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JOINT MODELING OF MULTIVARIATE ORDINAL LONGITUDINAL

OUTCOME

Zhen Jiang, PhD

University of Pittsburgh, 2011

Adherence to medication is critical to achieving effectiveness of any treatment. Poor ad-

herence often results in lack of treatment effects, worsening of diseases and increased health

care costs. Therefore, it has significant public health importance. However, determining fac-

tors that influence adherence behavior is complicated because adherence is often measured

on multiple drugs over a long period of time, resulting in multivariate ordinal longitudinal

outcome. In the first part of this dissertation, we present a joint model which assumes

ordered outcomes arose from a partitioned latent multivariate normal process. This joint

model provides a framework for analyzing multivariate ordered longitudinal data with a gen-

eral multilevel association structure, covering both between and within outcome correlation

within each individual. Simulation studies show that the estimators of regression parame-

ters are more efficient than those obtained through fitting separate standard GEE for each

outcome, though estimators from each method are unbiased. The proposed method also

yields unbiased estimators for correlation parameters given the correct correlation structure.

However, standard GEE estimators are biased when missing data are present and data are

not missing completely at random (MCAR). In the second part of this dissertation, we ap-

ply inverse probability weighted (IPW) estimating equations to the proposed joint model to

obtain consistent estimators when data are missing at random (MAR). Simulation studies

show that IPW estimators are consistent when the missing model is correctly specified. Fur-

thermore, we observe that fitting with correct correlation structures can also help reduce bias

for standard GEE estimators. This demonstrates both a better correlation structure and a
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better missing model will reduce bias in the analysis of missing at random longitudinal data

using IPW GEE. We illustrate application of the proposed joint model to the Virahep-C

data.

Keywords: Joint modeling; Generalized estimating equations; Inverse probability weight-

ing; Latent variable model; Multivariate ordinal longitudinal data; Adherence to medi-

cation.
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1.0 INTRODUCTION

In the first part of this dissertation, we present a joint model for analysis of multivariate

ordinal longitudinal outcome which assumes that the ordinal outcomes arose from a parti-

tioned latent multivariate normal distribution. Generalized estimating equations are used to

draw inferences on regression parameters and the least squares method is used to estimate

the correlation parameters. In the second part of this dissertation, we apply inverse proba-

bility weighting (IPW) estimating equations to the proposed joint model to obtain consistent

estimators when data are missing at random (MAR).

In Chapter 1, we introduce the Virahep-C study that motivated our research (Section

1.1), along with some relevant topics including medication adherence (Section 1.2), multi-

variate threshold model or latent multivariate normal distribution(Section 1.3), generalized

estimating equations (Section 1.4), correlation structure (Section 1.5), methods for missing

data (Section 1.6) and inverse probability weighted generalized estimating equations (Section

1.7). We plan to write Chapter 2 and Chapter 3 of this dissertation as independent papers.

Therefore, there may be some redundancy in the introduction section.

1.1 VIRAHEP-C STUDY

This dissertation was motivated by the Virahep-C (Viral Resistance to Antiviral Therapy

of Chronic Hepatitis C) study (Smith et al., 2007)[31], a nonrandomized, multicenter clini-

cal trial designed to compare clinical response rates to peginterferon and ribavirin therapy

between previously untreated African American and Caucasian American participants with

chronic hepatitis C of genotype 1. The Virahep-C study enrolled 401 participants between
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September 2002 and January 2004. Of these 401 participants, 196 (48.9%) are African

American (AA) and 205 (51.1%) are Caucasian American (CA). All participants were to

receive treatment with peginterferon alfa-2a weekly and ribavirin twice daily. The purpose

of this dissertation is to identify potential influential factors for medication adherence of

both medications. Investigating adherence behavior and potential influential factors is par-

ticularly important for subjects taking medication for hepatitis C virus (HCV) infection

because a growing body of literature in HCV research has indicated that patients’ treat-

ment responses are affected by how closely prescribed medications were followed and how

much medication was taken (Raptopoulou et al., 2005; Conjeevaram et al., 2006; Shiffman

et al., 2007)[21, 5, 30]. Thus, identifying patients who are less likely to be adherent to their

medication based on patient characteristics is critical, so that physicians can design early

interventions to improve adherence in these patients.

In the Virahep-C study, medication adherence was measured by electronic monitors

placed inside the caps of prescription bottles referred to as MEMS (Medication Event Man-

agement System, Aardex, Zug, Switzerland) caps. These electronic monitors continuously

recorded an event any time that a bottle was closed, which was presumed to be the time

a dose was taken. This information provided a detailed profile of each subject’s adherence

behavior. Based on the number of cap closings, daily adherence to ribavirin was categorized

as fully adherent (2 closings), partially adherent (1 closing), or non-adherent (no closings) for

each day, and weekly adherence to peginterferon was categorized as fully adherent (1 clos-

ing) or nonadherent (no closings) for each week. Thus, each subject’s longitudinal adherence

outcome consists of two components: one binary and the other ordinal.

1.2 MEDICATION ADHERENCE

Adherence to medication is defined as the extent to which patients follow their prescribed

treatment regimens. Its measure can be dichotomous (i.e. adherence vs. nonadherence),

ordinal or continuous percentage. Some available methods for measuring adherence include

pill counts, self-report, monitoring drug concentration and electronic monitors (e.g. MEMS).
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Adherence is critical for achieving effectiveness of any effective medical treatments. Poor

adherence often results in lack of treatment effects, worsening of diseases and increased

health care costs (Osterberg et al., 2005)[17]. Research has shown that subjects who do not

follow their treatments have inferior prognoses compared to subjects who do (Horwitz et al.,

1993; LaRosa 2000)[9, 11]. Unfortunately, poor adherence to medication is common even

in well monitored clinical trials, especially in treating chronic diseases such as hypertension

(Waeber et al., 1999)[35] or psychiatric illness (Nose et al., 2003)[16]. Race, gender and

socioeconomic status have been found to be associated with adherence behavior in some

studies[1, 32, 3].

Despite its critical impact, adherence and potential influential factors are difficult to

investigate. Chronic disease patients often take multiple medications for their conditions

over a long period of time, resulting in multivariate longitudinal adherence measures. Pa-

tients’ adherence status cannot be fully characterized by a single adherence outcome and

joint modeling of multiple outcomes is a natural choice. In addition, adherence to one med-

ication is expected to be correlated with adherence to other medications, since a patient

who is adherent to one medication is expected to be adherent to other medications as well.

However, adverse effects of one medication might result in poor adherence to that medication

only. Therefore, the structure of such correlation can be complex. This correlation between

multiple adherence outcomes may be critical in modeling adherence as an outcome, and in

modeling the association between treatment responses and adherence.

1.3 MULTIVARIATE THRESHOLD MODEL

Harville and Mee (1984), Qu et al. (1995) and Qu et al. (1992)[7, 19, 20] proposed a

multivariate threshold model for analyzing clustered ordinal data which assumes the ordinal

outcomes arose from a partitioned latent multivariate normal process. Suppose there are J

ordinal responses Y =(Y1, Y2, . . . , YJ) each with K categories (i.e. Yi ∈ (1, 2, . . . , K)). The

multivariate threshold model assumes that Y is a manifestation of a latent multivariate

normal vector u=(u1, u2, . . . , uJ) with mean zero and polychoric correlation R where ui ∼

3



N(0, 1). More specifically, this model assumes Yi = k when the value of ui falls into the kth

of K partitioned intervals of latent normal distribution (i.e. Φ−1(Pr(Yi ≤ k − 1)) < ui ≤

Φ−1(Pr(Yi ≤ k))) where Φ is the cdf of standard normal distribution. Then the pairwise

joint cumulative probability and pairwise joint probability are given as follows:

Pr(Yi ≤ s, Yj ≤ t) =

∫ Φ−1(Pr(Yi≤s))

−∞

∫ Φ−1(Pr(Yj≤t))

−∞
φ2(ui, uj, ρi,j) dui duj, (1.1)

Pr(Yi = s, Yj = t) =

∫ Φ−1(Pr(Yi≤s))

Φ−1(Pr(Yi≤s−1))

∫ Φ−1(Pr(Yj≤t))

Φ−1(Pr(Yj≤t−1))

φ2(ui, uj, ρi,j) dui duj, (1.2)

where i, j = (1, 2, . . . , J), s, t = (1, 2, . . . , K), Φ is the cdf of standard normal distribution,

φ2 is the pdf of the bivariate normal distribution and ρi,j is the (i, j)th elements of R.

One advantage of the multivariate threshold model, as Qu et al. (1995)[19] argued, is

that the assumption of a latent multivariate normal process does not affect the consistency

of marginal regression estimates because the latent process does not affect the marginal

probabilities. Rather, it only affects the correlation parameters through the pairwise joint

probabilities. Thus even if the latent process is misspecified, marginal regression estimates

remain unbiased, while correlation estimates can still be viewed as an approximation of the

true correlation structure. In addition, the multivariate threshold models use polychoric cor-

relation as an association measurement which is not restricted by the marginal probabilities

as compared to the Pearson correlation; and, also the number of parameters in the poly-

choric correlation does not increase with the number of categories of the ordinal response

increases when compared to the odds ratio. Finally, although Qu et al. (1995)[19] applied

this method to clustered ordinal outcomes, their study was limited to univariate ordinal

longitudinal data.

1.4 GENERALIZED ESTIMATING EQUATIONS (GEE)

Generalized estimating equations (GEE) proposed by Liang and Zeger (1986)[12] is perhaps

the most widely used method for longitudinal data analysis. For each subject i ∈ (1, 2, . . . , N)

with ni repeated observations, let Yi denotes an ni×1 response vector, Vi(α) denotes a ni×ni
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covariance matrix where α is correlation parameter, β denotes a p× 1 parameter vector, Xi

denotes a p × ni covariate matrix, and u denotes a link function (e.g. logistic or log link).

Thus, the generalized estimating equation is given as:

N∑
i=1

∂u(XT
i β)

∂βT
Vi(α)−1{Yi − u(XT

i β)} = 0 (1.3)

GEE estimates can be obtained by an iterative Fisher scoring algorithm as follow:

β̃
(m+1)

= β̃
(m)

+

(
N∑
i=1

DT
i (β̃

(m)
)V −1

i (α)Di(β̃
(m)

)

)−1 N∑
i=1

DT
i (β̃

(m)
)V −1

i (α)(Yi − u(XT
i β̃

(m)
)))

(1.4)

where DT
i (β) = ∂u(XT

i β)/∂βT . As outlined in Liang and Zeger (1986)[12], the GEE es-

timate of β is consistent and follows an asymptotic multivariate normal distribution with

mean β and variance covariance matrix cov(β̂), which can be consistently estimated by the

robust variance estimate given as:

ˆcov(β̂) = An
−1BnAn

−1 (1.5)

where An =
∑N

i=1Di(β̂)TVi(α)−1Di(β̂) and Bn =
∑N

i=1Di(β̂)TVi(α)−1(Yi − u(XT
i β̂))(Yi −

u(XT
i β̂))TVi(α)−1Di(β̂). Unlike likelihood based methods, GEE requires specification of only

the first two moments rather than the complete joint distribution of repeated observations.

This enables it to handle various type of outcomes through different link functions. In GEE,

correlation parameters are considered as nuisance parameters and consistent marginal re-

gression estimates can be obtained even under a misspecified covariance structure. However,

marginal regression estimates will be more efficient when the covariance structure is correctly

specified.

Since the introduction of GEE, numerous improvements have been made to serve dif-

ferent purposes. For binary outcomes, Prentice (1988)[18] proposed to use correlation as

an association measurement. Liang, Zeger and Qaqish (1992)[13] proposed to use the odds

ratio as an association measurement, and Carey et al. (1993)[4] developed the alternating

logistic regression, which resulted in efficient odds ratio estimators. Qu et al. (1992)[20] pro-

posed a latent variable model for clustered binary outcomes where a tetrachoric correlation

(the correlation of normally distributed latent processes for binary outcomes) is used as an
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association measurement. For ordinal outcomes, Miller et al. (1993)[15] presented GEE to

handle univariate ordinal longitudinal data using a working correlation based on the inverse

of Fisher’s z transformation. Williamson et al. (1995) [36] proposed an estimating equations

approach for clustered ordinal data using a global odds ratio as an association measurement.

Qu et al. (1995)[19] extended their previous work for clustered binary outcomes in Qu et

al. (1992) [20] and proposed a latent variable model for clustered ordinal outcomes where

a polychoric correlation (the correlation of normally distributed latent processes for ordinal

outcomes) is used as the association measurement.

Analysis of multivariate ordered longitudinal data where some components are binary

and the others are ordinal is complex. The analysis requires a flexible model to handle

the correlation between distinct outcomes at the same or different times and the correla-

tion within the same outcome at different times. Sutradhar et al. (2000)[33] proposed a

GEE method to analyze multivariate ordinal longitudinal data which accounted for both the

structural correlation from the ordinal nature of the responses and longitudinal correlation

from the repeated measurements over time.

All the above GEE based methods yield consistent marginal regression estimates when

data are complete or missing completely at random(MCAR)(Rubin, 1976)[27]. But if the

data are missing at random (MAR)(Rubin, 1976)[27], the estimates are biased. Robins et al.

(1995)[24] proposed a weighted generalized estimating equations (WGEE) for longitudinal

data with missing, which yields consistent estimators when data are MAR. Yi and Cook

(2002)[37] proposed weighted second order estimating equations which facilitate consistent

estimation of marginal regression parameters and association parameters. Lipsitz et al.

(2009)[14] developed a joint GEE method for multivariate binary longitudinal outcomes

with missing data, which yielded unbiased estimates when data are MAR.

1.5 CORRELATION STRUCTURE

In the analysis of longitudinal data using GEE, the correlation structure must be specified.

There are several commonly used correlation structures including

6



(1) Independent:

corr=


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 (1.6)

(2) Compound symmetric:

corr=


1 ρ . . . ρ

ρ 1 . . . ρ
...

...
. . .

...

ρ ρ . . . 1

 (1.7)

(3) AR(1):

corr=


1 ρ . . . ρn−1

ρ 1 . . . ρn−2

...
...

. . .
...

ρn−1 ρn−2 . . . 1

 (1.8)

(4) M-dependent:

corr=


1 ρ1 . . . ρn−1

ρ1 1 . . . ρn−2

...
...

. . .
...

ρn−1 ρn−2 . . . 1

 (1.9)

(5) Unstructured:

corr=


1 ρ12 . . . ρ1n

ρ12 1 . . . ρ2n

...
...

. . .
...

ρ1n ρ2n . . . 1

 . (1.10)

The above correlation structures can only capture a single level of clustering. However,

for data with more than one level of clustering (i.e. multilevel clustering), a more general

form of correlation structure is needed. We will present, in chapter 2, a general multilevel

correlation structure, which can be viewed as a natural extension of the above common

correlation structures. More specifically, for the ith subject, let Yijt and Yij′t′ be the jth

7



outcome response observed at time t and the j′th outcome response observed at time t′

respectively. There are two levels of clustering between Yijt and Yij′t′ : the first level is the

association within the same outcome, the second level is the association between different

outcomes. We can construct an extended AR-type correlation structure as follows:

ρjt,j′t′ = α
|t−t′|
jj′ × α

I(j 6=j′)
2jj′ , (1.11)

where −1 ≤ αjj′ ≤ 1 and −1 ≤ α2jj′ ≤ 1. In the extended AR-type correlation, responses

from the same outcome (j = j′) at different time points (t 6= t′) have an AR(1) correlation

ρjt,j′t′ = α
|t−t′|
jj′ , responses from different outcomes (j 6= j′) at different time points (t 6= t′)

have a weighted AR(1) correlation ρjt,j′t′ = α
|t−t′|
jj′ × α2jj′ with weight α2jj′ , and latent

processes for the responses from different outcomes (j 6= j′) at the same time point (t = t′)

have a correlation ρjt,j′t′ = α2jj′ . Similarly, we can also construct an extended exchangeable

type correlation and an extended m-dependent type correlation as follows:

ρjt,j′t′ = αjj′ × αI(j 6=j
′)

2jj′ , (1.12)

and ρjt,j′t′ = αjj′|t−t′| × αI(j 6=j
′)

2jj′ . (1.13)

One can construct even more flexible correlation structures by combining different corre-

lation structures at different levels. Correlation with more than two levels of clustering can

be modeled in similar fashion.

1.6 METHODS FOR MISSING DATA

Missing data is a common phenomenon in longitudinal studies. The missing mechanism

refers to how the probabilities of missingness relate to observed and unobserved data. Let

Rit be the completeness indicator for Yit where Rit = 1 if Yit is observed and Rit = 0 if not

observed. Rubin (1976)[27] and Laird (1988)[10] described three types of missing mecha-

nisms as follows:
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(1) Missing completely at random (MCAR): the probability of missing is not dependent on

either observed or unobserved data such that: Pr(Rit = 1|Yi, Xi)=Pr(Rit = 1). When data

are MCAR, the observed data can be considered as a random sample of the complete data.

Therefore, all methods applicable to complete data can be applied to missing completely at

random data.

(2) Missing at random (MAR): the probability of missing is dependent on previously ob-

served responses but not the current response such that: Pr(Rit = 1|Yi, Xi)=Pr(Rit =

1|Yi1, . . . , Yit−1, Xi).

(3) Missing not at random (NMAR): the missing mechanism is NMAR when neither MCAR

or MAR condition holds.

Missing data in longitudinal studies will not only cause loss of information but also in-

troduce potential bias in analysis. Therefore, missing data have significant implications in

data analysis. General approaches for analysis of longitudinal missing data include:

(1) Complete cases analysis: incomplete observations are discarded and only subjects with

complete data are included in the analysis. This method can lead to serious bias if data are

not MCAR and loss of efficiency due to smaller sample size.

(2) Imputation-based procedures: missing data are filled in with imputed values to create a

complete dataset for which standard methods can be applied. Common imputation methods

include mean imputation, regression imputation, and multiple imputation (Rubin 1978)[28],

which provide unbiased estimates if the imputation model is correctly specified.

(3) Model-based procedures: a model is defined for observed data and missing-data process.

Likelihood based inferences are drawn based on this model. Common model-based methods

include selection models and pattern-mixture models.

(4) Weighting procedures: this method assumes that the missing mechanism causes some

responses to be unobserved with higher probabilities than others. Such underrepresented

responses can be properly accounted for by weighting them using the inverse probabilities of

observing those responses. First, the missing process is modeled to construct the probability

of observing responses based on patient characteristics and time points. And then, responses

are weighted by the inverse of the estimated observing probabilities in the estimating pro-

cedure to represent otherwise similar unobserved responses.
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1.7 INVERSE PROBABILITY WEIGHTED GENERALIZED

ESTIMATING EQUATIONS

The standard GEE method, as one of the most widely used methods for longitudinal data

analysis, can fit unbalanced longitudinal data when some observations of subjects are missing.

However, the consistency of standard GEE estimators depends on the missing mechanism.

As stated by Liang and Zeger (1984)[12], standard GEE inferences are valid only when data

are missing completely at random (MCAR). When data are MAR, there are two general

approaches in obtaining consistent estimators under GEE framework: multiple imputation

(Rubin, 1978 [28]) and inverse probability weighting (Robins et al. 1995 [24]). The idea of

multiple imputation (MI) is to fill in the unobserved data with imputed data based on an

assumed model. Then standard methods (e.g. GEE) can be applied to the imputed com-

plete dataset.The inverse probability weighting (IPW) method was first introduced in survey

studies by Horvitz and Thompson (1952) [8]. The general idea is that certain underlying

missing mechanisms cause some responses to be observed with lower probabilities than oth-

ers. To obtain consistent estimators, such underrepresented responses should be weighted

by the inverse of observing probabilities. Robins et al. (1995) [24] proposed a class of IPW

estimating equations which extended standard GEE method to MAR data and provided

consistent marginal mean estimators when the response and missing models are correctly

specified. In Robins et al. (1995) [24], the missing model is fitted using logistic regression:

λit(γ) = P (Rit = 1|Rit−1 = 1) =
exp(wTi γ)

1 + exp(wTi γ)
(1.14)

λ̄it(γ) = P (Rit = 1) =
t∏

s=1

λis(γ) (1.15)

where wi is the covariate matrix for the missing model and γ is the missing parameter. The

corresponding estimating equations for the missing parameter γ is given as:

N∑
i=1

∂λi(γ)

∂γT
V −1
γi {Ri − λi(γ)} = 0, (1.16)
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where λi(γ) = (λi1(γ), λi2(γ), . . . , λiT (γ))T , Ri = (Ri1, Ri2, . . . , RiT )T and V −1
γi = [λi(γ)[1 −

λi(γ)]T ]−1. Once the response probability of each response has been estimated, one can

construct estimating equations for the mean parameter β by incorporating inverse probability

as weights (IPW). The weighted estimating equations for marginal mean parameter is given

as:
N∑
i=1

∂u(XT
i β)

∂βT
Vi(α)−1∆βi(γ̂){Yi − u(XT

i β)} = 0 (1.17)

where

∆βi(γ̂) =


∆βi1(γ̂) 0 . . . 0

0 ∆βi2(γ̂) . . . 0
...

...
. . .

...

0 0 . . . ∆βiT (γ̂)

 , (1.18)

∆βit(γ̂) =
Rit

λ̄it
. (1.19)

Compared with the standard GEE equation (1.3) in section 1.4, the only extra term in the

class of IPW estimating equation introduced by Robins et al. (1995)[24] is the weight matrix

∆βi(γ̂). The idea here is that the underlying missing mechanism causes certain response Yit

to be observed with probability λ̄it. Such Yit should be weighted by Rit/λ̄it in estimating

mean parameters to account for the unobserved outcome otherwise similar to Yit.

Later, Yi and Cook (2002)[37] proposed inverse probability weighted second-order es-

timating equations for which the inverse probability weighting is applied to estimating

equations for both mean and association parameters. They showed that, under certain

assumptions, such methods provided consistent estimators for both mean and association

parameters.
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2.0 JOINT MODELING OF MULTIVARIATE ORDINAL LONGITUDINAL

OUTCOMES

2.1 INTRODUCTION

Adherence to medication is defined as the extent to which patients follow their treatment

regimens. Effectiveness of any treatment can be achieved only if patients take their medi-

cations as prescribed. Unfortunately, poor adherence to medication is common even in well

monitored clinical trials, especially in treating chronic diseases such as hypertension (Waeber

et al., 1999) and psychiatric illness (Nose et al., 2003). Poor adherence often results in lack

of treatment effects, worsening of diseases and increased health care costs (Osterberg et al.,

2005). Research has shown that subjects who do not follow their treatments have inferior

prognosis than subjects who do (Horwitz et al., 1993; LaRosa 2000). Despite its critical im-

pact, adherence behavior and potential influential factors are difficult to investigate because

adherence is often measured on more than one medication repeatedly over a long period of

time. In addition, adherence to one medication is expected to be correlated with adherence

to other medications, since a patient who is adherent to one medication is expected to be

adherent to other medications as well. However, adverse effects of one medication might

result in poor adherence to that medication compared to others. Therefore, the structure of

such correlation can be complex. This correlation between multiple adherence outcomes may

be critical in modeling adherence as an outcome, and in modeling the association between

treatment responses and adherence.

The dataset that motivated this research originates from the Virahep-C (Viral Resistance

to Antiviral Therapy of Chronic Hepatitis C) study (Smith et al., 2007). It is a nonrandom-

ized, multicenter clinical trial designed to compare clinical response rates to peginterferon
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and ribavirin therapy between previously untreated African American and Caucasian Amer-

ican participants with chronic hepatitis C of genotype 1. Investigating adherence behavior

and potential influential factors is particularly important for subjects taking medication

for the hepatitis C virus (HCV) infection because a growing body of literature in HCV re-

search has indicated that patients’ treatment responses are affected by how closely prescribed

medications were followed and how much medication was taken (Raptopoulou et al., 2005;

Conjeevaram et al., 2006). Thus, identifying patients who are less likely to be adherent to

their medication based on patient characteristics is critical, so that early interventions can

be implemented to improve adherence in these patients.

In the Virahep-C study, the initial prescription was peginterferon alfa-2a (180 mcg/wk)

weekly and ribavirin(1000-1200 mg/day) twice daily. Adherence was measured through elec-

tronic monitors placed inside the caps of prescription bottles. These caps are referred as

MEMS (Medication Event Management System, Aardex, Zug, Switzerland) caps. These

monitors continuously recorded an event any time that a bottle was closed, which was pre-

sumed to be the time a dose was taken. This information provided a detailed profile of each

subject’s adherence behavior. Based on the number of cap closing, adherence to ribavirin

was categorized as fully adherent (2 closing), partially adherent (1 closing), or non-adherent

(no closing) for each day, and adherence to peginterferon was categorized as fully adherent

(1 closing) or nonadherent (no closing) for each week. Thus, each subject’s longitudinal ad-

herence outcomes consist of two components: a binary longitudinal outcome and an ordinal

longitudinal outcome.

Generalized estimating equations (GEE) proposed by Liang and Zeger (1986) is per-

haps the most widely used method for longitudinal data analysis. Since its introduction,

numerous improvements have been made to GEE to serve different purposes. For binary

outcomes, Prentice (1988) proposed to use correlation as association measurement. Liang,

Zeger and Qaqish (1992) proposed to use the odds ratio as association measurement, and

Carey et al. (1993) developed the alternating logistic regression, which resulted in efficient

odds ratio estimators. Qu et al. (1992) proposed a latent variable model for clustered binary

outcomes where a tetrachoric correlation (the correlation of normally distributed latent pro-

cesses for binary outcomes) is used as association measurement. For ordinal outcomes, Miller
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et al. (1993) presented GEE to handle univariate ordinal longitudinal data using a working

correlation based on the inverse of Fisher’s z transformation. Williamson et al. (1995) pro-

posed an estimating equations approach for clustered ordinal data using a global odds ratio

as association measurement. Qu et al. (1995) extended their previous work for clustered

binary outcomes in Qu et al. (1992) and proposed a latent variable model for clustered ordi-

nal outcomes where a polychoric correlation (the correlation of normally distributed latent

processes for ordinal outcomes) is used as the association measurement. An advantage of

polychoric correlation is that the number of correlation parameters, unlike the odds ratio,

does not increase as the number of categories in each outcome increases. Although Qu et

al. (1995) applied this method to clustered ordinal outcomes, their study was limited to

univariate ordinal longitudinal data.

Analysis of multivariate ordered longitudinal data where some components are binary

and the others are ordinal is complex. The analysis requires a flexible model to handle

the correlation between distinct outcomes at the same or different times and the correlation

within the same outcome at different times. Sutradhar et al. (2000) proposed a GEE method

to analyze multivariate ordinal longitudinal data which accounted for both the structural

correlation from the ordinal nature of the responses and longitudinal correlation from the

repeated measurements over time. Lipsitz et al.(2009) developed a joint GEE method for

multivariate binary longitudinal outcomes with missing data, which yielded almost unbiased

estimates when data are missing at random (MAR) (Rubin, 1976).

In this chapter, we propose a joint model to analyze multivariate ordered longitudinal

outcome where it is assumed that the observed multivariate ordered outcome is from a parti-

tioned latent multivariate normal distribution. The GEE approach is used to draw inference

on regression parameters and the least square method is used to estimate correlation param-

eters. This proposed joint model provides a flexible framework to account for the multilevel

correlation structure covering both between and within outcome associations. Furthermore,

simulation studies show that the GEE estimators of regression parameters obtained from the

joint model are unbiased, and more efficient than those obtained from fitting separate GEE

for each outcome.
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As a brief overview of this chapter, we first describe the proposed joint model (section

2.2) followed by how to draw inference using GEE (section 2.3). Then a series of simulation

results are presented to examine the joint model (section 2.4) followed by the application

to Virahep-C data (section 2.5). Finally, we discuss the implications and limitations of the

proposed joint model (section 2.6).

2.2 THE JOINT MODEL

Suppose that for each subject i (i = 1, . . . , n), there are J ordered longitudinal outcomes

each with Kj categories (j = 1, . . . , J) and the jth outcome of ith subject has nij repeated

measurements observed at time t (t = Tj1, . . . , Tjnij). Denote Yijt as the jth ordinal outcome

of ith subject observed at time t where Yijt takes value from the set {0, . . . , Kj − 1} and Yijt

is binary if Kj = 2. It follows that the aggregated response vector Yi of subject i can be

formed as Yi = (Y ′
i1, . . . , Y

′
iJ)′ where Yij=(YijTj1 , . . . , YijTjnij )

′ is the response vector for

jth outcome in subject i.

2.2.1 MARGINAL PROBABILITY MODEL

Let γijtk = Pr (Yijt ≤ k) and πijtk = Pr (Yijt = k) (k = 0, . . . , Kj − 2) be the marginal

cumulative probability and probability of Yijt at the kth category where γijtk is assumed

to depend upon covariates through a cumulative logistic regression model. Furthermore,

we denote Xit = (xit1, . . . , xitp) as a p × 1 dimensional covariate vector for subject i at

time t, which may include both subject and time specific covariates. We also denote

βj = (βj1, βj2, . . . , βjp)
′ as the p × 1 dimensional regression coefficient vector of Xit for

jth outcome and aj = (aj0, aj1, . . . , ajKj−2)′ as the (Kj − 1) dimensional intercept vector for

jth outcome with Kj categories, such that aj0 < aj1 < . . . < ajKj−2. Then the cumulative

probability γijtk and probability πijtk of Yijt can be given as:

γijtk = Pr
(
Yijt ≤ k | Xit,βj,aj

)
=

exp(ajk + XT
itβj)

1 + exp(ajk + XT
itβj)

, (2.1)
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πijtk = Pr
(
Yijt = k | Xit,βj,aj

)
=

exp(ajk + XT
itβj)

1 + exp(ajk + XT
itβj)

−
exp(ajk−1 + XT

itβj)

1 + exp(ajk−1 + XT
itβj)

. (2.2)

When Yijt is binary (i.e. Kj = 2), equations (2.1) and (2.2) are reduced to modeling failure

probability using the following logistic regression model:

γijt0 = Pr
(
Yijt ≤ 0 | Xit,βj,aj

)
=

exp(aj0 + XT
itβj)

1 + exp(aj0 + XT
itβj)

, (2.3)

πijt0 = Pr
(
Yijt = 0 | Xit,βj,aj

)
= γijt0. (2.4)

Although in theory each outcome can have its own set of covariates, for the purpose of

simplicity we assume that each outcome has the same set of covariates. We allow distinct

regression coefficients βj for each outcome. When no ambiguity exists, we will use β =

(a′1,β
′
1,a

′
2,β

′
2, . . . ,a

′
J ,β

′
J)′ to denote the overall parameter vector.

2.2.2 JOINT PROBABILITY MODEL

To jointly model the multivariate longitudinal outcome Yi = (Y ′
i1, . . . , Y

′
iJ)′ where Yij=

(YijTj1 , . . . , YijTjnij )
′, in this section, we construct the pairwise joint probability for any two

responses in Yi. We define γi,jtk,j′t′k′ = Pr (Yijt ≤ k, Yij′t′ ≤ k′) and πi,jtk,j′t′k′ = Pr(Yijt =

k, Yij′t′ = k′) as the joint cumulative probability and joint probability respectively, of re-

sponses Yijt and Yij′t′ . We assume that Yijt and Yij′t′ originate from a bivariate normal distri-

bution (u, v) ∼ N

 0

0

 ,

 1 ρjt,j′t′

ρjt,j′t′ 1

 partitioned by threshold values Φ−1(γijtk)

and Φ−1(γij′t′k′). Thus, γi,jtk,j′t′k′ and πi,jtk,j′t′k′ can be given as:

γi,jtk,j′t′k′ = Pr(Yijt ≤ k, Yij′t′ ≤ k′) =

∫ Φ−1(γijtk)

−∞

∫ Φ−1(γij′t′k′ )

−∞
φ2(u, v, ρjt,j′t′) du dv, (2.5)

πi,jtk,j′t′k′ = Pr(Yijt = k, Yij′t′ = k′) =

∫ Φ−1(γijtk)

Φ−1(γijtk−1)

∫ Φ−1(γij′t′k′ )

Φ−1(γij′t′k′−1)

φ2(u, v, ρjt,j′t′) du dv, (2.6)
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where Φ is the cdf of a standard normal distribution and φ2 is the pdf of a bivariate nor-

mal distribution with pairwise correlation ρjt,j′t′ which will be constructed in section 2.3.

Notice that the threshold values Φ−1(γijtk) and Φ−1(γijtk) are determined by the marginal

probability model and only the joint probability model is affected by the pairwise correlation

ρjt,j′t′ .

This method of modeling joint cumulative probabilities can be viewed as a multivariate

threshold model (Harville and Mee, 1984; Qu et al., 1992; Qu et al., 1995)[7, 20, 19]. It

is assumed that the
∑J

j=1 nij × 1 dimensional response vector Yi is observed from parti-

tioning a
∑J

j=1 nij × 1 dimensional latent random vector εi = (εi1, . . . , εiJ)′ where εij =

(εijTj1 , . . . , εijTjnij )
′. εi is assumed to follow a multivariate normal distribution with mean

zero and correlation matrix R where ρjt,j′t′ is one of the elements in R. It is further as-

sumed that one will observe yijt = k when Φ−1(γijtk−1) < εijt ≤ Φ−1(γijtk). Thus, the

multivariate threshold method ensures the marginal cumulative probability of Yijt ≤ k is

still Φ (Φ−1(γijtk)) = γijtk, and the joint cumulative probability of Yijt ≤ k and Yij′t′ ≤ k′ is

given in equation (2.5).

2.2.3 CORRELATION STRUCTURE

As demonstrated in section 2.2, given the marginal probabilities, the joint probability of

any two response variables can be calculated by equation (2.6) as long as the correlation

matrix R of latent random vector εi is specified. There are two levels of associations in

R: the first level is the association within the outcome at different time points; the second

level is the association between different outcomes at the same or different time points.

To accommodate this feature in R, we develop a general multilevel correlation structure

similar to the correlation model proposed by Lipsitz et al. (2009)[14]. It can be viewed as a

natural extension of common univariate correlation structures (e.g. AR, exchangeable and

m-dependent). For example, we construct an extended AR-type correlation for εijt and εij′t′

as:

ρjt,j′t′ = α
|t−t′|
jj′ × α

I(j 6=j′)
2jj′ , (2.7)
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where −1 ≤ αjj′ ≤ 1 and −1 ≤ α2jj′ ≤ 1. In the extended AR-type correlation structure,

latent processes for the responses from the same outcome (j = j′) at different time points

(t 6= t′) have an AR(1) correlation ρjt,j′t′ = α
|t−t′|
jj′ , latent processes for the responses from

different outcomes (j 6= j′) at different time points (t 6= t′) have a weighted AR(1) correlation

ρjt,j′t′ = α
|t−t′|
jj′ ×α2jj′ with weight α2jj′ , and latent processes for the responses from different

outcomes (j 6= j′) at same time point (t = t′) have a correlation ρjt,j′t′ = α2jj′ . Similarly,

we can also construct an extended exchangeable correlation and an extended m-dependent

correlation as follows:

ρjt,j′t′ = αjj′ × αI(j 6=j
′)

2jj′ , (2.8)

and ρjt,j′t′ = αjj′|t−t′| × αI(j 6=j
′)

2jj′ . (2.9)

One can construct even more flexible correlation structures by combining different corre-

lation structures at different levels. For the extended AR-type and exchangeable correlation

model defined as equations (2.7) and (2.8), only J2 and 1
2
(J2 + J) correlation parameters

are needed for J longitudinal outcomes. More parameters are required for the extended m-

dependent structure in equation (2.9), in which case the estimation of correlation parameter

α may be computationally intensive.

2.3 INFERENCE

In this section, we demonstrate how to draw inference on regression parameters from the

proposed joint model using GEE. We first construct subject specific variance-covariance

matrix which accounts for the structural correlation due to the ordinal nature of the responses

along with both between and within outcome correlation.
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2.3.1 COVARIANCE STRUCTURE

To construct the variance-covariance matrix, let us first dichotomize ordinal variable Yijt with

Kj categories into a (Kj − 1) dimensional binary vector Zijt where Zijt and its expectation

πijt =E(Zijt) are given as:

Zijt = (zijt0, zijt1, . . . , zijtKj−2), (2.10)

and πijt = (πijt0, πijt1, . . . , πijtKj−2), (2.11)

where zijtk =

 1 if Yijt = k

0 if Yijt 6= k ,
and πijtk = Pr

(
Yijt = k | Xit,βj,aj

)
as in equation (2.2),

k = {0, . . . , Kj − 2}. It follows that the
∑J

j=1 nij dimensional ordinal response vector Yi

can be transformed into a
∑J

j=1 nij(Kj − 1) dimensional binary vector Zi with expectation

πi=E(Zi).

The variance-covariance matrix Σi of the dichotomized binary response vector Zi for ith

subject can be written as:

Σi =


Σi11 Σi12 . . . Σi1J

Σi21 Σi22 . . .
...

...
...

. . .
...

ΣiJ1 ΣiJ2 . . . ΣiJJ

 , (2.12)

where Σijj′ =


Σi,jTj1,j′Tj′1

Σi,jTj1,j′Tj′2
. . . Σi,jTj1,j′Tj′nij′

Σi,jTj2,j′Tj′1
Σi,jTj2,j′Tj′2

. . .
...

...
...

. . .
...

Σi,jTjnij ,j
′Tj′1

Σi,jTjnij ,j
′Tj′2

. . . Σi,jTjnij ,j
′Tnij′

 , (2.13)

where Σijj′ is a nij(Kj − 1)×nij′(K ′j − 1) dimensional variance-covariance matrix for binary

vectors Zij and Zij′ , and Σijt,j′t′ is a (Kj−1)×(K ′j−1) dimensional variance-covariance matrix

for binary vectors Zijt and Zij′t′ . When j = j′ and t = t′, Σijt,j′t′ represents the structural

correlation due to the polytomous nature of ordinal outcome Yijt. Otherwise, j 6= j′ or t 6= t′,
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Σijt,j′t′ represents the correlation from the latent multivariate normal process for Yijt and

Yij′t′ . The (k, k′)th element of covariance matrix Σijt,j′t′ can be derived as:

σi,jtk,j′t′k′ =

 −πijtkπij′t′k′ k 6= k′

πijtk(1− πij′t′k′) k = k′
j = j′ and t = t′, (2.14)

σi,jtk,j′t′k′ = πi,jtk,j′t′k′ − πijtkπij′t′k′j 6= j′ or t 6= t′, (2.15)

where πijtk and πij′t′k′ are marginal probabilities given by equation (2.2) and πi,jtk,j′t′k′ is the

pairwise joint probability given by equation (2.5).

2.3.2 ITERATIVE ESTIMATION PROCEDURE

As the previous section demonstrated, the variance-covariance matrix Σi is a function of

regression parameter β and correlation parameter α through marginal probability πijtk and

pairwise joint probability πi,jtk,j′t′k′ respectively. Because both β and α are unknown, to

estimate β using GEE, we resort to an iterative estimation process.

Had the correlation parameterα been known, the regression parameter β could have been

estimated by solving the following generalized estimating equation based on dichotomized

binary response vector Zi:

N∑
i=1

DT
i (β)Σ−1

i (α,β){Zi − πi(β)} = 0 (2.16)

where πi(β) as a function of β is defined in equation (2.2), Σ−1
i (α,β) as a function of both

α and β is defined in equation (2.12) - equation (2.15), and Di(β) is the partial derivative

of πi(β) with respect to β whose element is given as follow:

δ

δβj
πijtk(β) =


XT

it

exp(ajk+XT
itβj)

(1+exp(ajk+XT
itβj))

2 k = 0,

XT
it

[
exp(ajk+XT

itβj)

(1+exp(ajk+XT
itβj))

2 −
exp(ajk−1+XT

itβj)

(1+exp(ajk−1+XT
itβj))

2

]
k ≥ 1.

(2.17)

We can solve equation (2.16) using an iterative equation:

β̃
(m+1)

= β̃
(m)

+

(
N∑
i=1

DT
i (β̃

(m)
)Σ−1

i (α, β̃
(m)

)Di(β̃
(m)

)

)−1 N∑
i=1

DT
i (β̃

(m)
)Σ−1

i (α, β̃
(m)

)(Zi − πi(β̃
(m)

))

(2.18)
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However, α is unknown and needs to be estimated. To estimate α, we first define

Si(β) = (Zi − πi(β))(Zi − πi(β))′. In addition, let si(β) = vech(Si(β)) (Vonesh and

Chinchilli, 1997)[34] be the vectorzied version of the upper diagonal elements in Si(β) and

σi(α,β) = vech(Σi(α,β)) be the counterpart of Σi(α,β).

Given E(Si(β))=Σi(α,β) under the joint model, one can view Si(β) as the “observed

outcome” and Σi(α,β) as its expectation to construct a regression model to estimate α

when β is known by minimizing the sum of the Euclidean norms of (si(β)− σi(α,β)) as

follow:
N∑
i=1

(si(β)− σi(α,β))T (si(β)− σi(α,β)) (2.19)

with respect to α. This is also equivalent to solving the following generalized estimating

equation for α when β is given:

N∑
i=1

∂σi(α,β)

∂α

T

{si(β)− σi(α,β)} = 0, (2.20)

where an identity variance-covariance matrix is assumed for σi(α,β).

Now we can carry out the iterative estimation procedure in the following manner:

Step 1: Obtain an initial estimate of β denoted by β̂
0
, which can be done by fitting separate

model to each outcome;

Step 2: Solve for α̂0 by minimizing equation (2.19) with β replaced by β̂
0
;

Step 3: Solve for β̂
1

from generalized estimating equation (2.16) with α replaced by α̂0.

Step 4: Iterate between Step 2 and 3 until convergence criteria are fulfilled for both α and

β, where the solution is denoted by α̂ and β̂.

β̂ obtained from above iterative procedure is consistent and follows an asymptotic normal

distribution with mean β and a variance-covariance matrix that can be estimated by the

robust variance estimator proposed by Liang and Zeger (1986)[12] as follow:

ˆcov(β̂) = An
−1BnAn

−1 (2.21)

where An =
∑N

i=1Di(β̂)TΣi(α̂, β̂)−1Di(β̂) and Bn =
∑N

i=1Di(β̂)TΣi(α̂, β̂)−1(Zi−πi(β̂))(Zi−

πi(β̂))TΣi(α̂, β̂)−1Di(β̂).
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2.4 SIMULATION STUDY

To examine the proposed joint model, we performed a series of simulation studies. For

simplicity, we assumed each subject i had one ordinal longitudinal outcome Yi1 with three

categories and one binary longitudinal outcome Yi2. We constructed 5 repeated measure-

ments for the ordinal outcome at times t = 0, 1, 2, 3, 4 as Yi1=(Yi10, Yi11, Yi12, Yi13, Yi14)′ and

3 repeated measurements for the binary outcome at times t′ = 0, 2, 4 as Yi2=(Yi20, Yi22, Yi24)′.

Thus, each subject had a 8× 1 dimensional response vector Yi = (Y ′
i1, Y

′
i2)

′. Similar to the

Virahep-C data, this is a case where two outcomes are measured at different sets of times

by design.

We used the cumulative logistic regression to specify the true marginal probabilities for

the ordinal outcome, and used the logistic model to specify the true marginal probabilities for

the binary outcome. For each subject, we constructed one time covariate T specified as above

and one baseline covariate X generated from a Bernoulli(0.5) distribution. We first specified

the regression coefficient β1 = (β1x, β1t) and the intercept a1 = (a10, a11) for the ordinal

outcome and β2 = (β2x, β2t) and a2 = a20 for the binary outcome. Then, we constructed

the marginal cumulative probabilities for both outcomes γi = (γi1,γi2) by equations (2.1)

and (2.3) where γi1 = (γai10,γi11,γi12,γi13,γi14) and γi2 = (γi20,γi22,γi24).

To construct the latent multivariate normal process for both outcomes, we generated a

8 × 1 random vector εi=(εi10, εi11, εi12, εi13, εi14, εi20, εi22, εi24). Each element of εi followed a

standard normal distribution and εi followed a multivariate normal distribution with corre-

lation R∗ which is a function of the correlation parameters α = (α11, α22, α12, α212). In this

simulation study, R∗ was constructed as either an extended AR-type correlation by equa-

tion (2.7) or an extended exchangeable correlation by equation (2.8). After obtaining the

marginal probabilities and latent process εi with correlation R∗, each element of response

vector Yi = (Y ′
i1, Y

′
i2)

′ was generated as follows:

Yi1t =


0, if 0 < Φ(εi1t) ≤ γi1t0,

1, if γi1t0 < Φ(εi1t) ≤ γi1t1,

2, if γi1t1 < Φ(εi1t) < 1, t ∈ {0, 1, 2, 3, 4},

22



Yi2t′ =

 0, if 0 < Φ(εi2t′) ≤ γi2t′0,

1, if γi2t′0 < Φ(εi2t′) < 1, t′ ∈ {0, 2, 4}.

The above process ensures that the generated response vector Yi has specified marginal

probabilities given by equations (2.1) and (2.3) and a specified correlation for latent normal

process given by either equation (2.7) or equation (2.8).

We examined different correlation structures and parameters. In each scenario, both

M = 500 Monte-Carlo datasets with n = 100 subjects and M = 1000 Monte-Carlo datasets

with n = 50 subjects were generated. We fit four models to each dataset:

(1) sep-GLM: separately fit cumulative logistic regression for ordinal outcome and logistic

regression for binary outcome using maximum likelihood method;

(2) sep-GEE: separately fit the ordinal outcome and the binary outcome using GEE;

(3) Joint GEE Independence: GEE applied to the joint model with independent correlation

structure;

(4) Joint GEE: GEE applied to the joint model where correlation parameter α is estimated

along with regression parameter β = (a′1,β
′
1,a

′
2,β

′
2)′.

Tables 1 and 2 show the simulation results based on different sample sizes n=100 and

n=50. In each table, we examined six sets of α representing strong, moderate and no

correlation for both extended AR-type correlation and extended exchangeable correlation.

Regression coefficients were estimated by all four methods, and Monte-Carlo variances were

calculated based on M replications. For sep-GLM, model based variance estimates were

calculated while for sep-GEE and both Joint GEE methods with or without independent

assumption, robust sandwich variance estimates were calculated.

The results in Table 1 (n=100) show that the estimates of the regression coefficients are

approximately unbiased across all four models. Notice that even in scenarios 1, 2, 4, and

5 where the true correlation is not zero, fitting sep-GEE and Joint GEE with independent

assumption still yielded unbiased estimates. This is expected because in theory, GEE esti-

mators remain unbiased even when the correlation is misspecified (Liang and Zeger 1986).

In sep-GLM, the model-based variances grossly underestimated the true variance, leading

to poor coverage probabilities for the 95% confidence interval (CI), sometimes as low as

67%. On the other hand, in all GEE based methods, the coverage probabilities of the 95%
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CI match the nominal level and the robust variance estimates match the Monte-Carlo vari-

ances, implying that robust variance estimators are approximately unbiased even when the

correlation is misspecified.

Results in scenarios 3 and 6 of Table 1 indicate that when the two longitudinal outcomes

are uncorrelated, separate or joint modeling makes no difference in efficiency as demonstrated

by the approximately equal MC variances under each method. However, when the two

processes are correlated and the joint model is adopted with correct correlation structure,

the estimators gain efficiency and in some cases, by as much as 23%. The estimates of

baseline covariates for the binary outcome (β̂2x) generally have the most efficiency gain,

and the efficiency gain also increased as the correlation increased where the efficiency gain

of β̂2x is 7% and 3% for scenarios 2 and 5, and 23% and 13% for scenarios 1 and 4. The

estimates of baseline covariates for the ordinal outcome (β̂1x) have slight efficiency gain up

to 7% as seen in scenario 1. The estimates of time covariates for both outcomes (β̂1t, β̂2t)

have efficiency gain up to 6% and 10% as seen in scenario 1. Table 2, with sample size n=50,

shows very similar results as in Table 1, except that the standard errors of estimates were

larger compared to those presented in Table 1 due to the decreased sample size.

In addition, the results in Table 3 show the joint model yielded unbiased estimates

for correlation parameters given the correct correlation structure, which may be of further

interest when assessing the association among multiple outcomes. Finally, as a check of the

robustness of our model when the correlation structure is misspecified, we generated data

from both extended exchangeable and AR-type correlations. In both cases, we fitted the

joint model with three working correlations, namely, independent, extended AR-type and

extended exchangeable correlation. The results in Table 4 show that our model still yielded

unbiased estimates with coverage probabilities close to nominal level in all cases even when

the correlation structure is misspecified, but the variance of estimates is minimized when the

working correlation structure matches the true correlation.
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2.5 DATA ANALYSIS

A growing body of literature in hepatitis C virus research has shown that adherence to med-

ications affects treatment responses (Raptopoulou et al., 2005; Conjeevaram et al., 2006;

Shiffman et al., 2007)[21, 5, 30]. Our main goal in this study is to identify potential determin-

ing factors for adherence to medication in Virahep-C patients. The Virahep-C study enrolled

401 participants between September 2002 and January 2004. Of these 401 participants, 196

(48.9%) are African American (AA) and 205 (51.1%) are Caucasian American (CA). Initial

treatment strategy was peginterferon alfa-2a (180 mcg/wk) weekly and ribavirin(1000-1200

mg/day) twice daily. Although therapy continued for up to 48 weeks, it is believed that

adherence during the first 12 weeks is more important to achieve a response to therapy than

adherence after 12 weeks (Ferenci et. al 2005 [6]). Table 5 shows that less than 6% of the

participants dropped out during the first 12 weeks after treatment initiates. In this analysis,

we assumed drop outs were missing completely at random (MCAR) (Rubin, 1976; Laird,

1988)[27, 10]. Because it is only when the electronic monitors are malfunctioned that some

responses would not be observed. Adherence to ribavirin was categorized into three levels

(2, fully adherent; 1, partially adherent; 0, nonadherent), and adherence to peginterferon

was categorized into two levels (1, adherent; 0, nonadherent).

Two adherence outcomes were modeled jointly with a common set of covariates. The

main covariate of interest is race (1, CA; 0, AA). Other covariates include days (i.e. number

of days since the treatment was initiated), days and race interaction, gender (1, male; 0,

female), baseline HCV RNA level (log10 eq/ml), and employment status (1, unemployed; 0,

employed). The marginal probabilities of adherence to ribavirin were assumed to depend

upon covariates through the cumulative logistic regression model as follow:

log

(
Pr(Yi1t ≤ k)

1− Pr(Yi1t ≤ k)

)
= a1k + β1 × racei + β2 × t+ β3 × racei ∗ t+ β4 × sexi

+β5 × vloadblgi + β6 × employi,

where t=0, 1, 2,. . . , 84 and k=0, 1. In this cumulative logistic model, a positive regression

coefficient indicates a higher probability of being in a lower adherence category for ribavirin.
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Similarly, the marginal probabilities of adherence to peginterferon were assumed to depend

upon covariates through the logistic regression model as follow:

log

(
Pr(Yi2t ≤ 0)

1− Pr(Yi2t ≤ 0)

)
= a20 + β′1 × racei + β′2 × t+ β′3 × racei ∗ t+ β′4 × sexi

+β′5 × vloadblgi + β′6 × employi,

where t=0, 7, 14,. . . ,84. In this logistic model, a positive regression coefficient indicates a

higher probability of being nonadherent to peginterferon.

Although the true association structure of the Virahep-C data is unknown, it is unlikely

that no association exists between two adherence outcomes from the same patient. The

joint model also yields positive estimates for both between and within outcomes correlations

assuming extended AR-type structure (α̂11, α̂22, α̂12, α̂22) = (0.203, 0.981, 0.988, 0.417). Be-

cause adherence outcomes were observed repeatedly over time, it is reasonable to assume an

extended AR-type correlation.

We fit both sep-GEE and the proposed joint model assuming an extended AR-type

correlation to the Virahep-C data. Table 6 shows the regression parameter estimates from

both models. Based on the results from the joint model, the main covariate of interest

race is not significantly associated with neither of the two outcomes. Employment status is

the only patient characteristic that has a statistically significant effect on the adherence to

peginterferon. The odds ratio of being nonadherent to peginterferon is exp(0.812) = 2.25

for a patient who is unemployed at baseline compared to an otherwise similar patient who is

employed at baseline. Adherence to ribavirin varied significantly over time. The odds ratio of

being in a lower adherence category for ribavirin at any given day compared to the previous

day is exp(0.014) = 1.01, controlling for other patient characteristics. The coefficients of

time for both outcomes are positive indicating patients have a higher odds of being less

adherent to their medications as time increases. In contrast, the results from sep-GEE in

Table 6 indicates that race and days are statistically significant for both outcomes, while

employment status is significant for the adherence to peginterferon only.
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2.6 DISCUSSION

In this chapter, we proposed a joint model to analyze multivariate ordered longitudinal data

where it is assumed that the ordered outcomes are observed from a partitioned latent normal

process. The joint model accounts for both the between and within outcome association

using the correlation of the latent multivariate normal process. This correlation ranges from

−1 to 1 and is not restricted by marginal probabilities. The simulation study indicates

that the GEE estimators of the joint model are unbiased and more efficient compared to

those obtained from fitting separate GEE for each outcome. Furthermore, as observed in

the results from the analysis of Virahep-C data, failure to appropriately account for the

correlation between multiple outcomes can lead to improper conclusion.

In the joint model, although we made an assumption that observed ordered outcomes

arose from a latent multivariate normal process, this assumption, as argued in Qu et al.

(1995)[19], does not affect the unbiasness of β̂ because the latent normal process does not

affect the marginal probabilities. Rather, it only affects the correlation parameters through

the pairwise joint probabilities. Thus even if the latent process is misspecified, β̂ will remain

unbiased, while α̂ can still be viewed as an approximation of the true correlation structure.

We demonstrated in section 2.3 that the joint model can incorporate a general multilevel

correlation structure, for example, extended AR-type, extended exchangeable, and extended

m-dependent. One can construct even a more flexible correlation structure by combining

different correlation structures. For example, one can assume latent processes for the re-

sponses from the same outcome at different time points have an AR(1) correlation structure

ρjt,jt′ = α
|t−t′|
jj , while latent processes for the responses from different outcomes at different

time points have either an extended exchangeable correlation structure ρjt,j′t′ = α2jj′ or an

extended m-dependent correlation structure ρjt,j′t′ = α2jj′|t−t′|. These two extended mixed

correlation structures can be written as:

ρjt,j′t′ = α
|t−t′|×I(j=j′)
jj′ × αI(j 6=j

′)
2jj′ ,

and ρjt,j′t′ = α
|t−t′|×I(j=j′)
jj′ × αI(j 6=j

′)
2jj′|t−t′|.
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The proposed joint model can also be extended to handle more levels of clustering (e.g.

clustering due to sites, clinical centers etc.). Although additional correlation parameters are

required, the estimation process will remain similar. Furthermore, because the joint model

uses the least square method to estimate correlation parameterα, the model is able to provide

consistent estimates, and more importantly, is applicable for all of the multilevel correlation

structures mentioned above, whereas Liang and Zeger (1986) only provided formulas to

estimate α for several simple correlation structures (e.g. exchangeable, AR, m-dependent).

Finally, inference of the proposed joint model is based all available data. It yields consis-

tent regression estimates (β̂) when data are missing completely at random (MCAR) (Rubin,

1976; Laird, 1988)[27, 10]. The proposed estimator will be biased when data are missing at

random (MAR). In chapter 3, we apply inverse probability weighted estimating equations

(Robins et al., 1995[24]) to the proposed joint model to obtain consistent estimators when

data are missing at random (MAR).
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3.0 JOINT MODELING OF MULTIVARIATE ORDINAL LONGITUDINAL

OUTCOMES WITH MISSING DATA

In chapter 2, we presented a joint model with standard GEE inference for joint analysis of

multivariate ordinal longitudinal outcome. As stated in Liang and Zeger (1984)[12], stan-

dard GEE inference is valid only when data are complete or missing completely at random

(MCAR). Therefore, the proposed estimators are biased if data are missing at random. In

this chapter, we applied the standard GEE with inverse probability weighting to obtain

consistent estimating equations in the presence of missing at random data.

3.1 INTRODUCTION

Although the main purpose of designing longitudinal studies is to collect data from par-

ticipants at every follow-up visit, despite the best effort from project personnel, missing

observations are almost inevitable in practice. Such missing observations may have signifi-

cant implications on the results of data analysis. Loss of information due to unobserved data

will generally reduce the precision of the parameter estimates. However, the potential bias

introduced by missingness in longitudinal studies is a much greater problem. For example,

in the case that the reason for missing responses is treatment-related adverse events or lack

of efficacy, a missing observation actually contains information related to the outcome of in-

terest (e.g. treatment efficacy). In such cases, ignoring or inappropriately handling missing

data might result in misleading conclusions.

The standard GEE method, as one of the most widely used methods for longitudinal data

analysis, has the capacity to fit unbalanced longitudinal data when missing observations are
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present. In other words, one can draw standard GEE inference, even if some subjects only

have measurements for a subset of all time points (i.e. available case analysis). However, the

consistency of such standard GEE estimator depends on the relationship between the prob-

ability of missing and the outcome being modeled. Rubin (1976)[27] and Laird (1988)[10]

described three types of such relationships, also called missing mechanism, as follows: (1)

Missing completely at random (MCAR): the probability of missing depends on neither ob-

served nor unobserved responses. (2) Missing at random (MAR): the probability of missing

depends on previously observed responses but not the missing response. (3) Missing not

at random (NMAR): neither MCAR nor MAR conditions hold and thus, the probability of

missing depends on the missing response itself. When data are MCAR, the observed data can

be considered as a random sample of the complete data. Therefore, unbiased inference can

be drawn without modifying currently available standard methods for longitudinal studies.

On the other hand, when data are MAR or NMAR, most statistical methods, including GEE

provide biased inference. As stated in Liang and Zeger (1984)[12], standard GEE inference

is valid only when data are MCAR.

In the case of MAR, there are two general approaches to obtaining consistent estimators

under the GEE framework: multiple imputation (Rubin, 1978 [28]) and inverse probability

weighting (Robins et al. 1995 [24]). The idea of multiple imputation (MI) is to fill in the

unobserved data with imputed data based on an assumed model. Then standard methods

(e.g. GEE) can be applied to the imputed complete dataset.

The inverse probability weighting (IPW) method was first introduced in survey studies

by Horvitz and Thompson (1952) [8]. The general idea is that the underlying missing

mechanism causes some responses to be observed with lower probabilities than others. In

order to obtain consistent estimators, such underrepresented responses should be properly

weighted by the inverse probabilities of being observed. First, missing process is modeled

to construct the probability of observing responses. And then, in the estimating procedure,

responses are weighted by the inverse of the estimated probablities of being observed to

account for otherwise similar unobserved responses. Robins et al. (1995) [24] proposed a

class of IPW estimating equations which extended the standard GEE method to MAR data.

Their IPW estimator provides consistent estimators for marginal mean parameters when
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data are MAR. Later, Yi and Cook (2002)[37] proposed a weighted second-order estimating

equations, where the inverse probability weighting was applied to the estimating equations for

both mean and association parameters. They showed that, under certain assumptions, their

method provides consistent estimators for both marginal mean parameters and association

parameters.

In the case of NMAR, Rotnitzky and Robins (1997) [25] and Robins, Rotnitzky and

Scharfstein (2000) [22] proposed methods to extend IPW estimators to the NMAR setting,

which is beyond the scope of this dissertation.

In chapter 2, a joint model along with the inference procedure under GEE framework was

presented for joint analysis of multiple ordinal longitudinal outcomes. In this chapter, we will

apply inverse probability weighted estimating equations to draw inference of the proposed

joint model when data are MAR. As a brief overview of this chapter, we first describe the

response and missing process of the joint model in section 3.2 followed by the IPW inference

procedure (section 3.3). Then a series of simulation results are shown to demonstrate how

consistent estimators for mean parameters are obtained in the presence of MAR data. We

compare these results to complete case (CC) analysis and available case (AC) analysis under

different true correlation structures.

3.2 JOINT MODEL WITH MISSING DATA

3.2.1 THE RESPONSE PROCESS

The detailed response process of the proposed joint model is described in section 2.2. For

the purpose of continuity in this section, only two key aspects are summarized: marginal

probability model and joint probability model.

Suppose that for ith subject (i = 1, . . . , n), there are J ordinal longitudinal outcomes

each with Kj (j = 1, . . . , J) categories. Denote Yijt as the jth outcome of ith subject

at time t (t = Tj1, . . . , Tjnij), where Yijt takes value from the set {0, . . . , Kj − 1}. Let

Xit = (xit1, . . . , xitp) be a p× 1 covariate vector for subject i at time t. As stated in chapter
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2, we model the marginal probability of ordinal outcome using cumulative logistic regression

as follows:

γijtk = Pr
(
Yijt ≤ k | Xit,βj,aj

)
=

exp(ajk + XT
itβj)

1 + exp(ajk + XT
itβj)

, (3.1)

πijtk = Pr
(
Yijt = k | Xit,βj,aj

)
=

exp(ajk + XT
itβj)

1 + exp(ajk + XT
itβj)

−
exp(ajk−1 + XT

itβj)

1 + exp(ajk−1 + XT
itβj)

, (3.2)

where γijtk (k = 0, . . . , Kj − 2) is the marginal cumulative probability of Yijt ≤ k, πijtk is

the marginal probability of Yijt = k, βj = (βj1, βj2, . . . , βjp)
′ is a p× 1 regression coefficient

vector for jth outcome and aj = (aj0, aj1, . . . , ajKj−2)′ is a (Kj − 1) dimensional intercept

vector for jth outcome with Kj categories, such that aj0 < aj1 < . . . < ajKj−2.

To construct the pairwise joint probability, we assume that any pairs of Yijt and Yij′t′

originate from a bivariate normal distribution (u, v) ∼ N

 0

0

 ,

 1 ρjt,j′t′

ρjt,j′t′ 1


partitioned by threshold values. The pairwise joint probability of responses Yijt and Yij′t′

can be derived as:

πi,jtk,j′t′k′ = Pr(Yijt = k, Yij′t′ = k′) =

∫ Φ−1(γijtk)

Φ−1(γijtk−1)

∫ Φ−1(γij′t′k′ )

Φ−1(γij′t′k′−1)

φ2(u, v, ρjt,j′t′) du dv, (3.3)

where Φ is the cdf of a standard normal distribution and φ2 is the pdf of a bivariate normal

distribution with correlation ρjt,j′t′ . The correlation structure was constructed in section 2.3.

3.2.2 THE MISSING PROCESS

In this chapter, we only focus on dealing with missing at random (MAR) data, where the

probability of missing depends on the previously observed responses rather than the missing

response itself. Let Rijt be an indicator such that Rijt = 1 if Yijt is observed and Rijt = 0

if Yijt is missing. We assume monotone missing (i.e. Rijt = 0 implies Rijt′ = 0 ∀ t′ > t)

and also first measurements of all outcomes are observed (i.e. Rij1 = 1 ∀i, j). Denote

Hijt = (Yij1, Yij2, . . . , Yijt−1) to be the history of jth outcome of ith subject up to time t− 1.
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The conditional probability of observing Yijt given the previous outcome Yijt−1 is observed

can be written as:

λijt = Pr(Rijt = 1|Rijt−1 = 1,Yi,Xi, γj) = Pr(Rijt = 1|Rijt−1 = 1,Hijt,Xi, γj), (3.4)

and then the probability of observing Yijt can be written as:

λ̄ijt = Pr(Rijt = 1|Yi,Xi, γj) = Pr(Rijt = 1|Hijt,Xi, γj) =
t∏

s=1

λijs (3.5)

where γj is outcome-specific missing parameters for jth outcome. Typically, logistic regres-

sion is used to model the missing process as follows:

logit(λijt) = γ0j +HT
ijtγ1j +XT

itγ2j (t > 1). (3.6)

For jth outcome, the missing parameter γj = (γ0j, γ
T
1j, γ

T
2j). When no ambiguity exists, we

will use γ = (γ′1, . . . , , γ
′
J)′ to denote the missing parameters. Note that when t=1, λijt = 1.

We further assume that the probability of missing for jth outcome does not depend on

other outcomes. That is,

Pr(Rijt = 1|Rijt−1 = 1, Rij′t′ = 1,Yi,Xi, γj) = Pr(Rijt = 1|Rijt−1 = 1,Hijt,Xi, γj), (3.7)

where (j′ 6= j). Therefore, one can derive that the conditional joint probability of observing

a pair of (Yijt, Yij′t′) given (Yijt−1, Yijt−1) equals the product of two marginal conditional

probability of observing Yijt and Yij′t′ . That is,

λijt,ij′t′(γ) = P (Rijt = 1, Rij′t′ = 1|Rijt−1 = 1, Rij′t′−1 = 1,Yi,Xi) = λijt × λij′t′ , (3.8)

where t > t′ − 1 and t′ > t− 1.

Then the probability of observing a pair of (Yijt, Yij′t′) can be written as function of

λijt(γj):

λ̄i,jt,j′t′(γ) = P (Rijt = 1, Rij′t′ = 1|Yi,Xi, γ)


∏max(t,t’)

s=1 λijs(γj), if j = j′,∏t
s=1 λijs(γj)

∏t′

s′=1 λij′s′(γ
′
j), if j 6= j′.
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3.3 INVERSE PROBABILITY WEIGHTED ESTIMATING EQUATIONS

AND INFERENCE

In section 2.3, we demonstrated how to draw inference for the proposed joint model based on

standard GEE. Robins et al. 1995 [24] along with Yi and Cook (2002)[37] extended standard

GEE to handle missing at random data. They proposed to use inverse the probability of

observing the outcome as weights in estimating equations. The response probabilities are

modeled as a function of covariates and previously observed outcomes.

In this section, we apply inverse probability weighted estimating equation to draw infer-

ence for the proposed joint model. In section 3.3.1, we introduce the estimating equations

for missing parameters under MAR assumption. In sections 3.3.2 and 3.3.3, we present the

weighted estimating equations for both mean and association parameters of proposed joint

model.

3.3.1 ESTIMATING EQUATIONS AND INFERENCE FOR MISSING PA-

RAMETERS

Let us denote λi(γ) = (λ′i1, . . . , λ
′
iJ)′, λij=(λijTj1 , . . . , λijTjnij )

′ where λijt is defined in equa-

tion (3.4) and is a function of γj. Let Ri = (R′i1, . . . , R
′
iJ)′, Rij=(RijTj1 , . . . , RijTjnij

)′ where

Rijt is the response indicator for Yijt. Because the missing process is modeled by logistic

regression in section 3.2.2, the corresponding estimating equations for missing parameter γ

is given as:
N∑
i=1

Wi(γ) =
N∑
i=1

∂λi(γ)

∂γT
V −1
γi {Ri − λi(γ)} = 0, (3.9)

where V −1
γi = [λi(γ)(1− λi(γ))T ]−1. We can solve γ using iterative algorithm:

γ̃(m+1) = γ̃(m) +

(
N∑
i=1

∂λi(γ)

∂γT
V −1
γi

∂λi(γ)

∂γ

)−1 N∑
i=1

∂λi(γ)

∂γT
V −1
γi {Ri − λi(γ)} (3.10)

By simple algebra, we can simplify equation (3.9) as follow:

N∑
i=1

Wi(γ) =
N∑
i=1

wTi {Ri − λi(γ)} = 0, (3.11)
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where wi = (wi1, . . . , wiJ), wij = (wijTj1 , . . . , wijTjnij ) and wijt = (1, Hijt, Xit) is the design

matrix in missing model (3.6). Iterative equation (3.10) can also be simplified as follow:

γ̃(m+1) = γ̃(m) +

(
N∑
i=1

wTi Vγiwi

)−1 N∑
i=1

wTi {Ri − λi(γ)} (3.12)

Above simplification is applicable to all estimating equations for logistic regression.

3.3.2 ESTIMATING EQUATIONS AND INFERENCE FOR MEAN PARAM-

ETERS

Once the response probability of each outcome has been estimated, we can construct inverse

probability weighted estimating equations for mean parameter β as follows:

N∑
i=1

Ui(α, β, γ̂) =
N∑
i=1

Di(β)TV −1
βi ∆βi(γ̂){Zi − πi(β)} = 0, (3.13)

where

∆βi(γ̂) =


∆βi1(γ̂) 0 . . . 0

0 ∆βi2(γ̂) . . . 0
...

...
. . .

...

0 0 . . . ∆βiJ(γ̂)

 , (3.14)

and ∆βij(γ̂) = diag(λ̄ij1(γ̂)−1Rij1, λ̄ij2(γ̂)−1Rij2, . . . , λ̄ijTnj(γ̂)−1RijTnj). (3.15)

Compared to standard GEE estimating equation (2.16) in section 2.3.2, the only extra

term here is the weight matrix ∆βi(γ̂). This class of IPW GEE estimating equation was

introduced by Robins et al. (1995). The idea is that the underlying missing mechanism

causes response Yijt to be observed with probability λ̄ijt(γ̂). Such Yijt should be weighted

by λ̄ijt(γ̂)−1Rijt in estimating mean parameters to account for the unobserved responses

otherwise similar to Yijt.

The IPW GEE estimates can be obtained using iterative Fisher scoring algorithm as

follow:

β̃
(m+1)

= β̃
(m)

+

(
N∑
i=1

DT
i (β̃

(m)
)Σi(α, β̃

(m)
)−1∆βi(γ̂)Di(β̃

(m))

)−1 N∑
i=1

DT
i (β̃

(m)
)Σi(α, β̃

(m)
)−1∆βi(γ̂){Zi − πi(β̃

(m)
)}

(3.16)
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Robins et al. (1995)[24] presented the equation to estimate variance of regression esti-

mates β̂ as follows:

var(
√
n(β̂ − β)) = Γ−1

(
I−BΩBT

)
Γ−1 (3.17)

where Γ = E(∂Ui(α, β, γ)/∂βT ), I = E(Ui(α, β, γ)Ui(α,β, γ)T ), Ω =
[
E(−∂Wi(γ)/∂γT ))

]−1

and B = E(∂Ui(α, β, γ)/∂γT ). But this variance estimator may not be positive definite. Yi

and Cook (2002)[37] provided a positive definitely variance formula derived from (3.17) as

follows:

var(
√
n(β̂ − β)) = Γ−1Σ[Γ−1]T (3.18)

where Γ = E(∂Ui(α, β, γ)/∂βT ), Σ = E(Qi(α, β, γ)Qi(α, β, γ)T ) andQi(α, β, γ) = Ui(α, β, γ)−

E(∂Ui(α, β, γ)/∂γT )
[
E(∂Wi(γ)/∂γT ))

]−1
Wi(γ).

3.3.3 ESTIMATING EQUATIONS AND INFERENCE FOR ASSOCIATION

PARAMETERS

In section 2.3.2, we proposed to estimate association parameters by minimizing the sum of

Euclidean distance between the model based correlation Σi(α,β) and the empirical corre-

lation Si(β) = (Zi −πi(β))(Zi −πi(β))′. The empirical correlation is expressed in terms of

pairwise product of responses minus their expectations. Let sijtk,j′t′k′ be the qth elements in

Si(β), where sijtk,j′t′k′ = (zijtk − πijtk)× (zij′t′k′ − πij′t′k′) and σi,jtk,j′t′k′ be the qth elements

in Σi(α,β). The corresponding qth Euclidean distance (sijtk,j′t′k′ − σi,jtk,j′t′k′) should be

weighted by the inverse probability of observing a pair of (zijtk, zij′t′k′) or observing a pair of

(Yijt, Yij′t′) to account for unobserved pairs or partial observed pairs. Therefore, the inverse

probability weighted estimating equation for association parameters is given as:

α̂ = argmin
N∑
i=1

(si(β)− σi(α,β))T∆αi(γ̂)(si(β)− σi(α,β)) (3.19)

This is equivalent to solving the following weighted generalized estimating equation for α:

N∑
i=1

∂σi(α,β)

∂α

T

∆αi(γ̂){si(β)− σi(α,β)} = 0, (3.20)

where ∆αi(γ̂) is a diagonal weighting matrix for association parameters. For the qth elements

of Euclidean distance (sijtk,j′t′k′−σi,jtk,j′t′k′), the corresponding qth diagonal element of ∆αi(γ̂)

equals I(Rijt = 1, Rij′t′ = 1)/λ̄i,jt,j′t′ , where λ̄i,jt,j′t′ is given in section 3.2.2.
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3.3.4 ITERATIVE ESTIMATION PROCEDURE

To draw inference, we first solve missing parameters γ in estimating equation (3.9). Then,

iterative estimation procedure similar to chapter 2 can be carried out to obtain estimates for

mean and association parameters. The whole process is summarized in following manner:

Step 1: Solve for missing parameter γ̂ from generalized estimating equation (3.9);

Step 2: Obtain an initial estimate of β denoted by β̂
(0)

by modeling each outcome separately;

Step 3: Solve for α̂(0) by minimizing equation (3.19) with β replaced by β̂
(0)

;

Step 4: Solve for β̂
(1)

from generalized estimating equation (3.13) with α replaced by α̂(0).

Step 5: Iterate between Steps 3 and 4 until convergence criteria are fulfilled for both α and

β and the solution is denoted as α̂ and β̂.

When both the missing model and the response model are correctly specified, the final so-

lution β̂ obtained from the above iterative procedure is consistent and follows an asymptotic

normal distribution with mean β and a variance-covariance matrix that can be estimated

by equation (3.18) proposed by Yi and Cook (2002)[37]. More specifically,

var(β̂) = N−1Γ̂−1Σ̂[Γ̂−1]T (3.21)

where Γ̂ = N−1
∑N

i=1 D
T
i (β̂)Σi(α̂, β̂)−1∆βi(γ̂)Di(β̂), Σ̂ = N−1

∑N
i=1Qi(α̂, β̂, γ̂)Qi(α̂, β̂, γ̂)T

and Qi(α̂, β̂, γ̂) = Ui(α̂, β̂, γ̂)−
∑N

i=1 ∂Ui(α̂, β̂, γ̂)/∂γT [
∑N

i=1 ∂Wi(γ̂)/∂γT ]−1Wi(γ̂) are plug in

estimates for Γ, Σ and Qi(α, β, γ) defined in section 3.3.2.

3.4 SIMULATION STUDY

3.4.1 DESIGN OF SIMULATION STUDY

To examine the performance of IPWGEE in providing unbiased inference for the proposed

joint model when data are MAR, we performed a series of simulation studies. For simplicity,

we assumed that each subject i has ordinal longitudinal outcome Yi1 with three categories
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and binary longitudinal outcome Yi2. We constructed 7 repeated measurements for the ordi-

nal outcome at times t = 0, 1, 2, 3, 4, 5, 6 as Yi1=(Yi10, Yi11, Yi12, Yi13, Yi14, Yi15, Yi16)′ and 4 re-

peated measurements for the binary outcome at times t′ = 0, 2, 4, 6 as Yi2=(Yi20, Yi22, Yi24, Yi26)′.

Accordingly, each subject has a 11×1 dimensional response vector Yi = (Y ′
i1, Y

′
i2)

′, which is

generated based on the procedure outlined in section 2.4. For each subject, a time covariate

t was specified as above and a baseline covariate Xi was generated from a Bernoulli(0.5)

distribution. To specify the true marginal probability model for ordinal outcome Yi1 and

the true marginal probability model for binary outcome Yi2, cumulative logistic regression

and logistic regression is used as follows:

Ordinal Outcome:

γijtk = Pr(Yijt ≤ k) =
exp(a1k + β1t × t+ β1x ×Xi)

1 + exp(a1k + β1t × t+ β1x ×Xi)
, (3.22)

πijtk = Pr(Yijt = k) = γijtk − γijtk−1. (3.23)

Binary Outcome:

γijt0 = Pr(Yijt = 0) =
exp(a20 + β2t × t+ β2x ×Xi)

1 + exp(a20 + β2t × t+ β2x ×Xi)
, (3.24)

πijt0 = Pr(Yijt = 0) = γijt0. (3.25)
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We generated data with two different correlation structures R(α)=cov(Yi,Yi) as follows:

(1) AR type correlation with α11 = 0.8, α22 = 0.7, α12 = 0.4, α212 = 0.3:

R(α) =



1 0.8 0.64 0.512 0.410 0.328 0.262 0.300 0.048 0.008 0.001

0.8 1 0.8 0.64 0.512 0.410 0.328 0.120 0.120 0.019 0.003

0.64 0.8 1 0.8 0.64 0.512 0.410 0.048 0.300 0.048 0.008

0.512 0.64 0.8 1 0.8 0.64 0.512 0.019 0.120 0.120 0.019

0.410 0.512 0.64 0.8 1 0.8 0.640 0.008 0.048 0.300 0.048

0.328 0.410 0.512 0.64 0.8 1 0.8 0.003 0.019 0.120 0.120

0.262 0.328 0.410 0.512 0.64 0.8 1 0.001 0.008 0.048 0.300

0.300 0.120 0.048 0.019 0.008 0.003 0.001 1 0.49 0.24 0.118

0.048 0.120 0.300 0.120 0.048 0.019 0.008 0.49 1 0.49 0.24

0.008 0.019 0.048 0.120 0.300 0.120 0.048 0.24 0.49 1 0.49

0.001 0.003 0.008 0.019 0.048 0.120 0.300 0.118 0.24 0.49 1



,

(3.26)

(2) Unstructured correlation structure:

R(α) =



1 0.5 0.4 0 0 0 0 0.4 0.3 0 0

0.5 1 0.5 0.4 0 0 0 0.35 0.35 0 0

0.4 0.5 1 0.5 0.4 0 0 0.3 0.4 0.3 0

0 0.4 0.5 1 0.5 0.4 0 0 0.35 0.35 0

0 0 0.4 0.5 1 0.5 0.4 0 0.3 0.4 0.3

0 0 0 0.4 0.5 1 0.5 0 0 0.35 0.35

0 0 0 0 0.4 0.5 1 0 0 0.3 0.4

0.4 0.35 0.3 0 0 0 0 1 0.4 0 0

0.3 0.35 0.4 0.35 0.3 0 0 0.4 1 0.4 0

0 0 0.3 0.35 0.4 0.35 0.3 0 0.4 1 0.4

0 0 0 0 0.3 0.35 0.4 0 0 0.4 1



. (3.27)

In this simulation study, we only focused on monotone missing pattern. We assumed the

first observations of both outcomes are always observed and the missing probability of any

response Yijt only depends on its previous response Yijt−1. First, let us denote Rijt to be
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the response indicator for observation Yijt where Rijt = 1 when Yijt is observed and Rijt = 0

when Yijt is missing. Then the missing mechanism is defined as:

logit(Rijt = 1 | Rijt−1 = 1) = γj + γ × Yijt−1. (3.28)

We constructed the missing processes of two longitudinal outcomes to be independent,

which means the missing of Yijt does not depend on Yij′t′ (j 6= j′). When γ = 0, the miss-

ing probability of Yijt does not depend on previously observed responses, therefore, data

are missing complete at random (MCAR). Alternatively, when γ 6= 0, the missing proba-

bility of Yijt depends on the previously observed responses, therefore, data are missing at

random(MAR). Accordingly, One can increase the dependence of missing probability on pre-

vious observations, or the level of MAR, by increasing γ value. We examined moderate level

of MAR (i.e. γ = 1) and high level of MAR (i.e. γ = 2.5). We used γj to control the missing

percentage, when γ was fixed. Based on the above, the monotone missing patterns of two

longitudinal outcomes were generated separately in the following fashion:

For ordinal outcome:

T = 0 : Ri10 = 1 ∀i.

T = 1 : pi11=expit(γ1 + γ × Yi10), generate Ri11∼Bernoulli(pi11).

T = 2 : IfRi11 = 0 thenRi12 = 0, otherwise pi12=expit(γ1+γ×Yi11), generateRi12∼Bernoulli(pi12).
...

T = 6 : IfRi15 = 0 thenRi16 = 0, otherwise pi16=expit(γ1+γ×Yi15), generateRi16∼Bernoulli(pi16).

For binary outcome:

T = 0 : Ri20 = 1 ∀i.

T = 2 : pi22=expit(γ2 + γ × Yi20), generate Ri22∼Bernoulli(pi22).

T = 4 : IfRi22 = 0 thenRi24 = 0, otherwise pi24=expit(γ2+γ×Yi22), generateRi24∼Bernoulli(pi24).

T = 6 : IfRi24 = 0 thenRi26 = 0, otherwise pi26=expit(γ2+γ×Yi24), generateRi26∼Bernoulli(pi26).

In this simulation study, we compared the performance of 6 different GEE inference pro-

cedures for proposed joint model including IPWGEE methods and standard GEE methods:

(1) CC-IND: Joint model fitted with independent correlation structure using complete data.

(2) CC-AR: Joint model fitted with AR type correlation structure using complete data.

(3) AC-IND: Joint model fitted with independence correlation using all available data.
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(4) AC-AR: Joint model fitted with AR type correlation using all available data.

(5) IPW-IND: Joint model fitted with independence correlation and inverse probability

weighting using all available data.

(6) IPW-AR: Joint model fitted with AR type correlation and inverse probability weighting

using all available data.

Inference procedure for standard GEE methods is given in section 2.3. Inference pro-

cedure for IPWGEE is given in section 3.3, where missing model needs to be fitted first to

construct the inverse probability weights for each observation. Notice that only observations

with observed previous outcome should be included in the fitting missing model, in other

words, observations at the first time points should not be included.

3.4.2 SIMULATION RESULTS

Table 7 shows the simulation results for data with AR type true correlation structure and

20% missing (i.e. 80% observed responses). In particular, the table provides the true

parameter(β), Monte-Carlo average of the estimates (β̂), Monte-Carlo variance (var(β̂)),

Monte-Carlo average of the variance estimates ( ˆvar(β̂)) and the coverage probability (CP%)

of 95% confidence intervals. We generated MCAR (i.e. γ = 0) data and two levels of MAR

(i.e. γ = 1, γ = 2.5) data and examined 6 different GEE based inference procedures for the

proposed joint model including complete case GEE without IPW (i.e. CC-IND, CC-AR),

available case GEE without IPW (i.e. AC-IND, AC-AR) and available case GEE with IPW

(i.e. IPW-IND, IPW-CC).

When data are MCAR (i.e γ = 0), naturally, all GEE based estimators for all parame-

ters are unbiased, even using only complete data. The relative bias for β1x and β1t are less

than 1% for all fitted joint models. The relative bias for β2x and β2t range from 0.5% to 2%

and 1% to 2.6% respectively. The variances of all estimators from complete case GEE are

approximately twice as high as the corresponding variance from available case GEE and IP-

WGEE. The Monte-Carlo average of variance estimates matches the Monte-Carlo variance.

The coverage probabilities of 95% CI match the nominal level.

41



When data are MAR at moderate level (i.e γ = 1), estimators from complete case GEE

are biased. The relative bias for β1x, β1t, and β2t are approximately 8%, 15%, and 12%. The

relative bias for β2x is small, and ranges from 2% to 5%. On the other hand, one might expect

estimators from available case GEE should also be biased. As Table 7 shows, estimators

from available case GEE with independent correlation are biased. However, estimators from

available case GEE with correct AR type correlation are unbiased and provide valid coverage

probability for 95% confidence intervals, where the relative bias for all parameters range from

0.75% to 3% and the coverage probabilities range from 94.0% to 96.3%. This is discussed

in further detail in section 3.5. Finally, estimators from IPWGEE are always unbiased even

when fitted with independent correlation structure. The relative bias for all parameters are

less than 1%. The variances of complete case GEE estimates are still approximately two

to three times higher than the corresponding variance of available case GEE and IPWGEE

estimators. Although, the relative bias of complete case GEE estimators are up to 15%, the

large variance of complete case GEE generally lead to coverage probabilities that are not too

far from 95% nominal level.

When data are MAR at high level (i.e. γ = 2.5), GEE estimators using only complete

data are highly biased. The relative bias for β1x, β1t, β2x and β2t are around 20%, 40%,

13% and 45% respectively. The coverage probabilities are as low as 54.4%. With high MAR

level (i.e. γ = 2.5), both of the available case GEE estimators are biased to a certain extent.

However, available case GEE estimators fitted with correct AR type correlation structure

are still less biased than those fitted with independent correlation. The relative bias for

β1x, β1t, β2x and β2t estimated from AR-AC are 2.6%, 15%, 2% and 1.6% respectively,

which are consistently smaller than the corresponding relative bias estimated from AR-IND

9.7%, 42.5%, 4.5% and 5.8%. Finally, both IPWGEE estimators for proposed joint model

still provide unbiased estimates and valid coverage probabilities. Furthermore, we observed

larger bias with higher level of MAR (i.e. γ = 2.5) compared to lower level of MAR (i.e.

γ = 1). This is discussed in further detail in section 3.5.

Table 8 shows similar findings for data with unstructured correlation. When data are

MCAR, all GEE based estimators are unbiased. When data are MAR, complete case GEE

estimators are biased and IPWGEE estimators are unbiased. One important observation is
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that, although AR type correlation is not the correct correlation in this scenario, standard

GEE inference assuming AR type correlation is still less biased than standard GEE inference

assuming independence. This demonstrates that although it is difficult to specify a correct

correlation, a reasonably close correlation structure can still reduce bias of standard GEE

inference due to MAR data.

Table 9 shows the correlation parameter estimates for data with AR type correlation.

We observed that second order inverse probability weighting method only improved the esti-

mators for within outcome correlation parameters (i.e. α11, α22). For example, when γ = 0,

γ = 1 and γ = 2.5, the relative bias for α11 estimated from IPWGEE are 0.3%, 0.4% and

1.5%, which is consistently smaller than the corresponding relative bias of available case GEE

estimators 0.4%, 7.2% and 17.5%. However, there is no obvious improvement for estimators

for between outcome correlation parameters (i.e. α12, α212) and α12 is consistently underes-

timated in Table 9. We suspect that it might require more data points to get reasonable

estimates for between correlation parameters.

3.5 DISCUSION

In chapter 2, we presented a joint model with standard GEE inference for joint analysis of

multivariate ordinal longitudinal outcome. The proposed estimator will be biased if data are

missing at random. In this chapter, we extend the standard GEE using inverse probability

weighting to obtain consistent estimating equations for regression parameters in the presence

of missing at random data.

The simulation results showed that joint models with inverse probability weighted esti-

mating equations give consistent estimators for mean parameters when both missing model

and response model are correctly specified. Furthermore, simulation also showed that a

reasonable correlation structure can reduce bias of standard GEE estimator as well. These

observations indicate that both efforts of specifying better missing model and better corre-

lation structure will reduce bias in analysis of missing at random longitudinal data.
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When data are missing completely at random, all GEE estimators for the proposed joint

model are unbiased and maintains nominal coverage rate for 95% confidence intervals, even

with only complete case analysis. Because MCAR data can be viewed as a random sample

from the complete dataset, missing data are not expected to introduce bias to inference

procedures including GEE. However, the complete case analysis is less efficient compared

to other methods because it ignores the subjects with any missing data and consequently,

cause a reduction in sample size.

When data are missing at random, complete case GEE estimators are biased. Further-

more, we observe larger bias with higher level of MAR compared to lower level of MAR.

Because our construction of the missing model implies that smaller values of γ are closer to

MCAR, this result is expected.

One might expect estimators from available case GEE to be biased as well. However,

with moderate MAR level, available case GEE estimators with the correct correlation struc-

ture are able to provide unbiased estimates and valid coverage probabilities. Even with high

MAR level, estimators for available case GEE fitted with correct correlation structure are

less biased than those fitted with independent correlation. Furthermore, we observed that

even standard GEE fitted with incorrect but reasonably close correlation structure helped

to reduce bias. This is because, for correlated longitudinal data, when there are missing

responses for a subject, previous observed responses from this subject will provide infor-

mation about the unobserved response if the correlation structure is correctly specified or

is reasonably close. Therefore, assuming reasonable correlation decreases the bias or even

provide unbiased estimators with moderate MAR level. This needs to be distinguished from

complete case GEE estimators, where assuming correct correlation structure does not reduce

bias. Because subjects are independent and knowing about subjects with complete data is

unable to provide any information for subjects with missing data. As we expected, with

complete case analysis, the magnitude of bias is very similar for both estimators assuming

correct correlation structure and independence. One may also argue that, GEE method

with correct correlation structure has not only the correct marginal mean model but also the

correct correlation structure, which is similar to the likelihood based methods with correct

distributional assumption. Therefore, we expect that GEE with reasonable correlation as-
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sumption behaves more similarly to the likelihood based methods, which provides consistent

estimators when data are MAR. This observation demonstrates the importance of correla-

tion parameters in analysis of missing at random longitudinal data. It offers another way

to reduce bias for standard GEE method when data are MAR, in addition to using inverse

probability weighting methods.

IPWGEE estimators are unbiased, even when fitted with independent correlation, which

is a highly desirable property of IPWGEE estimators. Because even though correct or

reasonably close correlation structure reduce bias for standard GEE method using available

data as well. In practice, it might be difficult to specify the correct or reasonably close

correlation structure for longitudinal outcomes. However, it is important to note that both

the efforts of specifying better missing model and better correlation structure will reduce

bias in analysis of missing at random longitudinal data. This indicates two possible ways to

reduce bias for standard GEE method when data are MAR.

Finally, in terms of efficiency, when all available data are used in the inference procedure,

IPWGEE estimators have slightly higher variance compared with standard GEE estimators.

Therefore, using IPW methods to correct bias, when data are MAR, leads to slight efficiency

loss.
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4.0 FUTURE WORK

In this dissertation, we first present a joint model for analysis of multivariate ordinal longitu-

dinal outcome, which assumes ordered outcomes arose from a partitioned latent multivariate

normal process. This joint model provides a framework for analyzing multivariate ordered

longitudinal data with a general multilevel association structure, covering both between and

within outcome correlation. Simulation studies show that the estimators of mean parame-

ters are unbiased and more efficient than those obtained through fitting separate standard

GEE for each outcome. The proposed method also yields unbiased estimators for correla-

tion parameters given the correct correlation structure are specified. However, GEE based

estimators are biased when missing data are present and the missing mechanism is not miss-

ing completely at random (MCAR). In the second part of this dissertation, we extend our

joint model to handle missing at random (MAR) data by using inverse probability weighted

(IPW) second order estimating equations. Simulation studies show that IPW estimators

remain consistent when both the missing model and response model are correctly specified.

4.1 DOUBLE ROBUST GENERALIZED ESTIMATING EQUATIONS

When data are missing at random, a common modification for GEE is inverse probability

weighting (IPW) which assumes certain underlying missing mechanism causes some responses

to be observed with lower probabilities. In order to obtain consistent estimators, IPWGEE

method weighs responses using the inverse probability of being observed. When data are

MAR, IPWGEE estimator provides consistent regression estimates when both the response

model and missing model are correctly specified.
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Robins et al. (1994) [23] and Rotnitzky et al. (1998)[26] proposed an augmented inverse

probability weighted estimator (AIPW), which was proved to be doubly robust by Scharfstein

et al. (1999) [29]. Unlike IPWGEE method, doubly robust estimator remains consistent

when either the missing model and response model for the complete data is correctly specified.

Later, Bang and Robins (2005) [2] demonstrated the application of such doubly robust

estimator in longitudinal data with monotone missing. Accordingly, one possible future work

following this dissertation may include the application of recently developed doubly robust

methods to analyze multivariate ordinal longitudinal outcome that is missing at random,

which could also be extended to data with intermittent or non-monotone missing pattern.

As stated by Bang and Robins (2005)[2], one of the most significant advantages of doubly

robust estimator is that when either missing model or mean model is almost correct, the

bias of doubly robust estimators will be small. Therefore, compared to IPWGEE and impu-

tation method, doubly robust estimators give analysis one more chance to get nearly correct

inference.
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APPENDIX

TABLES
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Table 1: Performance of different methods with extended exchangeable and AR-type correlations. Results are from M=500 datasets
with n=100 subjects.

sep-GLMa sep-GEEb Joint GEE Independencec Joint GEEd

True Para- β β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% RE
Correlation meters

1) β1x 0.3 0.302 0.140 0.033 67.2% 0.302 0.140 0.134 95.8% 0.303 0.140 0.134 95.8% 0.304 0.132 0.130 95.6% 1.07
Exchangeable β1t 0.2 0.201 0.001 0.004 100% 0.201 0.001 0.001 94.2% 0.201 0.001 0.001 94.4% 0.201 0.001 0.001 95.2% 1.06
(α11, α22, α12) β2x 0.4 0.400 0.213 0.112 86.0% 0.410 0.197 0.196 95.8% 0.402 0.214 0.206 94.4% 0.404 0.160 0.168 96.2% 1.23
= (0.9, 0.9, 0.9) β2t 0.5 0.511 0.011 0.013 97.8% 0.511 0.011 0.010 93.6% 0.511 0.011 0.009 94.2% 0.509 0.010 0.009 94.1% 1.10
2) β1x 0.3 0.310 0.131 0.033 68.6% 0.310 0.131 0.118 93.2% 0.310 0.131 0.118 93.2% 0.309 0.129 0.114 94.6% 1.02
Exchangeable β1t 0.2 0.201 0.002 0.004 99.8% 0.201 0.002 0.002 94.2% 0.201 0.002 0.002 94.2% 0.200 0.002 0.002 93.8% 1.03
(α11, α22, α12) β2x 0.4 0.411 0.187 0.111 87.0% 0.410 0.175 0.173 95.6% 0.411 0.187 0.178 94.0% 0.408 0.164 0.169 95.8% 1.07
= (0.8, 0.7, 0.4) β2t 0.5 0.510 0.010 0.013 97.4% 0.510 0.010 0.010 93.4% 0.510 0.010 0.010 93.2% 0.509 0.010 0.010 93.6% 1.01
3) β1x 0.3 0.313 0.034 0.033 93.4% 0.313 0.034 0.033 93.2% 0.313 0.034 0.033 93.2% 0.313 0.034 0.033 93.6% 1.00
Exchangeable β1t 0.2 0.201 0.004 0.004 96.8% 0.201 0.004 0.004 96.2% 0.201 0.004 0.004 96.2% 0.201 0.004 0.004 96.2% 1.00
(α11, α22, α12) β2x 0.4 0.403 0.121 0.109 93.6% 0.403 0.121 0.110 94.0% 0.403 0.121 0.109 93.8% 0.402 0.121 0.109 93.8% 1.00
= (0, 0, 0) β2t 0.5 0.513 0.014 0.013 95.6% 0.513 0.014 0.013 94.8% 0.513 0.014 0.013 95.0% 0.513 0.014 0.013 94.8% 1.00
4) β1x 0.3 0.303 0.127 0.033 68.4% 0.303 0.127 0.122 95.6% 0.304 0.128 0.122 95.6% 0.306 0.127 0.117 95.0% 1.02
AR-type β1t 0.2 0.202 0.003 0.004 99.2% 0.202 0.003 0.003 95.8% 0.202 0.003 0.003 95.8% 0.202 0.002 0.003 96.1% 1.01
(α11, α22, α12, α212) β2x 0.4 0.410 0.202 0.111 86.6% 0.414 0.193 0.183 96.0% 0.411 0.202 0.192 95.6% 0.395 0.172 0.179 96.1% 1.13
= (0.9, 0.9, 0.9, 0.9) β2t 0.5 0.508 0.011 0.013 98.0% 0.508 0.011 0.010 94.4% 0.508 0.011 0.010 94.2% 0.507 0.010 0.010 93.4% 1.02
5) β1x 0.3 0.317 0.113 0.033 73.2% 0.317 0.112 0.101 94.4% 0.317 0.113 0.101 94.4% 0.316 0.109 0.096 94.8% 1.03
AR-type β1t 0.2 0.203 0.004 0.004 96.6% 0.203 0.004 0.004 95.4% 0.203 0.004 0.004 95.4% 0.204 0.004 0.004 95.0% 1.02
(α11, α22, α12, α212) β2x 0.4 0.409 0.163 0.110 89.4% 0.410 0.159 0.148 94.4% 0.409 0.163 0.148 93.2% 0.407 0.155 0.144 93.8% 1.03
= (0.8, 0.7, 0.4, 0.3) β2t 0.5 0.510 0.013 0.013 94.8% 0.510 0.013 0.012 93.4% 0.510 0.013 0.012 93.4% 0.509 0.013 0.012 94.0% 1.00
6) β1x 0.3 0.313 0.034 0.033 93.4% 0.313 0.034 0.033 93.2% 0.313 0.035 0.034 93.6% 0.313 0.034 0.033 93.4% 1.00
AR-type β1t 0.2 0.201 0.004 0.004 96.8% 0.201 0.004 0.004 96.2% 0.202 0.004 0.004 95.4% 0.201 0.004 0.004 96.4% 1.00
(α11, α22, α12, α212) β1x 0.4 0.404 0.121 0.109 93.6% 0.403 0.121 0.110 94.0% 0.403 0.124 0.114 94.4% 0.404 0.120 0.109 94.4% 1.00
= (0, 0, 0, 0) β1t 0.5 0.513 0.014 0.013 95.6% 0.513 0.014 0.013 94.8% 0.514 0.014 0.013 95.2% 0.513 0.014 0.013 94.8% 1.00

sep-GLMa: separately fit cumulative logistic regression for ordinal outcome and logistic regression for binary outcome using maximum
likelihood; sep-GEEb: separately fit the ordinal outcome and the binary outcome using GEE; Joint GEE Independencec: GEE applied
to the joint model with independent correlation structure; Joint GEEd: GEE applied to the joint model where correlation parameter α
is estimated along with regression parameter β.
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Table 2: Performance of different methods with extended exchangeable and AR-type correlation. Results are from M=1000 datasets
with n=50 subjects.

sep-GLMa sep-GEEb Joint GEE Independencec Joint GEEd

True Para- β β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% RE
Correlation meters

1) β1x 0.3 0.296 0.301 0.069 65.8% 0.296 0.301 0.273 94.0% 0.297 0.303 0.272 94.0% 0.302 0.299 0.265 94.0% 1.00
Exchangeable β1t 0.2 0.207 0.003 0.008 99.9% 0.207 0.003 0.003 93.7% 0.207 0.003 0.003 93.8% 0.207 0.003 0.003 94.9% 1.04
(α11, α22, α12) β2x 0.4 0.423 0.490 0.242 84.5% 0.431 0.488 0.429 95.0% 0.426 0.492 0.427 94.1% 0.418 0.393 0.349 94.6% 1.24
= (0.9, 0.9, 0.9) β2t 0.5 0.534 0.022 0.029 98.8% 0.534 0.022 0.021 93.2% 0.534 0.022 0.020 93.1% 0.531 0.020 0.019 94.4% 1.09

2) β1x 0.3 0.284 0.259 0.068 69.4% 0.284 0.259 0.237 94.4% 0.287 0.259 0.237 94.4% 0.285 0.254 0.232 94.6% 1.02
Exchangeable β1t 0.2 0.208 0.004 0.008 99.8% 0.208 0.004 0.004 93.8% 0.208 0.004 0.004 93.9% 0.208 0.004 0.004 93.3% 1.02
(α11, α22, α12) β2x 0.4 0.435 0.399 0.236 87.3% 0.441 0.399 0.367 94.4% 0.440 0.401 0.370 92.9% 0.431 0.365 0.353 95.2% 1.10
= (0.8, 0.7, 0.4) β2t 0.5 0.529 0.023 0.028 98.7% 0.530 0.023 0.021 93.3% 0.529 0.023 0.020 93.0% 0.527 0.022 0.021 93.7% 1.03

3) β1x 0.3 0.289 0.076 0.067 92.3% 0.289 0.076 0.065 92.0% 0.289 0.076 0.065 92.0% 0.289 0.076 0.065 91.9% 1.00
Exchangeable β1t 0.2 0.204 0.008 0.008 95.9% 0.204 0.008 0.008 95.4% 0.204 0.008 0.008 95.4% 0.204 0.008 0.008 95.4% 1.00
(α11, α22, α12) β2x 0.4 0.434 0.235 0.230 94.9% 0.436 0.238 0.231 94.9% 0.438 0.236 0.227 94.9% 0.435 0.236 0.227 94.7% 1.01
= (0, 0, 0) β2t 0.5 0.522 0.031 0.028 96.0% 0.522 0.032 0.028 95.4% 0.521 0.031 0.027 95.2% 0.522 0.031 0.027 95.3% 1.00

4) β1x 0.3 0.290 0.268 0.069 68.8% 0.291 0.268 0.246 94.6% 0.293 0.268 0.246 94.6% 0.292 0.269 0.237 93.3% 1.00
AR-type β1t 0.2 0.205 0.006 0.008 97.3% 0.205 0.006 0.006 93.8% 0.205 0.006 0.006 93.9% 0.205 0.006 0.006 94.1% 1.03
(α11, α22, α12, α212) β2x 0.4 0.428 0.452 0.239 86.3% 0.431 0.436 0.385 93.8% 0.430 0.453 0.395 93.6% 0.390 0.374 0.334 94.4% 1.17
= (0.9, 0.9, 0.9, 0.9) β2t 0.5 0.530 0.026 0.029 97.9% 0.530 0.025 0.022 93.0% 0.531 0.026 0.021 91.4% 0.527 0.023 0.020 93.0% 1.10

5) β1x 0.3 0.278 0.229 0.068 73.4% 0.278 0.229 0.201 93.8% 0.279 0.231 0.201 93.7% 0.277 0.228 0.193 93.0% 1.01
AR-type β1t 0.2 0.207 0.008 0.008 95.7% 0.207 0.008 0.008 94.4% 0.207 0.008 0.008 94.3% 0.207 0.008 0.007 94.2% 1.03
(α11, α22, α12, α212) β2x 0.4 0.432 0.314 0.234 92.2% 0.437 0.310 0.310 95.4% 0.436 0.315 0.308 95.6% 0.430 0.299 0.299 95.5% 1.04
= (0.8, 0.7, 0.4, 0.3) β2t 0.5 0.525 0.029 0.028 96.6% 0.524 0.028 0.026 94.2% 0.525 0.029 0.025 92.5% 0.521 0.028 0.025 94.0% 1.01

6) β1x 0.3 0.289 0.076 0.067 92.3% 0.289 0.076 0.065 92.0% 0.289 0.076 0.065 92.0% 0.289 0.076 0.065 92.2% 1.00
AR-type β1t 0.2 0.204 0.008 0.008 95.9% 0.204 0.008 0.008 95.4% 0.204 0.008 0.008 95.4% 0.204 0.008 0.008 95.2% 1.00
(α11, α22, α12, α212) β2x 0.4 0.434 0.235 0.230 94.9% 0.435 0.235 0.231 95.2% 0.438 0.236 0.227 94.9% 0.435 0.235 0.225 95.1% 1.00
= (0, 0, 0, 0) β2t 0.5 0.522 0.031 0.028 96.0% 0.522 0.031 0.028 95.3% 0.521 0.031 0.027 95.2% 0.521 0.031 0.027 95.4% 1.00

sep-GLMa: separately fit cumulative logistic regression for ordinal outcome and logistic regression for binary outcome using maximum
likelihood; sep-GEEb: separately fit the ordinal outcome and the binary outcome using GEE; Joint GEE Independencec: GEE applied
to the joint model with independent correlation structure; Joint GEEd: GEE applied to the joint model where correlation parameter α
is estimated along with regression parameter β.
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Table 3: Estimates and Monte-Carlo variances of correlation parameters in Tables 1 and 2 esti-
mated from the joint GEE. A) Table 1: M=500 datasets with n=100 subjects; B) Table 2: M=1000
datasets with n=50 subjects.

Correlation Correlation A B

Type Parameters α α̂ var(α̂) α̂ var(α̂)

α11 0.9 0.908 0.002 0.892 0.004
α22 0.9 0.917 0.006 0.903 0.012
α12 0.9 0.902 0.001 0.899 0.003

Exchangeable α11 0.8 0.795 0.003 0.778 0.006
α22 0.7 0.693 0.014 0.683 0.030
α12 0.4 0.406 0.012 0.405 0.025

α11 0 0.000 0.003 -0.010 0.005
α22 0 -0.009 0.024 -0.029 0.051
α12 0 0.002 0.003 0.005 0.007

α11 0.9 0.899 0.001 0.889 0.002
α22 0.9 0.898 0.023 0.886 0.024
α12 0.9 0.900 0.001 0.894 0.003
α212 0.9 0.901 0.002 0.903 0.005

AR-type α11 0.8 0.796 0.003 0.780 0.005
α22 0.7 0.681 0.016 0.650 0.047
α12 0.4 0.381 0.127 0.366 0.174
α212 0.3 0.305 0.018 0.305 0.037

α11 0 -0.003 0.007 -0.011 0.014
α22 0 0.017 0.003 0.061 0.026
α12 0 -0.007 0.030 0.016 0.112
α212 0 -0.008 0.018 0.003 0.035
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Table 4: Performance of the joint model when correlation structure is misspecified. Results are from M=500 datasets with n=100
subjects.

Joint GEE Independencea Joint GEE Exchangeableb Joint GEE ARc

True Para- β β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP%
Correlation meters

β1x 0.3 0.310 0.131 0.118 93.2% 0.309 0.129 0.114 94.6% 0.308 0.132 0.117 94.8%
Exchangeable β1t 0.2 0.201 0.002 0.002 94.2% 0.200 0.002 0.002 93.8% 0.200 0.002 0.002 93.6%
(α11, α22, α12) β2x 0.4 0.411 0.187 0.178 94.0% 0.408 0.164 0.169 95.8% 0.409 0.164 0.170 96.0%
= (0.8, 0.7, 0.4) β2t 0.5 0.510 0.010 0.010 93.2% 0.509 0.010 0.010 93.6% 0.509 0.010 0.010 94.0%

β1x 0.3 0.317 0.113 0.101 94.4% 0.317 0.111 0.099 94.2% 0.316 0.109 0.096 94.8%
AR-type β1t 0.2 0.203 0.004 0.004 95.4% 0.203 0.004 0.004 94.6% 0.204 0.004 0.004 95.0%
(α11, α22, α12, α212) β2x 0.4 0.409 0.163 0.148 93.2% 0.406 0.156 0.147 94.8% 0.407 0.155 0.144 93.8%
= (0.8, 0.7, 0.4, 0.3) β2t 0.5 0.510 0.013 0.012 93.4% 0.510 0.013 0.012 93.6% 0.509 0.013 0.012 94.0%

Joint GEE Independencea: GEE applied to the joint model with independent correlation structure; Joint GEE Exchangeableb: GEE
applied to the joint model with extended exchangeable correlation structure where correlation parameter α is estimated along with
regression parameter β; Joint GEE ARc: GEE applied to the joint model with extended AR-type correlation structure where correlation
parameter α is estimated along with regression parameter β;
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Table 5: Number of observed patients at each week.

Week Peginterferon(%) Ribavirin(%)

0 388(100%) 389(100%)
1 388(100%) 389(100%)
2 388(100%) 389(100%)
3 388(100%) 389(100%)
4 379(97.6%) 389(100%)
5 376(96.9%) 380(97.7%)
6 375(96.6%) 377(96.9%)
7 375(96.6%) 375(96.4%)
8 373(96.1%) 375(96.4%)
9 372(95.9%) 373(95.9%)
10 372(95.9%) 370(95.1%)
11 371(95.6%) 367(94.3%)
12 365(94.1%) 367(94.3%)
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Table 6: Regression estimates (standard errors) and p value for Virahep-C study, using sep-GEE
and Joint GEE assuming an extended AR-type correlation.

Covariates sep-GEEa Joint GEEb

Est(SE) p value Est(SE) p value

Peginterferon Intercept -3.899(0.903) < .0001 -3.600(0.922) < .0001
(Binary) CA race -0.660(0.298) 0.0266 -0.569(0.294) 0.0526

days 0.006(0.003) 0.0326 0.004(0.003) 0.1616
CA race*days -0.001(0.005) 0.8918 -0.001(0.005) 0.8931

sex -0.112(0.284) 0.6924 -0.064(0.282) 0.8194
vloadblg 0.087(0.145) 0.5474 0.049(0.151) 0.7425
employ 0.882(0.273) 0.0012 0.812(0.267) 0.0023

Ribavirin Intercept1 -3.846(0.746) < .0001 -3.840(0.713) < .0001
(Ordinal) Intercept2 -2.521(0.749) 0.0008 -2.453(0.706) 0.0005

CA race -0.559(0.205) 0.0064 -0.322(0.210) 0.1241
days 0.012(0.002) < .0001 0.014(0.002) < .0001

CA race*days -0.002(0.003) 0.5094 -0.003(0.003) 0.1944
sex 0.023(0.190) 0.9016 0.123(0.189) 0.5159

vloadblg 0.068(0.115) 0.5560 0.022(0.109) 0.8371
employ -0.055(0.186) 0.7666 -0.222(0.158) 0.1600

sep-GEEa: separately analyze the ordinal outcome and the binary outcome using GEE; Joint GEEb:
GEE applied to the joint model where correlation parameter α is estimated along with regression
parameter β.
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Table 7: Joint models fitted with different GEE based methods for data with AR type correlation. Results are from 800 datasets with
200 subjects and 20% missing data.

AR type Correlation

R ≈ 80%, γ = 0a R ≈ 80%, γ = 1a R ≈ 80%, γ = 2.5a

Joint Models Para- β β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP%
meters

β1x 0.3 0.303 0.111 0.111 94.9% 0.277 0.116 0.108 94.3% 0.240 0.119 0.117 95.5%
β1t 0.2 0.202 0.003 0.003 94.5% 0.231 0.003 0.003 93.4% 0.276 0.004 0.004 78.3%

CC-INDb β2x 0.4 0.398 0.129 0.133 95.6% 0.392 0.138 0.134 94.4% 0.347 0.166 0.165 95.4%
β2t 0.5 0.513 0.006 0.006 94.3% 0.566 0.007 0.007 88.6% 0.740 0.017 0.016 55.0%

β1x 0.3 0.301 0.104 0.105 95.3% 0.275 0.112 0.102 94.0% 0.238 0.117 0.114 95.5%
β1t 0.2 0.202 0.003 0.002 94.3% 0.234 0.003 0.003 91.5% 0.281 0.004 0.004 74.9%

CC-ARc β2x 0.4 0.397 0.127 0.130 95.4% 0.386 0.138 0.129 94.4% 0.344 0.163 0.161 95.4%
β2t 0.5 0.513 0.006 0.006 94.4% 0.561 0.007 0.007 90.5% 0.729 0.016 0.015 54.4%

β1x 0.3 0.303 0.050 0.049 95.8% 0.288 0.046 0.045 94.9% 0.271 0.039 0.040 95.5%
β1t 0.2 0.201 0.001 0.001 94.8% 0.158 0.001 0.001 88.5% 0.115 0.001 0.001 38.1%

AC-INDd β2x 0.4 0.408 0.064 0.067 96.4% 0.397 0.063 0.062 95.0% 0.382 0.056 0.058 94.4%
β2t 0.5 0.506 0.003 0.003 95.3% 0.493 0.003 0.003 95.7% 0.471 0.003 0.003 90.1%

β1x 0.3 0.298 0.046 0.045 95.4% 0.296 0.047 0.044 94.3% 0.291 0.042 0.042 96.2%
β1t 0.2 0.202 0.001 0.001 95.0% 0.194 0.001 0.001 94.0% 0.170 0.001 0.001 87.0%

AC-ARe β2x 0.4 0.408 0.065 0.065 95.8% 0.403 0.063 0.062 95.4% 0.392 0.058 0.060 94.9%
β2t 0.5 0.506 0.003 0.003 95.3% 0.504 0.003 0.003 96.3% 0.492 0.003 0.003 93.8%

β1x 0.3 0.303 0.051 0.050 95.5% 0.297 0.054 0.053 94.5% 0.317 0.077 0.074 94.6%
β1t 0.2 0.202 0.001 0.001 95.3% 0.201 0.001 0.001 96.5% 0.201 0.002 0.002 95.6%

IPW-INDf β2x 0.4 0.407 0.066 0.067 96.1% 0.401 0.068 0.065 94.1% 0.405 0.077 0.077 94.1%
β2t 0.5 0.506 0.003 0.003 94.8% 0.504 0.003 0.003 96.0% 0.506 0.003 0.003 94.6%

β1x 0.3 0.298 0.049 0.046 94.9% 0.298 0.054 0.052 94.2% 0.285 0.176 0.084 95.1%
β1t 0.2 0.202 0.001 0.001 94.9% 0.201 0.001 0.001 93.8% 0.202 0.003 0.002 94.6%

IPW-ARg β2x 0.4 0.407 0.069 0.066 95.1% 0.399 0.069 0.066 95.2% 0.406 0.090 0.095 95.7%
β2t 0.5 0.505 0.003 0.003 94.5% 0.503 0.003 0.003 95.8% 0.505 0.004 0.004 94.3%

Missing Modela: logit(Rijt = 1|Rijt−1 = 1) = γj + γ × yijt−1; CC-INDb:Joint model fitted with independent correlation structure using
complete data; CC-ARc: Joint model fitted with AR type correlation structure using complete data; AC-INDd: Joint model fitted
with independence correlation using all available data; AC-ARe: Joint model fitted with AR type correlation using all available data;
IPW-INDf : Joint model fitted with independence correlation and inverse probability weighting using all available data; IPW-ARg: Joint
model fitted with AR type correlation and inverse probability weighting using all available data;
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Table 8: Joint models fitted with different GEE based methods for data with unstructured correlation. Results are from 800 datasets
with 200 subjects and 20% missing data.

Unstructured Correlation

R ≈ 80%, γ = 0a R ≈ 80%, γ = 1a R ≈ 80%, γ = 2.5a

Joint Models Para- β β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP% β̂ var(β̂) ˆvar(β̂) CP%
meters

β1x 0.3 0.303 0.057 0.059 95.8% 0.297 0.064 0.060 95.0% 0.262 0.066 0.061 93.0%
β1t 0.2 0.202 0.003 0.003 93.9% 0.226 0.003 0.003 93.3% 0.255 0.004 0.004 83.8%

CC-INDb β2x 0.4 0.397 0.118 0.111 94.3% 0.409 0.136 0.123 93.4% 0.376 0.144 0.140 95.3%
β2t 0.5 0.509 0.007 0.006 94.1% 0.582 0.009 0.009 88.4% 0.722 0.017 0.015 56.9%

β1x 0.3 0.303 0.055 0.057 95.9% 0.294 0.061 0.058 94.6% 0.263 0.065 0.060 92.8%
β1t 0.2 0.200 0.003 0.003 94.0% 0.228 0.003 0.003 92.8% 0.259 0.004 0.003 81.3%

CC-ARc β2x 0.4 0.393 0.118 0.108 93.9% 0.402 0.133 0.117 93.5% 0.370 0.140 0.133 94.8%
β2t 0.5 0.509 0.007 0.006 94.0% 0.575 0.008 0.008 89.0% 0.695 0.014 0.013 61.8%

β1x 0.3 0.304 0.029 0.028 94.9% 0.298 0.030 0.027 94.1% 0.287 0.027 0.026 94.4%
β1t 0.2 0.201 0.001 0.001 94.5% 0.188 0.001 0.001 94.7% 0.169 0.001 0.001 88.1%

AC-INDd β2x 0.4 0.414 0.059 0.057 94.6% 0.409 0.059 0.056 95.3% 0.396 0.052 0.051 95.2%
β2t 0.5 0.505 0.003 0.003 93.1% 0.499 0.003 0.003 93.0% 0.489 0.003 0.003 92.6%

β1x 0.3 0.302 0.027 0.026 95.1% 0.301 0.028 0.026 93.6% 0.300 0.028 0.027 94.1%
β1t 0.2 0.201 0.001 0.001 94.0% 0.202 0.001 0.001 95.4% 0.196 0.001 0.001 94.8%

AC-ARe β2x 0.4 0.401 0.058 0.055 94.1% 0.409 0.059 0.054 95.1% 0.405 0.053 0.052 95.4%
β2t 0.5 0.506 0.003 0.003 93.1% 0.505 0.003 0.003 93.9% 0.504 0.003 0.003 93.5%

β1x 0.3 0.304 0.030 0.029 95.4% 0.306 0.032 0.030 93.3% 0.310 0.041 0.042 93.8%
β1t 0.2 0.201 0.001 0.001 94.0% 0.201 0.001 0.001 95.0% 0.202 0.002 0.002 93.9%

IPW-INDf β2x 0.4 0.413 0.060 0.058 94.6% 0.411 0.062 0.058 94.3% 0.407 0.063 0.066 94.7%
β2t 0.5 0.505 0.003 0.003 93.0% 0.505 0.003 0.003 94.0% 0.506 0.003 0.003 93.6%

β1x 0.3 0.303 0.028 0.027 94.6% 0.299 0.030 0.029 93.8% 0.305 0.050 0.046 93.0%
β1t 0.2 0.201 0.001 0.001 95.1% 0.201 0.001 0.001 94.9% 0.204 0.003 0.002 94.1%

IPW-ARg β2x 0.4 0.410 0.060 0.055 93.9% 0.409 0.063 0.057 93.9% 0.406 0.069 0.071 94.1%
β2t 0.5 0.505 0.003 0.003 93.1% 0.504 0.003 0.003 94.1% 0.505 0.004 0.004 94.8%

Missing Modela: logit(Rijt = 1|Rijt−1 = 1) = γj + γ × yijt−1; CC-INDb:Joint model fitted with independent correlation structure using
complete data; CC-ARc: Joint model fitted with AR type correlation structure using complete data; AC-INDd: Joint model fitted
with independence correlation using all available data; AC-ARe: Joint model fitted with AR type correlation using all available data;
IPW-INDf : Joint model fitted with independence correlation and inverse probability weighting using all available data; IPW-ARg: Joint
model fitted with AR type correlation and inverse probability weighting using all available data.
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Table 9: Correlation estimates for data with AR type correlation. Results are from 800 datasets
with 200 subjects and 20% missing data.

AR type Correlation

R ≈ 80%, γ = 0a R ≈ 80%, γ = 1a R ≈ 80%, γ = 2.5a

Joint Models Para- α α̂ var(α̂) α̂ var(α̂) α̂ var(α̂)
meters

α11 0.8 0.797 0.001 0.742 0.001 0.660 0.002
α22 0.7 0.665 0.008 0.652 0.006 0.561 0.007

AC-ARb α12 0.4 0.142 0.005 0.321 0.051 0.294 0.043
α212 0.3 0.267 0.013 0.294 0.009 0.295 0.008

α11 0.8 0.798 0.001 0.797 0.002 0.788 0.008
α22 0.7 0.678 0.007 0.689 0.009 0.668 0.020

IPW-ARc α12 0.4 0.185 0.015 0.189 0.017 0.213 0.043
α212 0.3 0.306 0.019 0.301 0.020 0.279 0.051

Missing Modela: logit(Rijt = 1|Rijt−1 = 1) = γj + γ× yijt−1; AC-ARb: Joint model fitted with AR
type correlation using all available data; IPW-ARc: Joint model fitted with AR type correlation
and inverse probability weighting using all available data.
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