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SEARCHING FOR ENTITIES:

WHEN RETRIEVAL MEETS EXTRACTION

Qi Li, PhD

University of Pittsburgh, 2011

Retrieving entities from inside of documents, instead of searching for documents or web

pages themselves, has become an active topic in both commercial search systems and aca-

demic information retrieval research area. Taking into account information needs about

entities represented as descriptions with targeted answer entity types, entity search tasks are

to return ranked lists of answer entities from unstructured texts, such as news or web pages.

Although it works in the same environment as document retrieval, entity retrieval tasks re-

quire finer-grained answers—entities—which need more syntactic and semantic analyses on

germane documents than document retrieval. This work proposes a two-layer probability

model for addressing this task, which integrates germane document identification and an-

swer entity extraction. Germane document identification retrieves highly related germane

documents containing answer entities, while answer entity extraction finds answer entities by

utilizing syntactic or linguistic information from those documents. This work theoretically

demonstrates the integration of germane document identification and answer entity extrac-

tion for the entity retrieval task with the probability model. Moreover, this probability

approach helps to reduce the overall retrieval complexity while maintaining high accuracy

in locating answer entities.

Serial studies are conducted in this dissertation on both germane document identification

and answer entity extraction. The learning to rank method is investigated for germane

document identification. This method first constructs a model on the training data set using

query features, document features, similarity features and rank features. Then the model
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estimates the probability of the germane documents on testing data sets with the learned

model. The experiment indicates that the learning to rank method is significantly better

than the baseline systems, which treat germane document identification as a conventional

document retrieval problem.

The answer entity extraction method aims to correctly extract the answer entities from

the germane documents. The methods of answer entity extraction without contexts (such

as named entity recognition tools for extraction and knowledge base for extraction) and

answer entity extraction with contexts (such as tables/lists as contexts and subject-verb-

object structures as contexts) are investigated. These methods individually, however, can

extract only parts of answer entities. The method of treating the answer entity extraction

problem as a classification problem with the features from the above extraction methods

runs significantly better than any of the individual extraction methods.
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1.0 INTRODUCTION TO ENTITY RETRIEVAL

In answering questions such as “What are Microsoft’s products” and “Who are Microsoft’s

competitors,” related information is scattered over different web places, such as companies’

homepages, encyclopedia pages, and news articles which needs to be collected. In order to

obtain an answer, users need to identify the names of key entities (e.g., Microsoft), analyze

how they are related to each other (e.g., products or competitors), and then piece the assorted

bits of information together to formulate an answer. Manually repeating the search process

for additional candidates is both tedious and prone to error. In contrast to the Gutenberg

Age, when people spent hours in the library gathering information on a certain topic, we

now have achieved great improvements in locating information in documents with machine-

indexing techniques. However, we now expect to find answers at a finer-grained level (such

as passage, entity, or snippet) from various sources (such as news and Web pages) and in

several formats (such as books, web pages, emails, blogs, or simply computer files).

Traditional search engines, returning results in a sequentially ranked list of documents

or aggregating the results in clusters based on documents or web pages at the smallest unit,

may not directly provide answers to users’ information needs in a finer unit. Even though

search engines analyze hyper-links and anchor texts, they cannot solve this problem. The

deficiency is caused partly by the limitation of the basic assumption in document retrieval

that keywords in documents are unordered or a “bag of words.” The co-occurrence of terms

at document level make it hard to estimate the answers at the entity level. The deficiency

also comes from relevance judgments. If any piece of the document is relevant regardless of

how small that piece is in relation to the rest of the document, the current retrieval systems

will mark it as relevant to some degree. In this case, a page is retrieved only if it matches the

words in the user’s query. This kind of search engine will eschew analyses involving entities
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among topics and answers since the identification of entities has not yet occurred. Entity

retrieval, on the other hand, assumes the answer entities have some sort of relationship with

the topic entities, and is evaluated using a different unit of entities, which will be a useful

alternative for document retrieval on large and diverse Web environments.

1.1 PROBLEM STATEMENT

This study focuses on entity retrieval—the search for “objects” of “entities”— on unstruc-

tured noisy documents, like HTML pages, in response to users’ information needs which are

expressed in the natural languages. Here are some key characteristics for entity retrieval,

which makes it different from other retrieval tasks:

Querying about entities , instead of querying on relevant documents, is one of the big

differences between document retrieval and entity retrieval. Entity retrieval returns the

answer of entities existing in documents as finer units.

Retrieving from un-structured noisy documents is another important factor for the

retrieval task. Compared to semantic web retrieval which retrieves on the semantic web,

entity retrieval in this study is based on noisy web documents.

Descriptions of users’ information needs with special entity types in entity retrieval

differ from the one in document retrieval, which do not specify the entity types. In order

to describe users’ information needs, topics will be described narratively, such as the

“narrative” field in the TREC entity retrieval task. In most cases, the description of the

“narrative” field can be viewed as a topic entity with phrases describing the relations

between the topic entity and the query entities. For example, “organizations that award

Nobel Prizes” describes a user’s information need, which can be viewed as the topic en-

tity (i.e., Nobel Prizes), the target entity type (i.e., organizations), and the relation (i.e.,

award) between the topic entity and the target entity.

There are many definitions of entities in the literature. An entity can be a thing

that is recognized to have an “independent existence” and can be “uniquely identified”

2



[Beynon-Davies, 2004]. An entity can be an instance of the pre-definite types/fields in the

database or knowledge base. An entity can be an atomic element with categories such as

the names of persons, organizations, locations, expressions of times, and quantities in un-

structured texts [Tjong Kim Sang, 2002]. In this dissertation, an entity et is defined as an

named object with a term surface e and an associated type t. For example, “Washington”

in the document can be an entity with the type of location or person depending on different

contexts. In the sentence of “Washington chopped down a cherry tree”, “Washington” is

the entity with the surface of “Washington” and the type of person, while “Washington” in

“Washington State” is the entity with the surface of “Washington” and the type of location.

This study only experiments on four types of entities—persons, locations, organizations,

and products for the purpose of evaluations. Moreover, in this research, entity types, entity

classes, and entity categories are treated as equivalent.

The description of topic entities and answer entities is viewed as the relations be-

tween two entities, when users describe their information needs in the entity retrieval task

[Nardi and Brachman, 2003]. Therefore, for one entity a with the type A and the other en-

tity b with the type B, the relation r with the type of R is defined as rR ⊆ aA×bB. Note that

two entities with the same types might have different relations. For example, the relation

between “Mary” with the type of persons and “Pittsburgh” with the type of locations can

be the relation of “was born in” for the type of born-in or the relation of “was studies in”

for the type of study-in.

A basic entity retrieval problem is set up as follows: we assume that there exists an entity

set E = {Et1 , ...., Eti , ..., Etm}, where Eti = {e1ti , e2ti , ..., elti} is a group of entity instances

with the type of ti. In the retrieval environment, there is a corpus C = {D1, ..., DJ , ..., DN},

where DJ is a document. The corpus C contains an entity set E, which includes the different

types of entities, such as locations, companies, persons, et al. Entity retrieval is defined as

the matching of some stated user queries about an entity against a set of entities existing

in free-form texts. The information needs are represented as descriptions and target types.

The matching process identifies the correct entities, not only their surfaces but also their

types. The relevancy evaluation is the same as most document retrieval studies, which can be

binary relevance (i.e., relevant and non-relevant) or three levels (i.e., non-relevant, relevant,
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and highly relevant). The evaluated answer entities may be sent back to the system for

either re-constructing the queries or re-building document representations to improve the

entity extraction task. Some tasks, such as TREC or INEX, require the URIs/URLs of

entities as answers. Because these tasks assume the same entity can be represented in the

different names, the URIs/URLs of entities can help to refer the different names of entities

to the same entity objects. In this study, however, we focus on the entity retrieval itself,

so we treat answer entities, instead of the URIs/URLs of entities, as results. The model of

entity retrieval follows the conventional information retrieval process [Manning et al., 2008],

as shown in Figure 1.

A typical entity retrieval task in my research, for example, is to find the answers for

“products of MedImmune, Inc,” where the query is asking for the entity of “products of

MedImmune, Inc” (target entity/answer entity) with the type of products. The answer enti-

ties are terms such as “Synagis”, “FluMist”, and “Ethyol”, where their types are products.

�
�

�
�Evaluation/Feedback

Retrieval Objects

?

Queries

�
�

�
�Comparison

?

Indexed Objects

- �
�
�

�
�Representation

�
�

�
�Representation

? ?

? ?

Information (Entities) Needs Entities in Documents
- �

Figure 1: Entity retrieval model
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1.2 RESEARCH GOALS

Entity retrieval in this study is driven by several research goals. The most critical one is to

find entities in an effective and efficient manner. Entity retrieval, as one type of information

retrieval task, shares the same questions raised in information retrieval—performance and

efficiency. On the one hand, a retrieval system needs to come up with answers within seconds.

Text collections, growing faster than hardware performance, become a challenge for indexing

and sorting algorithms. We have to consider the system’s efficiency in the query execution

time. On the other hand, the performance of entity retrieval system, including precision

and recall, is also important. Given a query, all identified entities should be ranked in a

manner where highly relevant entities are ranked above less relevant or non-relevant ones.

Although precision has become more important than recall in the Web environment, recall

in the entity retrieval task is still important because people will not only consider how many

answers are correct but also how the system can answer questions.

In order to find the correct entity answers effectively and efficiently, this study proposes a

combined probability model integrating document retrieval and entity extraction. Document

retrieval aims to quickly and efficiently find the germane documents containing the answer

entities; whereas, entity extraction is in charge of correctly and effectively extracting the

answer entities. Modeling entity retrieval problems as a combination of document retrieval

and entity extraction helps to reduce the complexity of entity retrieval into two separated sub-

tasks. The hypothesis is that the global optimal problem of entity retrieval can be simplified

into two local optimization problems. The advantages of this localized optimization are

that it not only lowers the computational complexity, but also adapts more state-of-the-art

techniques from both document retrieval and entity extraction disciplines into entity retrieval

tasks.

By decomposing the entity retrieval problem, this research evaluates whether this prob-

ability model can achieve the retrieval goals effectively and efficiently; whether document

retrieval can effectively find the germane documents containing the answer entities; whether

entity extraction can easily and correctly identify the entities existing in one document or

scattered among several documents. Document retrieval explores the methods to improve
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germane document identification, such as query generations, entity type searches, and learn-

ing to rank. Entity extraction explores methods, such as named entity recognition tools,

knowledge base (e.g., Wikipedia) entity extractions, table/list extractions, syntax extraction,

or treating named entities identification as a classification task. This research, therefore, will

evaluate whether the combination of germane document identification and answer entity ex-

traction can work together effectively to detect answer entities. The results of entity retrieval

are entity ranked lists, and are evaluated by the system performance, such as precision and

recall.

1.3 TERM DEFINITIONS

Formal definitions of entity retrieval, entities, entity sets, entity types, topic entities, target

entities, topics, queries as well as germane documents in this study are listed here.

Entity retrieval is the search task that finds the entity objects in unstructured noisy

documents like HTML pages with regards to users’ information needs. For example, for

the query asking for the product entities of MedImmune, Inc (target entity/answer entity),

the answer entities are terms such as Synagis, FluMist, and Ethyol, where their types are

products.

Entity (denoted as Et) is a thing recognized as capable of an independent existence,

which can be uniquely identified with a certain type of t. Usually it uses the entity type t

to distinguish the different entities. For example, the location entity means the entity with

the type of location.

Entity instance (denoted as eti) is every individual entity with the type t. The entity

instances of organization, for example, include Department of Information Sciences, School

of Information Sciences, and University of Pittsburgh.

Each entity is assigned a entity type t (or, equivalently, category or class). The entity

instance of School of Information Sciences, for example, belongs to the type of organization.

This work treats the relation between an entity type and its entity instance as the relation

of a class and its instance.
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Topic entity (or query entity), in this thesis, refers to the central entities in the

topics describing users’ information needs. For example, the topic entity for products of

MedImmune, Inc is MedImmune, Inc, which is the central entity in the topic. In TREC

entity retrieval task, the topic entities are specially marked up in a separate field with the

tag of <entity name>.

An answer entity or a target entity refers to the retrieved answers for the entity

retrieval system in this study. The answer entities for the query of products of MedImmune,

Inc., for example, are the target entities of Synagis, FluMist, and Ethyol.

For our research purpose, relations, in this study, refer to the relation (e.g., product

of) between the topic entity (e.g., MedImmune Inc.) and the answer entities (e.g., Synagis,

FluMist, and Ethyol).

A topic represents a user’s information needs. This study uses the natural language de-

scription to depict users’ requirements (e.g., product of MedImmune Inc.), the topic entities

to define the subject of information need (e.g., MedImmune Inc.), and the (answer) entity

type (e.g., product) to limit the type of the retrieved answers.

A query is the texts containing the data or string to be passed to the search system.

This study focuses on the Web search, so the queries could be a natural language text string.

We should specifically note that with the same information needs and the same search envi-

ronment, the search queries can vary according to the different criteria or assumptions. For

example, the topic of products of MedImmune, Inc. in the Web search environment, the

query can be “products of MedImmune Inc”, or it can be “MedImmune LLC produces”, as-

suming that MedImmune LLC is a formal name of MedImmune Inc. and the verb “produces”

is another way to represent the relation.

A germane document is the document which contains the answer entities for answer-

ing users’ information needs. For example, http://www.medimmune.com/about us prod-

ucts.aspx is the germane document for the topic of product of MedImmune Inc because it

contains the answer entities of Synagis, Flumist, and Ethyol.
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1.4 ENTITY RETRIEVALS OUTSIDE UNSTRUCTURED TEXTS

On the one hand, entity retrieval not only exists in Web search, but also it exists in database

and semantic web search. On the other hand, entity search retrieves from the same plain

texts as document retrieval, but they also differ in their returned units. Figure 2 shows

these retrieval tasks in two dimensions. The horizontal dimension is the structure of retrieval

contents. The left part consists of more structured data and the right part contains more

un-structured data. The vertical dimension is the returned unit. The higher the vertical

dimension, the finer unit the search produces. The closer to the origin the easier the retrieval

problem is. Entity retrieval studied in this dissertation is on the upper right part, which

means it is among the hardest retrieval tasks.

-

6

0
Structured Text Semi-structured Text Un-structured Text

Document

Entity

Relation

Database Retrieval

Semantic Web Retrieval

XML Retrieval

Document Retrieval

Entity Retrieval

Figure 2: Information retrieval tasks

Table 1 summarizes the differences among the above retrieval systems in terms of retrieval

models, data structures, and query languages.

Database searches are designed to find structured data: sets of records that have val-

ues for predefined attributes such as product numbers and product prices. For example,

some highly structured search problems are best solved with a relational database because

the product table contains an attribute for short textual descriptions about each product.

The search results from a database are a set of entries without any ranking, which means

database search is one kind of boolean search (exist or does not). Another difference between

database retrieval and entity retrieval is that database systems build on top of structured
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Table 1: The comparison of different retrieval systems

Features Relational

Databases

Semantic

(Web) Search

XML retrieval Web Docu-

ment Retrieval

Entity Retrieval

Object Record RDF Ele-

ments

Structured Doc-

ument (trees

structure)

Unstructured

Documents

Unstructured

Documents

Model Relational

calculus

Metadata

data Model

Structured doc-

ument retrieval

Vector space

and others

Document Re-

trieval + Entity

Extraction

Main data

structure

Table RDF Triple Inverted Index

with fields

Inverted Index Combination

Queries SQL SPARQL Structured Text

Queries

Text Queries Text Queries

Ranking No No Meaningful Meaningful Meaningful

information—records—and store all records in the tables. They can use relational calculus

not only for retrievals but also inferences and deductions. In contrast to relational databases,

however, entity retrieval systems obtain information from unstructured text, which makes

retrieval answers more difficult to locate and harder to do inferences in the results.

Semantic search improves search accuracy by adding the understanding of searcher in-

tents, as well as the contextual meanings of terms in the searchable data spaces, on the Web

or within a closed system, in order to generate more relevant results [Guha et al., 2003].

Both semantic web retrieval and entity retrieval involve entities associated with their types

as well as relations between these entities. Semantic web retrieval, however, includes not only

entity search but also other retrievals, such as relation search. In some run-time systems,

semantic search relies on the semantic web, which is built on top of RDF documents rep-

resenting a well-defined ontology or schema with concepts and relations [Guha et al., 2003].

For example, SHOE [Luke and Rager, 1996], Freebase [Bollacker et al., 2008] and DBpedia
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[Auer et al., 2007] are some of these semantic systems. Although some systems are based

on unstructured document retrieval, they still match the entities to knowledge bases for en-

tity extractions. For example, Balog matches the candidate entities to Freebase for entity

retrieval [Balog et al., 2010b]. Entity retrieval in this research differs from these systems in

that it is based on searching plain texts, which are the documents without any pre-defined

semantic information.

XML Retrieval is the content-based retrieval of documents structured with XML (eX-

tensible Markup Language). So-called markup languages such as SGML or XML are widely

used to annotate text structures in a machine-readable form. XML retrievals are used to

search for information in structured documents. The development of structured retrieval has

been driven by the INEX evaluation initiative. Because these special structures are assigned

to the document, a full-fledged XML retrieval system provides more flexibility and complete-

ness with respect to the formulation and execution of structural queries. Therefore, these

searches also benefit from structural indexing and retrieval procedures. Earlier studies on

structured retrievals by Navarro [Navarro and Baeza-Yates, 1995] have already considered

most of the functionalities that can be expected from current systems working with XML

data. Freely composing queries with contents and structure conditions are allowed in XML

retrieval. Special query languages are designed to express structural requests on XML like

XQuery Full-Text [Amer-Yahia et al., 2007] or NEXI [Trotman, 2004]. Moreover, XML re-

trieval does not require the users to specify fields of interests at indexing time, but allows

them to query the content of any tagged fragment of the collection. These features ask for

different index designs. Entity retrieval in this research assumes that all the documents are

plain texts, which makes it difficult to index fragments found within collections.

Document retrieval, as always, is important in the history of retrieval. It regards each

document as an atomic unit of interests, and does not distinguish whether some parts of a

document are relevant to information needs while other parts are not. The user of a document

retrieval system will find a sentence snippet if it is considered relevant to his/her query. Also

the relevance estimation is based on the content of the entire document. If one sentence in

the document is highly relevant but the other parts are not, the final relevance estimation

of the entire document is considered lower than those of shorter documents with the same
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keywords in the document but is exclusively about the topic of interests. From an indexing

perspective, document retrieval allows the construction of efficient inverted document index

structures.

1.5 LIMITATIONS AND DELIMITATIONS

While many researchers are working actively in entity retrieval, a developed entity retrieval

system is still a long way from completion, especially within the World Wide Web. This

study proposes a probability model to decompose the entity retrieval task into two subtasks—

germane document identification and answer entity extraction. By doing this, the global

optimal problem is turned into two local optimization problems. However, there are some

limitations.

First of all, the decomposition cannot guarantee that the whole system always achieves

the best results. Although the goal of the two-layer probability model is to effectively and

efficiently find the answers according to users’ information needs, it is a heuristic rule and

does not guarantee the best results. In the most extreme cases, for example, when answers

are evenly distributed over documents and within a variety of contexts, the performance of

the combination probability model will drop, like “Who have their own websites?” There

are a huge number of documents that contain the answer entities and there are also a large

number of possible patterns for the answer entities, which makes it harder for the model

to achieve the best answers with this localized optimum. However, the advantages of this

model, as mentioned, are that it can effectively and efficiently find the possible answers.

The second limitation to this combined model is that germane document identification,

with the assumption of bag-of-words searching, can fail at detecting the best documents for

further entity extraction. This assumption limits document retrieval models to only consider

the co-occurrences of the words but without considering the semantic meanings between the

words. With the non-proper queries generated for topics and the ranking strategies, it will

cause the retrieval inaccuracy. For example, for the query of “organizations that award

Nobel prizes”, after stemming and removing stop words, the retrieval task is turned into
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finding documents with co-occurrences of the tokens “organization”, “award”, “nobel”, and

“prize”, which are equal to the query of “organizations awarded Nobel prizes.” Although

some methods such as query reconstructions might fix these problems partially, it cannot be

solved completely. For example, if the query “Nobel prizes” instead of “organizations that

award Nobel prizes” is used for the retrievals, more semantic analyses work will be applied

in the answer entity extraction to further extract the answers. Even so, the query re-writing

or entity extraction can only partially compensate for some of the drawbacks from the model

assumptions of document retrieval.

The open Web environment is heterogeneous and distributed and entities in this envi-

ronment are also various and multi-typed. These require significant new progresses in the

development of entity retrieval in order to identify the correct entities on the scale of the

Web. Some open issues remain.

First of all, entities are quite subjective and flexible concepts and used to describe the

existences of things in the world by different people who usually have different viewpoints

with various aims. For example, for the same term “apple”, people with different viewpoints

can mark it as a “fruit” or a “company”. Moreover, with the same viewpoints and the same

aims, different users might use different notation systems to represent them. For example,

the type of “company” can be represented as a flat structure or as a hierarchical structure

such as “/Business/Company”. Therefore, consistently representing these concepts will be

a big challenge to entity extraction systems. This study will not further discuss the possible

different representations of the entities.

Secondly, entity identification is a laborious and tedious process. Although many meth-

ods can be applied to different domains to extract different entity types, the study will

continue to focus on four types of entities—persons, locations, organizations and products.

Finally, although entity retrieval can be the retrievals in various media or data formats,

this work focuses only on searches in unstructured texts, especially the noisy HTML web

pages, instead of searching in structured data (e.g., databases) or semi-structured data (e.g.,

semantic web).
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1.6 CONTRIBUTIONS

This thesis has studied the problem of entity retrieval represented in a combined probability

model. It makes the following four contributions.

First, the probability model proposed in this study decomposes the “black box” of entity

retrieval into germane document identification and answer entity extraction. This decompo-

sition, at the same time, separates the word-independence factors from word-dependence fac-

tors. In this dissertation, word independence means, in the language model, we assume that

in a document all the words are independent to each other, i.e., p(d) = p(w1)p(w2)...p(wn).

In fact, this is a unigram model. The word-dependence means we assume that in a docu-

ment the words are related each other. Therefore, we need to analyze the semantic meaning

between the words, instead of simply treating them as a unigram model. Information needs

for entity retrieval task usually require semantic analyses of topics. Therefore, germane

document identification efficiently narrows down document pool into a smaller set based on

word-independence factors. Answer entity extraction deeply analyze the sentence structures

or document formats of the small set of germane documents in order to extract the answer

entities based on word-dependence factors. Because the deep sentence analysis or document

format analysis is time-consuming work, narrowing down the pool of documents to be parsed

can significantly decrease the time needed for entity retrieval, while increasing the accuracy

of entity detections.

Second, this study demonstrates the decomposition process in a theoretical way. Al-

though many groups actively in the entity retrieval competition follow the same ideas of the

decomposition the entity retrieval task into the retrieval step and the extraction step, it is

the first time to demonstrate it from a theoretical way using a probability model. Chapter

3 proposes a probability model and proves that the entity retrieval problem can be decom-

posed into germane document identification and answer entity extraction. Moreover, this

dissertation proves the calculation time of this model can be significantly decreased using

the big-o notation.

Third, with the decomposition, the system performance can be evaluated in two parts,

which in turn improves the overall system. Compared to the previous method, especially the
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entity retrieval competition task such as TREC or INEX, of treating entity retrieval as one

“black box” and evaluating the “black box” as a whole, the decomposition can clearly identify

two steps and evaluate them individually in order to detect the sources of the improvements.

Additionally, this decomposition can help to find the limitations of sub-steps in the system,

which can further improve the entity retrieval.

Lastly, many state-of-the-art methods can be introduced to the system as well as each

individual layer, e.g., topic detection. Especially, this thesis introduces the learning to rank

method for improving germane document identification, which is the first time using learning-

based methods in germane document identification. The answer entity extraction task is

treated as the query-dependent extraction method, which is more precise than the previous

method of treating this task as query-independent extraction. Based on the query-dependent

extraction, the context is introduced for the answer entity extraction. The methods of ta-

ble/list extraction and sentence syntax extraction are used to improve the entity extractions

in the documents.

1.7 OUTLINE

The remaining chapters are organized as follows. Chapter 2 reviews the development of

entity retrieval and its related disciplines, such as document retrieval and entity extraction.

In Chapter 3, a two-layer probability model combining information retrieval and entity ex-

traction (TREPM) is proposed as a generalized representation for an entity retrieval system.

This chapter describes entity retrieval from a theoretical view and explains how two layers—

germane document identification and answer entity extraction—work together and how they

symbiotically contribute each other for the benefit of the whole task. Chapter 4 summarizes

the research hypotheses and resources used in the experiments including evaluation frame-

work, collections for evaluation, evaluation metrics, and tools for corpus preprocessing and

document retrieval as well as entity extraction. Germane document identification, the first

layer of TREPM, is investigated in Chapter 5. It explores the methods of treating germane

document identification as a conventional document retrieval problem, the entity type lan-
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guage model, and the learning to rank method. Chapter 6 focuses on the second layer of

TREPM. The methods of answer entity extraction, such as named entity recognition tools,

knowledge bases, table/list extractions, the bootstrapping method, as well as the learning

based answer entity extraction, are investigated. Chapter 7 summarizes the whole thesis and

discusses my future work.
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2.0 RELATED WORK

This chapter reviews the state-of-the-art work on entity retrieval (ER) and some related

disciplines. Entity retrieval in this study, to some degree, is regarded as a process combining

germane document identification and answer entity extraction. Rather than exhaustively

surveying prior work, this chapter reviews the evolution of germane document identification

and answer entity extraction in order to analyze alternative or combination approaches that

identify entities in the linguistic and semantic levels. At the end of this chapter, we review

the entity retrieval task in two famous competitions: TREC and INEX.

2.1 DOCUMENT RETRIEVAL

Document retrieval, sometimes referred to as (or as a branch of) text retrieval, allows users

to locate the relevant documents with regards to their information needs. It treats docu-

ments as the atomic units of users’ interests regardless whether the whole document or just

part of the document is relevant to their information needs. The methods for germane doc-

ument identification are adapted from document retrieval approaches, such as vector space

model, language model, link analysis, and query constructions. The germane document

identification methods used in TREC and INEX are summarized in Table 2.

2.1.1 Vector Space Model

The vector space model is an algebraic model that represents text documents as term vec-

tors. For example, a document, d, in the corpus is represented as a term vector (i.e.
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Table 2: Methods of germane document identification in TREC and INEX

Conf. Technique Method Reference

INEX Category Similarity [Vercoustre et al., 2008],

[Koolen et al., 2010]

INEX Category Language model with

smoothing

[Jiang et al., 2009],

[marie Vercoustre et al., ],

[Balog and de Rijke, 2006]

INEX XML structure in-

dex/retrieval

[Rode et al., 2009],

[Craswell et al., 2009]

TREC Links/Anchor Anchor-based entity [Serdyukov and de Vries, 2009],

[Kaptein and Kamps, 2009]

INEX Links Link-based entity authority [Vercoustre et al., 2009]

TREC Links/Anchor Indexing [Kaptein and Kamps, 2009]

INEX Links Language model with

smoothing

[Balog and de Rijke, 2006]

INEX Topic Difficulty Detection [Vercoustre et al., 2009]

TREC Structured Retrieval Document, passage, entity [Fang et al., 2010]

TREC Structured Retrieval Body and title [McCreadie et al., 2009]

TREC BM25 [Zhai et al., 2009]

TREC Language model [Wu and Kashioka, 2009]

TREC Google [Wu and Kashioka, 2009]

TREC Query construction Relation: entity + relation [Vydiswaran et al., 2009]

TREC Language model, top 1000 [Zheng et al., 2009]

TREC Query construction with

passage retrieval

[Yang et al., 2009]

TREC Query expansion Query structure analysis [Hold et al., 2010]
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d = (w1, w2, ..., wm)), and a query, q, is also represented as a term vector (i.e. q =

(w1q, w2q, ...wtq)). The relevance between the document d and the query q, therefore, is

measured by the cosine similarity between these two vectors (i.e., sim(d, q) = cos θ = d×q
|d|×|q|).

In the classic vector space model proposed by [Salton et al., 1975], the specific weights of

terms in the document vector, wt,d, are the products of term frequency (TF) and inverse

document frequency (IDF). That is, wt,d = tft,d × log Nd

|{d∈D|t∈d}| , where tft,d is the frequency

of a term t in a document d, and log Nd

|{d∈D|t∈d}| is the inverse document frequency with

Nd for the total number of documents in the whole document set and |{d ∈ D|t ∈ d}|

for the number of documents containing the term t. Therefore, the final similarity func-

tion is sim(d, q) = cos θ = d×q
|d|×|q| =

∑
i wi,d×wi,q√∑

i wi,d
2×

∑
i wi,q

2
. More advanced weighting algorithms

were created to improve the document-query similarity calculations, such as Okapi BM25.

The BM25 method scores the similarity between a document and a query as sim(d, q) =∑
i log N−|{d∈D|t∈d}|+0.5

|{d∈D|t∈d}|+0.5
× tft,d×(k1+1)

tft,d+k1(1−b+b
Nd

avg(d)
)

proposed by [Robertson et al., 1996], where N ,

the total number of documents in corpus, and b are constant parameters, and avg(d) is the

average document length in the corpus. Zhai used the BM25 method to identify the germane

documents in his work [Zhai et al., 2009].

The advantages of this method are its simplicity and effectiveness, which is capable of

computing a continuous degree of the similarity between queries and documents as well as

ranking documents according to their relevance scores. But this method has the following

limitations. First, long documents will require high-dimensional vector manipulations, which

makes similarity measurements expensive to complete. Second, documents with similar

contents but different vocabularies may come out with poor inner-product results. These

are the limitations of keyword-driven IR systems in general since such systems cannot easily

process semantic contents. The research in this study demonstrate that the deficiency of

semantic analysis in the document search can be over come by answer entity extraction.

2.1.2 Language Model

Language model approaches to information retrieval are attractive and promising. The

language model usually assumes that all terms t1, t2, ..., tn are independent in a document d.
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That is, p(d) = p(t1t2...tn) = p(t1)p(t2)...p(tn). This is a unigram language model. There are

many other language models, such as the bigram language model or the trigram language

model.

A basic language modeling approach for information retrieval, proposed by Ponte and

Croft [Ponte and Croft, 1998], assumes the query is a sample of words drawn from a docu-

ment according to a language model, i.e. the likelihood of p(q|d). The maximum likelihood

estimation is one of the solutions, i.e., p(q|d) =
∏

t pmle(t|d) =
∏

t
tft,d
Nd

, where t is a term in

the query q, and tft,d is the occurrence of a term t in a document d, and Nd is the total

number of terms in the document d. Thus, it is easy to estimate the terms appearing in the

documents using the maximum likelihood. In order to estimate the probability of terms that

do not appear in the document, called a smoothing problem, many approaches are discussed

[Zhai and Lafferty, 2004]. One approach is Jelinek-Mercer smoothing, which is a linear inter-

polation method combining the maximum likelihood model and the collection model with a

coefficient λ to control the influence of each term, i.e., p(w|d) = (1−λ)pmle(w|d) +λp(w|C).

Another method is Bayesian smoothing, which uses Dirichlet priors as a prior for each word

for smoothing, i.e., pµ(w|d) =
tft,d+µp(w|C)

Nd
[MacKay and Peto, 1994].

Many approaches in entity retrieval use the language modeling for germane document

identification. For example, the language modeling approach on structured documents (such

as XML files) is applied to improve the search results. Two well-known examples of re-

trieving the structured texts or text elements are XML retrieval [Gövert and Kazai, 2002]

and question answering [Prager et al., 2000]. Both retrieval tasks are based on the hierar-

chical structures of documents, but the only difference is that XML structures are intro-

duced by authors while structures of question answering are introduced by annotators. Zhao

[Zhao and Callan, 2008] summarized the structured retrieval as a generative retrieval model

by expanding the basic keyword language model into a structure with hidden variables. Zhao

and Callan introduced the fields (which are the snippets in a document) into their model,

and emphasized that the major difference between document retrieval and field retrieval was

that the surrounding context of a query term shrinks from a document to a field. Later,

in the work of McCreadie, they applied the structured retrieval on HTML title and body

parts [McCreadie et al., 2009]. The greater weight of the HTML title part than the HTML
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body part indicated that they preferred title matches to body matches in germane docu-

ment identification. Fang proposed a hierarchical relevance language model on three levels:

document, passage, and entity [Fang et al., 2010]. The final document ranking score was a

linear combination of the relevance scores from these three levels.

Language model approaches are applied not only in the structured document retrieval but

also in category/type information for parameter smoothing or model enrichment, especially

in INEX. This study does not distinguish categories and types either in entity types or

in document categories but treats them equally as the classes for documents or entities.

Jiang applied category information from queries into the query model and considers the

similarity between queried category and the candidate entity category [Jiang et al., 2009].

They considered the probability of an entity e to be the target type q cat, that is, p(q cat|e) =

p(cat q|cat e) =
∏

cat j∈CAT q p(cat j|CAT q). The probability of the category similarity

can also be viewed as Jelinek-Mercer smoothing for complementing the corpus smoothing.

Similar approaches also appeared in [Vercoustre et al., 2009] and [Balog et al., 2010a]. This

study will expand the language model and apply it on the document types and entity types

to improve germane document identification.

2.1.3 Link Analyses

Link analyses apply in information retrieval for finding relevant documents by considering

the authority pages and hub pages (such as the HITS algorithm) or measuring the relative

importance of a page within a set (such as the PageRank algorithm). The HITS algorithm,

developed by Jon Kleinberg, is an iterative algorithm based on two basic steps—the au-

thority update and the hub update [Kleinberg, 1999]. The authority update gives a node

its authority score by summing up the hub scores of each node pointing to it; and the hub

update gives a node its hub score by summing up the authority scores of each node that it

points to. The PageRank algorithm is also an iterative algorithm by adjusting approximate

PageRank values to more closely reflect a page’s theoretical true value [Brin and Page, 1998].

Both the HITS algorithm and the PageRank algorithm use a coarse-grained model of the

Web, which assumes each page is a node in a graph with a few scores associated with it.

20



The disadvantage of HITS is that it is sensitive to local topology. Moreover, both algorithms

need to handle huge matrix manipulations. Vercoustre et al adapted the similar idea of the

document’s PageRank into a LinkRank module, which calculated a weight for a page based

on the number of links to the entities on this page [Vercoustre et al., 2009]. The assumption

is that a good entity page is the one that is referred to form contexts with many occurrences

of the entity examples.

Although link analyses are successful in the document retrieval, they are more useful

in mining the entities from the linked pages. Therefore, the link information in this thesis

would be applied to extract the answer entities from the germane documents.

2.1.4 Topic Detection and Query Construction

With users’ information needs, different methods are explored to express the topics as proper

queries, such as topic difficulty predictions and query constructions.

The topic difficulty prediction in the research field of the XML entity ranking was studied

in [Vercoustre et al., 2009]. Their work generated a topic classifier based on how well the

runs submitted by participating systems could answer the topics. Each topic calculated

the topic difficulty using the Average Average Precision (AAP) measure: the higher the

AAP, the easier the topic. According to the AAP scores, the topics were grouped into two

classes (Easy and Difficult). The features for classification were extracted from the topics

and run-time results. They detected 32 features. Because some features were correlated,

they removed the correlated features and kept nine features for the real-time classification

task. These features included the number of sentences in the narrative, the ratio between

the number of words in the title and the narrative, the ratio between the intersection and

union of words in the title and the narrative, the ratio between the intersection and union of

words in the description and the narrative, the ratio between the intersection of words in the

title and description part and union of words in the title, description and the narrative part,

the ratio between the intersection of words in the description and narrative part and union

of words in the title, description and the narrative part, the number of pages in each target

categories, the number of intersections of entity categories, and the ratio of the intersection
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of entity categories and the union of the entity categories. Their system applies different

parameters on the retrieval model according to the topic difficulties. Their results were

among the top four best performing in INEX 2008.

Query construction is also applied in germane document identification. Vydiswaran mod-

eled the information need of entity retrieval as a structured query [Vydiswaran et al., 2009].

They identified three parts of the queries: the relation (represented as descriptions of the

topic entity and the answer entity), the entity of focus (the topic entity), and the entity

of interest (the answer entity). For example, the query of all team-mates of Michael Schu-

macher could be addressed by two related relation queries: “[Michael Schumacher][drives

for] [ORG-1]” and “[PER] [drives for] [ORG-1]”. Finding related entities through ORG-1

(the team), which is as yet unknown, would hopefully get filled in it by the term of “Fer-

rari” during execution. Once the relation predicates were identified, they augmented them

with their synonyms from WordNet as well as similar words from a large text corpus on

distributional similarity. The final query formulation with the primary entity, the relation

word with its synonyms, optional noun phrases from the narrative, and the type of the de-

sired entity, enforces retrieval system to match the primary entity and one of the relation

words in all retrieved documents. Hold also preprocessed the queries using part-of-speech

techniques to identify the source entity, target entity, and the relations between them. Then

he used synonym dictionaries (exploiting Freebase sources) to find the alternative names

for the source entities, and expand the queries [Hold et al., 2010]. The annotations for ger-

mane documents in the entity retrieval task also confirmed that different topics had different

preferences in germane document identification. This study, therefore, investigates a better

way to represent the users’ information needs with proper queries for germane document

identification.

2.2 ENTITY EXTRACTION

Answer entity extraction in entity retrieval systems identifies answer entities from germane

documents. It is usually simplified as entity extraction, which extracts targeted entities
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without considering whether these entities answer the query. Entity extraction involves two

subtasks: the identification of proper names in texts and the classification of these names

into a set of predefined categories of interests. The entity extraction task was from the Sixth

Message Understanding Conference (MUC-6) [Grishman and Sundheim, 1996]. The typi-

cal entity extraction task, for example, takes an un-annotated block of text, such as “Jim

bought 300 shares of Acme Corp. in 2006,” to produce an annotated block of text, such as

<ENAMEX TYPE=“PERSON”>Jim</ENAMEX> bought<NUMEX TYPE=“QUANTITY”>

300< /NUMEX>shares of<ENAMEX TYPE=“ORGANIZATION”>Acme Corp.</ENAMEX>

in<TIMEX TYPE=“DATE”>2006</TIMEX>. With 15 years of research (from 1996),

many approaches for entity extractions are investigated, which can be categorized into four

classes: rule-based methods, supervised learning methods, semi-supervised learning meth-

ods, and unsupervised learning methods. Although the studies of named entity extraction

have been going on for more than 15 years, the techniques used in the TREC entity retrieval

are mainly limited in rules-based methods, which are summarized as in Table 3. This section

reviews the methods used not only in the TREC answer entity extraction but also in the

general domain of entity extraction.

2.2.1 Named Entity Recognition Tools

The tools of named entity recognition (NER) or entity identification or entity extraction lo-

cate and classify atomic elements in texts into predefined categories, such as the names of per-

sons, locations and times. There are many commercial and free NER tools, such as Stanford

NER [Finkel et al., 2005], UIUC NER [Ratinov and Roth, 2009], OpenNLP (community),

GATE [Cunningham et al., 2002], LingPipe [Alias-i, 2008], OpenCalise [OpenCalaise, 2010],

and Inxight [SAP, 2010]. The first three are the free tools, and the last two are the commer-

cial products.

Zhai applied the Stanford NER tool on documents as well as topic descriptions to ex-

tract the candidate entities [Zhai et al., 2009]. The final answer entities were decided by

filtering out the entities which did not belong to the targeted types and ranking them with

a probabilistic model.
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Table 3: Methods of answer entity extraction in TREC

Method Reference

Extract from Tables and Lists [Fang et al., 2009]

Dictionary-based named entity recognition (named entities from

DEPedia)

[McCreadie et al., 2009]

NER tools to extract the target entities from the sentences including

the candidate strings

[Zheng et al., 2009]

NER for document (UIUC) Entity re-ranking: similarity between

support snippets of entities and input queries: supervised learning,

clustering, and an algorithm

[Wu and Kashioka, 2009]

NER: rule; L2R [Vydiswaran et al., 2009]

Segment with 50/100 words; NER + re-ranking [Zheng et al., 2009]

NER with some terms from Wikipedia [Yang et al., 2009]

Four rules for extracting the answer entities [Hold et al., 2010]

NER from UIUC for candidate entities; and then re-ranking the

entities with the similarity to the hyponym relations of the target

entity categories

[Vercoustre et al., 2009]

Although Wu also used the NER tool from the Cognitive Computation Group at UIUC

[Ratinov and Roth, 2009] to tag persons, organizations, and miscellaneous (as candidates

for products), they applied a more complicated algorithm for entity filtering and ranking

[Wu and Kashioka, 2009]. First, they gave every entity a score by considering the link be-

tween the entity and the query. If there is a hyperlink-to and a hyperlink-from between the

entity and the query, the score for the entity is 2; if there is a hyperlink-to or a hyperlink-

from between the entity and the query, the score for the entity is 1; if there is a hyperlink-to

or a hyperlink-from between the entity and the terms in the query, the score for the entity is

0.5; otherwise, the entity score is 0. Then they chose the top 100 entities (with the descend-

ing order of the scores) with their original topics to find the support snippets in the search
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engine. The final ranking of the entities was based on the similarities between the input

query and support snippets of related entities. Vechtomova applied the NER tools for can-

didate entity recognitions, then used the similarity of the grammatical dependency between

candidate entities and seed entities for re-ranking the candidate entities [Vechtomova, 2010].

Utilizing NER tools to extract target entities as answer entities is simple and straight-

forward. But it is limited by the entity recognition tool. If the entity type can not be

identified by the tool, the system will fail at extraction them. The quality of the entity

answers is limited by the tool. What is more important is that the extracted entities can

not be guaranteed to answer the questions.

2.2.2 Rule-based Methods

One of the first research papers in the entity extraction field described a system relying

on heuristics and handcrafted rules to extract and recognize company names [Rau, 1991].

Collins and Singer added language factors into entity extraction, that is, parsing a complete

corpus in search of candidate named entity patterns for the entities of companies, persons,

and locations [Collins and Singer, 1999]. The following sample rules are used: rule 1: if the

spelling is “New York”, then it is a Location; rule 2: if the spelling contains “Mr.”, then it

is a Person; rule 3: if the spelling is all capitalized, then it is an organization.

Fang extracted the entities not only from NERs, but also from the structured data

embedded in natural language texts, such as tables, lists or other forms [Fang et al., 2009].

They extracted the attributes from the tables or lists using the rules: if the majority of the

elements with the same attribute were the same type or identified as target entities, they

treated all these elements as the target entities.

Instead of relying on rules to extract tables and lists, Hold set up four types of rules to

identify the source, the target, the context, and the candidate respectively [Hold et al., 2010].

In that way, they identified the sentences with the same structures as queries in order to

extract the candidate entities.

The dictionary-based entity extraction approach is a special case of rule-based methods.

McCreadie specially used DBpedia as dictionaries [McCreadie et al., 2009] for extractions.
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They built a large dictionary of entity names from DBpedia, a structured representation of

Wikipedia. This dictionary also comprised all known aliases for each unique entity in DB-

pedia. For example, “Barack Obama” was represented by the dictionary entries of “Barack

Obama” and “44th President of the United States”. They also assigned the entity types

with the categories of DBpedia using some heuristics rules. For example, the occurrence of

the clue word “company” was likely to be identified as organizations. Entries about people

from DBpedia and common proper names derived from US Census data (Census) were used

to produce the entities of persons.

Vydiswaran used both knowledge bases, such as gazetteers (derived from Wikipedia),

and rules, such as regular expression patterns, to extract the location and product names

respectively [Vydiswaran et al., 2009]. For example, in order to extract the product name,

the rule of “finding capitalized phrases containing some numbers with length greater than

two” was applied on the text of “the Nokia 6600 was one of the oldest models” for tagging “the

Nokia 6600” as a potential product name. When multiple regular expression patterns defined

to capture the entities of products were trigged in the extractions, the pattern generating

the longer phrase was chosen to extract the entities.

The rule-based method is sometimes better than the NER detection approach because

each entity type has its own vocabulary for the extraction task. But it still suffers from

the following problems. It is limited by the knowledge from the knowledge base. If the

knowledge base fails to store some entities, the whole system will not identify these entities

in further extractions. Moreover, in order to extract a complete answer entity set, all the

possible rules or patterns are required for extractions, but, in fact, it is hard to achieve this

level of completeness.

2.2.3 Supervised Learning

Supervised learning is a machine learning technique predicating the output of testing data

based on a function deducing from the training data. A small fixed text set is chosen and

manually marked up in order to train the function. The trained function produces similar

annotations on unseen texts. Therefore, it turns an extraction problem into a learning
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problem and extracts the phrases with each argument and the types of entities.

Supervised named entity extraction is a decision on whether a given term in the document

is a target entity. Either binary or multi-class classifications can be used. In a binary

classification system, the positive samples are labeled as one class and the negative samples

are labeled as the other classes. Final classification is performed by passing each instance

to be labeled for all of the classifiers and then choosing the label from the classifier with

the most confidence. There are many supervised learning based named entity extraction

methods, for example, Hidden Markov Models (HMM)[Bikel et al., 1997], Decision Trees

[Sekine, 1998], Maximum Entropy Models (ME) [Borthwick et al., 1998], Support Vector

Machines (SVM) [Asahara and Matsumoto, 2003], and Conditional Random Fields (CRF)

[McCallum and Li, 2003] and [Krishnan and Manning, 2006].

The advantage of supervised learning is its accuracy, but it requires an annotated training

data set to learn the function for the entity extraction tasks, which is hard to obtain. For

example, the task of extracting the named entity of products is difficult, not only because

the innumerable data available on the Web that needs to be annotated, but also because the

entity class itself is heterogeneous and, sometimes, mixes multiple classes (such as products).

2.2.4 Semi-supervised Learning

Semi-supervised learning, also called as lightly supervised approaches, or partially supervised

learning, includes learning from Labeled and Unlabeled examples (LU learning) and learn-

ing from Positive and Unlabeled example learning (PU learning) [Liu, 2006]. Co-training

is one of the PU learning methods. Avrim Blum and Tom Mitchell in 1998 introduced for

co-training method as assuming each example was described with two different but com-

plementary feature sets. [Blum and Mitchell, 1998]. Ideally, two feature sets, as two views,

are conditionally independent; that is, two feature sets for each instance are conditionally

independent given the class. Although each of the feature sets is sufficient for learning the

target classification function, the co-training method tries to improve the classification by

combining them together. The original co-training paper described experiments using co-

training to classify whether web pages were “academic course home pages”. The classifier

27



could be built either on the text appearing on the page itself or on the anchor text attached

to hyperlinks pointing to the page from other pages on the Web. Their experiment showed

that the classifier categorized 95% of 788 web pages with only 12 labeled web pages as ex-

amples. The key part for this method is that it requires two different but complementary

feature sets for the extraction.

Another important semi-supervised learning method is called bootstrapping. It either

starts from a set of seeds and then generates the patterns for entity extraction, or starts from

some patterns and then generates seeds to extract the entities. The idea of bootstrapping is

that, with a small degree of supervision, the system starts the learning process, searches for

sentences containing entities, and identifies contextual clues common to the samples. Then,

the system finds other instances of the entities according to the contextual clues. With the

learning process repeating these steps, more entities and more contexts will eventually be

gathered. Brin did the pioneer work in 1998 to start with just a handful of seed tuples for

the relation of interests, and automatically discovered extraction patterns for the relation

extraction task [Brin, 1999]. These patterns, in turn, helped to discover new tuples for the

relation, which could be used as new tuple for the next iteration of process. He also discussed

the duality between patterns and seeds. Pasca investigated the same techniques inspired by

mutual bootstrapping for the entity extraction task, but he innovated more general pattern

generation by considering words as members of the same semantic class [Pasca et al., 2006].

Semi-supervised learning has been successfully applied in many extraction tasks. The

advantage of this method is that it requires fewer training sets than supervised learning.

This research investigates this semi-supervised learning method in answer entity extraction

and evaluates whether it can improve entity retrieval task.

2.2.5 Unsupervised Learning

Rule-based entity extraction can be viewed as one type of unsupervised learning. For ex-

ample, Hearst used rules (e.g., “city such as Paris”) to extract the entities (e.g., the city of

Paris) [Hearst, 1992]. Clustering is another kind of important unsupervised learning meth-

ods. For example, one can try to gather named entities from clustered groups based on the
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similarity of contexts.

The KNOWITALL system used an unsupervised method to extract named entities from

the Web [Etzioni et al., 2005]. Inspired by Hearst’s work, the KNOWITALL system utilized

eight domain-independent extraction patterns to generate candidate entities. A generic pat-

tern “NP1 such as NPList2”, for example, indicates that the head of each simple noun

phrase (NP) in the list NPList2 is a member of the class named in NP1. By instantiating

the pattern for the class city, KNOWITALL extracted three candidate cities—Paris, Lon-

don, and Berlin—from the sentence, “We provide tours to cities such as Paris, London, and

Berlin.” Next, KNOWITALL automatically tested the plausibility of the candidate entities

it extracted using point-wise mutual information (PMI) statistics computed by treating the

Web as a massive corpus of texts. PMI-IR, developed by Turney, measures the dependence

between two expressions using web queries [Turney, 2001]. A high PMI-IR means that ex-

pressions tend to co-occur. KNOWITALL leverages existing Web search engines to compute

these statistics efficiently. In the initial run, they found that KNOWITALL was capable of

autonomously extracting high quality information from the Web, so that they used three

methods to improve systems’ recall. The first was pattern learning, which learned domain-

specific patterns that served both as extraction rules and as validation patterns to assess

the accuracy of instances extracted by the rules. The second was subclass extraction, which

automatically identified subclasses in order to facilitate extraction. For example, in order

to identify more scientists, it might be helpful to determine subclasses of scientists (e.g.,

physicists, geologists, etc.) and look for instances of these subclasses. The third method was

list extraction, which located lists of class instances, learned a “wrapper” for each list, and

used the wrapper to extract list elements. Each method dispensed with hand-labeled train-

ing examples by bootstrapping from the information extracted by KNOWITALL’s domain-

independent patterns. The experiment indicated these three methods greatly improved the

recall of the baseline KNOWITALL system, while keeping the high precision, which in turn

improved the overall extraction rate.

The unsupervised learning approach has succeeded in the generic entity extraction pro-

cess, but still needs to be further evaluated for the answer entity extraction task, since answer

entity extraction is not only to find the specific entities with target types but also to find
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the entities which should be able to answer the questions.

2.3 ENTITY RETRIEVAL IN INEX AND TREC

Research and development in the entity retrieval area is fueled by interests from the INitiative

for the Evaluation of XML retrieval (INEX) [de Vries et al., 2007], since 2007, and the annual

Text Retrieval Conferences (TRECs) from the U.S. National Institute of Standards and

Technology (NIST), since 2009 [Balog et al., 2009]. Both tasks require systems to list the

answers about persons, products or locations with respects to a given query topic. Although

two systems have similar entity retrieval tasks, there are differences between them. INEX

focuses on the structured document retrieval, so that it is on the XML files (Wikipedia

articles). Document borders should not play any role in this retrieval task. TREC focuses

on the unstructured web-based document retrieval, so that the entity retrieval task in TREC

is on the HTML sets. Another difference between these two tasks is that every page or

document in Wikipedia collection is an entity page with human assigned categories. If we

retrieve the Wikipedia collection, the relevant document will be the relevant entities, while

the web page with the html format in the ClueWeb09 set cannot be viewed as entities. In

this case, in TREC, before any entities can be ranked, they have to be recognized as entities

and classified into the correct entity type.

This study investigates the entity retrieval on the Web, unstructured data, so that I

choose the TREC task as the main experimental environment. The INEX task with the

XML files, however, provides some special features which are useful for some experiments,

for example, the retrieval models on evaluating the similarity between the entity types and

the document categories.
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3.0 A TWO-LAYER RETRIEVAL AND EXTRACTION PROBABILITY

MODEL

This chapter gives a formal definition of the Two-layer Retrieval and Extraction Probability

Model (TREPM), a generalized representation of the entity retrieval problem. This model

combines germane document identification and answer entity extraction. The TREPM model

is firstly published in the TREC 2010 entity retrieval task [Li and He, 2010].

3.1 OVERALL ARCHITECTURE

The entity retrieval task requires the system effectively and efficiently to return the answer

entities from a large unstructured corpus with regard to users’ information needs. The inputs

of the system include documents (e.g., HTML pages or plain texts) and users’ information

needs (e.g., the description of a search task with a required entity type). The outputs are

answers, ranked lists of entities. This study proposes a Two-layer Retrieval and Extrac-

tion Probability Model, short as TREPM, for the entity retrieval task. The TREPM model

consists of two major components: germane document identification and answer entity ex-

traction. This structure has been widely adopted in the entity retrieval (ER) systems in

recent years.

The overall architecture of the TREPM model is as shown in Figure 3. The first layer

is germane document identification, which aims at finding a small set of germane doc-

uments containing as many answer entities as possible in a short running time. The second

layer is answer entity extraction, which tries to identify the entities from those germane

documents by analyzing contexts. Therefore, the score for ranking answer entities combines
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germane document relevance and answer entity relevance according to users’ information

needs. Furthermore, the output answer entities with their original queries can go back into

the component of germane document identification in order to improve the detection of ger-

mane documents. For example, the answer entities are incorporated into the queries, and the

queries are re-written in order to find the documents with multiple answer entities occurring

in the same document, as showed in the link 1 in Figure 3. The output answer entities

can go back to the component of answer entity extraction to extract answer entities. For

example, the bootstrapping method uses the answer entities for extracting more patterns

and further extracting more answer entities, as shown in the link 2 in Figure 3. Although

this model contains two loops, this study only investigates germane document identification

and answer entity extraction themselves, and leaves the relevant feedback and the pattern

learning method for future discussions.
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Figure 3: The Two-Layer Retrieval and Extraction Probability Model (TREPM)

Research on the TREPM model is driven by the following questions:

• What is the relation between germane document identification and answer entity extrac-

tion?

• How does each individual layer work in practice?

• How does each layer improve overall system performance?
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3.2 A MODEL COMBINING DOCUMENT RETRIEVAL AND ENTITY

EXTRACTION

An entity retrieval question can be stated as follows: does an entity e answer a query q

with the targeted type t? If we view this problem from the probability aspect, the question

answers what is the probability of a candidate entity e being the answer entity given a query

q with the target type t? That is p(e|q, t). The answer lists result entities according to their

probabilities. The top k candidates are deemed to be the most probable entities.

Entities exist in the Web pages. Therefore, if we consider all germane documents d, the

TREPM will be the following Equation 3.1. If we find the documents containing answer

entities, called germane documents dgermane, to estimate this probability, then the original

formula can be estimated as Equation 3.2.

p(e|q, t)

=
∑
d

p(e, d|q, t)

=
∑
d

p(d|q, t)p(e|d, q, t) (3.1)

≈
∑

dgermane

p(dgermane|q, t)p(e|dgermane, q, t)) (3.2)

The TREPM model includes the following two parts. The first part of Equation 3.1 is∑
d p(d|q, t), where p(d|q, t) is the probability of the document d generated by the query q

with the target entity type t. This is germane document identification, conducted by

estimating the similarity between a document and a query. The second part of Equation

3.1 is p(e|d, q, t), i.e., the probability of entity e generation with the target type of t in the

document d given query q, called answer entity extraction.

If we further consider contexts c for answer entities, answer entity extraction in the

TREMP model will be expanded to the following Equation 3.3. The first quantity is

p(c|d, q, t), which is the generative probability of the context c in a given the particular doc-

ument d with the query q and the target entity type t. The second quantity is p(e|c, d, q, t),

which is the probability of a candidate entity e to be an answer given a context c in the

document d for the query q with the target entity type t. Similar to germane document
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identification, if we use the most high probability contexts, called support contexts csupport,

to extract the answer entities, then we have the estimation formula as Equation 3.4.

p(e|q, t)

=
∑
d

p(d|q, t)p(e|d, q, t)

=
∑
d

p(d|q, t)
∑
c

p(c|d, q, t)p(e|c, d, q, t) (3.3)

≈
∑

dgermane

p(dgermane|q, t)(
∑

csupport

(p(csupport|dgermane, q, t)p(e|csupport, dgermane, q, t))(3.4)

There are two reasons for decomposing the entity retrieval problem into germane docu-

ment identification and answer entity extraction. The first reason is that the decomposition

can divide the word-independent factor and the word-dependent factor into two subtasks.

The information need of entity retrieval (e.g., what are the products of MedImmune, Inc.)

represents the answer entity (e.g., the company’s product) as a description (e.g., products of

MedImmune, Inc.) expressing the relation between the topic entity (e.g., MedImmune, Inc.)

and the answer entities (e.g, FluMist). The word-independent factor assumes that the words

occur in the documents independently, while the word-dependent factor assumes that the

meaning of words influences the interpretation of other words in documents. For example,

in the word independence assumption, we assume the above query is to find the documents

containing the terms of “Products”, “of”, “MedImmune”, and“Inc.” With this assumption,

the document can be the one either containing “products of MedImmune Inc” or “MedIm-

mune Inc. buys the computer products from ...” The document retrieval model can provide

a good and effective way to retrieve the information, according to the word-independence

assumption, in document-level relevancy. It is, to certain degree, to estimate whether the

document contains the answers for the query or not. In the word-dependent assumption,

the semantic meaning within a document is analyzed to extract the answer entities for the

query. For example, we need to treat MedImmune, Inc. as an entity of company, and find

the product of MedImmune, Inc from the document. Entity extraction can be a powerful

approach for this task.

The second reason for this decomposition is to simplify a globe retrieval problem into two

locally optimized problems, which will lower the complexity of the problem and reduce the
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execution time. If we assume the number of documents in the corpus is m and the number

of contexts is n, then the time requirement for the entity retrieval task is Θ(m ∗ n), because

the system needs to iterate every document and scan all contexts to detect answer entities.

If we use document retrieval to find germane documents with the number of m′(m′ � m)

and only consider the most effective contexts with the number of n′(n′ � n), then the

time requirement for the TREPM to complete the entity retrieval task is Θ(m′ ∗ n′) , which

will significantly reduce the system execute time. The space complexity is similar. Mark

Bron and his entity retrieval group formula the entity retrieval task as p(e|E, T,R), i.e., the

probability of candidate entities, e, given the source entity, E, the target type, T , and the

relation, R, described in the narrative. They calculate the co-occurrence of candidate entities

e and source entities E for all documents in the corpus. According to their answer for how

long does it take to process the whole corpus, it is around two weeks [Bron et al., 2010].

If they consider germane documents for the candidate entities, this process time will be

significantly shorter.

In summary, TREPM considers the relevance between entities and topics on two layers:

germane document identification and answer entity extraction. In order to search answer

entities, a retrieval system needs to rank all candidate entities by considering all combinations

of documents and contexts. In a large-scale information environment or open-ended corpus,

such as the Web, however, evaluating all documents and all patterns is an impossible task.

Therefore, we find germane documents and support contexts, instead of all documents and

all contexts, effectively and efficiently to estimate answer entities.

3.3 GERMANE DOCUMENT IDENTIFICATION IN TREPM

The main role of germane document identification is to retrieve a very small but highly

useful subset of documents from the entire collection for further answer entity extraction.

The general process of entity retrieval iterates all documents in a corpus, i.e.,
∑

d p(d|q, t).

In practice, however, it is impossible to parse the whole collection because of the huge data

set. For example, the INEX 2007 corpus included about 0.5 million Wikipedia pages, and
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the INEX 2009 corpus contained about 2.5 million Wikipedia pages. The number of web

pages in the TREC 2009 testing corpus was 50 million (200 Gigabytes) and the number of

web page in the 2010 corpus was 500 million (2 Terabytes). Therefore, we consider germane

documents to estimate the retrieval as shown in Equation 3.5.

∑
d

p(d|q, t) ≈
∑

dgermane

p(dgermane|q, t) (3.5)

Germane document identification is different from the conventional document retrieval

task. On the one hand, germane documents mean the documents containing answer entities

for the extraction instead of the ones most relevant to the topics. For example, if we treat the

topic of products of MedImmune, Inc as a document retrieval problem, the expected answer

lists might be ranked, in the decreasing relevant scores, as follows: http://www.ethyol.com/,

http://www.flumist.com/, and http://www.medimmune.com/about us products.aspx, be-

cause we expect the pages directly answering the query are ranked higher than the pages

with miscellaneous information. Germane document identification, however, expects to re-

verse the ranked list because germane documents are supposed to contain as many answer

entities as possible. On the other hand, we expect the germane document sets as small

as possible. In the above example, if we can find the answers in one document, such as

http://www.medimmune.com/about us products.aspx, then we do not need to process the

other two documents. Therefore, I use “germane documents” instead of “relevant docu-

ments” to distinguish document retrieval and germane document identification.

Germane documents are also distinct from the homepages of answer entities. TREC or

INEX defines the entity retrieval task as finding the homepages of answer entities as results.

Therefore, both of them are in forms of URLs/URIs. However, we should notice that they

are different. For example, for the topic of products of MedImmune, Inc., one of the answer

entities is Ethyol and its homepage of Ethyol is http://www.ethyol.com/. This homepage

includes a sentence like “ETHYOL is a registered trademark held by MedImmune, LLC, a

member of the AstraZeneca group of companies”, which indicates Ethyol is the product of

MedImmune, Inc., so that this web page is also the germane document for this topic. This

case indicates URLs/URIs of germane documents and the homepages of answer entities can

be the same one. They can, however, be different. For example, the answers for the topic of
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What countries does Eurail operate in are Austria, Italy, Germany, etc. The homepages for

these entities are such as http://www.germany-tourism.de/ and http://www.france.com/,

but a germane document for this query would be the web page about how Eurail is in-

troduced and the countries it passes through, such as http://www.eurail.com/eurail-global-

pass?currency=eur.

Germane document identification approximates the retrieval process. There are many

ways to interpret germane document identification. Firstly, if we assume the entity type t

is independent from the query q and the document d, then we have the following Equation

3.6. This is the conventional document retrieval ignoring the target entity types.

p(d|q, t) = p(d|q) (3.6)

In INEX, people assume one document represents one entity, and each document is as-

signed to some categories because every document is an entry of Wikipedia which has already

been categorized. The similar document structure also exists in the Web environment. For

example, people like to assign some tags to blog pages when they browse them. If the cat-

egories/types of documents category are considered, the first quantity of Equation 3.1 can

be revised as Equation 3.7. The first part of this formula is the generated probability of

the type given a query and a target type. In fact, it is to calculate the similarity between

two types/categories. The second part of the formula calculates the document similarity

according to the query, target entity types, and document categories.

p(d|q, t) =
∑

category

p(d, category|q, t)

≈
∑

categorysupport

p(categorysupport|q, t)p(d|q, categorysupport, t) (3.7)

With trained data sets, we can treat germane document identification as a learning to

rank problem. The condition probability in germane document identification is transfered

to the joint probability, since the query and entity type probability are equal for the same

query.

p(d|q, t) =
p(d, q, t)

p(q, t)
∝ p(d, q, t) (3.8)
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The idea for the learning to rank method is that we learn the weights for all features in the

model from the germane document training sets, and then use these weights to estimate the

joint probability. This method not only uses the terms in the document for the estimation

but also extracts the features from the documents and the queries. Therefore, it can represent

as a function of feature sets x1, x2, ..., xn.

p(y = 1|d, q, t) = f(x1, x2, ..., xn) (3.9)

3.4 ANSWER ENTITY EXTRACTION IN TREPM

Answer entity extraction in the TREMP model is to extract the answer entities from the

germane documents. It estimates the probability of the entity e to be the answer entity,

given the document d, the query q, and the target entity t, i.e., p(e|d, q, t).

This study uses answer entity extraction instead of entity extraction because these two

tasks are slightly different. Entity extraction locates atomic elements in texts and classifies

them into predefined categories, such as the names of persons, organizations, and locations.

Answer entity extraction, however, is to extract the atomic elements not only according

to the predefined categories but also answering the queries. Therefore, we use the term of

“answer” to emphasis the requirements.

Answer entity extraction can be treated as a entity extraction task on the germane

documents, i.e., p(e|d, q, t). Named entity recognizer is used to extract the entities t directly

from the document d with the special target entity type t. This case assumes the query q is

independent of document e, entity type t, and entity e.

If we consider the contexts c for answer entity extraction, it is useful to analyze whether

the entities can answer the queries. We expect to extract the answer entities with high

accuracy, as Equation 3.10. If only the most effective support contexts are considered,
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csupport, the second part of the TREPM model will be represented as follows (Equation

3.11).

p(e|d, q, t) =
∑
c

p(c|d, q, t)p(e|c, d, q, t) (3.10)

≈
∑

csupport

p(csupport|d, q, t)p(e|csupport, d, q, t) (3.11)

The contexts can be interpreted into several ways. In the medical domain named en-

tity extraction, the context means the negation, experiencer, and temporal status for the

medical findings [Harkema et al., 2009]. The context is also be interpreted as the term

co-occurrence in certain window sizes, such as the studies in the word sense identification

[Leacock and Chodorow, 1998]. This study focuses on two kinds of contexts—symbolic con-

texts and syntax contexts.

Symbolic contexts use symbols, symbol, to show the nature of contexts. For example,

in the Wikipedia homepage, the terms of “InfoBox, product” shows a symbolic context

indicating products for a company. It can be represented as Equation 3.12.

p(e|d, q, t) =
∑
symbol

p(symbol|d, q, t)p(e|symbol, d, q, t)

≈
∑

symbolsupport

p(symbolsupport|d, q, t)p(e|symbolsupport, d, q, t) (3.12)

Syntax contexts are culled from the sentence syntax with deep sentence analyses. For

example, the syntactic analysis of the sentence “ETHYOL is a registered trademark held by

MedImmune, LLC” shows the context of the product (ethyol) and the company (MedImmue,

LLC). If every query is represented as a binary relation rq between the topic entity eq1 and

the target entity eq2, the content can be represented as the triplet of an entity e1 with the

type t1, an entity e2 with the type t2, and their relations r.

This study considers the subject-verb-object structure as syntax contexts for the extrac-

tion. The entity extraction in this syntax contexts can be represented as follows, Equation
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3.13:

∑
c

p(c|d, q, t)p(e|c, d, q, t)

=
∑

e1,t1,r,e2,t2

p(e1, t1, r, e2, t2|d, rq, eq1, tq1, tq2)p(eq2|e1, t1, r, e2, t2, d, rq, eq1, tq1, tq2)

≈
∑

e1=eq1,t1=tq1,r=rq ,e2,t2=tq2

p(e1, t1, r, e2, t2|d, e1, t1, r, e2, t2)p(eq2|e1, t1, r, e2, t2, d) (3.13)

The first quantifier in Equation 3.13 reflects the association between the query, represented

as rq, eq1, tq1, tq2, and the context or the support relation triplet pattern, represented as

e1, t1, r, e2, t2, in the document. The second quantifier in Equation 3.13 reflects how the

component extracts the answer entities from the context, which is to extract the entities eq2

when the system matches the relations rq and r as well as the topic entities eq1 and e1 with

the type of t1. For example, for the topic of products of MedImmune Inc., the query can

be represented as a relation of relation surface (e.g., products), entity1 (e.g., MedImmune

Inc.), type1 (e.g., Company), entity2 (e.g., “query”), type2 (e.g., Products), as follows:

Relation(Relaton Surface, Entity1, T ype1, Entity2, T ype2)

Query = Relation(Products of, Apple, Company, ?, P roducts)

Pattern retrieval finds the most relevant patterns, given the query and target entity

type. This study only considers binary relations as semantic patterns. For example, the

sentence of “Apple launches iPad” can be represented as product of with relation indicators of

“launches”. Therefore, the relations can be represented as (launches, Apple, Company, iPad,

Products). Considering the above example, possible answer sentences can be represented as

follows:

“Apple launches iPad”—>Relation instance=(launch,Apple,Company,iPad,Products)

“Apple launches iPhone.”—> Relation instance=(launch,Apple,Company,iPhone,Products)

“Apple to produce new Verizon-friendly iPhone.”—>

Relation instance=(to produce,Apple,Company,iPhone,Products)

The contexts can not only be the symbol context or the syntax context but also be a

combination of multiple contexts. With a trained data set, the system can learn a model

and then use the model to estimate the further extractions, i.e.,
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p(e|d, q, t) =
∑
c

p(c|d, q, t)p(e|c, d, q, t)

= α
∑
csymbol

p(csymbol|d, q, t)p(e|csymbol, d, q, t)

+ β
∑
csyntax

p(csyntax|d, q, t)p(e|csyntax, d, q, t)

+ (1− α− β)
∑
cother

p(cother|d, q, t)p(e|cother, d, q, t)

3.5 SUMMARY

This chapter introduces the Two-layer Retrieval and Extraction Probability Model (TREPM)

for the entity retrieval task. We theoretically demonstrate that the entity retrieval task can be

divided into two subtasks—germane document identification and answer entity extraction—

with the TREPM model. The target of the TREPM model is to efficiently and effectively

find the answer entities from a huge corpus according to the queries.

Germane document identification is the process of identifying find a small set of docu-

ments containing the answer entities. In TREPM model, it is to estimate the probability

of a germane document with regard to the query and the target entity type. Answer entity

extraction reflects the confidence of an entity to be the target entity given the corresponding

evidence, which is the relevance score at the entity level. The entity relevant score is calcu-

lated by summing up all the entity instances. In order to retrieve the target entities, this

retrieval system ranks all the candidate entities by comparing the combination scores from

the most germane documents and the most high-related candidate contexts for the answer

entities.
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4.0 EXPERIMENTAL METHODOLOGY

This chapter introduces experiment questions, data collections, evaluation metrics, and the

tools used in Natural Language Processing (NLP) as well as Information Retrieval (IR).

Subsequent chapters detailing experiments will be referred to the descriptions here.

4.1 EXPERIMENTAL QUESTIONS AND EVALUATION FRAMEWORK

As mentioned in the research goals of Section 1.2, this thesis proposes a Two-layer Retrieval

and Extraction Probability Model (TREPM) for the entity retrieval task, which decomposes

entity retrieval into germane document identification and answer entity extraction. Chapter

3 demonstrates the decomposition process from a theoretical perspective and describes the

relations between germane document identification and answer entity extraction. Chapter 3

also clarifies the difference between germane document identification and the conventional

document retrieval task as well as the difference between germane document identification

and entity retrieval. Answer entity extraction deals with the word-dependent factors and

identifies the answer entities in two kinds of contexts—symbolic contexts and syntax contexts.

With the theoretical demonstration of the TREPM model, it is important to further evaluate

behaviors of each individual layer in the model. With the germane document identification,

it has the following questions:

• What methods can be used for germane document identification?

• What factors affect germane document identification?

With germane documents, answer entity extraction further discusses:
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• What methods can be used for answer entity extraction?

• What factors affects answer entity extraction?

As part of the development of TREPM, the evaluation framework is as shown in Figure

4. In this evaluation framework, germane document identification (Chapter 5) and answer

entity extraction (Chapter 6) are evaluated respectively.
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Figure 4: The evaluation framework of TREMP: germane document identification and an-

swer entity extraction

Germane document identification is the process of identifying a small set of germane

documents which contains answer entities, so that the evaluation of this component is to

test the performance of different approaches in detecting germane documents. The test set

is the TREC 2009 data set, which includes the CLUEWEB09B dataset, 20 topics, and the

annotated ground truth of germane documents for each topic. The details are in Chapter 5.

Answer entity extraction detects answer entities from germane documents, so the evalua-

tion of this component is testing the methods for extracting the answer entities from germane

documents. The test set is the TREC 2009 data set, which includes the CLUEWEB09B

dataset, 20 topics, and the annotated answer entities for each topic. The details are in

Chapter 6.
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The TREC or INEX entity retrieval task requires the entities’ URLs/URIs as answers

because they intend to use the URLs/URIs to represent the different citations of the same

entities. Some work investigates the methods of the URL/URI finding given the answer

entities, as in Appendix A. However, this study defines the entity retrieval task as finding the

related answer entities, so that we treat the answer entity URL/URI finding as an additional

requirement for some special tasks (e.g. TREC or INEX). In the further discussion, we only

focus on the entity retrieval task itself, assuming the entity retrieval task requires the entity

lists as answers.

4.2 TEST COLLECTIONS

The test collections, summarized in Table 4, are the basis for the following experiments

for the TREPM model. Each testing set consists of a text corpus, a set of topics, and

a corresponding answer set with relevance judgments. Three collections are used in this

dissertation: INEX test set, TREC test set, and RAP test set. The INEX test set contains

the semantic structured documents in XML formats with Wikipedia articles used to explore

the methods for germane document identification; the RAP collection consists of plain texts

from news and Wikipedia documents for exploring entity extraction strategies; and the

TREC collection from the unstructured web pages (html pages) evaluates the whole TREPM

model as well as its individual layers.

4.2.1 INEX Entity Ranking Track 2007/2008

INEX, which stands for INitiative for the Evaluation of XML retrieval, focuses on the struc-

tured document retrieval. It began the comparative evaluations in XML retrieval in 2002

[Gövert and Kazai, 2002] and began entity ranking track in 2007. The test collection are the

Wikipedia XML format files. The entity retrieval task in INEX consists of 40 questions in

2007 and 60 questions in 2008. The task of entity ranking defined in INEX 2007 requires to

return entities that satisfy a topic described in natural language text [de Vries et al., 2007].
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Table 4: The testing sets

INEX TREC RAP

2007 2008 2009 2010 2008

Name/Notes Wikipedia

2008 XML

data

Wikipedia

2009 data

annotated

with 2008

w40-2 version

of YAGO

Clueweb09b Clueweb09 Company-

related news and

Wikipedia articles

Website Wikipedia

2008 data

Wikipedia

2009 data

ClueWeb09

# of Docu-

ments

659,387 2,666,190 50,220,423 1,040,809,70530 Wikipedia arti-

cles & 20 news ar-

ticles

Corpus

Size

10G, uncom-

pressed

50G, uncom-

pressed

200 GB 5TB, com-

pressed

1MB

Document

Format

XML HTML pages Plain Text

# of Top-

ics

40 60 20 50 2 relations

Tasks Entity retrieval Entity retrieval Entity extraction

Ground

truth

Topics with entities answer

sets, and relevance with 3

scales

Topics with entity

homepage answer

sets, relevance with 3

scales

Company-Product

and company-

location annota-

tions

Given preferred categories/types, relevant entities are assumed to loosely correspond to

Wikipedia pages that are labeled with preferred categories/types (or perhaps sub-categories
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of these preferred categories). The sample topic is like the following Figure 5.

</inex topic>

</categories><category id= “10855′′ >art museums and galleries</category><categories>

</narrative>

Each answer should be the article about a specific European country that uses the Euro as currency.

<narrative>

<description>I want a list of European countries where I can pay with Euros.</description>

<title>European countries where I can pay with Euros</title>

<inex topic topic id= “9999” ct no= “0”>

Figure 5: A sample topic of INEX entity retrieval task

The INEX 2007 test set used in the entity track consists of 659,387 2008 Wikipedia pages,

and the 2008 test set includes 2,666,190 2009 Wikipedia pages. As a retrieval test collection,

the organizers of the track provided relevant answer documents judged by experts. The same

procedures and definitions for entities were used to compile a set of instance-level judgments

from the document-level relevance judgments. The relevancy in the INEX corpus is divided

into three scales: highly relevant, relevant, and not relevant.

4.2.2 TREC Entity Track 2009/2010

Text REtrieval Conferences (TRECs) is an unstructured document counterpart to INEX.

It is held by the U.S. National Institute of Standards and Technology (NIST) as compara-

tive evaluations in retrieval since 1992 [Balog et al., 2010b]. From 2009, they began Entity

Retrieval Track as part of their annual competitions. The test collection used in 2009 En-

tity Retrieval task is limited in three types of target entities: persons, organizations, and

products. Figure 6 is an example topic, finding the Airlines (as a type of organization) that

currently use Boeing 747 planes. The sample answers to this topic are the organizations like

British Airways, Cathay Pacific, Japan Airlines or Korea Air. The complete twenty topics

of the TREC 2009 topic sets are in the Appendix E.

The text collection used in the TREC 2009 Entity Track is the Clueweb09B corpus. The

corpus consists of 50,220,423 English website pages (approximately 200 GB). The TREC

2010 Entity Track uses the whole English part of Clueweb09 corpus with 2 Terabytes data.
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</query>

<narrative>Airlines that currently use Boeing 747 planes.</narrative>

<target entity>Organization</target entity>

<entity URL>clueweb09-en0005-75-02292< /entity URL>

<entity name’>Boeing 747</entity name>

<num>7</num>

<query>

Figure 6: A sample topic of TREC entity retrieval task

Like the INEX entity track, the relevancy levels of TREC entity track are also the same

three scales: highly relevant, relevant, and not relevant.

In order to evaluate the TREPM model, two annotators manually marked up ground

truth sets of germane documents and answer entities for the TREC 2009 entity track data

set. The annotation requirement for the germane documents is to find at least one ger-

mane document which can provide the answers for each topic. If there were corresponding

Wikipedia articles existing, they were required to be marked up. The steps for germane

document annotations are as follows: first, annotators generate proper queries, and retrieve

them on a search engine to find the possible germane documents; secondly, according to the

ranked hits from the search engine, two annotators evaluate whether these hits are germane

documents. Every topic must find at least one germane document; and if there are more

than 10 germane documents found, annotators only judge the first 10 hits.

The annotation requirement for answer entities is to find the answers for each topic

from the germane document sets. Entities can be in various surface forms and we keep

their original forms without merging them into a standard format. For example, the answer

entities for the topic of the campus of Indiana University can be Indiana University East

or IU East, which are both seen in the germane documents. The annotators marked all of

them as answers without differentiations.

The overall annotations of the TREC 2009 data are summarized in Table 5. This test

set covers three types of entities: organizations, persons, and products. The average number

of germane documents for each topic is 1.75 and the average number of Wikipedia germane

documents for each topic is 0.9. That means we can find the germane documents from
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Table 5: The annotation summary of 20 topics in the TREC 2009 data sets

Topic

ID

Entity Type # of Germane

Docs

# of Germane

Wikipedia Docs

# of Answer

Entities

# of Homepages

1 Organization 1 1 4 10

2 Person 1 0 12 1

3 Person 1 0 0 1

4 Organization 3 1 8 5

5 Product 3 1 3 8

6 Organization 2 1 4 4

7 Organization 1 1 4 33

8 Product 2 1 41 41

9 Person 2 1 9 13

10 Organization 2 1 9 2

11 Organization 2 0 8 8

12 Organization 2 1 32 13

13 Product 2 1 2 4

14 Person 1 1 36 4

15 Organization 2 1 12 9

16 Organization 1 1 11 9

17 Person 1 1 61 18

18 Person 2 1 14 3

19 Organization 3 2 4 3

20 Organization 2 1 27 4

Total 3 35 18 301 193

Average 1.75 0.9 15.05 9.65
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Wikipedia for most topics and the other parts come from the Web pages. The average

number of answer entities for each topic is 15. There are 11 topics with answer entities less

than 10; there are 5 topics with answer entities more than 20. The distribution of answer

entities is skew.

4.2.3 RAP Collection

RAP (Relation Annotation Platform) collections are used to evaluate the entity extrac-

tion by analyzing the relations involving two entities. This collection first appeared in

[Li et al., 2009] and mainly consists of topic-answer entity pairs for company-product rela-

tions and company-location relations. The ground truth of RAP is manually marked up by

two experts with two levels of relevancy: relevant and non-relevant.

Twenty-five target companies are chosen for experiments as short documents testing

sets. These companies are large companies listed in Fortune-500 2008. The reason to choose

these companies for the experiment is that it is easier for training and testing the article

collection. The distribution of companies over the industries is also considered, and five

industries are chosen. They are the industries of computer software (Microsoft and Oracle),

computer office equipment (HP, DELL, and Apple), Internet services and retailing (Google,

Amazon.com, Liberty Media, eBay and Yahoo), petroleum refining (Exxon Mobile, Chevron,

Hess, Tesoro and Western Refining), and the telecommunication (AT&T). The details are

shown in Appendix B.

Wikipedia articles for these 25 companies are used as long documents testing set (the

average length is 16,700 characters), eighty-eight articles from CNET are chosen as short arti-

cles for testing set (the average length is 7,278 characters). The difference between the length

of Wikipedia articles and news articles comes from the character of the articles. Wikipedia

articles about a company are the descriptive articles with overall company information, but

news articles about companies usually are connected with product announces or revenue

information.
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4.3 EVALUATION METRICS

Three metrics—precision, recall, and F-measure—are used to evaluate the performance of

germane document identification and answer entity extraction. Both INEX and TREC tasks

assume the relevancy of the answer entities with their URIs/URLs are in three levels (non-

relevant, relevant, and highly relevant). In the competition, they use nDCG as a major

metric to evaluate the overall system performance. This thesis, however, uses the entities

as answers, and the relevancy judgment is on two levels, so we do not use nDCG. In order

to evaluate the model, each individual component in the TREPM model is also evaluated.

These sub-tasks only use two-level relevancy (relevant and non-relevant). Therefore, only

precision, recall and F-measure are used. The same approach goes for RAP tasks.

Precision in document retrieval is defined as the number of relevant documents found

by a search system divided by the total number of documents found by that search system.

In this study, germane document identification uses the same definition as above. In answer

entity extraction, the precision definition for answer entities is the percentage of extracted

answer entities to the all extracted entities. In entity retrieval, precisions are defined based

on the units of entities, i.e., the percentage of retrieved answer entities in all retrieved entities.

Here are the definitions of precision in three tasks, seeing Equation 4.1.

precisionGermane Document Identification =
|{Germane Documents}|

⋂
|{Retrieved Documents}|

|{Retrieved Documents}|
(4.1)

precisionAnswer Entity Extraction =
|{Answer Entities}|

⋂
|{Extracted Entities}|

|{Extracted Entities}|

precisionEntity Retrieval =
|{Answers Entities}|

⋂
|{Retrieved Entities}|

|{Retrieved Entities}|

Recall in germane document identification is defined as the number of germane docu-

ments retrieved by a search divided by the total number of existing germane documents. In

answer entity extraction, the recall is defined as the fraction of the identified answer entities

by the algorithm over all answer entities in ground truth sets. In entity retrieval evaluation,

the recall is the number of answer entities retrieval by a search system divided by the total

number of existing answer entities, as shown in Equation 4.2.
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recallGermane Document Identification =
|{Germane Documents}|

⋂
|{Retrieved Documents}|

|{Germane Documents}|
(4.2)

recallAnswer Entity Extraction =
|{Answer Entities}|

⋂
|{Extracted Entities}|

|{Answer Entities}|

recallEntity Retrieval =
|{Answer Entities}|

⋂
|{Retrieved Entities}|

|{Answer Entities}|

F-measure is a measure of a test’s accuracy. It considers both the precision p (Equation

4.1) and the recall r (Equation 4.2). The F-measure score can be interpreted as a weighted

average of the precision and recall, where an F score reaches its best value at 1 and worst

score at 0, as shown in Equation 4.3.

FGermane Document Identification =
2

1
PrecisionGermane Document Identification

+ 1
RecallGermane Document Identification

(4.3)

FAnswer Entity Extraction =
2

1
PrecisionAnswer Entity Extraction

+ 1
RecallAnswer Entity Extraction

FEntity Retrieval =
2

1
PrecisionEntity Retrieval

+ 1
RecallEntity Retrieval

4.4 INFORMATION RETRIEVAL TOOLS

The IR tools described in this section form the foundation of germane document identification

in this thesis. The tools include the commercial search engine APIs providing the accessing

point for user queries, and the indexing and searching tools, allowing users to build their

own indexing systems on their own data set.

The Indri is the latest search engine using Language Model and Vector Space Model

for information retrieval in the open-source Lemur toolkit [Strohman et al., 2005]. The Indri

retrieval model is a combination of the language modeling approach and the inference network

model. It supports rich structured queries based on the inference network model (for example
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InQuery) and the probabilities are estimated using language modeling or the Okapi ranking

function. The Indri indexes structures of the documents and the retrieval model of Indri

directly supports the fields or concepts which are typed extents defined over a contiguous

sequence of tokens. Fields can enclose each other and overlap each other arbitrarily. Fields

are commonly used as a means for separating distinct document representation. Examples of

using fields indexing include title and body fields indexing for web or Wikipedia documents.

In the INEX 2007-2008 entity ranking experiments, entity types annotated by the corpus

(such as links, person, etc.) would be fields in the indexing. For ClueWeb09B collection used

in TREC 2009 entity ranking experiments, field types derived from NLP analysis including

named entity types as well as target verbs and arguments such as arg0 (subject) and arg1

(objects) are indexed.

Search engine API is a particular set of rules and specifications provided by some

commercial or non-commercial search engine companies for software programs to commu-

nicate with each other. Yahoo!BOSS (Build your Own Search Service) is Yahoo!’s open

search web services platform. Yahoo!BOSS is simple for the developers, to foster innovation

in the search industry, and also it is easy to build and launch a web-scale search that uti-

lizes the entire Yahoo! Search index. It provides a way to search the relevant documents

without considering crawling and indexing, ranking and relevancy algorithms, and powerful

infrastructures. Some similar search engine APIs also include Google search API. This study

just chooses either of them with no preference. The inputs for search engines APIs are the

queries. The outputs of search engines are the ranked hit list with corresponding webpage

abstracts according to the queries.

4.5 ENGLISH-LANGUAGE NLP TOOLS

This study relies on some syntax structures and semantic information to extract the target

entities, and the NLP tools described in this section are used to pre-process the corpus, as

the foundation of answer entity extraction.
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Stanford Named Entity Recognizer (Stanford NER) labels sequences of words

in a text as the names of things, such as persons, locations, and organizations used in

this work. Stanford NER tools implement linear chain Conditional Random Field (CRF)

sequence models for Named Entity Extraction task. It not only includes three trained class

identifiers for the types of persons, locations, and organizations, but also provides the API

for users to train customized entities [Finkel et al., 2005].

Illinois Named Entity Tagger is another state-of-the-art NER tagger that tags plain

texts with named entities (persons, organizations, locations, or miscellaneous) [Ratinov and Roth, 2009].

It uses gazetteers extracted Wikipedia, word class models derived from unlabeled texts and

expressive non-local features. This NER including the Wikipedia gazetteers can be a good

complement for the Stanford NER.

Stanford Part-Of-Speech Tagger (POS tagger) is the software that reads texts in

the documents and assigns part-of-speech (such as noun, verb, adjective etc) tags to each

word (and other tokens). Stanford POS tagger is a Java implementation of the log-linear

POS taggers [Klein and Manning, 2003]. The sample outputs of POS taggers are as follows.

All the taggers follow the Penn Treebank POS tagset. In the above example, PRP stands

for personal pronoun; VBP means it is a non-3rd and present verb; DT means determiner;

VB means base form of verb; NN, means singular or mass noun; VBG mean present participle

verb. The POS taggers in my study are used to analysis the subject-verb-object structure

of sentences.
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5.0 GERMANE DOCUMENT IDENTIFICATION

Germane document identification in the entity retrieval task aims at identifying a small set

of germane documents from the large corpus for further answer entity extraction. These

germane document sets should meet two criteria: they contain as many answer entities as

possible; and their sizes are condensed as much as possible, as discussed in Section 3.3. The

smaller sets germane documents are, the shorter time entity retrieval executes. Germane

document identification is the first quantity of the TREPM model as described in Chapter

3, i.e.,
∑

d p(d|q, t). It is the probability of a document d is generated by the query q

and target entity type t. This chapter discusses three approaches for germane document

identification. The first method treats germane document identification as a conventional

document retrieval problem. Secondly, we discuss an entity type language model for germane

document identification, which considers the similarity between the target entity type and

the germane document category. The last one is the learning to rank method for germane

document identification.

5.1 GERMANE DOCUMENT IDENTIFICATION AS CONVENTIONAL

DOCUMENT RETRIEVAL

If we assume the target entity type t is independent with the query q and the document

d, then germane document identification is equal to conventional document search, i.e.,

p(d|q, t) = p(d|q). Therefore, the first approach treats germane document identification as

a conventional document retrieval problem. That is, relevant documents are the same as

germane documents with the assumption that these documents contain entities for further
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extractions.

In previous studies, various document retrieval methods are applied in germane docu-

ment identification. Some teams use BM25 for retrieval [Zhai et al., 2009]. More others use

language model, such as [Wu and Kashioka, 2009]. Fang applied a language model on the

structured retrieval—on document, passage and entity level—to find germane documents

[Fang et al., 2009]; McCreadie applied the same idea of structure retrieval but on webpage

title and body level[McCreadie et al., 2009]; Zheng used the language model on document

and snippet (50-word window size) level [Zheng et al., 2009]. Some other teams consider

the query constructions to refine the queries representing users’ information needs. For

example, Vydiswaran tried to identify the information need (the narrative part of topic)

as a structured query which was represented as a relation including a relation description,

an entity of focus, and an entity of interest [Vydiswaran et al., 2009]. Yang also did some

query re-constructions by adding the synonym of topic entities into the query for searches

[Yang et al., 2009].

In our annotation processes, the assessors find the germane documents for all 20 TREC

2009 topics with some proper queries on search engines. Therefore, we consider to simulate

this process: generating the proper queries from the narratives or topics and applying these

queries on the search engines, i.e., treating germane document identification as a conventional

document retrieval task.

This experiment is based on 20 topics from the TREC 2009 entity retrieval task. Yahoo

search engine is used as an indexing and searching system for the corpus. The queries are

from the narrative parts of topics. The experiment tests whether the queries from topic

narratives can find the germane documents and how to choose the retrieved documents as

the germane documents.

The experiment methodology is as follows: the queries generated from the topic narrative

part are issued to the Yahoo!Boss search engine API; the top 100 results from Yahoo are

evaluated; the performance is evaluated by precision, recall and F-measure. The results are

as in Table 6.

According to the F-measure (F@2=0.22), the top two documents are the most valuable

germane documents. Although the precision at 1 or 2 is 0.2, this approach can only find
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Table 6: Results of germane document identification as conventional document retrieval

Rank P R F Top P R F

100 0.008 0.416667 0.015668 10 0.06 0.3 0.098834

90 0.008333 0.391667 0.016281 9 0.066667 0.3 0.107727

80 0.009375 0.391667 0.018264 8 0.075 0.3 0.118384

70 0.010714 0.391667 0.020796 7 0.085714 0.3 0.131389

60 0.0125 0.391667 0.024144 6 0.1 0.3 0.147619

50 0.015 0.391667 0.028776 5 0.1 0.258333 0.141667

40 0.01875 0.391667 0.035609 4 0.125 0.258333 0.165238

30 0.025 0.391667 0.046698 3 0.166667 0.258333 0.198333

20 0.0375 0.391667 0.067824 2 0.225 0.233333 0.223333

1 0.25 0.116667 0.158333

a small part of germane documents with regards to the recall at 100 (recall@100=0.41).

That means this approach misses more than half of germane documents. Another finding is

that almost half of topics have at least a Wikipedia page as the germane document, which

means Wikipedia is a good external source for extracting answer entities. Although germane

documents can be found for most topics according to the annotators, the number of answer

entities for each topic is various. Therefore, it is not proper to use a simple threshold to cut

the number of germane documents for each topic.

Further analyses on the query generation are conducted on the TREC 2009 topics. Two

kinds of queries can be generated for germane document identification. The first are queries

generated by topic entities (e.g., MedImmune, Inc), and the second are queries generated by

descriptions (e.g., products of MedImmune, Inc).

Generating queries from descriptions is the most intuitive way. Because the descrip-

tion part provides more information than the topic entity, it is prone to finding documents

with answer entities. There are 9 out of 20 cases in the TREC 2009 data sets.

Generating queries from topic entities is that topic entities are better sources as
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queries, because the descriptions hurt search results. For example, for the topic of organi-

zations that award Nobel prizes, the description (e.g., organizations that award) for topic

entity (e.g., Nobel prizes) can cause the error results from the similar concepts (e.g., Nobel

prize awarded organizations), with the assumption of bag-of-words retrieval system, espe-

cially when there is no special pages that discuss about the target entities. There are 4 out

of 20 cases in the TREC 2009 data sets.

Generating queries from descriptions or topic entities means there are no differ-

ences in two kinds of queries because the descriptions fail to provide the additional informa-

tion than topic entities. A typical case is that the descriptions of topics are the entity type

requirements for answer entities, which usually do not appear in the documents, e.g.“students

of Claire Cardie”. The “students” is the entity type, which is hard to bring value in the

search, especially when there is no special webpage indicating this entity. There are 7 out of

20 cases in the TREC 2009 sets.

Except for the above cases, there are some topics failing at correctly representing the

relations between topic entities and answer entities. For example, for the topic of what are

some of the spin-off companies from the University of Michigan, the representation of the

relation between the topic entity (i.e., the University of Michigan) and the answer entities

is “spin-off companies”, which will be more effective if we use their synonyms of “spun

of/from/of from”.

These analyses also confirm that germane document identification can only deal with

term co-occurrence problems since the retrieval model is built on the assumption of the bag-

of-words model(i.e., the independence of terms in a document). Answer entity extraction is

an important complement for germane document identification in the entity retrieval task.

5.2 ENTITY TYPE LANGUAGE MODEL

One of the big differences between conventional document retrieval and entity retrieval is

that entity retrieval emphases the target entity type during the retrieval. Therefore, the

entity type language model is considered to integrate the entity type into the retrieval.
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The hypothesis is that we can more accurately find germane documents by considering the

similarity between document categories and entity types.

The scenario of retrievals on documents associated with document types is not only in

germane document identification but also in the documents with tags. Documents in social

network, such as Facebook or Twitter, can be treated as this type of documents, where users’

published articles are followed with some comments. The online encyclopedia articles, such

as Wikipedia, are another kind of examples, whose entries are attached with their associated

categories. Currently the retrieval on these documents is still based on the common document

retrieval methods, which ignores all tags and assumes the whole document is the “bag of

words”. However, these tags can provide the important hints for some retrieval tasks. For

example, in the picture sharing website, such as flickr, the tags of each picture are useful

in representing the contents of the pictures. Users’ assigned tags for the academic articles

in Citeulike also indicate the related concepts for articles. How to better use these human

tagging information to improve the relevant document retrieval will be an interesting topic.

As mentioned in Section 3.3, germane document identification,
∑

d p(d|q, t), is to find

the small set of germane documents for further extractions. Previous section assumes the

entity type t is independent on the documents d, so that we ignore the type information and

treat germane document identification as a conventional document retrieval problem. In this

part, we remove this assumption and consider the similarity between document categories

and entity types using the entity type language model, as shown in Equation 5.1.

p(d|q, t) =
∑

category

p(d, category|q, t)

=
∑

category

p(category|q, t)p(d|q, category, t) (5.1)

1. The first quantity of the entity type language model, p(category|q, t), is the similarity of

the target entity type and the document category, called category similarity.

2. The second quantity, p(d|q, category, t), is the similarity of the document and the query

with the certain type, called document similarity. If we neglect the type, it will be

the standard language model for document retrieval.
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The goal of this section is to demonstrate the dependencies between entity types and

documents as well as entity types and queries can improve germane document identifica-

tion. It also indicates that the entity type language model can improve the retrieval on the

documents with associated types.

5.2.1 Category Similarity Strategies

With regards to the entity type language model, the first quantity is category similarity,

i.e., p(category|q, t), which estimates the similarity between entity types category and the

target entity type t given the query q. An entity type likelihood model is proposed for the

estimation. Similar to the query likelihood model, a language model Mt for all entity types

in the corpus are constructed. The goal of the category similarity is to rank entity types by

p(category|q, t), where the probability of a document type is interpreted as the likelihood

that it is relevant to the target type.

There are two methods for estimating the entity generation probability.

• The first approach is based on the assumption that the query q is independent from the

document category category and the entity type t. Therefore, we only care about the

similarity between the entity type and the document category. The type generation is

as shown in Equation 5.2.

p(category|q, t) (5.2)

= p(category|t)

=
∏
v∈t

tfv
Lt

;

• The second approach is based on the assumption that all terms in queries and types

are independent. The probability of producing query type category with entity type t

using maximum likelihood (MLE) and the unigram assumption, as shown in Equation

5.3, where tfv,t is the frequency of term v in the type t, and Ld is the number of tokens
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in the type t.

p(category|q, t) =
p(t, q|category)p(category)

p(q, t)

≈ p(t, q|category)

= K
∏
v∈q,t

p̂mle(v|Mt)
tfv,t

= K
∏
v∈q,t

tfv,t
Lt

; (5.3)

In particular, some words in the queries representing users’ information need are not

in the types at all. If we estimate the missing terms in document type as 0, we get

none generation probability for the target type generation, which will cause errors. The

Jelinek-Mercer smoothing (or linear interpolation) is used in the language model for smooth-

ing: discounting non-zero probabilities and giving some probability mass to unseen words.

p̂(v|t) = λp̂mle(v|Mt) + (1 − λ)p̂mle(v|Mct), where 0 < λ < 1 and Mct is a language model

built from the entire entity type collection.

5.2.2 Document Similarity Strategies

To estimate the second quantity of the entity type language model, p(d|q, t, category), we

use the expanded query likelihood language model, as shown in the following:

p(d|q, t, category) ∝ p(q, t, category|d)

= p(q, t|d)p(category|d)

∝ p(q, t|d)

=
∏
v∈q,t

p(v|d); (5.4)

Assuming the entity type is independent from the query and the target type, the prob-

ability of each entity type is equal. Given documents as sequences of terms and each term

as independent, we can estimate the probability of document generation using a language

model. This model also faces the data sparse problem. Similar to the previous one, Jelinek-

Mercer smoothing is used. We can use the queries extracting terms from different parts of
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the topics with and without category information for the estimation. This study uses the

following methods for the document similarity strategies:

• Title is a baseline system with the title parts of topics as queries.

• TitleDesc is a baseline system with the title and description parts of topics as queries.

• TitleDescNarr is a baseline system with the title, description and narrative parts of

topics as queries.

• TitleCat uses the title and target category parts of topics as queries.

• TitleDescCat uses the title, description and target category parts of topics as queries.

• TitleDecNarrCat uses the title, description, narrative and target category parts of

topics as queries.

The experiments are summarized in the following table.

Title Title + Description Title + Description +Narrative

Non-Category Title TitleDesc TitleDescNarr

With-Category TitleCat TitleDescCat TitleDecNarrCat

5.2.3 Experiments

The experiments presented here evaluate whether the entity type language model can im-

prove germane document identification in the documents with their associated types. Be-

cause this model assumes the documents are assigned categories, the experiment requires the

documents with their categories. Therefore, we chose the INEX2007 entity retrieval task,

whose corpus is from Wikipedia articles with corresponding category information, instead of

the TREC task. The original documents set are in the HTML format, as shown in Appendix

C. In order to use the high quality of human markups, the semantic annotated version of

Wikipedia entries for the whole corpus is extracted, as shown in Appendix D. The corpus

is pre-processed by transforming the HTML format into the XML format with semantic

markups, removing stop-words, and indexing the XML files with Indri tool.

Since this corpus is consisted of Wikipedia articles with human annotated categories,

we rely on those markups to identify the named entities instead of employing named entity
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identification tools to identify them. Moreover, candidate entities considered in this exper-

iment are those with corresponding Wikipedia articles. An entity in an article is the one

with a link to the corresponding article. Therefore, the distinctions between articles and

entities are abandoned. Since each entity has a corresponding Wikipedia article, we have

the following hypotheses: a good entity page answers the query; and a good entity page is

associated with a category close to the target entity type. In the context of Wikipedia, the

type of an entity is defined by the categories assigned to the entity’s article. One entity can

have multiple types, and Wikipedia categories are hierarchically organized. Therefore, an

entity assigned to a category also belongs to its ancestor categories. However, the hierarchy

of Wikipedia categories is not a strict tree structure. That is, there exits a loop in the

structure. Moreover, if the link path between two categories is too long, then it can lead to

unexpected type assignments. However, this experiment ignores the hierarchical structure

in the Wikipedia categories and only considers the directly assigned categories. Similarity

measures between two concepts in a hierarchical structure have been studies in the ontology,

such as tree-based similarity [Blanchard et al., 2006].

The experiments for the entity type language model are divided into two parts. The

first one evaluates the document similarity, and the second one evaluates the entity type

similarity.

The experiment on document similarity strategies evaluates whether category

information applied on the document similarity estimate in the entity type language model

can improve entity retrieval results. The experiment evaluates the six groups described in

Section 5.2.2, i.e., Title, TitleDesc, TitleDescNarr, TitleCat, TitleDescCat, and TitleDesc-

NarrCat. All queries have removed stop-words. Table 7 shows the performance scores on

these six runs.

Although there are slight improvements on the three runs of Title, TitleDesc, and Ti-

tleDescNarr, there are no significant differences among them (two tails T-test on MAP

values). Same as the non-category group, there is no significant difference in the results

with category information (TitleCat, TitleDescCat, and TitleDescNarrCat). Comparing the

results with and without category information as part of query, there are no significant differ-

ences too. Therefore, we conclude that category information adds few value on the document
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Table 7: Results of document similarity estimations in the entity type language model

MAP REL-RET P@5 P@10 P@15

Title 0.1446 331 0.19 0.16 0.15

TitleDesc 0.1503 330 0.176 0.172 0.149

TitleDescNarr 0.1538 324 0.184 0.176 0.1547

TitleCat 0.1387 343 0.168 0.168 0.152

TitleDescCat 0.1448 352 0.168 0.184 0.152

TitleDescNarrCat 0.1559 342 0.184 0.176 0.1627

similarity estimation on the entity type language model.

The experiment on entity type similarity strategies evaluates whether category

information in the entity type similarity estimation can improve germane document identi-

fication on the entity type language model. Because there are no significant differences on

the various groups of the document similarity, the following experiment only evaluates two

entity type similarity strategies as well as the base line system of the title part as query. The

experimental systems are:

• Title is a baseline with the title part of topic as query.

• Title CatLM is the model combining the similarity of a query and a document by

using the title part of topic as query, and the similarity between document categories

and target entity types uses Equation 5.2.

• Title CatTitleLM is the model combining the similarity of a query and a document by

using the title part of topic as query, and the similarity between the document category

and the target entity type as well as query (Equation 5.3).

Table 8 shows the results. The result of the Title CatLM group is significantly better than

the result of the Title group (two pairs T-test with p-value of 0.01). The Title CatTitleLM

result is significantly better than the Title result (p-value is 0.016). But there is no significant

difference between Title CatLM and Title CatTitleLM. Therefore, we can conclude that
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entity type information is efficient on the type similarity estimation with the entity type

language model.

Table 8: Results of the entity type estimation in the entity type language model

MAP REL-RET P@5 P@10 P@15

Title 0.1446 331 0.19 0.16 0.15

Title CatLM 0.2124 331 0.312 0.24 0.2

Title CatTitleLM 0.2276 342 0.2260 0.2200 0.1867

5.2.4 Summary

This section investigates the methods of the entity type language model for germane docu-

ment identification by considering the relation between entity types and document categories.

The experiment is based on INEX 2007 data. The reason for using INEX task as testing set

instead of TREC data set is that INEX corpus composes XML files with much more infor-

mation than HTML pages, which can provides us an easy way to explore the useful factors

for document retrieval. Moreover the Wikipedia articles contain the category information

which meets the requirement of this experiment for documents with categories. The results

shows that although category information has few effects on the document retrieval, it can

significantly improve the entity type similarity estimation which, in turn, improve germane

document identification in the entity type language model.

5.3 LEARNING TO RANK

The main goal of germane document identification is to retrieve a document set as small as

possible but containing answer entities as many as possible. Section 5.1 treating germane

document identification as a conventional document retrieval task can only find part of

germane documents, with regard to R@100=0.42 in Table 6, and achieve low accuracy, with
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regard to P@1=0.25 in Table 6. There are some limitations of this approach. First, it is hard

for a system to decide how to generate a proper query for a topic. For example, it is hard

to decide whether it is better using topic entities as queries (e.g., “Claire Cardie”) or it is

better using descriptions as queries (e.g., “students of Claire Cardie”) for a particular topic,

especially when the topic is tricky. The query, such as “organizations that award Nobel

prizes”, is easily confused with some similar query, such as “organizations awarded Nobel

prizes”. Secondly, the conventional document retrieval approach highly relies on the ranking,

so that a proper threshold is required for cutting out the germane documents. However, how

to find the proper threshold is hard. If the threshold is too high, it will bring a big germane

document set; if the threshold is too low, it will miss the low ranked germane documents.

Furthermore, the entity type is also important factor for finding germane document, and

how to integrate the type information in the retrieval, especially in the documents without

category information, is also a challenge.

To tackle the problems mentioned above, we propose a learning to rank method for

germane document identification. That is, with a model learned from the training data sets,

the system can predict the probability of a germane document. This method can combine

features from various considerations for germane document identification task. To learn a

model, a variety of features representing documents are generated, and then the machine

learning method—logistic regression—is applied to estimate the probability of a germane

document. This work is originally published in the [Li and He, 2011b].

5.3.1 Germane Document Identification with a Learning to Rank Approach

Learning to rank or machine-learned ranking is a type of supervised machine learning method

to automatically construct a ranking model from training data, so that the model can sort

documents according to their degrees of relevance, preference, or importance [Liu, 2009]. In

this section, we delineate germane document identification as a learning to rank problem,

that is, a learning task to predict the germane document according to the training data.

In recent years, more and more machine learning technologies have been used to infor-

mation retrieval task for learning the ranking model, such as the work on relevance feed-
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back [Drucker et al., 2002] and automatically tuning the parameters of existing IR models

[Taylor et al., 2006]. Most of the state-of-the-art learning to rank methods learn on the

combining features extracted from query-document pairs through discriminative training as

Figure 7. germane document identification in this section adapts the general learning to

rank structures and summarizes the framework as follows:

Training Stage

Testing Stage

Testing Data

xq1
...

xqi...

xqm
?

-

�
�

�
�Ranking System -

?

Model h

?

Prediction

xq1
...

xqi
...

xqm
p(yq|x)

Training Data

x11
...

x1i
...

x1m
y1

...

xj1
...

xj2
...

xjm
yj

...

xn1
...

xn2
...

xnm
yn

�
�

�
�Learning System-

Figure 7: The learning to rank framework

• The input space in the training stage is composed of feature vectors and their corre-

sponding labels. Features in a feature vector (denoted as (xj1, ..., x
j
i , ..., x

j
m)) are the ones

extracted from each single document dj for the corresponding topic qj. The label yj indi-

cates whether the documents are the germane documents or not. If yj = 1, then this doc-

ument is a germane document for a particular topic; if yj = 0, them it is not. Therefore,

the input space is denoted as {(x11, ..., x1i , ..., x1m, y1), ..., (x
j
1, ..., x

j
i , ..., x

j
m, y

j), ..., (xn1 , ..., x
n
i , ..., x

n
m, y

n)}.
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Here, we should note that the document features, (xj1, ..., x
j
i , ..., x

j
m), not only come from

the documents, but also from the queries, and the relationships between documents and

queries (e.g., the document ranking according to the query in the conventional retrieval

model). The input space in the testing stage is only composed of feature vectors which

represent the documents and the corresponding topics.

• The output space in testing stage contains the probability prediction of each single docu-

ment to be the germane document according to the query q, that is, p(yq = 1|xq1, ..., x
q
i , ..., x

q
m).

• The hypothesis space contains functions that take the feature vectors as inputs, and

predict the probability of a document to be the germane document. The function will

be learned from the training data set. Logistic regression is a generalized linear model

used for binomial regression. It was first used in the TREC-2 conference by Berkeley

researchers [Cooper et al., 1992], and then it was extensively in medical and social sci-

ences fields. In this study, we use logistic regression for germane document identification.

Logistic regression is a sigmoid linear function of data. That is,

p(yq = 1|xq1, ..., x
q
i , ..., x

q
m) =

1

1 + e
∑

i wixi

• The optimal function examines the accurate prediction of the ground truth label for

each single document. With the logistic regression model, the prediction function directly

learns the probability of a document to be the germane document with the given features.

Therefore, the training data are used to estimate the parameters of η. It will be calculated

as following:

wt+1
0 ← wt0 + η

∑
j

(yj − p(yq = 1|xj1, ..., x
j
i , ..., x

j
m, w

t))

For i = 1, ...,m

wt+1
i ← wti + η

∑
j

xji (y
j − p(yq = 1|xj1, ..., x

j
i , ..., x

j
m, w

t))

Here, η is the step size. The iteration calculates until the parameter converges.
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5.3.2 Variety of Features

Applying the learning method to germane document identification raises the questions of

what kinds of information should be used in the learning process. Although many different

types of information can contribute toward deciding germane documents, the two principles

are followed in the process of feature selections:

1. The feature should not be limited by the instances.

2. The feature should be general enough and domain independent so that the model could

be generalized to other topics regardless of the domain.

Four types of features are generated for germane document identification: query features,

document features, rank features, and similarity features.

5.3.2.1 Query features Query features are selected according to the principle described

in [Jones et al., 2006]. It is the isolated characteristics of elements in queries (e.g., the length

of query and the length of narrative). There are five features considered. Firstly, we consider

the source of queries, and this feature indicates whether it is from topics or from narratives.

With the previous experiment, the queries used for germane document identification can

be various and from different sources, so that the system needs one feature to indicate the

source of queries. Secondly, we consider the query entity types. Germane documents are

easier to be found for certain entity types, such as persons and locations, than the others,

such as products. Therefore, we use one feature to indicate the entity types. Thirdly, the

length of queries and their different parts are also detected as features. The assumption here

is that the longer topic entities or narratives or relations are, the more information they carry

and the better sources they are to generate the queries. Fourthly, we consider whether the

entity mention has different form. For example, for the query of Journals published by the

AVMA, the topic entity is American Veterinary Medical Associations, which is the full name

for the acronym form of AVMA in the narrative. The assumption is that if the topic entity

has different forms then the query with a acronym form might not be a good one. Last, we

consider the hit information. The hits indicate how many relevant documents returned from

the search engines for a topic. The more the relevant documents are retrieved by a search
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engine with a query, the more chance this query is the proper query to generate germane

documents. These features are summarized and defined as follows:

EntityNarrative indicates if the query is generated from the topic entity or the narrative

part of the topic. In the pilot study, we find that both query generation methods are

useful. Therefore, in the learning to rank method, we choose both methods to generate

queries: the topic entities as queries and the narratives as queries.

EntityType indicates the target answer entity types required by the topics. Its value

includes persons, locations, products, and organizations.

EntityLength is the character length of the topic entity without stop words.

NarrativeLength is the character length of the topic narrative without stop words.

RelationLength is the absolute character length difference between topic entity and the

narrative without stop words. RelationLength = |NarrativeLength− EntityLength|.

EntityTokenLength is the token length of topic entity without stop words.

NarrativeTokenLength is the token length of the narrative without stop words.

RelationTokenLength is the absolute token length difference between the topic entity and

the narrative without stop words. RelationTokenLength = |NarrativeTokenLength−

EntityTokenLength|.

IsSameEntity is to indicate whether the surface name of the topic entity is different from

its surface name in the topic entity field. If it is different, then the score is 1, and the

else is 0.

Hits is the numbers of relevant documents retrieved by the search engine.

Hitstrend is a binary value feature of (1, -1), which compares the hits of the topic entities

as queries and the narratives as queries. If the number of hits from the topic entity

queries is larger than the number of hits from the narrative queries, then Histrend = 1.

Otherwise, Histrend = -1.

5.3.2.2 Document features Document features describe the characteristics of docu-

ments. The Wikipedia pages are supposed to have more authoritative information, so they

are more likely to be the germane documents. In this study, we especially detect Wikipedia
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as an important source for germane documents. In the future, other sources with high qual-

ity pages as germane documents can be included, such as the entity’s homepage. We define

the following features:

IsWikipedia is a binary feature (1 or 0) indicating whether this hit is from the Wikipedia.

IsEntityWikipedia is a binary feature (0 or 1) to indicate whether this hit refers to a

Wikipedia page, whose entry name is the same as the topic entity itself. For example,

for , the value of IsEntityWikipedia is equal to 1, when the query terms are “MedImmune,

Inc.” and the its hit is http://en.wikipedia.org/wiki/MedImmune.

5.3.2.3 Rank features Rank related features are based on the rank information to indi-

cate the popularity of the documents. These features can also give useful hints for germane

document identifications. For example, we assume that the higher rank of a document, the

more possible it is to be the germane documents. We list the following features:

DocRank is the rank of a returned URL from the search engine for each query.

RankScore is the normalized ranking score for each hit. It is calculated by summing up

the reverse of rank for the same URL in the same topic. This score will merge the results

on both the entities as queries and the narratives as queries. It is denoted as follows:

RankScore(URL) =
∑
URL

1

rankURL

.

NewRank is the new rank list according to the RankScore, which considers the same URL

in the same topic but retrieved by different queries.

5.3.2.4 Similarity features Similarity features are the measurements of the similarity

between the query and its retrieved document. We assumes that the shorter of the semantic

distances (measured by the semantic similarity) between a query and a document, the higher

chance it is a germane document. For example, for the query of products of MedImmune Inc.,

if the document title is also‘products of MedImmune Inc, then there is a high probability to

be the germane document for this query. We design some term distance measures to esti-

mate the similarity, such as TitlePrecision, TitleRecall, ContentPrecision and ContentRecall.
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However, term distance measures suffer some drawbacks, such as hardness to measure the

similarity between the entities and their corresponding synonym sets or abbreviation forms.

For example, “AVMA” is the acronym of “American Veterinary Medical Associations”. If

we use the term distance measures, we will find no similarities between these two entities.

Therefore, semantic measurements are introduced. Some systems use thesaurus to map the

synonyms or abbreviations, e.g., WordNet or Wikipedia. Because it is hard to find their

corresponding entries in thesaurus for all queries narrated in sentences, an alternative, the

WebDice coefficient, is introduced for this problem. The similarity features are defined as

follows:

TitlePrecision is the rate of the number of the overlapping terms between the hit’s title

and query to the number of terms in the query, which represents the similarity between

a query and its hit. It is defined as follows:

TitlePrecision =
num of terms in (query

⋂
title)

num of terms in (query)

Here, the terms exclude the stop words (e.g., the, a, an). For example, the TitlePrecision

score of the topic “Products of MedImmune, Inc.” for the document, http://www.medimmune.com/,

with the title of “MedImmune, Inc.” is 0.667, because the num of terms in (query
⋂
title)

is 2 (only the terms of “MedImmune” and “Inc” are counted), and the num of terms in

(query) is 3 (only the terms of “products”, “MedImmune” and “Inc” are counted), and

the term of “of” is the stop word.

TitleRecall is the rate of the number of the overlapping terms in the query and in its hit’s

title to the number of terms in the title, which represents the similarity between a query

and its hit. It is defined as follows:

TitleRecall =
num of terms in (query

⋂
title)

num of terms in (title)

Here, the terms exclude the stop words (e.g., the, a, an). For example, the TitleRecall

score of the topic of Products of MedImmune, Inc. and the document of http://www.medimmune.com/

with the title of MedImmune, Inc. is 1, where the num of terms in (query
⋂
title) is 2

(only the terms of “MedImmune” and “Inc” are counted), and the num of terms in (title)

is 2 (only the terms of “MedImmune” and “Inc” are counted).
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TitleDistance is the feature to measure whether the query terms are close to each other

in the title part. We assume that the documents with the titles containing the query

phrases are more relevant than the one with the titles containing the query keywords.

TitleDistance is the rate of query length to the scope of query terms in the title, as

follows:

TitleDistance =
num of terms in(query)

num of terms in(scope of query terms in title)

ContentPrecision is similar to TitlePrecision, but replaces the title part to the hit’s con-

tent. We want to cover the features from both titles and contents. That is,

ContentPrecision =
num of terms in (query

⋂
content)

num of terms in (query)

ContentRecall is similar to TitleRecall, but replaces the title part to the hit’s content part.

That is,

ContentRecall =
num of terms in (query

⋂
content)

num of terms in (content)

ContentDistance is similar to TitleDistance, which measures the query terms in the con-

tent part. That is,

ContentDistance =
num of terms in(query)

num of terms in(scope of query terms in Content)

WebDiceOrg is to define the similarity between two queries by measuring the Web space

similarity of two relevant document sets retrieved by the two queries. It is the approx-

imation of F-measure in the web [Bollegala et al., 2007]. Page counts of the query P

and Q can be considered as the co-occurrence of two words P and Q on the web. For

example, the page count of the query of “Journals published by the AVMA” is 145,000.

The page count for the document of “AVMA Journals” is 245,000, and the page count

for the document of “AVMA Journals - Reprints, ePrints, Permissions” is 159. From the

page count similarity, “Journals published by the AVMA” is closer to “AVMA Journals”

than “AVMA Journals - Reprints, ePrints, Permissions”. The WebDiceOrg coefficient
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has been demonstrated to outperform the other three modified co-occurrences (i.e. Web-

Jaccard, WebOverlap, and WebPMI) in [Bollegala et al., 2007]. Therefore, in this work,

we only use WedDiceOrg. The WebDiceOrg is defined as follows.

WebDiceOrg(query, title) =

 0 if H(query
⋂
title) ≤ c

2H(query
⋂
title)

H(query)+H(title)
otherwise

where H(query) denotes the page counts for the query of “query” in a search engine, and

D denotes the page counts for the query of “query and title”. c is a predefined threshold

(e.g., c=5) to reduce the adverse effects caused by random co-occurrence.

WebDice is the normalized WebDiceOrg score with the maximum value of WebDiceOrg,

so that its value is between 0 and 1.

WebDice(query, title) =
WebDiceOrg(query, title)

max{WebDiceOrg(query, ∗)}

5.3.3 Evaluation

Experiments on the TREC Entity Extraction Task (2009 and 2010) data sets evaluate

whether the learning to rank method can improve germane document identification. The

test data of TREC entity retrieval 2009 and 2010 topics is described in Section 4.2.2. The

total topics are 70. The evaluation criteria are precision, recall and F-measure, as described

in Section 4.3. The evaluation systems are as follows:

• Baseline System I uses the topic entities as queries for germane document identifi-

cation. In the experiment, we use Google search engine, and only consider the top 16

documents as germane documents for the evaluation.

• Baseline System II uses the narratives as queries for germane document identifica-

tion. Google search engine is used to collect the germane documents, and only top 16

documents are considered as germane documents for the evaluation.

73



• Baseline System III uses the mixture germane document rank list from the topic

entities as queries and the narrative as queries. Mixture germane document list ranks

the documents from Baseline System I and Baseline System II with the following score:

ds(doc) =
∑
query

1

OriginalRank(doc, query)

.

• Experiment System: the learning to rank method for germane document identifica-

tion.

The methodology of this experiment is:

1. Collect the candidate germane documents as a pool:

For each topic, various queries are generated. This experiment considers the queries

generating from the narratives (i.e., the narratives as queries), and the queries generating

form topic entities (i.e., the topic entities as queries).

Issue each query to the search engines, and return a ranked list for each query. In the

experiment, we use Google search engine, and only consider the top 16 documents as

candidate germane documents. The documents include their rankings, hit’s URLs, hit’s

titles, hit’s summary, and query’s page count. The results of topic entities as queries are

Baseline System I, and the results of the narratives as queries are Baseline System II.

There are total 1116 documents (16 documents per topic; 70 topics total) in Baseline

System I, and there are 40 germane documents in it. There are another 1115 documents

(16 documents per topic; 70 topics total) in Baseline System II, and there are 64 germane

documents in it. The total number of pooling documents for the mixture model, Baseline

System III, and the learning to rank method, Experiment System, are 2107. There are

74 supporting documents in this pool.

The mixture germane document list, as Baseline System III, combines the lists of Baseline

System I and Baseline System II by ranking the documents in these two baseline systems

with the following score:

ds(doc) =
∑
query

1

OriginalRank(doc, query)

.
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2. Extract the features for documents:

Various features (i.e., linguistic, structures, web, and queries) discussed in the last section

are extracted as feature vectors.

3. Annotate the supporting documents according to the returned documents:

For each returned hit, we mark whether it is the supporting document according to the

ground truth. If this page contains the answer, it will be labeled as 1, otherwise it will

be labeled as 0.

4. Evaluate the systems:

For the three baseline systems, we will calculate the precision, recall, and F-measure at

each ranking.

For the learning to rank algorithm, the ten-fold cross evaluation will be conducted.

a. The whole corpus are randomly divided into 10 folds.

b. Every time, we train on the 9 fold and test on the last fold. The logistic regression

can estimate the probability of a document to be the germane documents.

c. We choose the top 16 high probability documents as germane documents according

to the probability score.

d. The final precision, recall, f-measure of learning to rank method are the average of

the 10 results.

Table 9 shows the precision (Figure 8(a)), recall (Figure 8(b)) and F-measure (Figure

8(c)) of the baseline systems and experiment system for germane document identifications.

The top 16 documents are evaluated. Comparing two baseline systems, the narratives as

queries (Baseline System II) is significantly better than the entities as queries (Baseline

System I) (for the two-tail t-test, p<0.0001). The mixture model (Baseline III) is significantly

better than the entities as queries (Baseline I). However, there is no significant difference in

the narratives as queries (Baseline II) and the mixture model (Baseline III). The learning

to rank method (Experiment system) runs significantly better than three base systems in

precision and F-measure, but not recall.

We find that no matter what kinds of methods use for germane document identification,

the topics asking for products are the hardest, because its error rate in the learning to

rank method is 0.1, which is higher than the other three (0.01, 0.03, and 0.04 for locations,
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Table 9: Results of the learning to rank method for germane document identification

Method Rank Precision Recall F Method Rank Precision Recall F

Baseline I

1 0.2 0.1369 0.1557

Baseline II

1 0.3 0.1940 0.2271

2 0.1571 0.2300 0.1795 2 0.2786 0.375 0.3076

3 0.1381 0.3155 0.1860 3 0.2381 0.4905 0.3086

4 0.1071 0.3226 0.1562 4 0.1893 0.5190 0.2682

5 0.1 0.3774 0.1539 5 0.1686 0.5631 0.2511

6 0.0881 0.3988 0.1408 6 0.1452 0.5917 0.2265

7 0.0755 0.3988 0.1242 7 0.1265 0.6060 0.2038

8 0.0696 0.4202 0.1171 8 0.1125 0.6095 0.1851

9 0.06191 0.4202 0.1059 9 0.1 0.6095 0.1678

10 0.056 0.4202 0.0967 10 0.09 0.6095 0.1534

11 0.0506 0.4202 0.0890 11 0.0817 0.6095 0.1411

12 0.0464 0.4202 0.0824 12 0.075 0.6095 0.1310

13 0.0429 0.4202 0.0767 13 0.0703 0.6167 0.1240

14 0.0408 0.4274 0.0735 14 0.0653 0.6167 0.1161

15 0.0381 0.4274 0.0691 15 0.0636 0.6310 0.1135

16 0.0335 0.4007 0.0612 16 0.0577 0.6231 0.1040

Baseline III

1 0.2143 0.1524 0.1714

LTR

1 0.9 0.0863 0.1576

2 0.2143 0.3167 0.2471 2 0.8000 0.1536 0.2577

3 0.1952 0.4452 0.2638 3 0.8333 0.2400 0.3725

4 0.1929 0.5548 0.2782 4 0.7750 0.2973 0.4295

5 0.1629 0.5905 0.2490 5 0.7000 0.3355 0.4533

6 0.1452 0.6310 0.2307 6 0.6333 0.3645 0.4625

7 0.1327 0.6738 0.2171 7 0.5857 0.3936 0.4706

8 0.1196 0.7024 0.2006 8 0.5625 0.4318 0.4883

9 0.1095 0.7214 0.1868 9 0.5667 0.4882 0.5242
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Method Rank Precision Recall F Method Rank Precision Recall F

Baseline III

10 0.0984 0.7214 0.1703

LTR

10 0.5100 0.4882 0.4986

11 0.0896 0.7214 0.1569 11 0.5000 0.5273 0.5130

12 0.0821 0.7214 0.1453 12 0.4833 0.5573 0.5174

13 0.0780 0.7357 0.1392 13 0.4692 0.5864 0.5210

14 0.0735 0.75 0.1321 14 0.4500 0.6055 0.5160

15 0.0686 0.75 0.1241 15 0.4333 0.6236 0.5111

16 0.0643 0.75 0.1171 16 0.4188 0.6427 0.5068

organizations and persons respectively). One reason for the low accuracy of products is that

the product usually is general category name, which need to be further clarified in the special

retrieval task. For example, CDs, and software are assigned as products. Another reason is

that the training sets for the products are too small.

We calculate the co-efficiency for all features used in the learning to rank method in

Table 10. The higher absolute value of the weight, the more important it is in the model.

The positive value of the feature means it contributes to the non germane documents, and

the negative value of the feature means it contributes to the germane documents. From this

result, we can summarize the following findings.

1. Wikipedia entity page is one of the most important features. If the document from

Wikipedia page with the same entry name as the entity name, it is more valuable than

the other Wikipedia pages, according to the weight score of isWikipedia and isEntity-

Wikipedia.

2. The ranking of documents in the ranked list is another factor in the learning method,

especially the normalized ranking score which merges the multiple query results. It can

be explained as if the document keeps appearing in the returned lists of different queries

from the same topic, it should be more chance to be a germane document.

3. Except for the type of products, entity types have low effects on the learning. It is a hint

that the complicated entity type (e.g., products) can be an important factor to detect

germane document identification.
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(a) Precision of the Learning to Rank Method

(b) Recall of the Learning to Rank Method

(c) F-measure of the Learning to Rank Method
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Table 10: The features with their weights in the logistic regression model

Feature Weight Feature Weight

isEntityWikipedia -3.57 TitlePrecision -2.76

EntityNarrative -2.28 ContentRecall -1.85

TitleRecall -1.24 RankScore -0.96

WebDice -0.77 RelationTermLength 0.72

NarrativeTermLengh -0.5856 isWikipedia -0.57

EntityType=product -0.5328 HitTrend 0.4343

NewRank 0.4282 EntityTermLength 0.4223

EntityType=location 0.1737 ContentDistance -0.1561

Rank -0.12 Narrativelength 0.0864

RelationLength -0.0841 ContentPrecision -0.0505

EntityLength -0.0429 TitleDistance 0.0366

Entitytype=person 0.0339 Entitytype=organization 0.0313

WebDiceOrignal -0.0004 Hits 0

4. Term length measures are better than the character length measures, which can be

concluded from comparisons between the weights of NarrativeTermLength and Narra-

tiveLength as well as EntityTermLength and EntityLength.

5. ContentRecall, TitlePrecision, and TitleRecall are more important than ContentPreci-

sion. The title parts of documents are more valuable than the content parts.

6. Webdice does help to recognize the germane documents, but the various hits, such as

query hits, has no affects on finding germane documents.

With removing the features with their absolute weights smaller than 0.1 (i.e., −0.1 <

feature weight < 0.1), we re-run the experiment using the logistic regression based learning

to rank method. There are no significant differences on the two results.
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With the further consideration about the evaluation of germane document identification,

we argue that evaluating germane document identification based on the annotated ground

truth of germane document set may be unfair or inaccurate for some testing set because

the final task is to detect answer entities instead of germane documents. When the system

identify the part of germane documents but covering all answer entities, although the recall

of germane document identification is low, it still can support to find all answer entities. For

example, for the topic of “products of MedImmune Inc”, we assume the germane document

ground truth set only includes two documents. One is the wikipedia page of “MedImmune

Inc” with the answer entities of Synagis and FluMist, and the other is the homepage of

“MedImmune Inc” with answer entities of Synagis, FluMist, and Ethyol. If germane docu-

ment identification only finds one document of the wikipedia page, then the recall of germane

document identification is 0.5. However, if we consider how much the document contains

the answer entities, it is 0.667, which is not so bad comparing with recall of 0.5 based on

germane documents. Therefore, the evaluation is not very accurate. In the future research,

we will consider to use the number of answer entities existing in the germane documents as

the weight for the germane documents, which will be the adjust the precision and recall as

well as F-measure evaluation.

5.4 SUMMARY

This chapter discusses different methods for germane document identification. It only deals

with word-independence factors by considering the term co-occurrences (i.e. the assumption

of the term independence in the document). All the semantic related analyses, therefore,

should be postponed into answer entity extraction. We investigate three approaches for

germane document identification: conventional document retrieval, the entity type language

model, and the learning to rank method.

The first study is about treating germane document identification as a conventional

document retrieval task, and the query generation method is discussed. This approach

assumes the entity type is independent from the query and the document. In most cases, the
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narrative part is the best source for query generation. In some cases, however, it destroys

germane document identification. For example, when the answer entities are only part of the

Web pages (e.g., “students of Claire Cardie”), the topic entity is a better choice for the query

generation. How to correctly represent the relation between the topic entities and the answer

entities is another difficulty for query generation. For example, the query of “organizations

that award Nobel prizes” presents the relation between the answer entity (organization) and

the topic entity (Nobel prizes) as “award”. The other query of “organizations that were

awarded Nobel prizes” presents the relation between answer entity (organization) and topic

entity (Nobel prizes) as “be-award”. Although they are different semantic meaning, in the

retrieval with the assumption of bag-of-words, they get the same results. The topics using

some terms seldom in the corpus will be also hard for the retrieval. For example, the topic

is like “What are some of the spin-off companies from the University of Michigan?”

Secondly, the entity type language model evaluates germane document identification by

considering the document similarity and the entity type similarity with entity types. The

experiment demonstrates that document categories have few effects on document similarity,

but it does improve the results in entity type similarity which in turn improves germane

document identification. But the limitation of this method is that it requires the document

has category information.

The learning to rank method for germane document identification estimates the proba-

bility of a document to be the germane document. It is a learning-based ranking method.

That is, a ranking model is learned from the training set, and then the system applies the

model to predict the probability. Multiple features including the different query generation

strategies, the lists of candidate germane documents from search queries, and the entity types

are applied in this learning to rank method. In the evaluation, 28 features are identified and

used for the learning to rank method. The results indicate the learning to rank method is

significantly better than the baseline systems.

Although the learning to rank method can improve the precision of the germane docu-

ment identification, the recall is still low. In future studies, we will investigate methods to

improve the recall of germane document identification. For example, since Wikipedia is one

of important source for the germane documents, the Wikipedia page with the same entry
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name as answer entities should be further processed to separate out more relevant features

for germane document identification.

The current evaluation method is based on the germane documents. As discussed, it

might be not accurate. Even for the low recall of germane documents, if they cover all

answer entities, the system still has a good chance to detect answer entities. Therefore, in

the future, the evaluation of germane document identification will be based on the answer

entities.
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6.0 ANSWER ENTITY EXTRACTION

This chapter investigates answer entity extraction, which extracts the answer entities from

germane documents for the entity retrieval task. With the TREPM model, answer entity

extraction estimates the probability of a candidate entity e being an the answer entity, given

the document d, the query q and the targeted entity type t, i.e., p(e|d, q, t), which is the

second term in the TREPM model (Equation 3.2).

Since germane document identification considers the similarity between the query and

the document, answer entity extraction can assume the entity is independent from the query

given the germane documents. Therefore, it can be simply treated as an entity extraction

from germane documents, extracting entities, e, from the germane documents, d, with regards

to entity types, t, i.e., p(e|d, t). It relies on the named entity recognizer tools to achieve this

goal. This method is used by most current competition groups in TREC.

In order to accurately extract answer entities, the contexts of entities c are considered for

the extraction, i.e. p(e|d, q, t) =
∑

c p(c|d, q, t)p(e|c, d, q, t). The first quantity, p(c|d, q, t), is

the probability of the context c being detected within a germane document according to the

query as well as the answer entity type. The second quantity, p(e|c, d, q, t), is the probability

of the answer entity extracted from the context c. In most cases, iterating all contexts is

not efficient. Therefore, in order to efficiently extract the answer entities, we consider the

most useful contexts csupport, instead of all possible contexts, to approximate the extraction

process, i.e.,

p(e|d, q, t) =
∑
c

p(c|d, q, t)p(e|c, d, q, t) ≈
∑

csupport

p(csupport|d, q, t)p(e|csupport, d, q, t)

The key point of answer entity extraction with contexts is how to detect these support

contexts csupport and how to efficiently extract the answer entities from these contexts. As
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mentioned in Section 3.4, the contexts of the entities can be interpreted in multiple ways. In

the medical domain named entity extraction, the context means the negation, experiencer,

and temporal status for the medical findings [Harkema et al., 2009]. In such studies as the

word sense identification, the context is interpreted as the term co-occurrence in certain

window sizes [Leacock and Chodorow, 1998]. In my dissertation, the context only refers to

the text environment surrounding around the answer entities.

According to the topics in TREC 2009 and the ground truth annotation process, the

answer entity contexts in germane documents are viewed from two aspects: the physical

structures of contexts and the logical structures of contexts. The physical structures of con-

texts illustrate what media or physical techniques are used to represent the contents. Most

of the contexts in the web environment are in web pages, which follow the html or xml script

rules for the format representations, while some other contexts use the PDF or DOC files and

even pictures for the content representations. The logical structures of the contexts mean how

these contents are logically organized. For example, the contexts can be the sentences narrat-

ing the relation between two objects using syntax, or the lists or tables with the header rows

and columns to indicate the answer entities. We should note that the same logical structure

of contents can be represented in the different physical structure contexts. For example, the

products of MedImmune Inc can be stored in tables, such as Wikipedia Infobox, or in the sen-

tences, such as “the website contains information concerning MedImmune and its products

and services including Synagis, FluMist”, or even presented in the pictures in the webpage.

For example, the webpage of http://www.medimmune.com/about us products.aspx uses the

images to present the products.

According to the physical structures and logical structures, we analysis the answer entity

contexts for the TREC 2009 topics. The details are shown as in Table 11.

There are total 36 germane documents for 20 topics, 21 of them from web pages, 14 of

them from Wikipedia pages, and one of them from PDF files. From the context structure

analyses of the 2009 topics (Table 12), there are 12 cases where answer entities are in the

sentences, and there are 24 cases where answer entities are in the tables or lists. For example,

in the Wikipedia page of MedImmune, Inc., the table of Infobox contains the answer for the

products of MedImmune, Inc. In the homepage of MedImmune Inc., there is a product
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list presenting the answer for this topic. Some sentences, such as “it (MedImmune, LLC)

produces Synagis, a drug for ...”, semantically present the product entity. We can see that

most answer entities are in the tables or lists (24 out of 36), and only few of them (12 out

of 36) are in the sentences.

Table 12: Context structures for 20 topics in TREC 2009

Number of cases Wikipedia Web PDF or Word Pictures Total

Sentence 7 5 0 0 12

Tables/Lists 7 13 1 3 24

Total 14 18 1 3 36

Although the Web environment is heterogeneous and the physical contexts for these

Web pages are various, this study focuses only on the HTML pages and Wikipedia pages

and does not further discuss the other physical structures, such as pictures and PDF files.

Entity extractions from HTML pages can demonstrate the similar questions in the entity

retrieval task since the same algorithm can be applied to the other media with correct format

transformations.

The following study mainly investigates two kind of context logic analyses and extrac-

tion: symbolic contexts and syntax contexts. The symbolic contexts are the ones that use

symbols to show the nature of the context. For example, the tables and lists are frequently

used to concisely display the company’s products or papers cited by an author. The syn-

tactic contexts are culled from sentences’ structures by using shallow sentence analyses. For

example, “Apple launches iPad” indicates the company of Apple has the product of iPad.

6.1 ANSWER ENTITY EXTRACTION WITHOUT CONTEXTS

We firstly consider answer entity extraction without contexts. Answer entity extraction in

TREPM model is the following form: p(e|d, q, t), which is the probability of an entity e being

an answer entities given the document d and the query q with the target type of t. If we
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consider the similarity between queries and documents in germane document identification,

we assume the probability of answer entities e are independent from queries q given the

germane documents d and the target entity type t, i.e., p(e|d, q, t) = p(e|d, t). Therefore,

answer entity extraction can be viewed as entity extraction. There are two approaches to

extract answer entities without contexts—named entity recognition tools for extractions and

the knowledge base for entity type detection.

6.1.1 Answer Entity Extraction with Named Entity Recognition Tools

Most of the researchers in the TREC 2009 entity retrieval task applied named entity recog-

nition (NER) tools for answer entity extraction. The TREPM model can be interpreted

as an answer entity extraction without contexts, i.e., p(e|d, q, t). In practices, the Stanford

NER tool is the most popular tool for this task. Unfortunately, it can only identify the

named entities of persons, organizations, and locations, but not products. Therefore, teams

like [Zheng et al., 2009] treated proper nouns as candidate product entities. Teams such as

[Yang et al., 2009] and [Serdyukov and de Vries, 2009] used external knowledge base (e.g.,

Wikipedia) to train a named entity tool for products. Similar approaches were done by

[Vydiswaran et al., 2009] and [McCreadie et al., 2009]) relying on a dictionary of company

names and a pre-defined set of patterns for the product recognition. Most of these researchers

did further entity re-ranking since the results directly from the named entity recognition are

not promising. Wu specifically evaluated the re-ranking process by calculating the similari-

ties between input query, support snippets, and related entities [Wu and Kashioka, 2009].

We follow the same idea for answer entity extraction without contexts, i.e., the named

entity recognition (NER) tool for extractions. The research question is whether the NER

tools can extract the answer entities from germane documents. A special parser is designed

for the Wikipedia page extraction, because we expect a better parser to pre-process the

webpages can improve the extraction. Therefore, the experiment also tests whether the

html parser will affect the results of named entity extractions. The answer entities should

consider all extractions from germane documents for each topics. Therefore, we compare

the results before and after this sum in order to evaluate whether entities extracted from
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one document and entities from multiple documents can complete each other. Moreover, the

evaluation results are reported according to the entity types (such as products, persons, and

organizations) and page types (such as Web pages and Wikipedia pages) in order to test

whether these factors affect answer entity extraction.

The experiment is based on the TREC 2009 entity retrieval tasks. All germane documents

are preprocessed as plain texts, removing all tags from HTML pages. Stanford NER tool

identifies the entity of organizations and persons, and the noun phrase extractor extracts

noun phrases as products. Three groups of experiments are evaluated.

• Experiment 1: Stanford NER extracts the entities from the germane documents. The

top 10 results are evaluated.

• Experiment 2: With the special parser for the Wikipedia pages, further cleaned up

by removing the header and footer tags, answer entities are extracted from Wikipedia

germane documents. Because there are a lot of non-relevant contents in the Wikipedia

page, e.g., category information in the bottom and language information in the left, a

simple parser is introduced to remove the header and footer parts of the Wikipedia to

reduce this noise. The experiment evaluates whether removing the noise in this context

can improve the results significantly. The top 10 results are evaluated.

• Experiment 3: With the answer entities extracted from every germane document, the

algorithm summaries the results by topics. Different from the previous two experiments

by extracting the answer entities by documents, this experiment summaries the entities

across the documents within the same topic. This experiment evaluates whether the real

answers for the same topic from the same document or multiple documents can complete

the answer sets for each other. The top 10 results are evaluated.

The results of precision, recall and F-measure are as shown in Table 13. With the answer

entities within the same topic, the precision and the F-measure significantly improve from

0.103 to 0.17 and from 0.144 to 0.16 respectively (two-tail t-test, p¡0.001), but the recall drops

from 0.419 to 0.37, according to Experiment 1 and Experiment 3. This result indicates that

answer entities from different documents for the same topic can complement each other and

improve the precision which in turn improves the overall performance (F-measure). The
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Table 13: Results of named entity recognition tools for answer entity extraction

Precision Recall F-measure

Experiment 1: based line, evaluated by documents

Overall 0.1030 0.4190 0.1440

Product 0.0120 0.2959 0.0230

Person 0.2480 0.5460 0.3370

Organization 0.0770 0.4110 0.1110

Web page 0.1148 0.3693 0.1551

Wiki page 0.0830 0.5204 0.1269

Experiment 2: Special parser for Wikipedia, evaluated by documents

Overall 0.1083 0.4400 0.1500

Product 0.0127 0.3639 0.0240

Person 0.2588 0.5463 0.3454

Organization 0.0829 0.4241 0.1179

Web page 0.1148 0.3693 0.1551

Wiki page 0.0982 0.5501 0.1426

Experiment 3: evaluated by topics

Overall 0.1700 0.3700 0.1600

Product 0.0293 0.3163 0.0495

Person 0.4449 0.4236 0.3555

Organization 0.1117 0.3646 0.1237

Web page 0.2060 0.2783 0.1704

Wiki page 0.1055 0.5275 0.1439

answer entities extracted from different documents do co-reference each other and improve

the accuracy of the extraction. However, the recall drops because merging the results from

different documents by topics reduces some rare but relevant answer entities with low scores.
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Therefore, further work is to investigate how to improve extracting answer entities with rare

existing.

With the special Wikipedia parser to remove some noise, the results of Wikipedia page

are improved significantly (two-tail t-test, p¡0.001). Precision rises from 0.08 in Experiment

1 to 0.10 in Experiment 2, recall rises from 0.52 in Experiment 1 to 0.55 in Experiment

2, and F-measure rises from 0.13 in Experiment 1 to 0.14 in Experiment 2. That means

narrowing down the context and removing the noise does help to improve the results. How-

ever, the results of the web page extraction (F-measure of Web page is 0.1551 in Experiment

1 and 0.17 in Experiment 3) are better than the ones from Wikipedia pages (F-measure

of Wikipedia page is 0.1269 in Experiment 1 and 0.14 in Experiment 3). Especially, the

precision in Experiment 1 (0.12 vs. 0.08) and in Experiment 3 (0.2 vs. 0.1) is higher but

the recall in Experiment 1 (0.37 vs. 0.52) and in Experiment 3 (0.28 vs. 0.53) is lower.

It is because the Wikipedia germane documents cover more information than the webpage

germane documents, which can bring in more answer entities so recall is improved, but also

bring the noises which cause precision drops.

Comparing the performance of three experiments according to different entity types,

the results indicate that the extractions of organizations and persons (directly extracted

from NER) are significantly better than products extracted from noun phrases. This means

named entity tools are critical in this step. The approach of treating noun phrases as the

products brings too much noise (the precision of products is only 0.01). For the entity type

of organizations, even with some trained data and rules for extraction, the precision is still

very low (0.08). Therefore, further work is needed to investigate answer entity extraction for

the named entity recognizer non identifiable entities, such as products.

The precision of NER method is 0.17 (overall precision in Experiment 3), which needs

to be further improved. In the next section, we use knowledge base method to improve

the extraction precision by filtering the candidate entities with the entity categories from

knowledge bases. The recall of NER is less then 0.5, which means this method misses half

of important answer entities. In the next section, we will extract more answer entities from

knowledge base, which is independent from the corpus, to improve the recall of the extraction.
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6.1.2 Knowledge Base Entity Type Filtering

Another way to find the answer entities with target types without considering contexts

is by relying on a knowledge base to detect the answer entity types. The named entity

recognization tools only identify the high level categories, such as person, locations, and

products. The same high level categories are used in the TREC task. However, the detail

categories can be analyzed from the queries. For example, in the topic of airlines that

Air Canada has code share flights with, the entity type is company, but in fact the detail

entity type is the airlines. Although airlines can be treated as companies, they are a better

description for the answer entity type. Therefore, it is better to take advantage of this

description to extract the proper entities.

A knowledge base, such as Wikipedia, contains the category information which is useful

to filter the unrelated entities and keep the answer entities with target types, which in

turn improves precision and recall of the extraction. Wikipedia categories are applied as

an example for knowledge base entity type filtering tasks. Wikipedia categories are human

mark-up types or classes. For example, Antonio Meneses who is one of members of The

Beaux Arts Trio is assigned such categories as 1957 births, living people, and Brazilian

classical cellists in the Wikipedia, which indicates this entity is the type of person. The

research question is how to detect the nominated entity type information from both the

queries and the knowledge base categories. In order to match the entity types in TREC task

to the categories in the Wikipedia, the following strategies are used.

• The entity type of person in TREC is mapped to the categories with “*** births”, or

“living people”, or “*** deaths”.

• If the narrative is the structure of noun phrase followed by a noun clause, then choose

noun phrase as the TREC entity types. For example, the term of “airlines” is detected

as the entity type in the topic of airlines that Air Canada has code share flights with);

• If the narrative is the noun phrase with prepositions, then keep the noun phrase as the

TREC entity types. For example, the term of “chefs” is detected as the entity type in

the topic of Chefs with a show on the Food Network;

• If the narrative is the noun phrase with a modifier, then keep the noun phrase as the
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TREC entity types. For example, the term of “journals” is detected as the entity type

in the topic of journals published by the AVMA).

The experiment of the Wikipedia categories for entity type filtering evaluates whether

the precision of answer entity extraction can be improved with the aid of knowledge base type

filtering. It is performed on the 20 TREC 2009 topics and the related entity types are persons,

products, and organizations. The candidate answer entities are extracted from Wikipedia

germane documents. The assumption is that entries on the Wikipedia page with the links

linking to the other Wikipedia entries are treated as candidate entities. The algorithm uses

Wikipedia categories to filter out the non-related entries, and then the rest are the answer

entities.

Table 14: Results of Wikipedia entity type filtering for answer entity extraction

Topic

ID

Target En-

tity Type

# of Identi-

fied Entities

# of Correctly

Identified Entities

# of

Answers

Precision Recall F

9 Person 6 6 10 1 0.6 0.75

14 Person 42 0 37 0 0 0

17 Person 16 9 71 0.562 0.127 0.207

18 Person 38 6 14 0.158 0.429 0.231

4 Organization 34 7 11 0.206 0.636 0.311

6 Organization 8 1 7 0.125 0.143 0.133

7 Organization 17 4 4 0.235 1 0.381

12 Organization 56 20 33 0.357 0.606 0.449

15 Organization 16 12 12 0.75 1 0.857

Avg. of the extracted topics 0.377 0.505 0.369

Avg. of 20 topics 0.120 0.227 0.166

The results are as shown in the above Table 14. The precision and f-measure for the

Wikipedia type filtering method are significantly better than the NER method, and the

scores rises from 0.08 to 0.12 and from 0.127 to 0.166 respectively. But the recall drops

from 0.4 to 0.2. If we only consider the topics with entities in Wikipedia, precision, recall
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and f-measure are all significantly improved to 0.38, 0.5, and 0.37 respectively. The recall

averaging 20 topics drops because the method only considers the Wikipedia pages as germane

documents and misses the Web pages. This method works well when the germane documents

are Wikipedia pages and the target types are marked by the Wikipedia too, such as the topic

of airlines that currently use Boeing 747 air planes.

Currently, with the limitation of the system implement, this method can only deal with

target entity type of persons and organizations but not products, which means this method

highly relies on the matching algorithms between entity types and Wikipedia categorizes.

If the algorithm fails at mapping, the result of extraction will be bad. For example, in

the Wikipedia, the categories of Vaccines, Influenza vaccines, 2009 flu pandemic, and As-

traZeneca are assigned to the entity of FluMist, which are hard to be matched to products.

6.1.3 Discussion

This section explores the methods for answer entity extraction without contexts. Two ap-

proaches are investigated. The first is answer entity extraction from NER tools, and the

second is using knowledge base for the entity type filtering. According to the experiment

results of NER tool extraction, the precision of this method is only 0.1, which is low accu-

racy for the extraction, and the recall of answer extraction is less than 0.5, which means this

method still misses half of the important answer entities.

Filtering out the answer entities using Wikipedia categories improves the precision of

the extraction. The current algorithm can only identify the persons and organizations, but

not products. Although this method can significantly improve the extraction precision, it

has little effect on recall because it is limited by the knowledge base. In the future, we will

further investigate the methods on entity type detection from knowledge base in order to

improve precision and recall of entity extraction.

Answer entity extraction without contexts assumes the query and the entity type are

independent given the germane document. In fact, this assumption is not accurate. In

the following section, we will remove this assumption and introduce the context for answer

entities to improve the extraction.
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6.2 SYMBOLIC CONTEXTS: TABLE/LIST EXTRACTION

Answer entity extraction in TREPM model is represented as p(e|d, q, t). If we consider

contexts c for the entities, then it is represented as
∑

c p(e, c|d, q, t)p(e|c, d, q, t). It is not

efficient to consider all contexts c, so we use the most relevant support contexts csupport to

approximate this estimate. Therefore, it is

p(e|d, q, t) =
∑
c

p(e, c|d, q, t)p(e|c, d, q, t) ≈
∑

csupport

p(csupport|d, q, t)p(e|csupport, d, q, t)

As we discuss in Chapter 3, contexts can be interpreted in several ways. This This section

considers the tables as entities contexts. Tables are ubiquitous in the Web environment.

They are often used to present the structural data, such as the latest experiments results,

the statistical data, and the TV show schedule, in a condensed and concise way. With the

richness of information in the tables, it has been an importance source of answer entities.

As discussed in Section 6.1, almost half of the answer entities in the TREC entity retrieval

task exists in the tables or lists of the Web pages, as shown in Table 11. Moreover, because

the named entity recognition tool usually is trained on the sentence syntax, it might fail

at detecting entities from tables or lists. Therefore, in this section, we will consider the

tables/lists as the contexts and focus on the answer entities extraction from tables and lists.

That is,

p(e|d, q, t) =
∑
c

p(e, c|d, q, t)p(e|c, d, q, t) ≈
∑
ctable

p(ctable|d, q, t)p(e|ctable, d, q, t)

Although lists present information in a sequential order, they are considered as a concise

means of arranging data without syntax surroundings. Therefore, this thesis treats lists as a

special case of one-column tables, and the following discussions only mention about tables.

Tables appear in print media, handwritten notes, computer software, architectural ornamen-

tation, traffic signs and many other places. Some researchers work on the table extractions

from plain texts [Ng, 1999], while some others extract tables from PDF files [Liu et al., 2006]

and images [Pinto et al., 2003]. This thesis, as mentioned in previous section, only focuses

on extracting tables from the HTML pages. For example, http://www.foodnetwork.com
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/chefs/index.html is a germane document for the topic of chefs with a show on the Food

Network, which covers answer entities in a list presented by the HTML “li” tags. The same

idea of extracting entities from tables or lists also appears in [Fang et al., 2009].

6.2.1 Answer Entity Extraction from Tables/Lists

Extracting tables and their elements is a challenging task. The challenge comes from di-

verse physical structures representing the tables, no formal table designing rules/standards,

distinct presentation schemes in different mediums, various table logistic contexts, diverse

table cell types, many affiliated elements, etc. In order to characterize table extraction, Liu

classifies the six types of table meta data [Liu et al., 2007]. It has the following three types

of features with regards to the entity retrieval task in the Web:

• Table Position Feature. It records the medium types (HTML, PDF, image, PS, text,

email, etc), the URL of table (the URL indicating where the table is located), the page

title (the web page title shown in the web page, usually in a large font size), the web

author, the web origination (the name of the website), the table starting position (the X

and Y-axis coordinates of the starting place of the table), and the table frame meta data

(left, right, top, bottom, all, none, etc.) These features can facilitate the table searching

if users only know pieces of the document information or wish to restrict the search to

certain types of documents.

• Table Affiliated Feature. It contains the table caption (the caption sentences appearing

along with the table), the table caption position (the position of the caption with the

body of the table: above or below), the table footnote (explaining the information in the

table and usually appears below the table body), and the table reference text (the text

referring to the table and discusses the content of the table).

• Table Content Data. It refers to the values as well as their data types in each cell of a

table with the cell position information. It enables people to search tables based on the

contents of their cells. For example, the content in Cell(i, j) is the content in the cell

that is located in the ith row and the jth column of a table. The data type in the cell

can be numerical and/or symbolic. Because this thesis investigates entity retrieval, the
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text strings will be our major extractions.

We adopt Liu’s algorithm of automatic table extraction for the answer entity extrac-

tion task [Liu et al., 2007]. The algorithm is composed of two steps: detecting the table

candidates with table position meta data and its affiliated mete data; recognizing the table

structures with table content data. Figure 8 shows the detailed pseudo-codes for these two

steps.

Input: the original text
Output: table position metadata and affiliated metadata
Begin

for each page do
for each line do

if symbols ∈ (the predefined table symbol list)
collect the table position metadata and affiliated metadata

end if
end for each line

end for each page
End

Input: the starting position of a table candidate and table position and affiliated metadata
Output: table content metadata
Begin

nline <—read the first text piece in the candidate table
Extract the row indexes from nline

While (NOT at the end of a table)
nline<—read the next line
if (nline == new column in the same row)

column++; adjust startX[column] and endX[column]
end if
if (nline == new line in the same cell)

combining with previous lines in the same cell; adjust startX[column] and endX[column]
end if
if (nline == text pieces in the next row)

row++; adjust startY[row] and endY[row]
end if
if (nline is special characters)

combining with previous text line; adjust startX[column] and endX[column]
end if
else if

table adds this cell
end While

End

Figure 8: The algorithm extracting answer entities from tables/lists

6.2.2 Experiment on Table/List Extractions from the Web Pages

The experiment evaluates the table/list answer entity extraction algorithm using the 20

topics from the TREC 2009 entity retrieval task (Appendix E). This experiment only works
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on the HTML files. The goal of this experiment is to test whether the table/list extraction

can help detect answer entities for the entity retrieval task. The experiment compares two

approaches:

• Baseline system: named entity recognition (NER) tools for answer entity extraction.

This experiment has done in previous section, so it will not repeat the results here.

• Experiment system: the table/list extraction for answer entity extraction. The table/list

extraction algorithm is applied on germane documents to detect the answer entities.

The methodology of this experiment is as follows:

1. For each germane document, the algorithm is applied to extract the candidate entities

from the tables/lists.

2. For all the candidate terms in the cells of tables/lists, a named entity recognition tool

(e.g., Stanford NER) is used to identify the entities with their types. In this study,

Stanford NER is applied and only identifies the types of persons and organizations.

3. Entities should be the ones starting with numbers or English letters, and the characters

of “.” or “&” or “-” are only allowed to appear in the middle of terms.

4. The system removes some high-frequency entities. For example, the term of “sitemap”

frequently appears in several different topics which, in fact, is not the answer entity.

Similar to the idea of inverted document frequency, the common entities will tend to be

over-emphasized, because it is low chance that one entity can be the answer for several

different topics. Therefore, we will remove these common entities. In this study, the

system removes candidate entities with the topic frequency larger than 3.

Table 15 lists the precision, recall and f-measure of the table/list entity extractions from

germane documents based on the 20 topics of 2009 TREC entity retrieval task. The topics

that are not in this table are those do not contain the tables or cannot extract any related

entities.

Comparing answer entity extraction from tables/lists (Table 15) with answer entity ex-

traction from NER tools (Table 13), the precision is significantly improved from 0.1 to 0.17

for averaging 20 topics (with two-tail t-test, p¡0.001). If we only consider the documents

containing tables and related entities, the precision is even higher (0.69). This indicates the
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Table 15: Results of table/list detections for answer entity extraction

Topic

ID

Target En-

tity Type

# of Identi-

fied Entities

# of Correct Iden-

tified Entities

# of An-

swers

Precision Recall F

9 person 3 3 9 1 0.333 0.5

10 organization 6 4 13 0.667 0.308 0.421

12 organization 18 3 33 0.167 0.09 0.118

17 person 68 43 71 0.632 0.606 0.619

18 person 5 5 14 1 0.357 0.526

Avg of found entities 0.693 0.339 0.437

Avg of 20 topics 0.173 0.085 0.109

answers in the tables are good sources for the extractions, and the algorithms can achieve

higher accuracy than the NER methods. The recall drops significantly from 0.4 to 0.08, the

F-measure also drops from 0.14 to 0.11. This means this algorithm misses more answer enti-

ties than the NER method. Moreover, we find that only 5 topics can be extracted, instead of

18 topics which are expected containing the tables in the germane documents. One reason is

that there are some tables/lists represented in images or pdfs or some other formats, which

will be our future researches. The other reason is the complicated table structures make the

extraction harder, and the current algorithm and its implement can not detect them.

6.2.3 Table/List Extractions from Knowledge Base

A knowledge base can be independent from the original corpus. Therefore, the extraction

from a knowledge base only relies on the knowledge base itself. The knowledge base also

organizes the information in the tables or lists, but with a more standard way. Although

the tables in knowledge base can use the same extraction method mentioned in the previous

section, it can be more precise in the knowledge base, which is described as the relation

context. The relation context refers to the relation r and the associated topic entity e1 and
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the answer entity e2. According to the relation contexts, the query can be interpreted as

the topic entity eq1 and the relation rq. Therefore, with the TREPM model, answer entity

extraction with relation contexts can be represented as following:

p(e|d, q, t) =
∑
c

p(c|d, q, t)p(e|c, d, q, t)

≈
∑
e1,r,e2

p(e1, r, e2|d, rq, eq1)p(eq2|e1, r, e2, d, rq, eq1)

≈
∑

e1=eq1,r=rq ,e2

p(e1, t1, r, e2|d, e1, r, e2)p(eq2|e1, r, e2, d)

Figure 9: A sample of Infobox

Wikipedia Infobox is one of the knowledge bases

and is used to demonstrate the extraction process. It

extracts high accuracy answer entities but is not lim-

ited by corpus and increases the recall of answer en-

tity extraction. Figure 9 is a sample of a Wikipedia

Infobox. Noisy knowledge is one of the problems in

using knowledge bases for answer entity extraction.

The study of Wu illustrates that the knowledge base

like Infobox need to be further cleaned for extractions

[Wu and Weld, 2008]. In the pilot study of extracting

company-product pairs from Infobox, there are two of

twenty company cases (10%) where the “product” fields

in the Infobox pages contain links to other pages instead

of the product information itself. Another problem is

the incompleteness of its knowledge. For example, three

of the twenty company pages do not contain informa-

tion of products (15%), where one case has no product field in its Infobox and the other two

have not Infobox fields at all.

Because of the incompleteness and the complexity of knowledge base, the algorithm of

answer entity extraction from a knowledge base first has to detect the related topic entities.

For example, for the query of products of Medimmue Inc, the algorithm needs to find the
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correct entry of the topic entity, i.e., MedImmune Inc. It is to implement the detection of

e1 = eq1 in the formula. Secondly, in the topic entities related attributes, the algorithm

identifies whether this targeted entity has attributes associated with the queried relations,

e.g. products. This is the detection of r = rq. The last step is to identify the entity

instances acting as the attributes of topic entities, e.g., the value of FluMist for the attribute

of products. If the attribute fields in Infobox are not directly extractable, further mining

steps need to associate to related pages in order to extract the answer entity information.

The overall algorithm of mining the Wikipedia Infobox for extracting answer entities is in

Figure 10.

For each target type (e.g., company) in the knowledge base (e.g., Wikipedia Infobox){
Get related part (e.g., InfoBox) {

Get target field (e.g., location) {
Extract target information {

If (field is terms), then extract terms as they are (e.g., products))
If (field needs to be further extracted, e.g., ”List of Google Products” or ”Yahoo Products”)
Further extraction method{
e.g., craw this page{
If the page containts LIST information, then extract them as products;
If the page containts the links to anther page, craw this page
}//end of further extraction method
}//end of extract target information
}//end of get target field
}//end of get related part

}//end of all

Figure 10: The algorithm extracting entities from knowledge bases

The first experiment evaluating answer entity extraction of the tables/lists from knowl-

edge base is on RAP sets. Topics are the companies, and the targeted entities are the

products and locations of those companies. There are 265 entities of products extracted for

30 companies from Wikipedia 2008 version. The results are in Appendix B. The knowledge

base entity extraction can effectively extract most answer entities with high precision for the

experimental entities.

The second experiment is the answer extraction for the TREC 2009 20 topics. Because

there are only 3 topics related to product retrieval, this experiment only uses these three

topics. There is only one topic out of three to be extracted. That is, Synagis and FluMist

are extracted as products for the topic of products of MedImmune, Inc.
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Although this method can extract the high accuracy answer entities, which are inde-

pendent on the noisy corpus, the extraction still relies on the knowledge base itself and the

representation of knowledge. For example, the topic of airlines that currently use Boeing

747 planes uses the term of “primary users” in the Wikipedia Infobox of Boeing 747 pages to

represent the relation between the topic entity and answer entity. The various representation

causes difficulty in the matching of topic entities and answer entities. How to expand the

algorithm to extract more entities will be the future work.

6.2.4 Discussion

The list/table extraction method can successfully detect answer entities for such topics as

chefs with a show on the Food Network. However, there are some topics that are still hard

for extractions because of the complicated structures of lists and tables.

1. Tables/lists can be embedded into the pictures or photos. For example, for the topics

of sponsors of the Mancuso quilt festivals, the lists on the Web page are the logos for

these companies with the links pointing to these companies. This kind of representation

is popular on the Web to avoid robots mining the web contents, but it also causes our

difficulties in the entity extraction. Similar cases include the topic of donors to the Home

Depot Foundation, whose answer entities are in one picture, which cannot be extracted

by the text extraction.

2. The hierarchical or mixture structures of lists or tables also cause difficulty in extraction.

The answer entities for the topic of authors awarded an Anthony at Bouchercon in 2007,

for example, are listed in lines combining the authors and the title of a work of fiction

together, which causes the difficulty of extractions.

3. Various formats to present the list structure also cause the failure of extraction. For exam-

ple, for the topic of sport teams in Philadelphia, the Wikipedia page, http://en.wikipedia.

org/wiki/Sports in Philadelphia.html, uses HTML heading to represent the answer en-

tities. For the topic of donors to the Home Depot, the Webpage of the HomeDe-

pot, http://www.homedepotfoundation.org/donors/2010-complete-donor-list.html, uses

the way of each line per donor to present the answer entities. Therefore, the algorithm
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should further consider the various presentation of the table/list structure for the extrac-

tion.

4. Sometimes, there are multiple tables in the document, but not all the tables or lists in the

germane documents discuss the answer entities and only tables or lists in some sections

present the answer entities. For example, for the topic of the journals published by

AVMA, the germane document of http://www.avma.org/journals/default.asp contains

the answer entities in the “journals” section which is mixture with others. Therefore,

how to identify the answer sections in the germane documents will be our future work.

5. Various names are needed to represent the relations between answer entities and the

topic entities. The researches on matching the relation names in the celling header of

the tables and the queries will be our future work.

6.3 SYNTACTIC CONTEXTS: BOOTSTRAPPING

The studies on the bootstrapping method for answer entity extraction were originally pub-

lished in [Li et al., 2009]. Answer entity extraction with contexts of the subject-verb-object

structure, which exists in the sentence syntax and is called patterns in this study, is investi-

gated. Therefore, we discuss syntax contexts for answer entity extraction.

As we discuss in Section 3.4, in syntax contexts, every query can be represented as a

binary relation rq between the topic entity eq1 with the type of tq1 and the target entity

eq2 with the type of tq2. Therefore, the entity retrieval task is to retrieve the eq2 given

eq1, tq1, rq, tq2. Similarly, the context can also be represented as the triplet of an entity e1 with

the type t1, an entity e2 with the type t2, and their relations r, that is, c = (e1, t1, r, e2, t2).

Therefore, answer entity extraction estimates the probability of e2 to be the eq2 as the
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following equation.

p(e|c, d, q, t) =
∑
c

p(c|d, q, t)p(e|c, d, q, t)

≈
∑

e1,t1,r,e2,t2

p(e1, t1, r, e2, t2|d, rq, eq1, tq1, tq2)p(eq2|e1, t1, r, e2, d, rq, eq1, tq1, tq2)

≈
∑

e1=eq1,t1=tq1,r=rq ,e2,t2=tq2

p(e1, t1, r, e2, t2|d, t1, r, e2, t2)p(eq2|e1, t1, r, e2, t2, d)

The first quantifier, p(e1, t1, r, e2, t2|d, e1, t1, r, e2, t2), reflects given the document, the prob-

ability of existing the context c containing the requirement of query q. And the second

quantifier p(eq2|e1, t1, r, e2, t2, d) is to estimate the probability of answer entity extracted

from the contexts.

The syntax context is hard to detect not only because it is hard to fully understand

the sentences or list complete semantic contexts for the answer entity extraction task, but

also because it is hard to have huge human resources annotating training sets for supervised

learning method. Syntax contexts can be extracted using the deep sentence analysis. For

example, Li uses the sentence dependency analysis of relation extractions for the image

retrieval [Li and He, 2011a]. However, the sentence structure in the Web environment is more

complex than the image meta data. Therefore, a semi-supervised method—a bootstrapping

algorithm—is introduced for the entity extraction task with aid of the syntactic contexts.

The hypothesis of bootstrapping method is: with the high quality topic-answer entity pairs

(e.g. Apple Inc. and iPad), the system can detect high qualified contexts (e.g., the pattern

of “launch” for the sentence of “Apple Inc. launches iPad”) containing these entities; then

the high qualified contexts are used for further answer entity detection (e.g., “Apple Inc.

launches iPhone).

6.3.1 Bootstrapping Algorithm

The bootstrapping algorithm learning the syntactic contexts for entity extraction tasks con-

centrates on the extraction of the topic-answer entity pair according to the pattern of the

subject-verb-object (SVO) structure.
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Figure 11 shows an example work flow of bootstrapping method for entity extraction.

The inputs of the bootstrapping algorithm are some well qualified topic-answer entities

seeds. These seeds can be obtained from knowledge bases, which take advantages of the well

defined structures or the schema of knowledge bases, as in Section 6.2.3. The core of the

bootstrapping algorithm is pattern generation and ranking, which is the basis of building

a trained model for entity extraction. One of key problems in pattern generation is how

to accurately identify the patterns that can effectively predict the topic-answer entity pairs

for the later entity extraction task. Another is how to choose the most effective one from

large numbers of learned potential patterns. This idea of bootstrapping method—beginning

from a good seed then generating the patterns and further extracting more seeds with the

aid of the patterns—has been widely shared in web mining communities. For example,

KNOWITALL used a bootstrap method to extract generic named entities by using the Web

as the source for training, and avoided hand-labeled training examples [Etzioni et al., 2005].

Pasca extracted facts and named entities from the Web using patterns learning from training

sets [Pasca et al., 2006]. In this section, we use the same method on answer entity extraction.

6.3.1.1 Pattern Generation and Pattern Weighting Based on the extracted seeds,

the bootstrapping method tries to infer patterns that cover the extracted seeds. It uses

the Web as the corpus for generating patterns by querying (e.g., Yahoo!BOSS) the Web (as

Step 1 in Figure 11). The results returned from the search engine usually cover several pieces

of information such as a page title, the URL of the page, and a short summary of the page

content (as Step 2 in Figure 11).

The bootstrapping method in this work uses the subject-verb-object (SVO) structure

for patterns extractions from search results. Patterns are identified by the key verb with

two entities in the sentence. For example, in the sentence of “EBay launches Kijiji”, the

system first identifies two important entities (the company named EBay and the product

named Kijiji) as well as the verb (launches) in the sentence, and then marks the sentence

as “Ebay.COMPANY launches Kijiji.PRODUCTS”. Therefore, the pattern is extracted as

“COMPANY launch PRODUCT”, which is Step 3 in Figure 11.

As Brin points out, the quality of extracted entities highly correlates to the quality of the
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COMPANY...cooperate...PRODUCT: 0.02

COMPANY...manufactured...PRODUCT: 1.2

COMPANY...launch...PRODUCT: 2

(Google, A9.com) = 0.02 (No);
(Google, Gphone) = 1.5 (Yes);

Ranking all company-entity pair by the score:
SCORE= cooperate pattern score

According to “Google cooperates with A9.com”,
(Google, A9.com) is COMPANY-PRODUCT?

SCORE = launch pattern score
According to “Google launched Gphone”,

(Google, Gphone ) is COMPANY-PRODUCT?

COMPANY...PRODUCT

COMPANY...launch...PRODUCT

COMPANY...launch...PRODUCT

Amazon launches Internet search service
A9.com operated by subsidiary

Google appears to have soft launched a site
for Google Chrome,

...enterprise resource planning (ERP) software
manufactured by SAP AG

Google Chrome

SAP AG SAP ERP

Amazon.com A9.com

COMPANY-PRODUCT -
Generate Good Seeds

?

?

�

-

n1

n2

n3

n4

Figure 11: Bootstrap framework of topic-answer entity pair extraction

extracted patterns [Brin, 1999]. Some researchers investigate in the good quality patterns.

Ravichandran uses frequency threshold to select the patterns with the assumption that high

frequency patterns are correlates to good entities [Ravichandran and Hovy, 2002]. However,

it is not necessary. Low frequency patterns could also be useful. For example, the frequency

of the “produce” pattern (e.g., in the sentence of “shell holds acreage with potential to

produce shale gas”) is lower than the frequency of “be” pattern (e.g., in the sentence of

“royal Dutch Shell, commonly known as Shell, is a global oil and gas company”), but the

“produce” pattern is better than the “be” pattern for its high precision, because the “be”

pattern can also be such sentence as “a shell is a piece of software that provides.” Therefore,

ranking the relevance between patterns and topic-answer entity pairs is an complicate but

important task here. We propose five different weighting schemes to rank patterns are
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evaluated as follows. This is shown as Step 4 in Figure 11.

1. Frequency Weight.

Frequency Weight (FW) assumes that the higher the frequency of a pattern is on the Web,

the better its quality is [Ravichandran and Hovy, 2002]. Stemming is used to improve

the coverage of the method. This work defines FW as Equation 6.1.

FW (v) =
|x, v, y|∑
v |x, v, y|

(6.1)

where|x, v, y| denotes the frequency of the pattern with term x, term y and pattern verb

v in the same window size. In this work, the window size is within the same sentence.

2. Distance Weight

Distance Weight (DW) denotes the word distance between two entities, as shown in

Equation 6.2.

DW (V ) =
1

number of word between (x, y)
(6.2)

3. Verb Distance Weight Verb Distance Weight (VDW) represents a special case of DW

which examines the distance between verb and target/answer entity (Equation 6.3).

V DW (V ) =
1

number of word between (v, y)
(6.3)

4. Frequency-Distance Weight

Frequency Distance Weight (FDW) combines the distance weight and the frequency

weight, which is defined in Equation 6.4:

FDW (V ) = DW (V )× FW (V ) (6.4)

5. PMI

Pointwise Mutual Information (PMI) is a commonly used metric for measuring the con-

nections between two events. Pantel and Penacchiotti used PMI to evaluate the reliability

between patterns and instances [Pantel and Pennacchiotti, 2008]. We adopt PMI as a

weight for the pattern ranking, and at the same time, PMI is also used as a baseline for

evaluating the weights mentioned above. PMI is defined as Equation 6.5.

PMI(v) = avge
pmi(e, v)

Max(pmi)
(6.5)
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where Max(pmi) is the maximum pmi of all patterns v and all instances e. And pmi is

defined as follows:

pmi(e, v) = log
|x, v, e|
|x, e||v|

whereas x, v, e is the frequency of the pattern v instantiated with term x and term e.

|x, e| is the frequency of x and term e co-occurrence together; |v| is the frequency of term

verb v.

6.3.1.2 Pattern Matching Strategy The output of the bootstrapping method is a

ranked list of answer entity instance pairs. For example, the extraction output of company-

location can be the pair of “Google, Menlo Park.” The assumption is that the system has

named entity tool to help identify the two entities in each pair. The bootstrapping method

would then annotate whether two entities have the relationships according to the pattern,

as shown in Step 4 in Figure 11.

One problem for entity identification in entity extractions is co-reference, which is when

two different mentions could co-refer to the same entity. Failure of identifying the co-reference

entities directly cause the failure of identifying entity pairs. For example, at the beginning

of the documents, the author mentions “MedImmune, LLC, headquartered in Gaithersburg,

Maryland”. Later, the document said “It produces Synagis”. In fact, “MedImmune, LLC”

and “it” co-reference the same entity of “MedImmnue, LLC”. However, due to the lack of

a co-reference tool, the current method can not handle co-reference. In order to overcome

this problem, a matching strategy that relies on matching to just one entity is used in this

work. This approach is motivated by Yarowsky’s work in word sense disambiguation that

stated “one sense per collocation” [Yarowsky, 1993]. It assumes that there is only one topic

entity in the window size of one document. Therefore, the topic entity x with the answer

entity y as well as the pattern verb p denoted as |x, p, y| will be the topic entity throughout

a document; and the matching process only concerns the finding of the verb p and entity y.

I ran pilot studies to test the assumption that the most frequently appearing entities (e.g.,

the company) in a document could be the topic entity for the whole documents. There are

eighty-eight articles extracted from CNET news for topic entities of companies. It showed

that this method only failed at three of eighty-eight articles at identifying the topic entities
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of companies (95.5%). The two matching strategies are summarized as follows:

• One-entity matching: to only match verb pattern p with the answer entity y, and use

the default topic entity x in the same document.

• Two-entity matching: to match verb pattern p as well as the topic entity x and the

answer entity y.

6.3.2 Experiments on Company-Product and Company-Location

Two topic-answer entity pairs, company-location and company-product, are considered to

evaluate the performance of the bootstrapping method for answer entity extraction. The

company-location entity pair is chosen to represent the topic-answer entity pairs with the

identifiable answer entity (e.g. location), and the company-product entity pair is used

to represent the entity pairs with the NER-non-identifiable answer entity (e.g. product).

The performance of five weights (frequency weight, distance weight, verb-distance weight,

frequency-distance weight and PMI) and two matching methods (one-entity matching and

two-entity matching) are evaluated. In the experiment, the high-qualified seeds from knowl-

edge bases are used as the inputs for the bootstrapping methods. The experiment focuses

on the evaluation of pattern generation to build up models for topic-answer entity pairs.

Named entity extraction tool from Inxight LinguistX Platform developed by Business

Object is used for the entity identification. Yahoo!Boss Search (short as Boss) is used for

querying the Web in the experiment. Twenty-five target company articles from Wikipedia

distributed in five industries (according to Fortune 500, 2008) are chosen for experiments

as testing sets for both company-location and company-product entity extractions. In Nas-

daq100 index, thirty one companies with company-product and company-location pairs are

extracted from Infobox as seeds for training. Ground truth is manually marked up by two

experts. Precision and recall are used for the evaluation.

The first experiment is the extraction of the company-location pair, which represents the

entity pairs with identifiable entities. There are 251 company-location pairs extracted as the

seed pairs. These pairs as queries are issued to Yahoo!Boss, and 12,103 search results (hits)

are retrieved with 50 results per query. Relying on the SVO pattern extractions, there are
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2,203 SVO patterns identified. Twenty-five Wikipedia articles are used for the evaluation.

Figure 12(a) & 12(b) are the precision and recall graph for the company-location pairs

with one-entity matching respectively. Since the average number of company-location pairs

in the documents is about 3, only the top 5 locations are evaluated. For one-entity matching

(Figure 12), there is no significant difference between PMI and verb-distance weight as well

as frequency-distance weight and frequency weight in either precision or recall. Distance

weight is significantly better than verb-distance weight in both precision and recall. The

recall of frequency-distance weight is significantly better than distance weight; and precision

and recall of PMI is worse than the other four weights. Similar experiments are conducted on

two-entity matching, and there is no significant difference between one-entity and two-entity

matching for five groups in precision and recall by running a T-test.

(a) Precision of Company-Location Extraction (b) Recall of Company-Location Extration

Figure 12: Bootstrap results for company-location extraction with One-Entity matching

Therefore, frequency weight and frequency-distance weight are better than distance

weight and verb-distance weight for the topic-answer entity pairs with an identifiable en-

tity. Moreover, all four weights (frequency weight, distance weight, verb-distance weight,

and frequency-distance weight) are better than PMI. Matching methods—one-entity and

two-entity matching—have no effects for the entity identification with an identifiable entity.

The second is the extraction of company-product pair, which represents the entity pairs

with non-identifiable entities. There are 265 company-product pairs extracted from Infobox.

These pairs as queries are issued to Yahoo!Boss with 50 results per query. There are 13,250
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hits returned for pattern analyses. There are 3,653 SVO patterns extracted for training.

The same twenty-five Wikipedia articles about companies are the testing sets for company-

product entity extractions. Figure Figure13 shows the results. The precision of pairs with

one-entity and two-entity matching are in Figure13(a) and Figure 13(b) respectively, while

the recall of pairs with one-entity and two-entity matching are in Figure13(c) and Figure

13(d) respectively.

(a) Precision of One-Entity matching (b) Precision of Two-Entity matching

(c) Recall of One-Entity matching (d) Recall of Two-Entity matching

Figure 13: Bootstrap results of company-product extraction

For the one-entity matching, there is no significant difference between frequency weight

and frequency-distance weight as well as PMI and verb-distance weight for both precision

and recall in the extraction of Company-Product pairs. Verb-distance weight is significantly

better than frequency-distance weight for both precision and recall. Distance weight is

significantly better than verb-distance weight in precision but not in recall. For the two-

entity matching, frequency-distance weight is significantly better than frequency weight; and
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verb-distance weight and frequency-distance weight have no significant difference; PMI and

distance weight have no significant difference also, but both are better than verb-distance

weight.

Both frequency weight and frequency-distance weight of two-entity matching are signifi-

cantly better than one-entity matching in precision. For distance weight and verb-distance

weight, however, the precision of one-entity matching is significantly better than two-entity

matching. The difference between frequency weighting and distance weight is that distance

weighting considered the distance of verb and the other entity, that is, it is including the

sentence syntactic information, while frequency weight only considered the frequency of the

verb without any syntactic information at all. Therefore, syntactic information is very useful

for entity extractions with a non-identifiable entity.

6.3.3 Experiments on Twenty Topics of TREC 2009 data set

This experiment is to evaluate the performance of the bootstrapping method on the twenty

topics of TREC 2009 data for answer entity extraction. The assumption of the method is

that given the germane document, if we have good quality seed pairs (topic-answer entities),

then we can find the similar answers (answer entities) for particular topics. We assume the

topic-answer entities extracted from Wikipedia Infobox are the high quality seeds, which can

use bootstrapping method for further answer entities extraction.

In the 20 topics from the TREC 2009 entity search set, only the topic of products

of MedImmune Inc has the answer of Synagis and FluMist extracted from the Wikipedia

Infobox. Therefore, in this experiment, we use the pairs of “MedImmune Inc. FluMist”,

“MedImmune Inc. Synagis”, and “MedImmune Inc. FluMist Synagis” for the extraction.

The experiment steps of the bootstrapping method for answer entity extraction are as

follows:

1. Generating good quality seeds. The pairs of “MedImmune Inc. FluMist”, “MedImmune

Inc. Synagis”, and “MedImmune Inc. FluMist Synagis” are used to search on the

Google search engine, and the top 80 hit results per topic are collected as a pool for

pattern generation. Germane documents are processed with part-of-speech, and the
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verb between the subject (MedImmune Inc.) and the object (FluMist or Synagis) are

extracted. Two kinds of verb structures are considered. One is the single verb in the

verb structures, e.g., the single verb of “make” in the sentence of “COMPANY makes a

drug called PRODUCTS”. The other one is the terms between the subject and object,

e.g., “makes a drug called” for the same sentence mentioned above. Moreover, the

verb pattern weights are calculated using the frequency-distance weight, because in the

previous experiment, the frequency-distance weight is best for the entity pairs with non-

identifiable entities. Nineteen verb patterns are generated, as shown in Table 16.

2. With 38 verb patterns and the subject (i.e., MedImmune, Inc.), our system generates

another 38 queries issued to the Google engines in order to pool the relevant answer sets.

Two strategies are applied to generate the queries. One is from the single verb structure,

which is only the subject and single verb, e.g., “MedImmune, Inc. make”. The other is

the subject and the verb structures between the subject and object, e.g., “MedImmune

Inc. makes a drug called” The 80 hits are returned from each query, which generate the

pool of sentences with candidate answer entities.

3. According to the subject-verb-object structure, the sentences in the pools with candidate

answer entities are pre-processed with POS taggers. Two types of structures are con-

sidered. The first noun phrase after the subject-verb structure is extracted as candidate

answer entities with their scores according to the verb weight. For example, the term

of “FluMist” in the sentence of “MedImmune, Inc. make FluMist” should be detected

as products. The second structure is last noun phrase before the verb-subject structure.

For example, the term of “Synagis” in the sentence of “MedImmune Inc. makes a drug

called Synagis” should be detected as products.

4. The candidate answer entity list is generated and ranked according to their weight, which

combines the pattern weight and the entity’s verb-frequency weight.

The top ten candidate answer entities extracted for this topic are listed in Table 17.

The extracted top five results are the answer entities. It indicates that with the high

quality seeds as well as the pattern generate model and weighting system, the bootstrap

method can extract the highly accurate answer entities. For the topic of “products of Med-

Immune Inc.”, the system extracts not only the products but also some variations of product
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Table 16: Patterns for extracting the company-product pair

Pattern Weight

COMPANY/NNP acquired/VBD PRODUCTS/NNP 2

COMPANY/NNP produces/VBZ PRODUCTS/NNP 2

COMPANY/NNP Says/VBZ PRODUCTS/NNP 1

PRODUCTS/NNP helps/VBZ lead/VB COMPANY/NN 1

PRODUCTS/NNP impacts/VBZ COMPANY/NN 1

PRODUCTS/NNP is/VBZ COMPANY/NN 1

PRODUCTS/NNP is/VBZ a/DT registered/JJ trademark/NN of/IN COMPANY/NN 0.8

COMPANY/NNP makes/VBZ injectable/JJ PRODUCTS/NNP 0.5

PRODUCTS/NNP ,/, made/VBN by/IN COMPANY/NN 0.5

PRODUCTS/NNP is/VBZ a/DT nasal/JJ spray/NN influenza/NN vaccine/NN manu-

factured/VBN by/IN COMPANY/NN

0.5

PRODUCTS/NNP is/VBZ produced/VBN at/IN a/DT <b>/NNP COMPANY/NN 0.5

PRODUCTS/NNP -LRB-/-LRB- palivizumab/NN -RRB-/-RRB- is/VBZ a/DT regis-

tered/JJ trademark/NN of/IN COMPANY/NN

0.4

COMPANY/NNP expects/VBZ peak/JJ annual/JJ PRODUCTS/NNP 0.33

PRODUCTS/NNP ,/, made/VBN by/IN ¡b¿/NNP COMPANY/NN 0.33

COMPANY/NNP ”/” -RRB-/-RRB- ,/, the/DT petitioner/NN ,/, manufactures/VBZ

the/DT drug/NN PRODUCTS/NNP

0.25

COMPANY/NNP is/VBZ best/RB known/VBN for/IN two/CD products/NNS –/:

PRODUCTS/NNP

0.2

COMPANY/NNP ,/, which/WDT already/RB makes/VBZ the/DT nasal/JJ spray/NN

vaccine/NN PRODUCTS/NNP

0.167

COMPANY/NNP makes/VBZ a/DT drug/NN called/VBN PRODUCTS/NNP 0.167

COMPANY/NNP markets/VBZ four/CD products/NNS PRODUCTS/NNP ,/,

Ethyol/NNP ,/, PRODUCTS/NNP

0.167

114



Table 17: Results of the bootstrapping method for answer entity extraction

Candidate Entities Score Candidate Entities Score

FluMist R© 8.5 Vitaxin 1.14

Synagis 8.08 Aprimo 0.90

FluMist 3.64 Ethyol 0.57

Synagis R© 3 Flumist 0.5

Ethyol R© 2.86 FlumistÅ 0.5

names, and some medicines under development, such as Vitaxin. The only error of the top

10 results comes from the Aprimo, which is the company helps to market MedImmune Inc.

6.3.4 Discussion

This section investigates the syntax contexts for answer entity extraction. The bootstrapping

mining method on the web is used for syntactic context identification. High quality seeds

extracted from knowledge bases are the input to the bootstrapping method. Patterns based

on the subject-verb-object structures generate the syntactic contexts for topic-answer entity

pair extraction.

In order to find patterns, five weight schemes (frequency weight, frequency-distance

weight, distance weight, verb-distance weight, and PMI) and two matching strategies (one-

entity and two-entity matching) are investigated. The experiments evaluate two types

of answer entity pairs: pairs with identifiable entities (e.g., locations) and pairs with a

non-identifiable entity (e.g., products). The experiment shows that frequency weight and

frequency-distance weight are better for identifiable entity extraction (e.g., locations), while

distance weight and verb-distance weight are better for non-identifiable entity extraction

(e.g., products). For the matching strategies, although one-entity matching can compensate

the problems caused by the lack of tools to detect the entities co-referring each other, as

shown in the results, this matching strategy does not work for the non-identifiable entity
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extraction, because one-entity and two-entity matching has no significant difference on ex-

tracting entity pairs with a non-identifiable entity. One-entity matching, however, is better in

frequency weight, verb-distance weight, and PMI for the NER-identifiable entity extraction.

The capability of the bootstrap method in the answer entity extraction task is limited.

It can achieve high accuracy for the entities with good quality seeds, for example, the topic

of products of MedImmune Inc. However, it closely relies on whether the topics have good

quality seeds. Only one out of twenty TREC 2009 topics can be found the good seeds.

Therefore, its capability is limited. Another difficulty for answer entity extraction with syn-

tax contexts is that some topics in the entity retrieval task have unique germane documents

containing the answer entities. Therefore, it is hard to directly extract the answers from

knowledge base, such as Wikipedia Infobox. For example, it is hard to find good seeds for

the topic of donors to the Home Depot Foundation. In the future, more work will be done

on finding the good quality seeds for answer entity extraction.

6.4 ANSWER ENTITY EXTRACTION AS A CLASSIFICATION

PROBLEM

The main role of answer entity extraction is to extract the correct answer entities from the

germane documents with high accuracy for entity retrieval. The named entity recognition

tools as a common approach to extract answer entities are investigated in Section 6.1. How-

ever, the precision and recall for this approach are low (overall P=0.1, R=0.4, F=0.144 in

Table 13). The knowledge-based entity extraction which is independent from the search

corpus is introduced to improve the extraction. It can achieve high precision on the existing

answer entity detection, but the overall recall is low (extracted topics P=0.4, R=0.5, F=0.4

in Table 14), especially when the information asked by the topics is limited by the knowl-

edge bases (overall P=0.12, R=0.22, F=0.17 in Table 14). For example, the topic, such as

students of Claire Cardie, which has no records in the knowledge base, such as Wikipedia,

will fail at this approach. Considering the contexts, the table/list extraction as symbolic

contexts are investigated for answer entity extraction. It can improve the precision of the
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extraction, but the recall of the extraction drops down (extracted entities P=0.7, R=0.3,

F=0.4 in Table 15). The bootstrapping method can help to solve some problems from the

limitation of knowledge base by learning the patterns from the Web to extract more answer

entities from the corpus. For example, for the topic of products of MedImmune, Inc, the

products of Syngas can be extracted from knowledge bases correctly, which can be the good

seeds for bootstrapping method. Then, relying on these good seeds, bootstrapping methods

extract more products of FluMist according to the similar structure of “MedImmune, Inc.

produces FluMist.” However, sometimes, it is hard to get the good sample seeds and collect

high quality patterns.

Although each method mentioned above has its own disadvantages, they also have their

own advantages. In order to take advantage of these methods, and complement the lim-

itations, we aim at generating a generic entity extraction model, which can combine the

above methods together for answer entity extraction, i.e., treating answer entity extraction

as a binary classification problem. With the candidate answer entity e, the system decides

whether the entity e is the answer entity to the query q in germane documents d with target

entity type t. The classifier will learn the parameters α, β, and θ for extractors. Later, the

learned model will be applied to detect answer entities on the testing set.

p(e|d, q, t) =
∑
c

p(c|d, q, t)p(e|c, d, q, t)

= α
∑
ctable

p(ctable|d, q, t)p(e|ctable, d, q, t)

+ β
∑

crelation

p(crelation|d, q, t)p(e|crelation, d, q, t)

+ θ
∑
csyntax

p(c|d, q, t)p(e|c, d, q, t)

+ (1− α− β − θ)p(e|c, d, q, t)

(6.6)

In order to learn a system, a variety of features that reflect the characteristics of entity

extractions are generated, and then the SVM algorithm are applied.
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6.4.1 Answer Entity Extraction: a Binary Classification Problem

Applying machine learning methods to answer entity extraction raises the questions of what

types of information should be used in the learning process. Many different types of infor-

mation can contribute toward deciding the answer entities. Two principles are followed in

the process of feature selections:

• The feature should not limited by the instances.

• The feature should be general enough and domain independent so that the model could

be generalized to other topics regardless of the domain.

There are 15 features generated for answer entity extraction, which includes the basic

features (like document id and topic id and target entity types), and the features indicating

whether the entities are extracted from Wikipedia, whether the entities are extracted from

the tables/lists of the Web or the knowledge base, and whether they are from the bootstrap-

ping method. The following is the list of named entity features used in the classification of

answer entity extraction.

Eid is the entity id, which has a corresponding entity from the documents for each topic.

Total has 43494 unique candidate entities extracted from the various methods includ-

ing entities extracted from NER tools, Wikipedia, tables/lists, and the bootstrapping

method.

Did is the document id, which is to identify the document. Total has 633 documents col-

lected for the 20 topics. For each topic, two kinds of queries are generated: narrative as

queries and topic entities as queries. For each query, top 16 hits are chosen as candidate

germane documents, which also include the real germane documents annotated by our

annotators.

Tid is the topic id, which is to identify the topics. Total topics are 20, which are from the

TREC 2009 entity retrieval task.

TargetType is the target entity type for this topic. The possible values are organizations,

persons, products, and locations.

Wiki indicates whether this entity is extracted from the Wikipedia. For the target entity

of organizations, the Wiki value is organizations; for the target entity of persons, the
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Wiki value is persons; for the target entity of products, the Wiki value is products; for

the others, the Wiki value is others. This value indicates the entity extraction from

knowledge base (i.e., Wikipedia) results.

HpLinkentity indicates whether this entity is extracted from the webpages with links.

We assume the terms with links linking to another pages are the entities. Therefore,

HpLinkentity is the terms in these links. Because this feature is useless in the classifica-

tion, it is removed in the final evaluation.

HpLinkentityWiki indicates whether this entity is extracted from Wikipedia pages. If the

entity belongs to HpLinkentity, and the entity also appears in the Wikipedia, then its

score is 1; otherwise its score is 0.

HpLinkentityWikiRedirect indicates whether this entity is extracted from Wikipedia

and redirected from other pages. If the entity belongs to HpLinkentityWiki, and the

entity is redirected by the original one in the Wikipedia, then its score is 1; otherwise its

score is 0.

StanfordNERfreq is the frequency of the entity extracted from the documents using Stan-

ford Named Entity Identification Tools. Here, we treat the web page as a plain text for

extraction. Therefore, the pre-processing of removing HTML tagger is applied to them.

This value indicates the method of named entity recognition tools for entity extractions.

UIUCNERfreq is the frequency of the entity extracted from the documents using UIUC

Named Entity Identification Tools. Here, we treat the web page as a plain text for

extraction. Therefore, the pre-processing of removing HTML tagger is applied to them.

This value indicates the method of named entity recognition tools for entity extractions.

The reason we used two named entity recognition tool is that UIUC NER includes the

thesaurus extraction while Stanford NER is good at sentence structure analysis.

HpListStanford indicates whether this entity is extracted from Stanford NER tool. There

are lots of entities listed in the tables or lists without the sentence structure. Therefore,

we also extract the terms in the lists, and then apply the Stanford NER to recognize the

target entities. If the terms are from the lists and extracted by the Stanford NER, then

the score for them are 1; otherwise is 0.
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Bootstrapping is the score from the Bootstrapping method, which is investigated in pre-

vious section.

ClassLabel indicates whether the entity is the answer entity or not.

6.4.2 Evaluation and Results

The goal of the experiment investigates whether the learning-based method, which integrates

multiple extraction methods, can improve answer entity extraction comparing to those indi-

vidual extraction methods. The test sets are 20 topics in the TREC 2009 data set (Section

4.2.2). The method is evaluated on the germane documents for these 20 topics. The eval-

uation uses the criteria of precision, recall and f-measure, as described in Section 4.3. The

experiment is based on the following groups.

• Baseline I: the named entity recognition (NER) tools for answer entity extraction (Section

6.1.1).

• Baseline II: the knowledge bases for answer entity extraction (Section 6.1.2).

• Baseline III: the Web table/list answer entity extractions (Section 6.2)

• Baseline IV: the bootstrapping method for answer entity extraction (Section 6.3)

• Experiment system: the learning based method for answer entity extraction.

The methodology of this experiment is:

1. In order to extract the UIUCNERfreq and StanfordNERfreq features, we treat each

document as a plain text by removing all the HTML tags, and then extract the entities

using Stanford NER and UIUC NER tools respectively. The entities extracted from

Stanford NER from the germane documents are evaluated as Baseline I.

2. Extract the company-product pairs from the Wikipedia Infobox. All the entities from

the Wikipedia are filtered by the Wikipedia categories. The entities extracted from this

part are evaluated as Baseline II.

3. All entities extracted from the table/list method are as Baseline III.

4. Entities extracted from the bootstrapping method are as Baseline IV.

5. In order to evaluate the experiment system, all entities extracted the above method are

collected and treated as candidate entities. The candidate entities are randomly divided
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into 10 folds. Every time, we train a SVM model on 9-folds set, and then test the last

folds with the trained model. The final precision, recall, f-measure is the average of these

10 results.

There are total 8318 distinct candidate entities, and 1447 out of them are the answer entities.

There are total 3889 candidate entities extracted from the Stanford NER tools, and 1210 out

of them are the answer entities. There are total 4779 candidate entities extracted from UIUC

NER tools, and 1194 out of them are the answer entities. There are total 1105 candidate

entities extracted from the tables/lists, and 720 out of them are the answer entities. There

are total 4 candidate entities extracted from the Wikipedia Infobox, and all of them are

the answer entities. There are the 229 candidate entities filtering out by the Wikipedia

categories, and 65 out of them are the answer entities. There are total 192 candidate entities

extracted from the Bootstrapping method, and 8 out of them are the answer entities (for

the top 8 ranked entities).

Table 18 shows the performances of four baseline systems and the experiment system.

The experiment system using the learning-based method will classify an entity as the an-

swer entity or not. Since most of the candidate entities are non answer entities (6871 out

of 8318), we will pay more attention on the positive answer entities (i.e., Class label=1).

Comparing the performance of the learning-based entity extraction with the baseline sys-

tems, the precision is 0.95, which is better than the four baseline systems (0.1, 0.1, 0.2, and

0.05 respectively). Recall is 0.5, which which is better than the four baseline systems (0.4,

0.2, 0.1, and 0.1 respectively). F-measure value is 0.5 ,which is also better than the four

baseline systems (0.1, 0.2, 0,1, 0.1). The improvement in the precision is much higher than

in the recall. Therefore, we conclude that the learning-based method can integrate multiple

extraction methods for the answer entity extraction.

Table 19 summarizes the features used in the learning-based method for the extraction.

The positive value of the weights contribute to the answer entities, while the negative value

of the weights contribute to the non-answer entities. The higher absolute value of the weight,

the more important the feature is to the classification model. According to these features’

weights, we find that the answer entities extracted from the Wikipedia Infobox are the most

valuable answers. The knowledge bases for the answer entity type filtering are also useful
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Table 18: Results of the learning based method for answer entity extraction

Topic ID Precision Recall F

Baseline I: NER Tools for Answer Entity Extraction

Overall 0.103 0.419 0.144

Product 0.012 0.2959 0.023

Person 0.248 0.546 0.337

Organization 0.077 0.411 0.111

Homepage 0.114787 0.369279 0.155062

Wikipage 0.083 0.5204 0.1269

Baseline II: Knowledge Based for Answer Entity Extraction

Avg. of found entities 0.377078 0.504512 0.368849

Avg. of 20 topics 0.119685 0.227031 0.165982

Baseline III: Tables/Lists for Answer Entity Extraction

Avg of found entities 0.693137 0.338942 0.436744

Avg of 20 topics 0.173284 0.084736 0.109186

Baseline IV: Bootstrapping method

Avg. of extracted topics 1 1 1

Avg. of 20 topics 0.05 0.05 0.05

Experiment System: the Learning Based method for Answer Entity Extraction

SVM

Class label = 0 0.899 0.995 0.945

Class label = 1 0.95 0.471 0.629

Weighted Avg. 0.908 0.904 0.89

for the answer entity extraction, especially when the entity type is simple and easy to be

detected. The bootstrapping method, which extracts the answer entities according to the

sentence structure of subject-verb-object, is also valuable method for the extraction. Other

methods, such as answer entities extracted from the tables/lists or using the NER tools for

the answer entity extraction contribute trivial efforts on the classification.
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Table 19: The features with their weights in the learning-based extraction

Feature Weight Feature Weight

wikitypeperorginfo=Infobox 1.4919 WikiTypeFiltering=0 -1.0004

WikiTypeFilteringRedirect 1.0003 WikiTypeFiltering=PERSON 1.0001

Bootstrapping 1 HpTable 0.0045

hplinkentity=PRODUCT -0.0008 TargetType=PERSON -0.0008

hplinkentity=PERSON 0.0006 TargetType=PRODUCT 0.0006

hplinkentity=0 0.0005 hplinkentity=ORGANIZATION -0.0003

WikiTypeFiltering=ORGANIZATION 0.0003 stanfordNERfreq 0.0003

TargetType=ORGANIZATION 0.0001 UIUCNERfreq 0

6.4.3 Discussion

Answer entity extraction by considering the contexts, physical contexts and logical contexts,

treats the extraction as a query-dependent task instead of a query-independent task as

most current competition groups in TREC used. For the logical contexts, we consider the

tables/lists and sentence syntax. Experimental results show that the learning based answer

entity extraction method performs well in the 2009 TREC entity retrieval data set. Treating

answer entity extraction as a classification problem can improve the answer entity extraction.

This method integrates the several approaches into one model by treating the previous results

as the features in the model. As the results show, this method can successfully find the

answer entities with high accuracy. However, the learning-based method can find less than

half of answer entities, even with multiple extraction methods. As we discussed, the failure

of answer entity extraction is caused not only by the complicated structure of tables/lists

containing the answer entities, but also by the physical contexts of answer entities, such as

PDF files or images. How to improve the recall of the answer entity extraction will be an

issue for future work.
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6.5 EXPERIMENTS ON TREPM MODEL

Although the TREPM model can decouple the entity retrieval task into two separating

components and be evaluated at two individual layers, we would like to know how two

layers affect each other. We evaluate the TREPM model on the TREC 2009 entity retrieval

set, i.e., evaluating germane document identification and answer entity extraction as a whole.

Moreover, in order to compare this model with the state-of-the-art entity retrieval techniques,

I participant the TREC 2010 entity retrieval competition, and report the results in this

section.

6.5.1 Evaluation on TREC 2009 Task

In order to test the performance of two layers, the evaluation on the whole TREPM model

is conducted on the 20 topics of the TREC 2009 entity retrieval task. Three groups are

evaluated, one baseline systems and two experiment systems.

• Baseline system: The top 16 relevant documents from the topic entity as query and the

top 16 relevant documents from the narrative as query are collected and treated as the

germane documents, called pseudo germane documents. The table/list answer extraction

method based on the pseudo germane documents is used for answer entity extraction. In

this experiment, we use the table/list extraction as a baseline extraction method because

it runs the best comparing with other extraction methods, NER extraction, table/list

extraction, bootstrapping method, knowledge base extraction and knowledge base entity

type filtering. We use the pseudo germane documents and the table/list extraction as

the baseline system to evaluate the TREPM model.

• Experiment system I: The top 16 relevant documents queried from the topic entity as

query and the top 16 relevant documents from the narrative as query as pseudo germane

documents are collected. The learning-based method based on the pseudo germane docu-

ments is used for answer entity extraction. This experiment system fixing the component

of germane document finding tries to compare the answer entity extraction component

in the TREPM system based on the baseline system and this experiment system.
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• Experiment system II: the learning to rank method is used for germane document iden-

tification and the learning-based method is used for the answer entity extraction in the

TREPM model. Experiment system II will be compared with Experiment system I on

the component of germane document identification by fixing the component of answer

entity extraction.

The results are as shown in Table 20. In both Experiment system I and Experiment

system II, the classification label of 0 is the non-answer-entity, and the classification label of

1 is the answer entity. Since we are aim to extract the answer entities, we only discuss the

classification label of 1 here.

Table 20: Results of entity retrieval with TREPM model

Class Label Precision Recall F

Baseline System: Table/List Extraction on Pseudo Germane Documents

Avg of found entities 0.107893 0.143435 0.123151

Avg of 20 topics 0.086315 0.114748 0.07951

Experiment System I: Learning Based Entity Extraction on Pseudo Germane Documents

SVM

Class label = 0 0.964 0.992 0.978

Class label = 1 0.694 0.334 0.451

Weighted Avg. 0.95 0.957 0.95

Experiment System II: Learning to Rank + Learning Based Extraction

SVM

Class label = 0 0.964 0.992 0.978

Class label = 1 0.697 0.337 0.454

Weighted Avg. 0.95 0.957 0.95

The precision on Baseline System is 0.08, the recall is 0.11, and the F-measure is 0.07,

while the precision on Experiment System I is 0.69, the recall is 0.33, and the f-measure

is 0.45. Experiment System I is significantly better than Baseline System on precision,

recall, and F-measure (two tailed t-test, p<0.001). Because Baseline System and Experiment

System I are on the same condition of germane document identification, i.e., pseudo support
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documents, we conclude that the component of answer entity extraction in TREPM model

has significantly effects on the entity retrieval. There are no significant differences between

Experiment System I and Experiment System II. These two experiment systems have the

same condition on the component of answer entity extraction but different condition on

the component of germane document identification, Therefore, we conclude that germane

document identification in the TREPM model has no effects on entity retrieval. According

to the above conclusions, we argue that answer entity extraction is more important than the

germane document identification in the TREPM model.

6.5.2 Evaluation on TREC 2010 Task

In order to compare the TREPM model with the state-of-the-art techniques in the domain

of entity retrieval, I jointed 2010 TREC entity retrieval task, and had submitted the results.

Because the TREC task requires entities’ URLs/URIs as answers, an additional step is added

to the model in order to meet their requirement, i.e., matching the answer entities to their

homepages.

According to the experiment results from the APPENDIX A for entity homepage de-

tection, the result of the learning-based method for homepage detection has no significant

difference with the result of treating the first relevant document retrieved by search engines

as the home page for the answer entities. Therefore, we use the search engine (Google API)

to find the first URL as the home page for the answer entity. Then, we match the URLs of

the answer entities to the URIs in the ClueWeb09B collection. The results averaged over 70

topics. The result of NDCG@R is 0.2884, and the MAP is 0.164, and rPrec is 0.2258, which

is ranked 9 out of total 48 submissions. The best result is 0.369 for NDCG@R, 0.273 for

MAP, and 0.308 for rPrec from the BIT group. The eight higher rank runs come from three

groups: BIT, Fudan, and Purdue.

The BIT group considers the structures of the Webpages. They employ a logical sitemap

constructor, which extracts hierarchical structures in order to enrich the anchor text model

for finding more relevant pages. Those hierarchical structures, such as menus or navigational

bars or breadcrumbs, indicate the logical relations between pages in the same site and the
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concise summary of pages in some sense. Under the assumption that items in similar visual

presentations are probably similar in nature and to be classified in a group, they discriminate

extracted entities by their locations in DOM tree and give more preference weights to multiple

entities in tables and lists. The better understanding for the documents allows them to have

their outstanding performs [Yang et al., 2010]. In my future research, in order to improve

germane document identification, the structure analysis will be introduced to further detect

the germane documents.

The Fudan group proposes a multiple-stage retrieval framework for the task of related

entity finding. In germane document identification, search engine is used to improve the re-

trieval accuracy. In answer entity extraction, they extract entity with NER tools, Wikipedia

and text pattern recognition. Then a stop list and other rules are employed for filtering en-

tity. Specifically, deep mining of the authority pages in germane document identification is

also conducted by their group. In answer entity detection, many factors including keywords

from narrative, page rank, combined results of corpus-based association rules and search en-

gine are considered in their implementation [Wang et al., 2010]. These will be also included

into our future research.

The Purdue group generally follows their probability retrieval model proposed last year

to estimate the similarity between the queries and the entities. They also investigate the

structures of tables and lists to extract related target entities from them. Moreover, they

infer the types of target entities from the query and infer the types of candidate entities from

their profiles, and then estimate the similarity between target entity types and candidate

entity types [Fang et al., 2010]. In the future, we would like to improve our table/list extract

algorithms to correctly detect the relevant tables and understand the complicated structure

tables.

The entity retrieval task this thesis is slightly different from the entity retrieval task in

TREC in that TREC requires the return of homepages of answer entities as results but my

task is to return the answer entities as results. Therefore, this study only uses the deal with

retrieving answer entities and ignores homepage detection for the answer entities. With the

further investigation on the method of the homepage detection for the answer entities, we

could expect the better results on the TREC task.
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6.5.3 Topic Analysis on TREC entity retrieval

This dissertation discusses about the general entity retrieval task, although we based on

entity retrieval task in TREC for evaluation. The current TREC entity retrieval is on the Web

pages and asks the general domain questions. Therefore, it still can demonstrate the general

entity retrieval task. Furthermore, these methods can be applied in the special domain,

such as the medical domain, because the current TREPM model is domain independent. All

methods and the model can be transfered or applied into these domains.

With reviewing the topics in TREC 2009, we identify two types of topics with regard

to whether the answers are uniquely existing in a document. The first type is asking the

general knowledge or information, e.g., “products of MedImmune Inc.” The answers for

this type of topics can exist in the multiple germane documents repeatedly. They are either

scattering in several germane documents and require people to summarize the answers for the

topics complementally, e.g., “carriers that Blackberry makes phones for”, or accumulatively

appear in some documents which require people to extract them as a whole, e.g., “products

of MedImmune Inc.” The second type of topics is asking the questions whose answers are

uniquely existing in one document, e.g., “students of Claire Cardie” or “Donors to the Home

Depot Foundation.” This type of topics is sensitive at the germane document identification

and answer entity extraction. If the system fails at detecting the germane document for this

type of topics or detecting the answer entities, the system will fail at collecting the answer

entities. This type of topic is tougher one than previous one.

There are seven out of twenty topics in the TREC 2009 entity retrieval tasks, whose

answers are uniquely existing in the Web.

• The topics, such as “Students of Claire Cardie”, only can find the answer hint from the

topic entity’s homepage, e.g., “Clair Cardie”. If the web pages are removed or the web

pages are composed with PDF files or photos, the component of answer entity extraction

will be hard to detect the answer entities. Therefore, this case is critical for the germane

document identification.

• The topic of “Chefs with a show on the Food Network” has the unique answers in their

website about the TV show schedule. However, the representation of the table structure
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uses embed HTML lists, so that the current extraction method can not fully extract all

answer entities.

• The topic of “Winners of the ACM Athena award” has the answers in the ACM webpage.

The difficulty to detect the answer entities for this topics is that the winners’ names

mixture with other awards. Therefore, how to detect the related tables within a germane

document will be a challenge task.

• The topic of “Authors awarded an Anthony Award at Bouchercon in 2007” is tough be-

cause of the year limitation of the query. The topic needs to find the answers in the exact

year of 2007. Therefore, the answer entity extraction component should differentiate the

answers from others with regards to years.

• The topic of “Sponsors of the Mancuso quilt festivals” has the unique answer sets in their

website. Especially, in order to protect their sponsors to be maliciously crawled, these

sponsors are embedded in the Web page using the images of logos. Therefore, although

we can easily detect the germane document, it is still hard to extract the answer entities.

Similar case is the topic of “Donors to the Home Depot Foundation.”

There are thirteen out of twenty topics in the TREC 2009 entity retrieval tasks asking

the questions whose answers exist in the multiple documents. For example, for the topic

of “carriers that Blackberry makes phones for,” the answers are scattering in the multiple

documents, and the system is required to crawl them and summarize them as the answer

set.

• The topic of “professional sports teams in Philadelphia” has the answers in multiple

documents. Some of them cover all answer sets, while some others are not. Some answers

are in the sentences, while others are in the tables/lists. Similar cases include “products

of MedImmune Inc”, “Scotch whisky distilleries on the island of Islay”, “Campuses of

Indiana University”, “Members of the band Jefferson Airplane”, “CDs released by the

King’s Singers”, “Airlines that currently use Boeing 747 planes”, “Members of The Beaux

Arts Trio”, and “Airlines that Air Canada has code share fights with”.

• The topic of “organizations that award Nobel prizes” can be easily be confused with

the topic of “organizations awarded Nobel prizes”. Therefore, we use the topic entity as
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queries “Nobel prizes” to fine the germane documents for answer entity extraction.

• The topic of “Journals published by the AVMA” includes the abbreviation of “AVMA”

for “American Veterinary Medical Association (AVMA)”. Similar case is the topic of

“Universities that are members of the SEC conference for football”.

• The topic of “Companies that John Hennessy serves on the board of” has the answers

scattering multiple documents. However, it is also really not obvious webpages indicating

the information. It is also a tough topic.

6.6 SUMMARY

This chapter examined answer entity extraction, whose target is to identify answer entities

from germane documents for the entity retrieval task in an effective way. We considered sev-

eral ways of entity extraction: named entity recognition tools, knowledge base (Wikipedia)

extraction and entity filtering, table/list extraction, bootstrapping methods, and classifica-

tion methods.

Named entity recognition tools (NER) for answer entity extraction can only work on

grammatical sentences. It treats the documents as plain texts, so the corpus containing noise

web pages should be preprocessed by removing the HTML tags. With the pre-processing,

many non-grammatical sentences are generated in the corpus, which causes some errors in

extraction. For example, many entities are listed as items in the Web page. The simple

parsing is hard to extract answer entities according to the queries from the germane docu-

ment. This is the reason why the recall for the NER entity extraction is high (about 0.4

on the extraction from germane documents) but the precision (about 0.1 on the extraction

from germane documents) and the F-measure (about 0.1 on the extraction from germane

documents) is low. Moreover, this method also depends on whether NER can identify the

type. If the NER tool could not identify the types, it will fail to extract them. For example,

the extraction results on the entity type of product are worse than the ones on the entity

types of person and organization.

Two approaches using knowledge base to facilitate entity extraction are investigated to
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improve the precision and recall of answer entity extraction. One is to mine the entity answers

from a knowledge base (e.g., Wikipedia Infobox). The other one is using the knowledge base

to filter the non-relevant entities out. The results of knowledge base answer entity extraction

show that the approach can extract high accuracy entities but only for a small set of those

topics. The method of knowledge base filtering can significantly improve the accuracy of

answer entity extraction. But both methods are limited by the knowledge base and the

representation in the knowledge base.

Tables/lists are considered as the symbolic contexts for the entity extraction. As the

analyses on the entity contexts, we find that most entities are in tables or lists. Therefore,

an algorithm to extract the entities from the tables/lists in the Web is investigated and im-

plemented for answer entity extraction. The results show that this approach is more accurate

than the NER system, but also it can find 30% entities. This is because part of answers are

in the different media, such as images or PDF files. The complicate representation of the

tables/lists in the web page is another reason for extraction failure.

A semi-supervised learning method, bootstrapping, is considered as the syntactic context

for answer entity extraction. The experiment shows this approach can achieve high recall

results for some topics. But it is also highly dependent on the entity seeds and patterns.

In this experiment, the method could only extract the answers for one topic (out of 20).

In the future work, I will investigate the impact of more seeds and better patterns for the

extraction.

In order to complement the extraction disadvantages from the above methods, we treated

the entity extraction as a binary classification problem and the extraction results from the

above methods as features. The experiment compares this method with the other answer

entity extraction methods is conducted. The results indicate that this method is significantly

better than all the individual extraction methods by themselves. However, because the low

recall of the above extraction method, the learning-based method could only find half of the

answer entities. The reason for the low recall is that the current system only treats the noun

phrases as the candidate answer entities. Therefore, it will miss some answer entities with

special characters, such as FluMist R©. In the future, more methods should be introduced to

improve the recall of the answer entity extraction.
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7.0 CONCLUSION AND FUTURE WORK

This dissertation has studied the problem of entity retrieval in the unstructured data envi-

ronment. Guided by the user’s information need about relevant information and relevancy

verification in the entity level, this thesis sets out to develop a Two-layer Retrieval and Ex-

traction Probability Model (TREPM) capable of integrating document retrieval (germane

document identification) and entity extraction (answer entity extraction) in order to effi-

ciently and effectively detect the answer entities from the corpus.

7.1 TREPM MODEL REPRESENTATION

Germane document identification efficiently finds germane documents with the assumption

of bag-of-words; while answer entity extraction effectively extracts the answer entities from

the germane documents by considering the semantic relations between words. The TREPM

model delineates whole entity retrieval problem. Chapter 3 theoretically demonstrates that

entity retrieval can be interpreted as the TREPM model, which decomposes the problem

into document retrieval and entity extraction, using a probability model. That is, p(e|q, t) =∑
d p(d|q, t)p(e|d, q, t). The TREPM model provides a method to retrieve information in a

finer granularity but with low system workload.

This decomposition helps to break the black box of entity retrieval into document retrieval

and entity extraction. It not only allows the evaluations on each individual layer, which

further improves the overall system performance, but also helps to bring the state-of-the-art

techniques in the document retrieval and entity extraction into the entity retrieval task.

Although the entity retrieval task in TREC and INEX requires entities’ URLs/URIs as
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answers, this study focuses on entity retrieval task itself and treats the entities as answers

instead of entities’ URLs/URIs as answers. This model summaries the general problems of

entity retrieval, which can be applied to TREC can INEX task also.

7.2 GERMANE DOCUMENT IDENTIFICATION

Germane document identification (Chapter 5) discusses how to effectively locate the highly

relevant germane documents, which contain as many answer entities as possible.

Some methods are investigated for germane document identification. First, we study how

to generate the proper queries in order to collect germane documents and how to set up the

threshold to choose germane documents. Both the narratives and topic entities could be the

source of queries for searches. The experiment indicates that in most cases the narratives are

a better source for the queries. However, when the narratives are sensitive in representing

the relation between the topic entity and the target entity (e.g., “organizations awarded

Nobel Prizes” vs “organizations that award Nobel Prizes”), the topic entity is better to be

the queries.

Second, the entity type language model is investigated to evaluate whether the similarity

between entity types and document categories can improve germane document identification.

The documents with associated categories widely exist in the Web environments. The entries

in the knowledge base, assigned with some categorizes or the posts in the social network with

their tags, can be viewed as one of this type of documents. The experiment indicates that

entity types or document categories are helpful for germane document identifications. The

entity type language model can significantly improve the entity search result in the documents

with their categories.

Last, we investigate the “learning to rank” method for germane document identifica-

tion. The learning to rank approach treats germane document identification as a binary

classification problem. Twenty-eight features are generated from queries, the hits, and the

linguistic features used for the classification. The evaluation indicates that the learning to

rank method can achieve high accuracy on germane document identification. With the anal-
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yses on the annotations of germane documents, there is a germane document including all

answers to the topic for most topics. But there are still some topics whose answers scatter

in several documents. Wikipedia is an important source for the answer sets because we find

the germane documents from the Wikipedia for about half of the topics.

Current evaluation on germane document is based on the comparison with the ground

truth germane document sets. Therefore, precision and recall is also based on the germane

documents. However, in fact, it is not so accurate to estimate the degree of these germane

documents covering the answer entities. With a germane document with all answer entity

set for a topic, it can still be possible to be extracted all answers although the recall of this

germane document may be very low. Therefore, in the future, we should consider using the

number of the answer entities as the weight for evaluating the germane documents.

7.3 ANSWER ENTITY EXTRACTION

Answer entity extraction (Chapter 6) discusses different approaches for answer entity de-

tection in the entity extraction task. Entities in the germane documents can be in various

contexts, which can be interpreted in multiple ways. From the physical context view, it

includes html pages, plain texts, pdf files or image files. In this study, we only focus on plain

texts and html pages. From the logical context view, the answer entities exist in tables/lists

or the sentences. Therefore, in this thesis, I focus on answer entity extraction from these

two resources.

Most of the current work on entity retrieval rely on NER tools to extract the entities

with target types. This answer entity extraction method does not consider the contexts

and treats the extraction as a query-independent extraction. In our study, we find that the

precision of this method is low. Because the corpus is the noisy web page and the NER is

trained by the grammatical corpus, NER could not correctly identify the entities for this

corpora and the results from this method are not promising.

The second method uses the knowledge base (Wikipedia) for entity extraction, which

hopes to extract the answer entities from the ungrammatical documents with the aim of
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knowledge base. The algorithm for Wikipedia Infobox extraction is proposed and the

Wikipedia entry category information for entity type filtering is discussed. Although the

Wikipedia Infobox extraction can achieve high accuracy result, the recall is rather low.

The entity type filtering using Wikipedia information is limited by the knowledge in the

Wikipedia. With the analyses of the contexts of answer entity in the germane documents,

we find that most entities are from tables and lists, which need some efficient methods for

detections.

The answer entities are scattering across several HTML pages with symbolic contexts.

Therefore, answer entity extraction with wrappers is introduced to extract the entities from

tables or lists. This wrapper method also only works for some topics, but fails for the others.

One of the reasons for the failure of the extraction is that answers are put into the pictures

which cannot use text mining way to extract them. Another is the complicated table/list

structure and the representation way, which can not be well extracted by the current system.

Semi-supervised learning method, bootstrapping, is conducted for entity extractions.

The idea of bootstrapping is that, by identifying the reliable patterns from the good seeds,

the model can extract more result entities with these patterns. Although the precision of

bootstrapping is high, the recall is still low because this method is limited by the quality

seeds and good patterns. For the topics whose answers uniquely exist in the Web, it will be

difficult to find the good quality seeds and pattens.

With the above extraction methods for answer entity extraction, the last method treats

answer entity extraction as a learning problem, which is to learning the above methods as

features for entity extraction. The results show that the learning based method significantly

better than all the above methods individually.

7.4 THE FUTURE OF ENTITY RETRIEVAL AND ITS APPLICATION

This thesis is definitely not the complete work of entity retrieval. There are many research

questions and implementation questions which are needed to be further investigated. More-

over, entity retrieval task is not only limited in the general domain web retrieval but also
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applied into other domains, such as medical text mining.

7.4.1 Future Work

The TREPM model for entity retrieval achieves the best results or retrieves the answer

entities with heuristic methods. If the number of germane documents m′ is large (i.e.,

m′ ≈ m, where m is the number of documents in corpus), this method will fail at detecting

the germane documents and further fail at extracting the answer entities. One of future

work will investigate the method to find the answer entities for these type of entity retrieval.

For some topics, the germane document is unique in the corpus, e.g., the germane docu-

ment for the topic of sponsors of the Mancuso quilt festival. In this case, the study will focus

on the accurately detect the germane document. Although the learning to rank method

which can achieve high precision is investigated in this dissertation, the recall of the current

method is around 0.5, which means it misses half of the germane documents. Therefore,

the more features need to be further studied to improve the recall of germane document

identification.

Although knowledge base extraction, table/list extraction, bootstrapping extraction and

the learning-based method for answer entity extraction are evaluated in entity retrieval,

several researches should be further done on the extraction.

First, in answer entity extraction without context, we find that the types of entities which

can be detected by the named entity recognition tool and the accuracy of the detection are

critical for this task. Therefore, in future work, the tool accurately detecting the entities

with the target types, such as products, will be studied.

Second, we can build a tool or method to support the relation mapping, which describes

the relation between topic entities and answer entities. In the relation context extraction,

the various representation of relations in the knowledge base attribute causes the difficulties

on answer entity extraction. For example, the relation of “use” in the topic of “airline that

currently use Boeing 747 planes” can be represented as “users” in the Wikipedia Infobox

under the entry of “Boeing 747.” How to improve the relation mapping between different

representations will be our future work.
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Third, although this dissertation investigates the table/list extraction for the answer

entity extraction, the implementation should be further improved in several points. The

current system treats the germane documents as the units for extracting the answer entities

for the table/list extraction. However, in fact, all tables in the same germane document are

not necessary to be containers for the answer entities. Therefore, the future implementation

should find the relevant tables in the germane document for answer entity extraction. An-

other point is that the current system can not deal with the complicated table/list structures,

such as the embedded or hierarchical structure. Therefore, it will also be our future work.

Fourth, the bootstrapping method can extract the high accurate answer entities. How-

ever, this method is limited by the sample seeds. Currently it only works well for those

topics with good sample seeds. On the one hand, for those topics with the answers existing

in the multiple documents, in the further work, more sources need to be discovered for the

seed detections. On the other hand, for those topics with the answer topics uniquely existing

in the Web, some methods should be investigated for syntax analysis in order to extract the

answers.

Last method treats answer entity extraction as a learning problem. Although it can

significantly improve answer entity extraction than all above methods individually, the recall

of this method is still not very high. The failure of Some entities comes from the different

media such as pdf or image, which are beyond the discussion of this dissertation. They will

be our future work.

The current entity retrieval task is designed as finding the URLs/URIs for the entities

either in TREC or INEX task. Therefore, the evaluation system as well as the ground truth

is annotated based on the answer entities’ URLs/URIs. I would like to argue that it is

far from enough. On the one hand, the URLs/URIs of answer entities are different from

the answer entities themselves or sometime, it is hard to tell which should be the proper

URL/URI for an answer entity. For example, for one answer of the topic of “products of

MedImmune Inc.”, Ethyol, both the webpage of http://www.ethyol.com/ and the webpage

of http://www.medimmune.com/products/ethyol/index.asp are annotated. If you miss any

one, the performance will be dropped. However, the answer entity itself is correct. On the

other hand, the evaluation is on the finial step of the whole “black box.” It is not enough.
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Moreover, although this dissertation tries to decompose it as two steps and evaluate them

in details, the current system evaluates germane document identification at the germane

document level. However, we would like to argue that it should also be evaluated at the

answer entity level because the final task for the system is to detect the answer entities. Even

though the low precision and recall of germane document identification, it still can achieve

high performance of answer entity extraction. In the future, the evaluation should be also

based on the answer entities for germane document identification.

The current evaluation is based on the general domain web entity retrieval task from

TREC. Moreover, we analysis the topics provided by TREC with the framework of TREPM.

We find that answer entity retrieval has more important effects on the germane document

identification. However, the further detail relations between these two layers will be our

future research.

On February 2011, IBM’s Watson computer facing off against two former Jeopardy!

champion in a two-game match played over three shows. Dr. Watson locked the first game

and won 1 million. This is a great successfulness of entity retrieval, which will also be our

future research direction.

7.4.2 Applications on Medical Entity Retrieval

This dissertation has elaborated a TREPM model for the entity retrieval task. It is not

only applied in the competition tasks, such as TREC or INEX, but also promising in some

domain problems, such as medical ontology learning.

The task of medical ontology learning is to mine the knowledge from the community

experts or the publications or related sources to form well-represented ontologies. Current

approaches for medical ontology building are relying on the experts to point out the medical

diseases with their findings. Although this method is accurate, it is tedious with heavy

human labor cost. The medical ontology can be learn from multiple resources: structured

data (such as medical database), semi-structured data (such as Wikipedia), and unstructured

data (such as the Web or the medical reports).

According to the six layer definition of ontology, the ontology learning also includes the
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six layers, which are the terms learning, synonyms learning, concepts learning, taxonomy

learning, relation learning, and rule learning. The first four layers can be treated as concepts

and their structure learning. The fifth layer is the relation learning. The sixth layer is the

inference and reasoning.

The medical concepts and structure learning is to mine the medical publications or

authorized medical resources for diseases’ related medical findings, for example, shigellosis

findings’ mining. The authorized resources, such as the shigellosis page on the Wikipedia

page (http://en.wikipedia.org/wiki/Shigellosis) clearly states that “Symptoms may range

from mild abdominal discomfort to full-blown dysentery characterized by cramps, diarrhea,

fever, vomiting, blood, pus, or mucus in stools or tenesmus. Onset time is 12 to 50 hours.”

The mining system automatic detects the symptoms for this disease as abdominal discomfort,

dysentery, cramps, etc. With the multiple publications about the shigellosis as well as its

findings, the algorithm would estimate the probability of each mined medical finding to be

the disease’s related finding. Furthermore, I would like to mine the probability of the medical

findings for certain disease.

The detected medical diseases and their associated findings would need to detect the re-

lation between them. Many medical findings are related to different types, such as symptoms

or medicines, and some medical findings are hierarchical related. Therefore, we are eager to

detect the relation between the diseases and their medical findings. The supervised or semi-

supervised methods are used for the extraction and detection. The relation is important for

the medical ontology construction because it helps to disambiguate the relations involving

two entities. For example, the position of the tumor in the body is an important factor for

the diagnosis and sensitive for the treatment.

The application of the TREPM model is not only in the medical domain but also in

other domains because the TREPM model aims at the general domain. For example, expert

findings in the social network can use the TREPM model for quickly narrowing down the

germane documents and then detecting the experts.

With the development of retrieval system, users are no longer satisfied with finding the

relevant documents. They would like to find the relevant “nuggets” smaller than documents,

such as entities. Therefore, the research on entity retrieval problem will be more and more
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critical in the future. The work in this dissertation is definitely not my ending of the research

on this topic, but will be my starting point.
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APPENDIX A

HOMPAGE DETECTION FOR THE TREC TASK

The goal of homepage detection is to identify the corresponding homepages for answer enti-

ties. The entity retrieval tasks, such as TREC and INEX, define the entity’s homepages as

the answers for the retrieval tasks. Therefore, in our TREC competition task, we have an

additional step to match the answer entities to their homepages. There are three approaches

used in previous TREC for homepage detection: relying on search engines, training a classi-

fier for entity homepage detection, and relying on knowledge base to query entity homepages.

The work of Vydiswaran relies on search engines, by building up the structured index with

more weights on title and headline fields to find the most relevant documents as the en-

tity’s homepages [Vydiswaran et al., 2009]. Some groups, such as [McCreadie et al., 2009]

and [Kaptein and Kamps, 2009], use knowledge bases, like Wikipedia or DBpedia, to extract

homepages for the target entities. The third method is to build a classifier for homepage

identification, such as logistic regression in [Yang et al., 2009] and [Fang et al., 2009].

We adopted the classification method in entity homepage detection. Features listed in

Fang’s work are used to train a classifier for homepage identification [Fang et al., 2009]. The

features chosen for the classification are as follows. It includes the features of isWebSite,

type, isWiki, separators, urlContainsEntities, partInURL, hasAbout, hasIndex, hasWWW.

The details are as follows.

isWebSite indicates whether this website is official website or not,

type indicates what is the type of the entities, persons or organizations or products.
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isWiki indicates whether this page is Wikipedia page or not.

separators indicates how many separators in the URL. The assumption is if the page is the

homepage, then it should have few separators.

urlContainsEntities indicates whether the URL of this page include answer entities.

partInURL indicates whether the URL of this page include the part of answer entities.

hasAbout indicates whether the URL of this page include the term of “about”.

hasIndex indicates whether the URL of this page include the term of “index”.

hasWWW indicates whether the URL of this page starts with “WWW”.

The classification results using JRIP method are as shown in Figure 14.

Figure 14: JRIP rules of entity homepage detection

The results indicates that the rules are similar to choose the top results from search

engines as entity homepages. Therefore, the follow-up experiment focuses on how many

results from search engines can be the homepages of entities. Yahoo!Boss is still used to find

the homepage of entities. The results are in Table 21. The evaluation indicates that the
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Table 21: Results of homepage detection

# of correct entity # of gth # of entities hits Precision Recall F

Top 5 53 167 5760 0.058 0.386 0.076

Top 4 50 167 4554 0.07 0.35 0.090

Top 3 50 167 3401 0.094 0.348 0.082

Top 2 50 167 2286 0.1376 0.348 0.1103

Top 1 45 167 1168 0.21 0.3 0.13

commercial search engines usually return the homepages, at the top, for the entity queries.

In the final entity retrieval task, entity homepage detection uses the heuristic rule: if the

homepage link from corresponding Wikipedia entity homepage are existing, then the answers

in Wikipedia are as homepages; otherwise, the first hit from the search engine (Yahoo!Boss)

is treated as homepages.

Entity homepage detection by searching on search engine can only find one fifth home-

page. Although knowledge bases such as Wikipedia can also provide the answer for another

one third, it is still a hard topic. One of the reasons for the failures of entity homepage

detection is that the identical entities can be represented in different text surfaces. For ex-

ample, both “Indiana University East” and “IU East” can be represented as the same entity,

which can be referred to the same homepage (i.e., http://www.iue.edu). But in some cases,

the abbreviation format of the entities will cause the difficulty of homepage identification.

Another difficult is from the definition of the homepage. Some entities only have some web-

pages or webpage snippets to describe them. For example, the homepage sets for the topic of

products of MedImmune, Inc. are in Table 22. The homepage of a product can be news, or

product-related company’s homepage, or the product introduction page from its company,

or the products homepage. In this case, it will be hard to define the homepage for some

entities.
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Table 22: Entity homepage sets for the topic of products of MedImmune, Inc.

Docno URL Type of the URL

5-HPclueweb09-en0000-27-129352 http://baltimore.bizjournals.

com/baltimore/ sto-

ries/2009/01/05/daily20.html

News

5-HPclueweb09-en0006-42-198412 http://www.ethyol.com/ Products Homepage

5-HPclueweb09-en0006-41-111382 http://www.flumist.com/ Products Homepage

5-HPclueweb09-en0008-26-393002 http://www.medimmune.com Company Homepage

5-HPclueweb09-en0008-26-393062 http://www.medimmune.com/

about/history.asp

Company Introduction page

5-HPclueweb09-en0008-26-393262 http://www.medimmune.com/

products/ethyol/index.asp

Company Introduction page

5-HPclueweb09-en0008-26-393282 http://www.medimmune.com/

products/flumist/index.asp

Company Introduction page

5-HPclueweb09-en0008-26-393302 http://www.medimmune.com/

products/synagis/index.asp

Company Introduction page
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APPENDIX B

ENTITIES OF PRODUCTS EXTRACTED FROM WIKIPEDIA INFOBOX

Company Name # of

Prod

Products

Google 139 AdWords Editor ; Google Chrome—Chrome ; Google Desk-

top—Desktop ; Google Earth—Earth ; Gmail/Google Notifier ;

Google Lively—Lively ;

Amazon.com 3 A9.com ; Alexa Internet ; Internet Movie Database—IMDb ;

Liberty Media 0

eBay 7 online auction business model—Online auction hosting ; Electronic

commerce ; Shopping mall ; PayPal ; Skype ; Gumtree ; Kijiji ;

Yahoo! 56 Bix ; blo.gs ; del.icio.us ; Dialpad ; Flickr ; Fire Eagle ; Kelkoo ;

upcoming.org ; Jumpcut.com ; Zimbra ; Yahoo! 360

Microsoft 11 Microsoft Windows ; Microsoft Office ; Microsoft Servers ; Mi-

crosoft Visual Studio—Developer Tools ; Microsoft Expression Stu-

dio—Microsoft Expression ; Microsoft Dynamics—Business Solu-

tions ; Microsoft Game Studios—Games ; Xbox 360 ; Windows

Live ; Windows Mobile ; Zune ;
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Company Name # of

Prod

Products

Oracle Corporation 14 Oracle Database ; Oracle Rdb ; Oracle eBusiness Suite ; Ora-

cle Application Server ; JDeveloper—Oracle JDeveloper ; Oracle

Application Framework ; Oracle Application Development Frame-

work—Oracle ADF ; Oracle Beehive ; TimesTen ; Oracle Collab-

oration Suite ; Oracle Enterprise Manager ; Oracle Application

Express ; Oracle Designer ; Oracle Developer Suite ;

Symantec 8 Symantec Endpoint Protection;Network Access Control 11.0; Con-

trol Compliance Suite; Security Information Manager; Brightmail;

SAP AG 9 AP Business Suite ; SAP ERP ; SAP Customer Relationship Man-

agement (SAP CRM) ; SAP Supply Chain Management (SAP

SCM) ; SAP Supplier Relationship Management (SAP SRM) ; SAP

Product Lifecycle Management (SAP PLM) ; SAP NetWeaver ;

SAP Business One ; SAP Business All-in-One ;

ExxonMobil 3 Fuels ; Lubricants ; Petrochemicals ;

Chevron Corporation 7 Oil ; Petroleum ; Natural Gas ; Petrochemical ; Fuel ; Lubricant ;

ConocoPhillips 6 Oil ; Natural Gas ; Petroleum ; Lubricant ; Petrochemical ;

Valero Energy Corpo-

ration

1 Petrochemical

Marathon Oil 1 Petrochemical

Sunoco 1 Petrochemical

Hess Corporation 1 Petrochemical

Tesoro 1 Petroleum products

Frontier Oil 1 Petrochemical

Total 265
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APPENDIX C

A SAMPLE DOCUMENT OF INEX 2007:“NEXT”

<article>
<name id=“40642”>NEXTSTEP</name>
<conversionwarning>0</conversionwarning><body>
<figure>
<image xmlns:xlink=“http://www.w3.org/1999/xlink” xlink:type=“simple”
xlink:href=“../pictures/NeXTSTEP desktop.jpg” id=“60698” xlink:actuate=“onLoad”
xlink:show=“embed”>
NeXTSTEP desktop.jpg
</image><caption>
NeXTSTEP Desktop
</caption></figure><emph3>
NEXTSTEP
</emph3> is the original
<collectionlink xmlns:xlink=“http://www.w3.org/1999/xlink” xlink:type=“simple”
xlink:href=“22757.xml”>
object-oriented
</collectionlink>,
<collectionlink xmlns:xlink=“http://www.w3.org/1999/xlink“ xlink:type=“simple“
xlink:href=“6857.xml“>
multitasking
</collectionlink><collectionlink xmlns:xlink=“http://www.w3.org/1999/xlink“
xlink:type=“simple“ xlink:href=“22194.xml“>
operating system
</collectionlink> that
<collectionlink xmlns:xlink=“http://www.w3.org/1999/xlink“ xlink:type=“simple“
xlink:href=“21694.xml“>
NeXT Computer
</collectionlink>, Inc. developed to run on its proprietary
NeXT computers (informally known as “black boxes“).
NeXTSTEP 1.0 was released on
<unknownlink src=“18 September“>
18 September
</unknownlink><collectionlink xmlns:xlink=“http://www.w3.org/1999/xlink“
xlink:type=“simple“
xlink:href=“34847.xml“>
1989
</collectionlink> after several previews starting in
<collectionlink xmlns:xlink=“http://www.w3.org/1999/xlink“ xlink:type=“simple“
xlink:href=“34761.xml“>
1986
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</collectionlink>, and the last release 3.3 in early
<collectionlink xmlns:xlink=“http://www.w3.org/1999/xlink“ xlink:type=“simple“
xlink:href=“34658.xml“>
1995
</collectionlink>, by which time it ran not only on
<collectionlink xmlns:xlink=“http://www.w3.org/1999/xlink“ xlink:type=“simple“
xlink:href=“20319.xml“>
Motorola
</collectionlink><collectionlink xmlns:xlink=“http://www.w3.org/1999/xlink“
xlink:type=“simple“ xlink:href=“64826.xml“>
68000 family
</collectionlink> processors (specifically the original black boxes), but also generic IBM compatible
x86/Intel, Sun
......
<languagelink lang=“de“>
NeXTStep
</languagelink><languagelink lang=“es“>
NEXTSTEP
</languagelink><languagelink lang=“fr“>
NeXTSTEP
</languagelink><languagelink lang=“it“>
NeXTSTEP
</languagelink><languagelink lang=“ja“>
NEXTSTEP
</languagelink><languagelink lang=“no“>
NeXTSTEP
</languagelink><languagelink lang=“pl“>
NeXTStep
</languagelink></section>
</body>
</article>
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APPENDIX D

A SAMPLE DOCUMENT OF INEX 2009:“NEXT”

<?xml version=“1.0“ encoding=“UTF-8“?>
<!– generated by CLiX/Wiki2XML [MPI-Inf, MMCI@UdS] LastChangedRevision : 92 on
16.04.2009 15:41:13[mciao0826] –>
<!DOCTYPE article SYSTEM “../article.dtd“>
<article xmlns:xlink=“http://www.w3.org/1999/xlink“>
<O confidence=“0.9508927676800064“ wordnetid=“106832680“>
<header>
<title>Nextstep</title>
<id>40642</id>
<revision>
<id>239398792</id>
<timestamp>2008-09-18T23:05:07Z</timestamp>
<contributor>
<username>Aldie</username>
<id>901</id>
</contributor>
</revision>
<categories>
<category>Window-based operating systems</category>
<category>BSD</category>
<category>Discontinued software</category>
<category>NeXT</category>
<category>Mach</category>
</categories>
</header>
<bdy>
<template>
<name>Infobox OS</name>
<parameters>
<screenshot>
<image width=“230px“ src=“NeXTSTEP desktop.jpg“>
</image>
</screenshot>
<supported platforms>
<chip wordnetid=“103020034“ confidence=“0.8“>
<artifact wordnetid=“100021939“ confidence=“0.8“>
<instrumentality wordnetid=“103575240“ confidence=“0.8“>
<microprocessor wordnetid=“103760310“ confidence=“0.8“>
<conductor wordnetid=“103088707“ confidence=“0.8“>
<device wordnetid=“103183080“ confidence=“0.8“>
<semiconductor device wordnetid=“104171831“ confidence=“0.8“>
<link xlink:type=“simple“ xlink:href=“../270/20270.xml“>
Motorola 68000</link></semiconductor device>
</device>
</conductor>
</microprocessor>
</instrumentality>
</artifact>
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</chip>
......
</template>
<b>Nextstep</b> was the original <link xlink:type=“simple“
xlink:href=“../109/230109.xml“>
object-oriented</link>, <link xlink:type=“simple“ xlink:href=“../857/6857.xml“>
multitasking</link> <link xlink:type=“simple“ xlink:href=“../194/22194.xml“>
operating system</link> that <company wordnetid=“108058098“
confidence=“0.9508927676800064“>
<link xlink:type=“simple“ xlink:href=“../694/21694.xml“>
NeXT Computer</link></company>
developed to run on its range of proprietary computers, such as the <computer

wordnetid=“103082979“ confidence=“0.8“>
<occupation wordnetid=“100582388“ confidence=“0.8“>
<artifact wordnetid=“100021939“ confidence=“0.8“>
<instrumentality wordnetid=“103575240“ confidence=“0.8“>
<event wordnetid=“100029378“ confidence=“0.8“>
<device wordnetid=“103183080“ confidence=“0.8“>
<machine wordnetid=“103699975“ confidence=“0.8“>
<digital computer wordnetid=“103196324“ confidence=“0.8“>
<act wordnetid=“100030358“ confidence=“0.8“>
<psychological feature wordnetid=“100023100“ confidence=“0.8“>
<activity wordnetid=“100407535“ confidence=“0.8“>
<workstation wordnetid=“104603399“ confidence=“0.8“>
<link xlink:type=“simple“ xlink:href=“../717/2886717.xml“>
NeXTcube</link></workstation>
</activity>
</psychologica feature>
</act>
</digital computer>
</machine>
</device>
</event>
</instrumentality>
</artifact>
</occupation>
</computer>
. Nextstep 1.0 was released on <link xlink:type=“simple“ xlink:href=“../146/28146.xml“>
September 18</link>, <link xlink:type=“simple“ xlink:href=“../847/34847.xml“>
1989</link> after several previews starting in <link xlink:type=“simple“
xlink:href=“../761/34761.xml“>
1986</link>. The last version, 3.3, was released in early <link xlink:type=“simple“
xlink:href=“../658/34658.xml“>
1995</link>, by which time it ran not only on <company wordnetid=“108058098“
confidence=“0.9508927676800064“>
<link xlink:type=“simple“ xlink:href=“../319/20319.xml“>
Motorola</link></company>
<link xlink:type=“simple“ xlink:href=“../826/64826.xml“>

68000 family</link> processors, but also <link xlink:type=“simple“
xlink:href=“../803/49803.xml“>
IBM PC compatible</link> <link xlink:type=“simple“ xlink:href=“../198/34198.xml“>
x86</link>, Sun <link xlink:type=“simple“ xlink:href=“../954/36954.xml“>
SPARC</link>, and HP <link xlink:type=“simple“ xlink:href=“../970/24970.xml“>
PA-RISC</link>. <company wordnetid=“108058098“ confidence=“0.9508927676800064“>
<link xlink:type=“simple“ xlink:href=“../856/856.xml“>
Apple Inc.</link></company>
’s <link xlink:type=“simple“ xlink:href=“../640/20640.xml“>
Mac OS X</link> is a direct descendant of Nextstep.
<sec>
</p>

</sec>
</bdy>
</O>
</article>

160



APPENDIX E

TWENTY TOPICS IN TREC 2009 ENTITY TRACK

<query>
<num>1</num>
<entity name>Blackberry</entity name>
<entity URL>clueweb09-en0004-50-39593</entity URL>
<target entity>organization</target entity>
<narrative>Carriers that Blackberry makes phones for.</narrative>
</query>

<query>
<num>2</num>
<entity name>ACM Athena award</entity name>
<entity URL>clueweb09-en0004-21-12770</entity URL>
<target entity>person</target entity>
<narrative>Winners of the ACM Athena award.</narrative>
</query>

<query>
<num>3</num>
<entity name>Claire Cardie</entity name>
<entity URL>clueweb09-en0009-89-01791</entity URL>
<target entity>person</target entity>
<narrative>Students of Claire Cardie.</narrative>
</query>

<query>
<num>4</num>
<entity name>Philadelphia, PA</entity name>
<entity URL>clueweb09-en0011-13-07330</entity URL>
<target entity>organization</target entity>
<narrative>Professional sports teams in Philadelphia.</narrative>
</query>

<query>
<num>5</num>
<entity name>MedImmune, Inc.</entity name>
<entity URL>clueweb09-en0008-26-39300</entity URL>
<target entity>product</target entity>
<narrative>Products of MedImmune, Inc.</narrative>
</query>

<query>
<num>6</num>
<entity name>Nobel Prize</entity name>
<entity URL>clueweb09-en0002-23-19459</entity URL>
<target entity>organization</target entity>
<narrative>Organizations that award Nobel prizes.</narrative>
</query>
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<query>
<num>7</num>
<entity name>Boeing 747</entity name>
<entity URL>clueweb09-en0005-75-02292</entity URL>
<target entity>organization</target entity>
<narrative>Airlines that currently use Boeing 747 planes.</narrative>
</query>

<query>
<num>8</num>
<entity name>The King’s Singers</entity name>
<entity URL>clueweb09-en0002-63-29621</entity URL>
<target entity>product</target entity>
<narrative>CDs released by the King’s Singers.</narrative>
</query>

<query>
<num>9</num>
<entity name>The Beaux Arts Trio</entity name>
<entity URL>clueweb09-en0005-08-02741</entity URL>
<target entity>person</target entity>
<narrative>Members of The Beaux Arts Trio.</narrative>
</query>

<query>
<num>10</num>
<entity name>Indiana University</entity name>
<entity URL>clueweb09-en0007-37-37513</entity URL>
<target entity>organization</target entity>
<narrative>Campuses of Indiana University.</narrative>
</query>

<query>
<num>11</num>
<entity name>Home Depot Foundation</entity name>
<entity URL>clueweb09-en0009-23-04855</entity URL>
<target entity>organization</target entity>
<narrative>Donors to the Home Depot Foundation.</narrative>
</query>

<query>
<num>12</num>
<entity name>Air Canada</entity name>
<entity URL>clueweb09-en0004-24-03450</entity URL>
<target entity>organization</target entity>
<narrative>Airlines that Air Canada has code share flights with.</narrative>
</query>

<query>
<num>13</num>
<entity name>American Veterinary Medical Association (AVMA)</entity name>
<entity URL>clueweb09-en0004-39-32528</entity URL>
<target entity>product</target entity>
<narrative>Journals published by the AVMA.</narrative>
</query>

<query>
<num>14</num>
<entity name>Bouchercon 2007</entity name>
<entity URL>clueweb09-en000508-25203</entity URL>
<target entity>person</target entity>
<narrative>Authors awarded an Anthony Award at Bouchercon in 2007.</narrative>
</query>
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<query>
<num>15</num>
<entity name>SEC conference</entity name>
<entity URL>clueweb09-en0010-56-11826</entity URL>
<target entity>organization</target entity>
<narrative>Universities that are members of the SEC conference for football.</narrative>
</query>

<query>
<num>16</num>
<entity name>Mancuso Quilt Festivals</entity name>
<entity URL>clueweb09-en0011-22-08631</entity URL>
<target entity>organization</target entity>
<narrative>Sponsors of the Mancuso quilt festivals.</narrative>
</query>

<query>
<num>17</num>
<entity name>The Food Network</entity name>
<entity URL>clueweb09-en0006-55-17239</entity URL>
<target entity>person</target entity>
<narrative>Chefs with a show on the Food Network.</narrative>
</query>

<query>
<num>18</num>
<entity name>Jefferson Airplane</entity name>
<entity URL>clueweb09-en0009-25-04698</entity URL>
<target entity>person</target entity>
<narrative>Members of the band Jefferson Airplane.</narrative>
</query>

<query>
<num>19</num>
<entity name>John L. Hennessy</entity name>
<entity URL>clueweb09-en0011-14-04774</entity URL>
<target entity>organization</target entity>
<narrative>Companies that John Hennessy serves on the board of.</narrative>
</query>

<query>
<num>20</num>
<entity name>Isle of Islay</entity name>
<entity URL>clueweb09-en0008-96-25389</entity URL>
<target entity>organization</target entity>
<narrative>Scotch whisky distilleries on the island of Islay.</narrative>
</query>
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