions, the frequency of the observations significantly decreases with increas-

ing batch size and there is a spike in the frequencies corresponding to batches of 10 to 14

offers. We explain this pattern as follows: Under the current regulations which are ex-

plained in detail in Chapter 1, the limits on simultaneous local offers are determined by the

harvesting OPO and UNOS cites over 60% of all offers are allocated locally [34]. There-

fore, the OPOs start the match list process by extending smaller local batches of offers.

This pattern is intuitive because a match is relatively likely to terminate quickly with a

local allocation, and thus extending too many offers slows down the process. If the local

centers are exhausted without a successful allocation, then the OPOs proceed to making

regional and national offers. The current maximum number of non-local simultaneous offers

is 10 and we observe higher frequencies of 10 to 14 batch sizes. Therefore, we conclude
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that the batch size increases when the match list process proceeds to the non-local level

and in fact, OPOs seem to extend as many non-local offers at once as the current limits

allow.

Figure 3.3: Histograms of batch size by region

3.3.3 Time between Sequential Batches of Offers

In this section, we are interested in the distribution of the time between sequential batches of

electronic offers. We have examined all batch records included in the data sets and find that

the time between sequential batches of offers can be as small as 1 minute and as large as 16

hours. We calculate the median, the 75th and the 90th quantiles as 16, 37 and 94.3 minutes

respectively. Because the probability that the time between two sequential batches of offers

exceeding 94.3 minutes is relatively low, we view the records greater than 94.3 minutes as

outliers and eliminate them from further consideration.
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Figure 3.4 (a) displays the histogram of the recorded times between batches of offers after

the elimination of outliers and Figure 3.4 (b) considers only the batches which are extended

sequentially in less than an hour. We can conclude from this analysis that the OPOs tend to

extend sequential offers rather frequently, which is compatible with intuition given the time

constraint nature of the liver allocation process.

(a) (b)

Figure 3.4: The histograms of the duration between sequential batches of offers considering

when match lengths are less than 94.3 minutes (a), when match lengths are less than 60

minutes (b)

3.4 THE PRACTICE OF EXPEDITED PLACEMENT

As we mentioned in Chapter 1, the initiation of an expedited placement indicates the ter-

mination of the match list process and implies that the harvesting OPO is free to direct the

expedited offer to any transplant center. Therefore, the decisions involved in an expedited

offer, specifically when to initiate the offer or which transplant center to direct it to, can

vary significantly by the harvesting OPO. In this section, we explore how these decisions

regarding an expedited offer are made in the current practice and provide novel insight into

the expedited placement process.
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3.4.1 Expedited Placement Activity by Region

We identify a match as an expedited match when it includes at least one candidate who is

bypassed with the refusal code representing an expedited placement attempt. We find that

the total number of expedited matches between May 1, 2007 and February 28, 2009 is 534

which implies that 3.16% of all match runs culminated in an attempted expedited placement.

In this section we explore how the expedited placements are distributed over regions.

Table 3.3 illustrates the number of expedited offers by the region initiating the placement

and by the region receiving and accepting the offer. First, we consider the expedited offer

placement activity. Table 3.3 displays that Region 3 and 11 initiate most of the expedited

placements, i.e., 54.31% of all expedited offers combined whereas Region 5 is a distant third.

This finding is intuitive because Regions 3 and 11 have the two highest donor densities as

defined in Section 3.1 among all regions.

Table 3.3: The frequency of expedited offers by region

Next, we consider the expedited offer acceptance activity. For each harvesting region,

the region which accepts the largest number of expedited offers initiated by that harvesting

region is shaded gray in Table 3.3. The reason we consider the number of accepted expedited

offers is that we only have the region information of the recipient of an expedited placement
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resulting in an acceptance. We believe that the number of accepted expedited offers is posi-

tively correlated to the total number of expedited offers received by that region. The strongly

diagonal pattern displayed in Table 3.3 suggests that expedited offers are mostly directed

to transplant centers within the boundaries of the harvesting region. This pattern is only

violated by Region 9 which in fact accepts the largest number of expedited offers from all

regions, i.e., 32.4% of all expedited offers. This finding is also intuitive because Region 9 has

the lowest donor density and thus the greatest organ shortage among all regions.

To further explore the relation between the donor density and expedited placement activ-

ity, we calculate the percentage of match runs which culminated in an expedited placement

and the percentage of transplants using expedited placement livers for all regions. The

corresponding values are illustrated in Table 3.4 and plotted in Figure 3.5.

Table 3.4: Percentage of expedited placement livers among all donations and transplants

If donor density is an appropriate predictor for expedited offer placement tendency, we

expect to see a monotone decreasing trend implying a positive correlation in Figure 3.5 (a)

and a monotone increasing trend implying a negative correlation in Figure 3.5 (b). We cal-

culate the respective correlation coefficients, and obtain 0.532 (-0.406) indicating a positive

(negative) correlation between donor density and the percentage of expedited placement liv-

ers among all donations (transplants). Also, we observe that a general decreasing (increasing)

trend exists in Figure 3.5 (a) (in Figure 3.5 (b)). These findings confirm that donor density is

one of the driving factors behind the initiation and acceptance of expedited placement livers.
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(a) (b)

Figure 3.5: Percentage of expedited placement livers among all donations (a) and among all

transplants (b) for regions ordered in decreasing donor density

3.4.2 Initiating Expedited Placement

Here we investigate when an expedited placement is initiated in terms of clock time and

the number of standard offers made. First we consider how long into a match run process

expedited placements are initiated. Figure 3.6 displays the histogram of expedited offer ini-

tiation times in hours. Data indicating an expedited placement initiated beyond 18 hours is

not included in the analysis. The average, median, the 75th and 90th quantiles for the times

of initiation are 6.65, 5, 11 and 14.5 hours, respectively.

Although the average time to initiate an expedited placement is greater than the average

match run length reported in Section 3.3.1, Figure 3.6 reveals that the majority of expe-

dited matches are initiated relatively early during a match run, i.e., within the first 5 hours.

This histogram strongly suggests that the expedited organs are mostly those which the OPO

coordinator is anticipating not being able to place.

Next we explore the time to initiate an expedited placement as a function of the total

number of standard offers made. The reason we consider cumulative standard offer number

extended as opposed to the rank of the last patient receiving a standard offer is the frequent
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Figure 3.6: Histogram of expedited offer initiation times in hours

occurrence of range refusals. That is each time a range refusal is issued, the correspond-

ing portions of the waiting list get eliminated from further consideration, i.e., the rank of

candidates remaining on the list may shift up as a result of a range refusal. Figure 3.7 illus-

trates the corresponding histogram with 10 equally spaced bins. The average offer number

after rounding to the next integer is 47.2 and we observe that the majority of the expedited

placements are initiated by the time the 100th standard offer is extended. This finding is

compatible with our previous finding which states that the great majority of expedited offers

are initiated within the early hours of a match run.
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Figure 3.7: Total number of standard offers until expedited placement initiation

To gain more insight about the relation between expedited offer initiation and offer

number, we refine our binning scheme by decreasing the bin sizes. To eliminate the possibility

that regional patterns cancel each other resulting in the national histogram of offer numbers

presented in Figure 3.7, we take our analysis to the regional level. Because more than 50%

of all expedited offers originate from OPOs in Regions 3 and 11, and the data regarding

expedited match runs in the rest of the regions is rather scarce to reveal any pattern, we

restrict our attention to Regions 3 and 11. Figure 3.8 displays the frequency counts of the

total number of standard offers until expedited placement initiation and the corresponding

histograms for Region 3 and 11. Both histograms are decreasing in the number of offers

made and confirm that expedited offers are mostly initiated after a relatively small number

standard offers.
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(a) (b)

(c) (d)

Figure 3.8: The counts of total number of standard offers until expedited placement initiation

for Region 3 (a) and Region 11 (c), the corresponding histograms for Region 3 (b) and Region

11 (d)

3.4.3 Distribution of the Number of Bypassed Patients

A transplant center receiving and accepting an expedited offer is free to allocate the organ

to any candidate under its care which may involve bypassing some patients ranked higher

in the prioritized match list. Here, we are interested in the distribution of the number of

bypassed patients due to an expedited placement.

First, we consider all expedited offers nationwide, and Figure 3.9 displays the histogram

of the number of bypassed patients using 30 equally-spaced bins. This histogram illustrates

that in a significant majority of expedited offers, the number of bypassed patients is less
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than 200. Specifically, the mean number of bypassed patients is 631.8 and the median is

127.5. However, we observe that in a few instances the number of bypassed patients can be

as much as 9000.

Figure 3.9: Histogram of the number of bypassed patients due to an expedited placement

attempt using 30 equally spaced bins

Figure 3.10 further investigates the variability in the number of bypassed patients and

displays a histogram with manually adjusted bins where the bin widths increase with increas-

ing number of bypassed patients. We observe again that the number of bypassed patients is

likely to be less than 200.
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Figure 3.10: Histogram of the number of bypassed patients due to an expedited placement

attempt with manually adjusted bins

Next we question whether a functional relation between the number of bypassed patients

and the cumulative number of standard offers exists. Therefore, we create a scatter plot of

these pairs of cumulative standard offer numbers and bypassed patient numbers for expedited

matches in increasing order of the cumulative offer number. Figure 3.11 (a) displays the

scatter plot of these pairs of numbers for all expedited match runs nationwide while Figure

3.11 (b) and (c) display the scatter plots of expedited match runs in Regions 3 and 11,

respectively.

None of these plots reveals a significant pattern which is confirmed by the calculation

of respective correlation coefficients; 0.003 for all expedited match runs, 0.03 for expedited

match runs in Region 3 and -0.014 for expedited match runs in Region 11. This outcome is

expected because we lack any kind of intuition in predicting the relation between the number

of bypassed patients and the cumulative number of standard offers extended. On the one
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(c)

Figure 3.11: Scatter plot of cumulative standard offer numbers and bypassed patient numbers

for expedited matches nationally (a), in Region 3 (b) and Region 11 (c)

hand, we would expect that an increasing number of patients will be bypassed as the number

of cumulative offers increases. That is, the organ is then older and the OPO coordinator

would be less concerned about bypassing a large number of patients as long as the organ is not

wasted. On the other hand, as time goes on and standard offers are extended, the number of

candidates which remain on the match list and can be potentially bypassed decreases. That

means the bound on the maximum number of patients which can be bypassed gets tighter

and therefore, smaller numbers of bypassed patients can be observed.
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Next we question whether the mean and variance of the number of bypassed patients

change by region. Therefore, we first conduct an F -test at a 5% level of significance to

test the equality of variances of the number of bypassed patients in Region 3 and 11. The

observed F -value of the test is 2.33 while the critical F -value is 1.32, and therefore we reject

the null hypothesis that the variance of the number of bypassed patients in Regions 3 and

11 are the same. Next, we conduct a t-test to test the equality of means of the number of

bypassed patients assuming unequal variances. The observed t-value is 1.14 while the critical

t-value is 1.97, and therefore we cannot reject the null hypothesis that the mean number of

bypassed patients in Regions 3 and 11 are the same.

3.5 OFFER RESPONSE CHARACTERISTICS

In previous sections we investigated the liver allocation practice from the OPO perspec-

tive. In this section we take individual transplant center/patient perspective and explore

questions regarding the decision making of transplant centers/patients, e.g., how quickly

they respond to offers and how likely they are to accept a standard or an expedited of-

fer.

3.5.1 Standard Offer Response Times

As we mentioned earlier in Chapter 1, once the electronic offer notification is sent, the

surgeon in charge of the candidate receiving the offer has one hour to acknowledge the

notification by accessing DonorNet for the match results of the organ offer and to start

the evaluation process. According to UNOS, the median time from center notification

to start of center evaluation for electronic offers is 1.2 minutes which suggests that the

evaluation process starts almost immediately after the receipt of a notification [22]. Af-

ter the initiation of the evaluation process, he has an additional hour to respond by ei-

ther accepting or rejecting the offer. In this section, we define the response time as the
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time between the receipt of an electronic offer by a transplant center and the submis-

sion of the final response to the offer, and investigate the distribution of patient response

times.

Our analysis is based on the first 1500 match runs including over 45000 electronic offers.

Because Donornet data indicate that the one hour evaluation time is exceeded with proba-

bility 0.032 [34], we view the response times exceeding 90 minutes as outliers and eliminate

them from consideration.

First, we examine the histogram of the patient response times, illustrated in Figure

3.12 (a), which strongly suggests an exponential fit for the patient response time distribu-

tion. To test the hypothesis that the patient response times are exponentially distributed

with mean 1
λ
, we first examine the corresponding probability plot. A probability plot,

also known as a quantile-quantile plot, involves computing the empirical cumulative dis-

tribution function of the data which is simply a step function with a jump in cumulative

probability, pi, at each given data point, di, i.e., patient response times in minutes. We

use these probabilities to compute the inverse of the cumulative exponential function, i.e.,

compute and plot − ln(1 − pi) for each di. Then, we use least squares to fit a straight

line through the origin to data which represents the exponential distribution that is “clos-

est” to the data. A linear relation between the plotted points and the fitted line con-

firms the hypothesis. Figure 3.12 (b) displays the resulting plot which illustrates an al-

most linear relation between the plotted data points and the fitted exponential distribution.

We only observe a small number of significant deviations in the upper tail. Given the

size of data manipulated and the good fit for the rest of the plot, we conclude that we

cannot reject our hypothesis of exponentially distributed response times via a probability

plot.

To confirm the hypothesis of exponentially distributed patient response times analyti-

cally, we conduct a chi-square goodness-of-fit test on the patient response times data. To

facilitate this analysis, we calculate the mean response time using the maximum likelihood

estimation (MLE) as 17.5 minutes. We test the hypothesis of exponentially distributed pa-
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Figure 3.12: The histogram (a) and the probability plotting (b) of patient response times

tient response times with rate λ = 1
17.5

per minute, at a 5% level of significance and using 10

bins. As a result, we obtain a p-value of 0.129. Therefore, we fail to reject the null hypothesis

at the 5% level of significance.

As a result of this analysis consisting of two visual testing tools and one analytical testing

tool, we conclude that patient response times can be assumed to be exponentially distributed

with a mean response time of 17.5 minutes. Figure 3.13 displays the corresponding cumula-

tive distribution function.

3.5.2 Range Refusals

To identify range refusals from individual refusals, we use the first data set where an offer

has a batch identification number only if it is extended via an electronic offer. A blank batch

identification number for a specific candidate can imply that the offer is either made via a

manual offer or the candidate is part of a range refusal.
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Figure 3.13: The cumulative distribution of the hypothesized exponential patient response

times with mean response time 17.5 minutes

To distinguish range refusals from manual offers, we utilize the transplant center response

batch numbers. In the case of a manual offer, the cell corresponding to the transplant center

response batch number is blank while for range refusals, the same transplant center response

batch number is recorded as in the individual refusal to the electronic offer.

Table 3.5 illustrates that a significant number of responses fall into the category of range

refusals. Specifically, the fraction of responses that are range refusals is 67.25%. We conclude

from these findings that if a transplant center is going to refuse an individual offer, it is very

likely to refuse it for some subset of the waiting patients under its care.
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Table 3.5: Range refusal statistics

Total Number of Records: 2,152,432

Number of Manual Offers: 276,783

Number of Range Refusals: 1,447,394

Range Refusal Rate: 0.6725

3.5.3 Acceptance Probabilities of Standard Liver Offers

In this section we investigate the probability of a standard offer acceptance as a function

of offer number. We consider each region individually and use offer numbers up to 300. In

Section 3.3.2 of this chapter we find that the average number of batches per match is 4.18

and the average number of offers per batch is 5.64. Therefore, the data get sparser with

increasing offer number. To mitigate the sparsity of data for greater offer numbers, we use

a binning scheme which uses a coarser aggregation with increasing offer number, presented

in Table 3.6.

Table 3.6: Binning of standard offer numbers

To estimate the acceptance probabilities of standard offers in each bin, we calculate the

ratio of the number of acceptances and the total number of standard offers in a bin. Figure

3.14 illustrates the estimated acceptance probabilities of standard offers for all regions.

We observe that the probabilities first increase up to approximately 5th offer number.

This behavior is intuitive because the first few offers are made to Status 1 patients who are

very likely to receive another offer soon if they reject the current offer. For offer numbers

greater than 5, we observe that the acceptance probabilities decrease with increasing offer
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Figure 3.14: Standard offer acceptance probabilities as a function of offer number

number. The intuition behind this finding is based on the positive correlation between offer

number and time elapsed because the start of a match, i.e., the greater is the offer number,

the more has the donated organ depreciated in organ quality. The rate of this decrease varies

by region and we observe that the probabilities either decrease slightly (e.g., Region 2, 3 and

7) or the slope of the decrease is steeper (e.g., Region 1).

3.5.4 Acceptance Probabilities of Expedited Liver Offers

Among 534 expedited placement attempts nationwide, the number of attempts resulting

in a successful allocation is 334 which implies that 63% of all expedited placement livers

are transplanted. O’Connor et al. [31] report that 61.3% of all expedited placement livers

were transplanted in 2005 and we observe a slight increase in the utilization of expedited

placement livers between May 1, 2007 and February 28, 2009.
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Next, we consider the acceptance probability to an expedited offer by region and as a

function of the cumulative standard offer number extended until the initiation of expedited

placement. As we illustrated earlier in Figure 3.8, the number of expedited placements

decreases significantly as the number of cumulative offers increases and the data become

sparse after especially offer number 100. Therefore, we manually readjust the bins of offer

numbers so that the bin frequencies do not differ from each other significantly which can

lead to misleading probabilities. To estimate the acceptance probability of expedited offers

in each bin, we calculate the ratio of the number of expedited offer acceptances to the total

number of expedited offers in that bin. Figure 3.15 (a) illustrates the readjusted binning

scheme and Figure 3.15 (b) the calculated probabilities for Region 3.

(a) (b)

Figure 3.15: Manually readjusted bins for cumulative standard offer number at the time

of the expedited placement (a), expedited offer acceptance probabilities as a function of

cumulative offer number (b) for Region 3

We observe that the probability that an expedited offer is accepted is approximately 0.75

for small numbers of cumulative offers and there is a decreasing trend with increasing offer

number. The jumpiness of the plot is due to the limited number of match runs culminating

in an expedited placement attempt.

We repeat the same steps of analysis for Region 11. Figure 3.16 (a) illustrates the

readjusted binning scheme and Figure 3.16 (b) illustrates that the acceptance probabilities

corresponding to small offer numbers are approximately 0.8 which is almost the same value
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as in Region 3. However, the rate of decrease is steeper in Region 11 than that observed in

Region 3. This finding is intuitive because Region 3 directs a greater portion of its expedited

offers to Region 9 than Region 11 does, and Region 9 is very likely to accept an expedited

offer as we earlier illustrated in Section 3.4.1.

(a) (b)

Figure 3.16: Manually readjusted bins for cumulative standard offer number at the time

of the expedited placement (a), expedited offer acceptance probabilities as a function of

cumulative offer number (b) for Region 11

We conclude that the main trend shaping the response behavior to expedited offers

in Region 3 and 11 is similar, i.e., acceptance probabilities for expedited offers initiated

after a small number of standard offers are in the higher end of the range 0.7-0.8, and the

probabilities decrease with increasing standard offer number. Therefore we hypothesize that

the acceptance probabilities as a function of the number of offers made do not significantly

change by regions. We test this hypothesis via a Kolmogorov-Smirnov test at a 5% level

of significance using Region 3 and 11 data. We obtain a p-value of 0.11, and accept the

null hypothesis that the expedited offer acceptance probabilities do not significantly change

across regions.
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3.6 CONCLUSIONS

In this chapter we examine various aspects of the current liver allocation practice. Specif-

ically, we provide insight about the match list process of extending standard offers, the

practice of expedited placements, as well as the response mechanism of the offer recipients.

Regarding the match list process, we find that the average match run length is less than

5 hours, and the probability that a match run takes more than 10 hours is 0.1. During the

match list process, the batches of offers are extended frequently. Also, the total number

of batches in a match is relatively small and so is the number of electronic offers included

in a batch. These findings are intuitive given the time constrained nature of the allocation

process and because the majority of donated livers are allocated locally. We anticipate an

increase in the average batch size at the non-local level and therefore, we suggest that the

current limit on the number of non-local simultaneous offers in a batch, 10 can be possibly

increased.

Regarding the response mechanism for standard electronic offers, we find that refusals in

the form of range refusals represent a significant fraction of all responses. Therefore, range

refusals should be taken into account when analytically modeling the match list process

of liver allocation. Additionally, we find that the patient response times are exponentially

distributed with a mean response time less than 20 minutes. Thus, we suggest that the

current one-hour limit to evaluate a standard offer can be further decreased to speed up

the match list process and possibly decrease the rate of organ waste. Also, we establish

a relation between the probability that a standard offer is accepted and the corresponding

offer number. More specifically, the acceptance probabilities are decreasing in offer number

and the rate of the decrease changes by region.

Regarding the practice of expedited placements, our findings imply that expedited offers

are predominantly initiated by OPOs in Regions 3 and 11. The majority of expedited offers

are either directed to transplant centers within the harvesting region or to Region 9, which

alone accepts more than 30% of all expedited offers. We establish an intuitive relationship
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between a region’s donor density and the likelihood to initiate and to accept an expedited

offer and show that the higher is the organ availability (shortage) in a region, the greater

is the tendency to initiate (accept) an expedited offer. According to this relationship, we

conclude that regions with low donor density values besides Region 9 can possibly benefit

from receiving more expedited offers. Therefore, we suggest that the OPOs initiating an

expedited placement should factor a region’s donor density in their decision regarding the

recipient of an expedited offer. Furthermore, we consider the timing of the expedited place-

ment initiation in terms of clock time and the number of extended standard offers where the

averages are 6.65 hours and 48 offers, respectively. Also, we find that the average number

of bypassed patients due to an expedited placement is fairly constant in offer number and

stable across regions. The acceptance probabilities for expedited offers are decreasing in the

cumulative standard offer number and the rate of the decrease changes by region.

Given the lack of knowledge, especially regarding the practice of expedited offer place-

ment, we believe that our findings are insightful for scientists who consider analytical mod-

eling of some aspects of the current allocation, as well as for UNOS policy makers who

continuously strive to improve the liver allocation policies.
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4.0 OPTIMAL TIMING OF EXPEDITED LIVER PLACEMENT

In Chapter 3, we conducted a statistical analysis of liver data to assess various aspects of

the current liver allocation practice. In this chapter, we focus our attention to the OPO’s

perspective and build a Markov Decision Process (MDP) model to provide optimal decision

making strategies for managing the match list process. Our objective is the maximization

of the benefit gained as the result of a successful organ allocation. This benefit reflects the

OPO coordinator’s adherence to the prioritized match list and is expressed via rewards of

placement which are functions of number of offers extended. We experiment with a set of

reward/cost structures and solve for the corresponding optimal policies. Also, we conduct a

sensitivity analysis with respect to various model parameters to weigh in their impacts on

the model outcomes.

The rest of this chapter is organized as follows. In Section 4.1 we present model assump-

tions and formulation. In Section 4.2 we present and explain our computational findings.

We conclude this chapter with the model validation and conclusions in Section 4.3.

4.1 MARKOV DECISION PROCESS MODEL

We formulate the match list process, which can possibly terminate with organ allocation via

a standard or an expedited offer, or with the discard of the organ due to exceeding the CIT,

as an optimal stopping problem. We use a finite-horizon, discrete time MDP model and

from the OPO coordinator’s perspective we examine the optimal time to depart from the
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match list process, i.e., initiate an expedited placement, and the number of standard offers

to be included in a batch during the match list process. In Section 4.1.1 we present the

assumptions which facilitate the modeling of this complex optimal stopping problem, and in

Section 4.1.2 we provide the model formulation.

4.1.1 Assumptions

In Chapter 1 we explained the drawbacks of the current prioritization algorithm in detail

and highlighted that this algorithm may not be serving the best interests of all liver trans-

plantation candidates with respect to maximizing their life expectancy. In this chapter, we

assume that the current candidate prioritization is fair. This implies a higher patient rank

reflects a better match. However, because of the frequent occurrence range refusals noted

in Chapter 3, the ranks of patients become intractable during the match list process. That

is every time a range refusal occurs, blocks of candidates anywhere on the match list are

possibly eliminated from further consideration to receive standard offers, i.e., the ranks of

the candidates still eligible for standard offers get shifted and become intractable during

the match list process. Our model accounts for the possibility of a range refusal implicitly

by valuing organ placement according to the corresponding “offer number” rather than the

match list rank of the recipient. More specifically, our model parameters are functions of

chronologically ordered offer numbers as opposed to the match list ranks of the recipients

and organ allocation via a standard offer of smaller number is more favorable.

As we defined in Chapter 1, the inequity induced by the initiation of an expedited place-

ment is mainly due to the number of bypassed patients as a result of the expedited placement.

However, we found in Chapter 3 that the number of bypassed patients due to an expedited

liver offer does not significantly change by the harvesting region or the number of cumulative

offers until the expedited offer initiation. Therefore, we assume that the expected number of

bypassed patients is constant in the number of standard offers already extended. However,

bypassing the same absolute number of patients should be valued differently depending on

the time of the expedited placement initiation, which our model captures by the number
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of standard offers extended before the the expedited offer initiation, i.e., the sooner an ex-

pedited placement is initiated, the more is the cost of bypassing some number of patients

because the patients bypassed in an early initiation are likely to be higher on the list. There-

fore, we express the reward of organ placement via an expedited placement as a function of

the number of standard offers extended until the expedited placement initiation.

Because the livers have a limited CIT and their allocation must be realized within the

limits of the CIT, our model has a finite set of decision epochs. Within each time period, we

assume that the decision to extend a new batch of (possibly zero) electronic standard offers

(i.e., continue) or to initiate expedited placement (i.e., quit) is made at the beginning. We

assume that an OPO can initiate an expedited placement at any time unless there are some

outstanding responses to earlier offers. This assumption is realistic because we expect an

OPO to expedite an organ which is highly unlikely to be placed via a standard offer. Also,

we assume an average organ quality, do not distinguish between local and nonlocal offers,

and exclude manual offers from our analysis because electronic offers are more prevalent

in the match list process. For model tractability, we assume that there exist limits on the

number of concurrently outstanding offers which is consistent with the current practice of

extending local offers.

It was pointed out in Chapter 1 that the initiation of the evaluation process after offer

receipt is almost immediate. Therefore, we assume that any patient/transplant center to

whom an offer notification is sent instantaneously receives the notification and begins the

evaluation process. We found in Chapter 3 that response times to offers are exponentially

distributed with a mean response time of 17.5 minutes. Hence, we calculate the probability

that a response to an offer outstanding at the beginning of a time period arrives at the end

of the time period by using the exponential distribution function corresponding to patient

response times. Also, we assume that the likelihood a response time exceeds the one hour

evaluation threshold is negligible [22]. Responses to offers arrive at the end of each period

where multiple responses, or possibly no response, can be received within a time period.

The number of the arriving responses is binomially distributed with the success probability
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of a response arriving by the end of a time period. We assume that once the OPO receives

the first acceptance response, the process terminates and the outstanding responses to the

earlier offer numbers, if there are any, are received instantaneously.

4.1.2 Notation and Optimality Equations

We use the following notation to build the MDP model:

t ∈ {1, 2, . . . , T}: The finite set of decision epochs

η: The maximum allowable number of simultaneously outstanding offers

n: The number of outstanding offers at the beginning of a period, 0 ≤ n ≤ η

w: The cumulative number of standard offers already extended, i.e., w+1 is the offer number

corresponding to the next individual standard offer to be extended

κ: An array of size η containing the offer numbers corresponding to currently outstanding

offers. If there aren’t any outstanding offers, κ = ·
κi: The ith component of κ. If n < η, κi = · for n+ 1 ≤ i ≤ η.

S = {(κ, n, w)}∪{∆}: The state space of the process where ∆ denotes the state in which the

organ is refused in response to an expedited offer, e.g., for η = 5, the state ([2, 6, 7, ·, ·], 3, 10)
implies that a total of 10 offers are so far extended, out of which 7 are declined and the 2nd,

6th and 7th offers are still outstanding.

A(κ,n,w) = {0, 1, . . . , η − n}: The set of possible actions in state (κ, n, w) where action

a ∈ A(κ,n,w) denotes extending a additional standard offers.

A(·,0,w) = {0, 1, . . . , η} ∪ {Q}: The set of possible actions when there are no outstanding

offers. Action Q implies quitting the process via initiating an expedited placement.

p: The probability that a response to a standard offer outstanding at the beginning of a time

period arrives by the end of the time period.

δi(j) : The probability that i responses arrive by the end of a time period when there are

j standard offers outstanding at the beginning of the time period. The number of arriving

responses is binomially distributed with mean jp.
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φj(h, i): Given i, i ≥ 0 out of h, h > 0 outstanding responses arrive at the end of a time

period, there are
(
h
i

)
possible combinations of responses which are all equally likely to be ob-

served. The array φj(h, i), 1 ≤ j ≤ (
h
i

)
contains the increasingly ordered offer numbers of the

arriving responses in the jth set of combinations where the sets are ordered lexicographically.

Note that φ1(h, 0) = · when there are no responses in a given time period.

φj
k(h, i): The kth component of set φj(h, i), e.g., consider the previous example where the

state at the beginning of a time period is ((2, 6, 7, ·, ·), 3, 10). Assume that the OPO extends

one new offer and the number of responses arriving by the end of the time period is 2. Then

the total number of possible sets of responses is
(
4
2

)
= 6 which are denoted by φ1(4, 2) =

[2, 6], φ2(4, 2) = [2, 7], φ3(4, 2) = [2, 11], φ4(4, 2) = [6, 7], φ5(4, 2) = [6, 11], φ6(4, 2) = [7, 11].

Consider φ1(4, 2) whose components are denoted by φ1
1(4, 2) = 2 and φ1

2(4, 2) = 6.

α(i): The acceptance probability of the ith standard offer

β(i): The acceptance probability of an expedited offer initiated after i standard offers have

been extended and declined.

ρ(i): The probability that all outstanding offers which are made prior to the ith offer and

have smaller offer numbers are declined, i.e., ρ(i) =
∏i−1

j=1(1− α(j)). Note that ρ(1) = 1.

c: The disutility cost incurred for a standard or an expedited offer which represents the time

and effort required by the patient to consider the offer.

r(i): The reward which the OPO accrues for successfully allocating the organ via the ith

standard offer.

rQ(i): The reward which the OPO coordinator accrues for successfully allocating the organ

via an expedited offer initiated after i standard offers.

Let vt(κ, n, w) be the maximum total expected reward-to-go starting in (κ, n, w) at time t,

vt(κ, n, w) = max
a∈A(κ,n,w)

{Ca
t (κ, n, w)}, for n > 0, (4.1)

vt(·, 0, w) = max
a∈A(·,0,w)

{Ca
t (·, 0, w), Qt(·, 0, w)}, (4.2)
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where Ca
t (κ, n, w) and Qt(·, 0, w) are the total expected reward of extending a additional

offers in state (κ, n, w) and the total expected reward of initiating expedited placement in

state (·, 0, w), respectively, at time t. The total expected reward of extending a additional

offers in state (κ, n, w) is

Ca
t (κ, n, w) = −c · a (4.3)

+δ0(n+ a)φ1(n+ a, 0)vt+1(κ(φ
1(n+ a, 0)), n+ a, w + a)

+
n+a∑
i=1

δi(n+ a)(
n+a
i

)
(n+a

i )∑
j=1

i∑

k=1

[
α(φj

k(n+ a, i))ρ(φj
k(n+ a, i))r(φj

k(n+ a, i)) +

+(1− α(φj
k(n+ a, i)))vt+1(κ(φ

j(n+ a, i)), n+ a− i, w + a)

]

where κ(φj(n+ a, i)), i ≥ 0, j > 0 is the updated array of outstanding offer numbers when i

responses arrive which are all refusals. Recall that κ is the array of outstanding responses at

the beginning of a time period before a additional offers are extended. Then κ(φj(n+ a, i))

is the array of size η which contains the combined set of increasingly ordered offers after the

elimination of refusals within κ and the newly extended a offers, e.g., consider the previous

example where at the beginning of the time period the state is ([2, 6, 7, ·, ·], 3, 10) and one

new offer is extended. If φ1(4, 2) = [2, 6] is the set of arriving responses, then the updated

array of outstanding responses is κ(φ1(4, 2)) = (7, 11, ·, ·, ·). If there are no responses by the

end of the time period, then κ(φ1(4, 0)) = (2, 6, 7, 11, ·).
The total expected reward of initiating expedited placement in state (·, 0, w) at time t is

Qt(·, 0, w) = β(w)rQ(w) + (1− βt(w))vt+1(∆)

= β(w)rQ(w) (4.4)

because vt(∆) = 0,∀t. Also note that vT (κ, n, w) = 0,∀κ, n and w.
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4.2 COMPUTATIONAL RESULTS

In this section we present numerical results driven by clinical data. First, we explain the

details of our experimental design in Section 4.2.1. Then we present an example optimal

policy in Section 4.2.2. Finally, Section 4.2.3 displays the results of the sensitivity analysis

on the model parameters.

4.2.1 Experimental Design

Our findings from Chapter 3 indicate that the average match run length is less than 5 hours

and the probability that a match run lasts longer than 10 hours is negligible. Also, 50% of

all sequential batches are extended in less than 16 minutes apart from each other. Therefore

we assume a 10-hour time horizon where each time period is 15 minutes long.

We found in Chapter 3 that the average batch size over all regions is 6. However, the

number of possible combinations of outstanding responses increases exponentially in η, and

so does the size of the state space in our model formulation, e.g., the size of the state space

for a problem instance corresponding to a 10 hour match run with η = 6 is

|S| =
T∑
t=1

η∗t∑
w=0

min(w,η)∑
n=0

(
w

n

)

=
40∑
t=1

6t∑
w=0

min(w,6)∑
n=0

w!

(w − n)!n!

≈ 5× 1013. (4.5)

Because of this computational burden, we limit the number of simultaneously outstanding

offers in a batch, η to 3.

That implies that the probability that an outstanding response arrives at the end of a

15-minute time period is calculated using the cumulative distribution function of the ex-

ponentially distributed patient response times, Fexp(t) with a mean response time of 17.5

minutes:

p = Fexp(15 minutes) = 1− e−15· 1
17.5 = 0.5756. (4.6)
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We noted in Chapter 3 that the acceptance probabilities for standard offers, as well as

for expedited offers, change by region. Additionally, the reward and cost parameters of our

model, i.e., the OPO’s reward of organ placement via a standard offer or an expedited offer

and the recipient’s disutility cost of processing an offer, cannot be quantified by the use

of data by their definition. Therefore we experiment with different sets of values for these

parameters.

4.2.1.1 Acceptance Probabilities

We already provided estimates of standard and expedited offer acceptance probabilities in

Chapter 3 where we stated that the probability distributions do not significantly change by

region. Here we use the estimations for Region 3 and 11 where the majority of donations are

obtained and where expedited offers are made most aggressively. However, because of data

scarcity and inaccuracies, the estimations as illustrated in Figures 3.14, 3.15 and 3.16 display

jumps and non-monotone behavior. For our numerical results, we apply linear smoothing

via simple linear regression to the portions of the curves where violations of monotonicity are

observed. Figure 4.1 illustrates the original estimations of the standard and expedited offer

acceptance probabilities as well as the smoothed versions used in our numerical experiments

for Region 3 and 11 respectively. The jumpiness in the standard offer probabilities is less

significant than the jumpiness in the expedited offer probabilities because of the greater

volume of data available for the standard offer estimations. No smoothing is applied to the

expedited offer acceptance probabilities in Region 11 because the original estimation itself

is already monotone.

Figure 4.2 illustrates the sets of probabilities used for Region 3 and 11 respectively. We

observe that both sets of probabilities start at close values, 0.5 for standard offers and between

0.7-0.8 for expedited offers. However the slope of the decrease for both types of probabilities

is steeper in Region 11 than it is in Region 3. To assess the impact of this change, we conduct

a one-way sensitivity analysis with respect to the probabilities in Section 4.2.3.
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(a) (b)

(c) (d)

Figure 4.1: Standard offer acceptance probabilities in Region 3 (a) and Region 11 (c),

expedited offer acceptance probabilities in Region 3 (b) and in Region 11 (d)

4.2.1.2 Rewards of Placement

The model inputs we have considered so far are based on our analysis of clinical data from

the Chapter 3. However the reward of a standard or an expedited organ placement which

expresses the OPO’s adherence to the match list process cannot be quantified by the use of

clinical data due to their definition.

Although the structure of the rewards of placement are ambiguous, some traits of these

rewards are identifiable. We mention in Section 4.1.1 that the rewards of placement cap-

ture the OPO coordinator’s adherence to the match list by offer number. Therefore, an
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(a) (b)

Figure 4.2: Standard and expedited offer acceptance probabilities for Region 3 (a) and for

Region 11 (b)

allocation after a smaller number of offers corresponds to a greater reward and we assume

that the rewards of both types of placement should be monotone decreasing in offer num-

ber.

Also, for the same offer number the reward of placing an organ via a standard offer is

always greater than or equal to the reward of placing the organ via an expedited placement

because the placement of an expedited offer violates the adherence to the match list by

bypassing some subset of candidates eligible to receive a standard offer. In the most opti-

mistic scenario, the number of bypassed patients can be zero, but this case is less likely to

be observed.

For the rewards of placement via a standard offer, we believe that a linear structure is the

most fitting which we explain as follows. Our rewards capture the value of organ placement

measured by the OPO’s adherence to the match list which is prioritized to minimize pre-

transplant mortality rate, risk of graft failure and inequity among candidates. The relation

between risk of graft failure and donor quality is measured by the Donor Risk Index (DRI)

which incorporates the CIT, i.e., the longer CIT, the higher DRI, and the higher the risk of

graft failure. More specifically, the risk of graft failure is linearly increasing in CIT [45] which
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is positively correlated to offer number. Because our rewards are functions of offer number,

it is intuitive that the rewards for standard placements display a similar structure. How-

ever, in addition to linearly decreasing standard rewards structure, we consider decreasing

decreasingly and decreasing increasingly structures as well.

For the rewards of placement via an expedited offer, we believe that a decreasing decreas-

ingly structure is the most representative. As we explain earlier in Section 4.1.1, we assume

that the expected number of bypassed patients due to an expedited placement is constant in

number of offers extended and the reward of placement via an expedited offer is a function

of only the number extended offers. Then, the sooner an expedited placement is initiated,

i.e., the smaller is the number of offers extended until expedited placement initiation, the

more is the cost of bypassing some number of patients because the patients bypassed in an

early initiation are likely to be higher on the list. However, at later stages of the match run

when the odds of placing the organ via a standard offer decreases significantly, an expedited

placement is a valuable opportunity to prevent organ waste and thus can be encouraged, i.e.,

the OPO coordinator is “penalized” less for departing from the match list process. There-

fore, we assume that the rewards for expedited offers decrease decreasingly with cumulative

standard offer number after which they are initiated.

Next we question which functional forms to use to obtain the specific reward structures

proposed above. For the rewards of an expedited placement which are decreasing decreas-

ingly, we use the exponential function: rQ(i) = cq ·λq · e−λq ·i where cq is a constant and λq is

the rate of decay. To determine the values of cq and λq we take the following approach: For

our results to be consistent and comparable throughout our numerical experiments, we need

to determine a baseline point to put the changes in the reward structures into perspective.

We use the smallest possible reward of all offers, i.e., the reward corresponding to an expe-

dited offer initiated after the greatest possible offer number, rQ(120) as the baseline point

and without loss of generality, we set the value of rQ(120) to 100. We choose λq by trial and

error so that the resulting curve does not display any extreme behavior. Then we calculate

the corresponding cq so that we obtain the predetermined base value for offer number 120.
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For the rewards of standard offers, we have three functional forms corresponding to lin-

early decreasing, decreasing decreasingly and decreasing increasingly trend. For the linearly

decreasing trend, we simply use the functional form r(i) = c1 − c2 · i where c1 and c2 are

constants and i is the standard offer number. For a decreasing decreasingly trend, we employ

the exponential function r(i) = c3 · λ1 · e−λ1·i where c3 is a constant and λ1 is the rate of

decay. Lastly, for a decreasing increasingly trend, we make use of the square root function

r(i) =
√
c4 − c5 · i where c4 and c5 are constants.

The remaining question is how to determine the values of the constants which will locate

the standard offer structures relative to the reward structure of expedited offers. There are

two main factors which affect the relative position of the rewards: the difference between the

rewards of a standard offer and an expedited offer corresponding to the same offer number,

i.e., the absolute difference between the rewards, and the ratio of the absolute difference

between the rewards for an offer number to the reward values. These factors need to be

considered simultaneously and therefore we develop the following metric which expresses the

magnitude of the absolute difference between the rewards for an offer number as a percent

of the standard reward value for the same offer number:

γi =
r(i)− rQ(i)

r(i)
· 100%,

where 0% ≤ γi ≤ 100%. We utilize the first and the last offer numbers to obtain γ1 and γ120,

respectively. The combinations of the values of γ1 and γ120 we consider in our numerical

experiments are presented in Table 4.1. Then, the values of the constant parameters in the

functional forms of the standard reward structures are determined so that the specified pairs

of γ1 and γ120 are met with respect to the expedited reward structure.

Figure 4.3 illustrates the expedited reward structure and the linearly, decreasing decreas-

ingly and decreasing increasingly standard reward structures for γ1 = 25%, 50%, 75% and

for γ120 = 5%. Figure 4.4 illustrates the different values of γ120 when γ1 = 75% for linearly

decreasing standard rewards.

75



Table 4.1: Levels of γ1 and γ120 used in the numerical experiments

4.2.1.3 Cost of Disutility

Once a standard or expedited organ offer is obtained by the transplant surgeon, she logs in

to DonorNet, examines the donor characteristics, possibly discusses the potential transplant

outcomes with the rest of the transplant team and the patient to eventually arrive at a

accept/reject decision. All this effort and time is accounted in the fixed cost of disutility

which is assumed to be the same for both kinds of offers.

The value of this cost is ambiguous as in the case of rewards of placement. However

considering the lifesaving benefits of a transplant, intuitively this cost should be comparably

smaller than the rewards of any possible offer number. Therefore we assume that the cost

of disutility is less than the smallest reward of placement, i.e., the reward of an expedited

placement for the greatest cumulative offer number which also serves as the baseline value to

level the rewards for standard offers. We use three different disutility costs: c = {1, 3, 10}.

4.2.2 A Numerical Example

We solve our problem optimally using backward induction [35] implemented in Matlab

R2009a. After obtaining the optimal solution for a specific set of model parameters, we

eliminate the states which are unreachable under the optimal policy, e.g., if it is optimal

to extend 3 standard offers at the first time period, the cumulative number of offers in the

following time period cannot be less than 3 and it cannot exceed 3 under any optimal policy.
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(a) (b)

(c)

Figure 4.3: Linearly decreasing (a), decreasing decreasingly (b), and decreasing increasingly

(c) standard rewards for different γ1 values when γ120 = 5%

Therefore, for each time period we identify the smallest and greatest w values which are

reachable under an optimal policy, wl(t) and wu(t), respectively. We focus our attention to

states which have w values in the range specified by wl(t) and wu(t).

Figure 4.5 represents the optimal policies for the problem instance with Region 11 ac-

ceptance probabilities, linearly decreasing standard rewards with γ1 = 50% and γ120 = 5%,

and a fixed disutility cost of 3. For this instance, the smallest time period when the optimal
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Figure 4.4: Linearly decreasing rewards for different γ120 values when γ1 = 75%

initiation of an expedited placement is observed, is 36, i.e., 9 hours after the start of the

match run. The optimal policy for time periods smaller than 36 illustrated in Figure 4.5

(a) displays a monotone control limit structure in the number of outstanding offers. That

is, the optimal number of standard offers to extend decreases with the increasing number of

outstanding offers so that the total number of offers at the beginning of each time period is

equal to 3, i.e., the maximum possible number for simultaneously outstanding offers. This

structure is analogous to the so called base stock, or (s, S), policy from the inventory man-

agement literature [36] and is intuitive because it reflects the OPO coordinators tendency to

extend as many offers as possible in the early stages of the match list process.

This optimal structure is not preserved for time periods which incorporate an optimal

expediting action for some subset of states. However, for these time periods there is an

optimal policy structure of control limit type changing with the number of time periods for
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(a) (b)

(c) (d)

Figure 4.5: Optimal policy for t < 36 (a), for t ≥ 36 and n = 0 (b), n = 1 (c) and n = 2 (d)

each number of outstanding offers. More specifically, for a given value of n, there exists

a control limit in time, w∗
n(t), t ≥ 36, n = 0, 1, 2 such that for w < w∗

n(t) it is optimal

to extend η − n standard offers and for w ≥ w∗
n(t) it is optimal to expedited for n = 0

and to do nothing for n > 0. Figure 4.5 (b) illustrates this structure when no standard

offer is outstanding, i.e., n = 0. In this case, we observe that the optimal action at time

periods t ≥ 36 for w < w∗
0(t) is extending 3 standard offers and initiating an expedited offer

otherwise. The values of w∗
0(t) are decreasing in t, i.e., the more time has elapsed since the

start of the match run, the smaller is the cumulative offer number to optimally initiate an

expedited offer. We note that for the last time period initiating an expedited offer is optimal

for all possible values of w. Figure 4.5 (c) and Figure 4.5 (d) illustrate the optimal policies

79



for n = 1 and n = 2, respectively. Recall that for n = 3, the only possible action is doing

nothing because n = η. We observe this optimal policy structure consistently for all of our

numerical experiments.

4.2.3 Sensitivity Analysis

We conduct one-way sensitivity analyses with respect to the structures and values of stan-

dard rewards in Section 4.2.3.1, the acceptance probabilities for both offer types in Section

4.2.3.2 and the cost of disutility in Section 4.2.3.3 to assess the impact of the change in the

values of these model inputs.

4.2.3.1 Rewards of Placement

To examine the sensitivity of model outcomes with respect to rewards of placement, we

consider problem instances with different reward structures for all possible combinations

of γ1 and γ120 using Region 11 probabilities and c = 3. Table 4.2 represents the model

outcomes, i.e., the smallest time periods and the corresponding cumulative standard offer

number where expediting becomes optimal. First, we consider how the changes in the reward

structure affect the outcomes when γ1 and γ120 are fixed. Figure 4.6 illustrates the different

reward structures where γ1 and γ120 are set to 50% and 5%, respectively and we observe that

the greater the average difference between the rewards of expedited and standard offers is, the

later becomes the expedited offer initiation optimal. This pattern is observed across all rows

of Table 4.2, i.e., for all combinations of γ1 and γ120. Also, with greater difference between

the rewards, the smallest offer number to optimally expedite increases. Both results are

intuitive because a greater difference between the rewards implies that organ placement via

a standard offer is relatively more valuable which delays the initiation of an expedited offer.
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(a) (b)

Figure 4.6: Different reward structures when γ1 = 50% and γ120 = 5% (a) and the corre-

sponding absolute differences (b)

Table 4.2: Results using different structures for standard offers for all combinations of γ1

and γ120

Next we analyze the sensitivity with respect to γ1 for a fixed γ120 value and reward

structure. Consider a linear reward structure with γ120 = 5%. The corresponding rewards

are illustrated in Figure 4.3 (a). Table 4.2 illustrates that the greater the value of γ1, the

later becomes the expedited offer initiation optimal which is intuitive because a greater γ1

value implies relatively more valuable standard rewards for all offer numbers.
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Finally we examine the changes in outcomes with respect to γ120 for a fixed γ1 value and

reward structure. Figure 4.4 illustrates the rewards for possible γ120 values for a linearly

decreasing reward structure with γ1 = 75. Table 4.2 displays that the results behave intu-

itively, that is, the greater the value of γ120 is, the later is the first time period to optimally

expedite.

To assess the robustness of model outcomes with respect to changes in reward structures,

we use the maximum observed deviation of the smallest time period and the cumulative

number of offers for an optimal expediting action among all structures and all combinations

of γ1 and γ120. In Table 4.2 the smallest time period to initiate expedited placement ranges

between 34 and 39, i.e., the maximum deviation for the smallest time period to initiate

expedited placement is 5 time periods which implies 1.25 hours. This deviation corresponds

to 12.5% of the total time horizon, i.e., 10 hours. Similarly, we calculate the robustness in

the cumulative offer number to initiate an expedited placement which ranges vetween 88 and

107, i.e., the maximum deviation in the offer numbers is 19. This deviation corresponds to

15.8% of the total number of possible standards offer, i.e., 120.

4.2.3.2 Acceptance Probabilities

In this section we illustrate the results of the sensitivity analysis with respect to the ac-

ceptance probabilities where we use linearly decreasing standard rewards and c = 3. Table

4.3 illustrates the impact of acceptance probabilities (Figure 4.2) on the model outcomes.

We observe that the initiation of an optimal expedited placement occurs sooner for organs

obtained in Region 11 than in Region 3. This result is compatible with our findings from the

previous chapter. That is, the average difference by which the expedited offer acceptance

probabilities are greater than the standard offer acceptance probabilities, is greater in Region

11 than in Region 3 which makes the expedited offer a relatively more favorable approach.

This structure holds for all combinations of γ1 and γ120.
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Table 4.3: Results using different sets of expedited and standard offer acceptance probabili-

ties for linearly decreasing standard rewards for γ1 = 50% and γ120 = 5%

4.2.3.3 Cost of Disutility

Lastly, we conduct a one-way sensitivity analysis with respect to the cost of disutility where

we use Region 11 acceptance probabilities and linearly decreasing standard rewards with

γ1 = 50% and γ120 = 5%. Table 4.4 illustrates that the optimal time to initiate an expedited

offer is observed sooner with increasing cost of disutility. This result is intuitive given the

structure of the optimal policy highlighted in Section 4.2.2. As Figure 4.5 (b) illustrates

the optimal action for n = 0, t ≥ 36 is either extending 3 offers or initiating an expedited

offer. Then as the cost of disutility increases, the total cost of optimally extending standard

offers experiences a greater increase than the initiation of an expedited offer. Therefore the

optimal time to initiate an expedited placement is observed sooner.

Table 4.4: Results using different disutility costs for linearly decreasing standard rewards

with γ1 = 50% and γ120 = 5%
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4.3 MODEL VALIDATION AND CONCLUSIONS

To validate our model, we use the historical data described and analyzed in Chapter 3. That

is, the current practice provides a baseline for the validation of our results, and our aim

is to confirm that our findings are compatible with current practice. However, there is no

indication that current policies are optimal.

To this end, we compare model outcomes, i.e., the smallest time period and the cu-

mulative offer number to optimally initiate an expedited placement between the computed

results and clinically observed results. In our numerical results, the minimum and average

time period to initiate an expedited offer is 34 and 36.4, which correspond to 8.5 and 9.1

hours after the start of a match run, respectively. Our analysis of clinical data in Chapter 3

indicates that the majority of expedited offers is initiated within 10 hours, which confirms

our findings. However, the average time to initiate an expedited placement in the current

practice is 6.65 hours after the initiation of a match run, which seems to be fairly sooner than

the average time indicated by our computational results, 9.1 hours. Similarly, we compare

the cumulative offer number to optimally initiate an expedited placement. In our numerical

results, the minimum and average offer numbers to initiate an expedited offer is 88 and 94,

respectively. In the current practice, the majority of expedited offers is initiated after 100

standard offers which confirms that our findings are in an acceptable range. However, the

average offer number after which an expedited offer is initiated is 48 which falls short of

the average indicated by our computational results, 94. These comparisons indicate that our

model produces results which are compatible with the current clinical practice. Furthermore,

our findings indicate that the initiation of expedited offers may be too soon and a greater

benefit can be obtained by delaying initiation of expedited placement attempts.

As we illustrated in Section 4.2.1.2, the rewards of placement in our model are intended

to approximate the valuation of organ allocation in real practice as closely as possible.

To this end, we impose intuitive assumptions on the rewards, e.g., monotonicity in offer

number, and we experiment with as many feasible structures and combinations of γ1, γ120
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values as possible. In addition, the sensitivity and robustness analysis from Section 4.2.3.1

show that model outcomes behave intuitively. In the complete set of numerical experiments

with different reward structures and combinations of γ1, γ120 values, the observed maximum

deviation in the smallest time period is 12.5% of the total time horizon, and the observed

maximum deviation in the number of offers extended is 15.8% of the total possible number

of offers. These findings suggest that although the reward structures are highly ambiguous,

the model outcomes are fairly robust to changes in the reward structures. This observation

increases the reliability of our results despite arbitrary model rewards. More specifically,

independent of the structure of the rewards the model outcomes behave intuitively and are

in harmony with the results indicated by clinical historical data.

Also, we illustrate an intuitive optimal policy structure which is consistently observed

throughout the numerical experiments. This optimal control limit policy dictates that the

process of extending standard offers for time periods when the initiation of an expedited

offer is not yet optimal for any state, is analogous to a base stock policy, i.e., it is optimal

to extend η − n standard offers. For time periods which involve the optimal initiation of

an expedited offer for some subset of states, we observe a monotone control limit structure

in time, i.e., for offer numbers below the threshold value corresponding to the specific time

period, the optimal policy is again analogous to base stock policy. However, for offer numbers

above the threshold value, the optimal action is the initiation of an expedited offer or doing

nothing, for n = 0 and n > 0 respectively.

Related future research directions are discussed in Chapter 5.
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5.0 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Given the complex and sensitive nature of organ allocation, inequity questions raised by

ethical concerns and allocation system guidelines are likely to persist and the controversies

triggered by inequity sources are not easily resolved. Therefore, a liver allocation system

ideal for all liver patients seems to be rather unrealistic, but still the allocation system is

continuously refined to ensure higher equity levels. In this dissertation, we resolve to improve

the equity in liver allocation by targeting two sources of inequity; the first stemming from the

patients’ flexibility regarding health status updates, and the second stemming from the OPO

coordinator’s premature departure from the match list process via an expedited placement.

We examine the decision problems incorporating these two sources of inequity via MDP

models and providing guidelines to attain higher levels of equity among patients, as well as

optimal policies for patient level decision making to maximize patients’ life expectancies. As

opposed to existing literature which suggest significant infrastructure changes to improve the

level of equity in liver allocation [2], [19] our findings are practical to implement and thus

strengthens our contribution.
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5.1 MITIGATING INEQUITIES IN LIVER ALLOCATION VIA REVISED

HEALTH REPORTING FREQUENCIES

Existing literature about the organ accept/decline decision of an individual patient implicitly

assumes that UNOS knows the patient’s current health at all times. In Chapter 2 we relax

this assumption by explicitly incorporating a “do nothing” action in the MDP formulation of

the patient’s accept/decline decision. From an individual patient’s perspective, we provide

optimal accept/update/do nothing policies to maximize the patient’s life expectancy and

examine the degree to which an individual patient can benefit from the updating flexibil-

ity. Our findings suggest that by exploiting the updating flexibility, a typical patient can

increase his life expectancy by up to 1% and her updating burden can decrease by up to

40%, as compared to daily updates. From society’s perspective, we analyze how the result-

ing inequities may be mitigated by revising the updating frequencies without significantly

adding to the data processing burden. We construct a menu of 15 updating schemes that

render the current updating scheme inefficient with respect to an increase in system inequity

versus a decrease in the data processing burden. This menu suggests that requiring the

sicker (healthier) patients to update more (less) frequently than they must under the current

policy can improve both metrics. This menu appears to be robust with respect to patient

characteristics.

In future work, one can relax the assumption that patients always know their current

MELD score which could be modeled as a partially observable Markov Decision Process

(POMDP). Additionally, a more rigorous approach can be taken to approximate the ef-

ficient frontier of updating policies [8]. Also, a similar model can be used to investigate

the accept/update/do nothing problem faced by lung transplantation candidates who are

required to update their lung allocation scores at least once every six months [22].
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5.2 ASSESSMENT OF THE CURRENT PRACTICE OF EXTENDING

OFFERS AND RESPONDING TO OFFERS

In Chapter 3, we analyze various aspects of the current allocation practice using clinical

OPTN data. To facilitate the interpretation of our findings, we introduce the definition

of donor density as a measure of organ availability. First, we focus on the performance

measures of the current practice of extending standard electronic offers during the match

list process and examine the length of match runs, patterns in offer batching, and the time

between sequential batches of offers. We find that the average match run length is 4.36

minutes which indicates that match runs terminate fairly quickly. The average batch size is

5.94 and there might be a possible increase in the batch size for non-local offers. Also, we

observe that the OPO coordinators tend to extend sequential batches of offers frequently,

i.e., median time between extending two sequential batches is 16 minutes. Because the web-

based environment which enables the extension of electronic offers was fully implemented

in 2007, many aspects we analyze within the framework of this dissertation are novel to

the literature, e.g., the distribution of batch sizes, time between sequential batches of offers.

Therefore, we believe that our findings may be utilized to improve the current guidelines of

organ allocation.

Second, we examine the current mechanics of the expedited offer placement practice.

The literature regarding the expedited placement of livers is very limited and we provide in-

sight of the aspects of expedited placement practice, which has not been investigated before.

Specifically, we investigate the prevalence of expedited placement livers where we evaluate

and assess the magnitude of the expedited liver placement practice. We find that expe-

dited offers are predominantly initiated by OPOs in Regions 3 and 11, and the majority

of expedited offers are either directed to transplant centers within the harvesting region

or to Region 9. We establish an intuitive relationship between a region’s donor density

and the likelihood to initiate and to accept an expedited offer which can serve as a guide-

line to formulate a transparent process for expedited liver placement. We also consider
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the timing of the expedited placement initiation in terms of clock time and the number

of extended standard offers where the averages are 6.65 hours and 48 offers, respectively.

Regarding the number of bypassed patients, we conclude that the expected number of pa-

tients bypassed due to an expedited offer initiation is constant in the number of offers ex-

tended.

Finally, we turn our attention to patients’ response characteristics. We examine the

prevalence of range refusals and find that range refusals represent a significant fraction

of all responses. We analyze the patient response time distribution and find that pa-

tient response times are exponentially distributed with mean 17.5 minutes. Based on our

analysis of patient response times, we suggest that the current one-hour limit to evalu-

ate a standard offer can be reduced to accelarate the match list process and possibly de-

crease the rate of organ waste. Also, we establish a relationship between the probabil-

ity that a standard or an expedited offer is accepted and the corresponding offer num-

ber.

As an extension of the analyzes presented in this chapter, time of day dependencies for

expedited placements can be investigated. More specifically, one can question whether there

is a relationship between the time of day when an organ is harvested and the initiation of

an expedited placement either as a function of clock time or number of offers extended.

Another possible extension is a closer investigation of range refusals where the distribution

of the number of patients involved in a range refusal can be analyzed.

5.3 OPTIMAL TIMING OF EXPEDITED LIVER PLACEMENT

In Chapter 4 we formulate the OPO coordinator’s progression through the match list pro-

cess, which can possibly culminate in an expedited offer. We use an MDP model with an

objective of maximizing the benefit gained by successful organ allocation. In our numerical

experiments, we evaluate problem instances with a variety of feasible reward structures and
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illustrate a structured optimal policy which is observed consistently throughout the numeri-

cal experimentation. Also, our results are robust to changes in rewards, and model outcomes

are compatible with real world observations. Furthermore, we suggest that expedited liver

placement may be exercised too early in the current practice.

The major setback within our modeling framework is the definition of rewards and costs.

These model inputs cannot be expressed in quantifiable measures like the patients’ life ex-

pectancy because the prioritization algorithm is not monotone in patients’ health status

due to the geographical considerations. Therefore, we experimented with different feasi-

ble reward structures at various levels to determine the model inputs for these parame-

ters and show that our findings are compatible with the measures provided by the current

practice. Another way to estimate the rewards of placement is interviewing the OPO co-

ordinators regarding how they valuate the trade-off between departing from the match list

process to prevent waste of organ and continuing the match list process to maintain fair-

ness among patients. To quantify this valuation, a conjoint analysis can be conducted

where the OPO coordinators are asked to rate their preference between an expedited place-

ment and a placement via a standard offer at different points in the match run and for

different organ qualities, e.g., based on your previous interactions with transplant surgeons

and/or UNOS members, how do you rate the value of organ placement via an expedited

placement (or a standard offer) at the xth, 1 ≤ x ≤ 18 hour during the match run on

a scale of 1(poor) to 10(good)? The answers to these questions can then be utilized to

elicit the relative values of rewards corresponding to standard offers and to expedited place-

ments.

As we pointed out earlier, the current practice provides a baseline for the validation

for our results, however there is no indication that current policies are optimal. Therefore,

a quantifiable way to assess how our model performs next to the current practice, would

be using the rate of organ waste. That is, the organ waste rate within the current prac-

tice can be computed using the historical data. Then, a simulation study of the current

liver allocation system can be conducted to evaluate the optimal policies suggested by our
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model outcomes. Finally, the rate of waste resulting from the simulation study can be

compared with the clinical rate, and if the simulation outcome performs better than the

one in the current practice, we can conclude that the current practice behaves subopti-

mally.

Despite the curse of dimensionality arising from the size of the state space, we solve

problem instances which present the current practice, i.e., we consider a 10-hour time hori-

zon with 15-minute time periods. However, shorter time periods would present a better

approximation of the real world liver allocation problem. Also, we assume that the limit on

the number of concurrently outstanding offers, η is known and is equal to 3 in our numerical

results. However, the value of η is another optimization problem on its own and may be

further considered for future research.

We assume an average organ quality and conduct our numerical results at a regional

level. However, the organ quality is highly likely to have an impact on the initiation of

an expedited offer and different OPO’s may pursue different systematic ways of initiating

expedited offers. Therefore, a new mathematical model considering organ quality may be

built which then can be solved using input parameters at the OPO level.

Another modeling assumption is that an expedited liver placement can only be initiated

when there are no outstanding standard offers. Although this assumption is realistic, as we

discuss in Section 4.1.1, it can be relaxed so that an expedited offer can be initiated anytime

during the match list. Optimal policies for the model with this relaxed assumption can be

obtained and compared with the policies of the present model.
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APPENDIX A

EXPERIMENTATION WITH DIFFERENT SETS OF BREAKPOINTS FOR

MELD UPDATING FREQUENCIES

We conducted numerical experiments with updating schemes where the updating frequencies

change according to a different set of breakpoints than those currently used by UNOS. Table

A1 displays a sample of such updating schemes and Figure A1 depicts the evaluation of these

schemes for a 60-year old male from Disease Group 1. We conclude that different sets of

breakpoints are unlikely to result in significant performance improvements.

Table A1: List of the updating schemes using a different set of breakpoints than currently

used by UNOS

MELD Score

Updating Scheme 6-10 11-14 15-18 19-20 21-24 25-32 33-40

UNOS 365 90 90 30 30 7 7

1 180 180 60 60 14 7 7

2 365 90 60 60 14 7 7

3 365 90 60 60 30 7 7

4 365 180 180 14 14 7 1

5 365 180 180 30 30 7 1
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Figure A1: The performance of the updating schemes in Table A1 for a 60-year old male

from Disease Group 1
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APPENDIX B

PROOFS OF STRUCTURAL RESULTS

Proof of Lemma 1. We proceed by induction on the steps of the value iteration algorithm.

Let vn(h,m, τ, l) be the value function in the nth step of the value iteration algorithm.

Without loss of generality, let v0(h, 6, τ, l) = 0 for h ∈ SH , τ ∈ S τ̄(m) and l ∈ SL, and

assume that vn(h, 6, τ, l) is independent of τ for n = 1, . . . , k, h ∈ SH and l ∈ SL. Note that

vTk+1(h, l) and vUk+1(h) are by definition constant in τ . Hence, showing that vWk+1(h, 6, τ) is

constant in τ for all h ∈ SH and l ∈ SL will establish the result.

Consider vDN
k+1(h, 6, 0):

vDN
k+1(h, 6, 0) = rh + β

∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|6)vk(h′, 6, τ̄(6)− 1, l′)

)

= rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|6)vk(h′, 6, τ − 1, l′)

)
, τ > 0 (B.1)

= vDN
k+1(h, 6, τ)

where Inequality (B.1) follows by the induction assumption.

Proof of Proposition 1.

(a) Observe that vU(h) and vDN(h,m, τ) are independent of l whereas vT (h, l) is decreasing

in l by As1.
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(b) We proceed by induction on the steps of the value iteration algorithm. Without loss of

generality, let v0(h,m, τ, l) = 0, for h ∈ SH , m ∈ SM , τ ∈ S τ̄(m) and l ∈ SL, and assume

that vn(h,m, τ, l) is increasing in m for n = 1, . . . , k, h ∈ SH , τ ∈ S τ̄(m) and l ∈ SL. Observe

that vUk+1(h), v
T
k+1(h, l) and vDN

k+1(h,m, 0) are independent of m, and consider vDN
k+1(h,m, τ)

for τ ≥ 1:

vDN
k+1(h,m, τ) = rh + β

∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|m)vk(h
′,m, τ − 1, l′)

)

≤ rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|m+ 1)vk(h
′,m, τ − 1, l′)

)
(B.2)

≤ rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|m+ 1)vk(h
′,m+ 1, τ − 1, l′)

)
(B.3)

= vDN
k+1(h,m+ 1, τ).

Inequality (B.2) follows by As3, part (a) of Proposition 1 and Lemma 4.7.2 of [35]. Inequality

(B.3) follows by the induction assumption.

(c) We proceed by induction on the steps of the value iteration algorithm. Without loss of

generality, let v0(h,m, τ, l) = 0 for h ∈ SH , m ∈ SM , τ ∈ S τ̄(m) and l ∈ SL, and assume

that vn(h,m, τ, l) is increasing in τ for n = 1, . . . , k, h ∈ SH , m ∈ SM and l ∈ SL. Observe

that vUk+1(h), vTk+1(h, l) are independent of τ , and consider vDN
k+1(h,m, τ). First, consider

vDN
k+1(h,m, 0),

vDN
k+1(h,m, 0) = rh + β

∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|6)vk(h′, 6, τ̄(6)− 1, l′)

)

≤ rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|m)vk(h
′, 6, τ̄(6)− 1, l′)

)
, (B.4)

= rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|m)vk(h
′, 6, 0, l′)

)
(B.5)

≤ rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|m)vk(h
′,m, 0, l′)

)
(B.6)

= vDN
k+1(h,m, 1),
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where Inequality (B.4) follows by As3, part (a) of Proposition 1 and Lemma 4.7.2 of [35].

Inequality (B.5) follows by Lemma 1 and Inequality (B.6) follows by part (b) of Proposition

1.

Now consider vDN
k+1(h,m, τ) for τ > 0:

vDN
k+1(h,m, τ) = rh + β

∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|m)vk(h
′,m, τ − 1, l′)

)

≤ rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|m)vk(h
′,m, τ, l′)

)
(B.7)

= vDN
k+1(h,m, τ + 1),

where Inequality (B.7) follows by the induction assumption.

Proof of Corollary 1.

(a) By definition,

vDN(h,m, 0) = rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|6)v(h′, 6, τ̄(6)− 1, l′)

)

= rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|6)v(h′, 6, τ̄(h)− 1, l′)

)
(B.8)

≤ rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|h)v(h′, 6, τ̄(h)− 1, l′)

)
(B.9)

≤ rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|h)v(h′, h, τ̄(h)− 1, l′)

)
(B.10)

= vU(h), (B.11)

where Inequality (B.8) follows by Lemma 1, Inequality (B.9) by As3, part (a) of Proposition

1 and Lemma 4.7.2 of [35], Inequality (B.10) by part (b) of Proposition 1, and Inequality

(B.11) follows since vU(h) is independent of τ .
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(b) Observe that the result holds for τ = 0 by part (a) of Corollary 1. For τ > 0,

vDN(h, 6, τ) = rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|6)v(h′, 6, τ − 1, l′)

)

= rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|6)v(h′, 6, τ̄(h)− 1, l′)

)
(B.12)

≤ rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|h)v(h′, 6, τ̄(h)− 1, l′)

)
(B.13)

≤ rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|h)v(h′, h, τ̄(h)− 1, l′)

)
(B.14)

= vU(h)

where Inequality (B.12) follows by Lemma 1, Inequality (B.13) by As3, part (a) of Proposition

1 and Lemma 4.7.2 of [35], and Inequality (B.14) by part (b) of Proposition 1.

(c) First consider the case where τ = 0:

vDN(6,m, 0) = r6 + β
∑

h′∈SH

H(h′|6)
(∑

l′∈SL

L(l′|6)v(h′, 6, τ̄(6)− 1, l′)

)

= vU(6)

for all m ∈ SH , l ∈ SL, and τ ∈ S τ̄(6) and thus the claim holds for τ = 0.

Now consider the case where τ > 0 and for all m ∈ SH , l ∈ SL, τ ∈ S τ̄(6):

vDN(6,m, τ) = r6 + β
∑

h′∈SH

H(h′|6)
(∑

l′∈SL

L(l′|m)v(h′,m, τ − 1, l′)

)

≥ r6 + β
∑

h′∈SH

H(h′|6)
(∑

l′∈SL

L(l′|6)v(h′,m, τ − 1, l′)

)
(B.15)
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≥ r6 + β
∑

h′∈SH

H(h′|6)
(∑

l′∈SL

L(l′|6)v(h′, 6, τ − 1, l′)

)
(B.16)

= r6 + β
∑

h′∈SH

H(h′|6)
(∑

l′∈SL

L(l′|6)v(h′, 6, τ̄(6)− 1, l′)

)
(B.17)

= vU(6)

where Inequality (B.15) holds by As3, part (a) of Proposition 1, Inequality (B.16) holds by

part (b) of Proposition 1 and Inequality (B.17) holds by Lemma 1.

(d) If h = m,

vDN(m,m, τ) = rh + β
∑

h′∈SH

H(h′|m)

(∑

l′∈SL

L(l′|m)v(h′,m, τ − 1, l′)

)
,

≤ rh + β
∑

h′∈SH

H(h′|m)

(∑

l′∈SL

L(l′|m)v(h′,m, τ̄(m)− 1, l′)

)
,

= vU(m)

by part (c) of Proposition 1.

Proof of Proposition 2. We proceed by induction on the steps of the value iteration algo-

rithm. Without loss of generality, let v0(h,m, τ, l) = 0, for h ∈ SH , m ∈ SM , τ ∈ S τ̄(m) and

l ∈ SL and observe that the claim holds. Now we assume that for n = 1, . . . , k, vUn (h) ≥
vDN
n (h,m, τ) for all l ∈ SL, τ ∈ S τ̄(m) and h > m and show that vUk+1(h) ≥ vDN

k+1(h,m, τ) for

all l ∈ SL, τ ∈ S τ̄(m) and h > m.

By As3, parts (a), (b) and (c) of Proposition 1, Lemma 4.7.2 of [35], and the fact that

τ̄(h) ≥ τ we obtain

vUk+1(h) = rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|h)vk(h′, h, τ̄(h)− 1, l′)

)

≥ rh + β
∑

h′∈SH

H(h′|h)
(∑

l′∈SL

L(l′|m)vk(h
′,m, τ − 1, l′)

)

= vDN
k+1(h,m, τ).
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Proof of Proposition 3. We proceed by induction on the steps of the value iteration algo-

rithm. Let v0(h,m, τ, l) = 0 for all h,m, τ, l and observe that the claim holds. Now we

assume that for n = 1, . . . , k, vUn (h) ≥ vDN
n (h,m, τ) for all l, τ and h > m and show that

vUk+1(h) ≥ vDN
k+1(h,m, τ) for all l, τ and h > m.

We show that vU(h) ≥ vDN(h,m, τ) for τ̄(h) ≥ τ in Proposition 2. Now consider τ̄(h) < τ

in the following three cases: h′ ∈ {6, . . . , h−2}, h′ ∈ {h−1}, h′ ∈ {h, . . . , 41}. First consider
the interval 6 ≤ h′ ≤ h− 2 for which we obtain

λ

h−2∑

h′=6

H(h′|h)
(∑

l′∈SL

L(l′|h)vk(h′, h, τ̄(h)− 1, l′)

)

= λ

h−2∑

h′=6

H(h′|h)
(∑

l′∈SL

L(l′|m)vk(h
′,m, τ − 1, l′)

)

= 0

by Definition 1.

Now consider the case when h′ = h− 1:

λH(h− 1|h)
∑

l′∈SL

L(l′|h)vk(h− 1, h, τ̄(h)− 1, l′)

≥ λH(h− 1|h)
∑

l′∈SL

L(l′|m)vk(h− 1, h, τ̄(h)− 1, l′) (B.18)

≥ λH(h− 1|h)
∑

l′
L(l′|m)vk(h− 1,m, τ̄(h)− 1, l′ (B.19)

= λH(h− 1|h)
∑

l′
L(l′|m)vk(h− 1,m, τ − 1, l′), (B.20)

where (B.18) follows by As3, part (a) of Proposition 1 and Lemma 4.7.2 of [35]; (B.19)

follows by part (b) of Proposition 1; and (B.20) follows by the induction assumption and

since h − 1 ≥ m, i.e., in state (h − 1,m, τ̄(h) − 1, l′), the optimal decision can not be “do

nothing” and the values of transplanting and updating are independent of the current τ .
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Finally, consider the interval h ≤ h′ ≤ 41:

λ

41∑

h′=h

H(h′|h)
(∑

l′
L(l′|h)vk(h′, h, τ̄(h)− 1, l′)

)

≥ λ

41∑

h′=h

H(h′|h)
(∑

l′
L(l′|h)vk(h′,m, τ̄(h)− 1, l′)

)
(B.21)

≥ λ

41∑

h′=h

H(h′|h)
(∑

l′
L(l′|h)vk(h′,m, τ − 1, l′)

)
(B.22)

≥ λ

41∑

h′=h

H(h′|h)
(∑

l′
L(l′|m)vk(h

′,m, τ − 1, l′)

)
, (B.23)

where (B.21) follows by part (b) of Proposition 1; (B.22) by the induction assumption (since

h′ ≥ h); and (B.23) follows by As3, part (a) of Proposition 1, and Lemma 4.7.2 of [35].

As a result we obtain

vUk+1(h) = rh + λ

m−1∑

h′=6

H(h′|h)
(∑

l′
L(l′|h)vk(h′, h, τ̄(h)− 1, l′)

)

+λ

h−1∑

h′=m

H(h′|h)
(∑

l′
L(l′|h)vk(h′, h, τ̄(h)− 1, l′)

)

+λ

41∑

h′=h

H(h′|h)
(∑

l′
L(l′|h)vk(h′, h, τ̄(h)− 1, l′)

)

≥ rh + λ

m−1∑

h′=6

H(h′|h)
(∑

l′
L(l′|m)vk(h

′,m, τ − 1, l′)

)

+λ

h−1∑

h′=m

H(h′|h)
(∑

l′
L(l′|m)vk(h

′,m, τ − 1, l′)

)

+λ

41∑

h′=h

H(h′|h)
(∑

l′
L(l′|m)vk(h

′,m, τ − 1, l′)

)

= vDN
k+1(h,m, τ).

Proof of Proposition 4. (a) This result follows from Proposition 1 part (a), since vDN(h,m, τ)

and vU(h) are constant in l while vT (h, l) is decreasing in l.

(b) This result follows from Proposition 1 part (b), since vT (h, l) and vU(h) are constant in

τ while vDN(h,m, τ) is increasing in τ .
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(c) This result follows from Proposition 1 part (c), since vT (h, l) and vU(h) are constant in

m while vDN(h,m, τ) is increasing in m.

Proof of Proposition 5. Assume that for updating scheme A, transplanting is not optimal in

state (h,m, 1, l). This assumption implies that updating is optimal because doing nothing

is not an option and the state after updating is (h, h, 1, l) ≡ (h, l). Now showing that for

updating scheme B transplanting is not optimal in state (h,m, τ, l) establishes l∗B(h,m, τ) ≤
l∗A(h). To show this result, we make use of a sample path approach. Consider updating

scheme A. Starting in state (h, l), let η be the number of periods until transplanting becomes

the optimal action or death occurs, and pT be the probability that transplanting becomes

the optimal action after η periods. Then,

R(h, l) < E[η] + βη
[
pT · Ehη [Elη [R(hη, lη)]] + (1− pT ) · v(H + 1, lη)

]
(B.24)

= E[η] + βη
[
pT · Ehη [Elη [R(hη, lη)]]

]
(B.25)

where (h, l), (h1, l1), . . . , (hη, lη) is the sequence of states visited during these η time periods.

Observe that the next health transition and the next liver quality only depend on the current

MELD score because scheme A requires an update in every period. Now consider updating

scheme B. Starting in state (h,m, τ, l), assume we apply the same sequence of actions for η

time periods as the one we obtained under updating scheme A starting in state (h, l), i.e.,

update for the following η periods, and then transplant unless death occurs. Observe that

under this policy, which is not necessarily optimal for updating scheme B, we obtain the

same sample path of (h, l) pairs. Then,

E[η] + βη
[
pT · Ehη [Elη [R(hη, lη)]]

]
(B.26)

is the expected value corresponding to this possibly suboptimal sequence of actions, and by

(B.25) we obtain R(h, l) < E[η]+βη
[
pT · Ehη [Elη [R(hη, lη)]]

]
< v(h,m, τ, l) which completes

the proof.
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