
SCALABLE PROCESSING OF MULTIPLE AGGREGATE

CONTINUOUS QUERIES

by

Shenoda Guirguis

M.Sc. in Computer Science, University of Pittsburgh, 2010

M.Sc. in Computer Science, Alexandria University, 2006

B.Eng. in Computer Science and Engineering, Alexandria

University, 2001

Submitted to the Graduate Faculty of

the Department of Computer Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2011

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Shenoda Guirguis

It was defended on

August 23, 2011

and approved by

Panos K. Chrysanthis, Professor, University of Pittsburgh

Alexandros Labrinidis, Associate Professor, University of Pittsburgh

Kirk Pruhs, Professor, University of Pittsburgh

Mohamed Mokbel, Associate Professor, University of Minnesota

Mohamed Sharaf, Assistant Professor, The University of Queensland

Dissertation Advisors: Panos K. Chrysanthis, Professor, University of Pittsburgh,

Alexandros Labrinidis, Associate Professor, University of Pittsburgh

ii

Copyright c© by Shenoda Guirguis

2011

iii

SCALABLE PROCESSING OF MULTIPLE AGGREGATE CONTINUOUS QUERIES

Shenoda Guirguis, PhD

University of Pittsburgh, 2011

Data Stream Management Systems (DSMSs) were developed to be at the heart of every monitor-

ing application. Monitoring applications typically register hundreds of Continuous Queries (CQs)

in DSMSs in order to continuously process unbounded data streams to detect events of interest.

DSMSs must be designed to efficiently handle unbounded streams with large volumes of data and

large numbers of CQs, i.e., exhibit scalability. This need for scalability means that the underlying

processing techniques a DSMS adopts should be optimized for high throughput (i.e., tuple output

rate). Towards this, two main approaches were proposed in the literature: (1) Multiple Query Opti-

mization (MQO) and (2) Scheduling. In this dissertation we focus on optimizing the processing of

multiple Aggregate Continuous Queries (ACQs), given their high processing cost and popularity

in all monitoring applications.

Specifically, in this dissertation, we explore shared processing of ACQs and introduce the con-

cept of’Weaveability’as an indicator of the potential gains of sharing the processing of ACQs. We

developWeave Share, a multiple ACQs optimizer that considers the different uncorrelated factors

of the processing cost, such as the input rate and ACQs’ specifications. In order to fully reap the

benefits of the new weave-based optimization techniques, we conceptualize a new underlying ag-

gregate operator implementation and realize it in theTriOps framework.TriOpsenables adaptive

sharing of multiple ACQs that have different window specification, predicates and group-by at-

tributes. The properties of the proposed techniques are studied analytically and their performance

advantages are experimentally evaluated using simulation and in the context of the AQSIOS DSMS

prototype.

iv

Keywords Data Streams Management Systems, Continuous Queries, Query Optimization, Scal-

able Processing, Aggregation, AQSIOS, Weaveability.

v

TABLE OF CONTENTS

PREFACE .xiv

1.0 INTRODUCTION . 1

1.1 Approach and Challenges. 4

1.2 Contributions. 7

2.0 BACKGROUND AND RELATED WORK . 11

2.1 Data Stream Management Systems. 11

2.2 Aggregation over Data Streams. 15

2.2.1 ACQ Semantics. .15

2.2.2 ThePaired WindowTechnique . 16

2.2.3 Sharing Multiple ACQs. .19

2.2.3.1 Shared Time Slices. 19

2.2.3.2 Shared Data Shards. 21

2.2.3.3 Intermediate Aggregates. 22

2.3 Experimental Platform. .23

2.4 Other Related Work .25

2.5 Summary. .27

3.0 WEAVE SHARE: EXPLOITING WEAVEABILITY TO OPTIMIZE ACQS 28

3.1 Motivation .28

3.2 Formalization. .32

3.3 Weaveability .33

3.4 Challenges of Grouping Multiple ACQs. 34

3.5 TheWeave ShareAlgorithm .35

vi

3.5.1 Weave Shareby Example. 37

3.5.2 Sharing AVERAGE ACQs. 39

3.5.3 Varying Predicates and Group-by. 40

3.6 Implementation Optimizations of theWeave ShareOptimizer. 41

3.6.1 Optimization I: Cost Lookup. 43

3.6.2 Optimization II: Edges Bitmap.. 44

3.6.3 Optimization III: Probing Reorder.. 45

3.7 Evaluation .45

3.7.1 Quality of Weave Share Plans. 46

3.7.1.1 Number of ACQs (Fig.12 to 14) 46

3.7.1.2 Input Rate (Fig.16) . 49

3.7.1.3 Maximum Overlap Factor (Fig.17) 50

3.7.1.4 Slide Skewness (Fig.18) . 52

3.7.2 Theoretical Lower Bound. 52

3.7.3 Impact of Optimizations. 53

3.8 Summary. .54

4.0 INCREMENTAL Weave Share .56

4.1 Adding New ACQs. .56

4.2 Deleting ACQs. .58

4.3 Weaved Plans Switching. .59

4.4 Frequency of ACQs additions and deletions. 59

4.5 Adapting to Changes in Input Rate. 60

4.6 Evaluation .61

4.7 Summary. .64

5.0 TRIOPS: THREE-LEVEL PROCESSING MODEL 65

5.1 Motivation .65

5.2 TriOpsandTriWeave .66

5.2.1 TriOpsProcessing Model. 66

5.2.2 TriOpsCost and Advantages. 68

5.2.3 TriWeaveOptimizer. .70

vii

5.3 TriOps: Windows and Predicates. 71

5.3.1 Drawbacks of Integrating Shared Data Shards Technique withWeave Share 72

5.3.2 TriOps: Handling Different Predicates. 73

5.4 TriOps: Windows, Predicates and Group-by. 76

5.4.1 Windows and Group-by. .76

5.4.2 Windows, Predicates and Group-by. 79

5.5 GeneralizedTriWeaveOptimizer . 79

5.5.1 Impact of Predicates on Weaving. 80

5.5.2 The Algorithm .81

5.6 Evaluation .82

5.6.1 Experimental Platform. .82

5.6.2 TriOpsPerformance .84

5.7 Summary. .86

6.0 AQSIOS 3.0: REALIZATION OF WEAVE SHARE 89

6.1 The AQSIOS DSMS Prototype. .89

6.2 Challenges .90

6.3 Evaluation .94

6.3.1 Performance UnderRR .94

6.3.2 Performance UnderHR .98

6.3.3 The Optimizer Performance. 98

6.4 Summary. .100

7.0 CONCLUSIONS AND FUTURE WORK .101

7.1 Summary of Contributions. .101

7.2 Impact of this Dissertation. .103

7.3 Future Work .104

7.3.1 Generalization: Optimizing Complex CQs with ACQs.104

7.3.2 Synergy with other Modules. .105

APPENDIX A. ADAPTING LOCAL SEARCH TECHNIQUE106

APPENDIX B. AQSIOS 3.0 RELATED CODE .108

B.0.3 AddingWeave ShareOptimizer .108

viii

B.0.4 Adding New Operators. .109

B.0.5 Adding Support for Sliding Windows andWeave Share.110

BIBLIOGRAPHY .111

ix

LIST OF TABLES

1 Queries parameters. .24

2 Experimental Parameters. .25

3 Weave Shareby example - windows’ specifications. 39

4 Summary of New and Modified Code. .109

x

LIST OF FIGURES

1 DSMS Architecture.. .12

2 Paired Windowtechnique .18

3 Sharing the partial aggregations.. .19

4 Example3: stretching slides, merging edges, and shared plan.. 21

5 Intermediate Aggregates tree. .22

6 Sharevs No Share .31

7 Weave Shareby example - Iterations ofWeave Share. 38

8 Sharing AVERAGE ACQs. .40

9 An Instance of a Weaved Plan. .41

10 Cost Lookup Table. .44

11 Edges Bitmap and Probing Process. 45

12 Impact of #ACQs: Low input rate (50 tuples/sec). 47

13 Impact of #ACQs: Medium input rate (300 tuples/sec). 47

14 Impact of #ACQs: low, medium and high input rates. 48

15 Number of Execution Trees. .49

16 Impact of Input Rate - different # of ACQs. 50

17 Impact ofΩmax: different rates .51

18 Impact of Slide Skewness. .53

19 Optimizations’ Benefits. .54

20 Incremental vs offlineWeave Share- Deviation . 61

21 Incremental Weave Share- Overhead . 62

22 Incremental Weave Share- Deviation . 63

xi

23 Incremental Weave Share- Overhead . 64

24 TriOpsShared Processing Scheme. 67

25 Inverted Predicate Signatures Structure. 73

26 TriOps- Windows and Predicates. 74

27 Fragment-signature pairs that belong to the same fragment. 75

28 An Instance of Four ACQs. .77

29 IntegratingTriWeavePlan with Intermediate-aggregates Tree. 78

30 TriWeavePlan - Varying Windows, Predicates, and Group-by. 80

31 TriWeaveperformance gain - Impact of Input Rate. 83

32 UsingTriOpsprocessing for different plans (50 tuples/sec). 84

33 TriWeave- Impact of Input Rate and No. of ACQs. 85

34 UsingTriOpsprocessing for different plans (300 tuples/sec). 86

35 UsingTriOpsprocessing for different plans (10K tuples/sec). 87

36 Current ACQ query plan. .91

37 The Weaved Query Plan. .93

38 Cost - 50 tuples/sec. .95

39 Cost - 300 tuples/sec. .95

40 Simulation results for 300 tuples/sec. 96

41 Average Response Time - 300 tuples/sec. 96

42 Average Response Time - 50K tuples/sec. 97

43 Average Response Time -HR scheduler - 50K tuples/sec. 97

44 Number of Execution-Trees ofWeave Share . 99

45 Weave ShareOptimization Time. .99

xii

LIST OF ALGORITHMS

1 TheWeave ShareAlgorithm .36

2 TheIncremental Weaved ShareAlgorithm . 57

3 TheTriWeaveAlgorithm .71

4 GeneralizedTriWeaveOptimizer . 88

xiii

PREFACE

No dream comes true without generous support of people and institutions. I am very grateful to the

organizations that financially supported this work. Namely, the US National Science Foundation

partially supported this work through out the NSF awards IIS-0534531 and IIS-0746696, and the

University of Pittsburgh also partially supported this work through the School of Arts and Science

Departmental Fellowship and by an Andrew Mellon Predoctoral Fellowship.

I am also truly very grateful to all the people who supported me throughout the years. First of

all, I am grateful to my advisers, Panos K. Chrysanthis and Alexandros Labrinidis, who were to me

not only advisers, but dear friends. I did learn a lot from them academically as well as personally.

Their patience, hard work, pastorship of the work, and their being a model to follow were the

main reasons behind my success. Sincere thanks are due to my PhD Committee memebers for

their insightful and constructive feedback. Thanks are due to faculty members of the Computer

Science department, each taught me something to treasure for the rest of my life. I am also very

thankful and grateful to my family, my parents and my two brothers, without whom support and

encouragement during hardships I would not have been able to reach to this successful stage. And

thanks to the many colleagues and friends who made this journey of graduate school, a pleasant

one.

And above all, I am thankful to God, Jesus Christ, Who is always there whenever I need Him.

xiv

1.0 INTRODUCTION

Data Stream Management Systems (DSMSs) deviate completely from thestore-then-queryparadig-

m of traditional database management systems (DBMS). In a DSMS, it is the queries that are stored

or registered ahead of time, while the data arrives and is processed without the need for storing it

first. DSMSs were developed to be at the heart of every monitoring application, from environmen-

tal monitoring, to patient care and outbreaks of disease detection, to network and financial market

and cosmic phenomena monitoring (e.g., [6, 3, 7, 2, 73, 77, 39, 74, 56, 22]).

Monitoring applications registerContinuous Queries(CQs) in DSMSs in order to continuously

process unbounded data streams to detect events of interest. DSMSs are designed to efficiently

handle unbounded streams with large volumes of data and large numbers of CQs, i.e., exhibitscal-

ability. Thus, optimizing the processing of multiple continuous queries is imperative for DSMSs

to reach their full potential.

In a typical monitoring application, hundreds of Aggregate Continuous Queries (ACQs) are

normally registered [59] to monitor few input data streams. In fact, more than often, these ACQs

are also computing the exact same aggregate function, but may have slightly different specifica-

tions. In particular, there are three characteristics that can vary among similar ACQs: (1) the

window-specifications, (2) pre-aggregation filters (i.e., predicates) and (3) group-by attributes.

For example, a network monitoring application could employ three ACQs to monitor the IP

traffic, all of which could compute theCOUNTof incoming packets. While the first ACQ could

report the count in the last minute, updated every five seconds, the second and third ACQs could

report the count in the last minute, to be updated every half minute. Further, the first ACQ might

be interested in the count of IP traffic originating from a specific source, i.e., have a predicate

that the source IP has a certain value. The second and third ACQs, on the other hand, might be

counting all received packets, but have them grouped by source IP and destination IP, respectively.

1

Given the proliferation and similarity of ACQs, and given the high data arrival rates, optimizing

the processing of ACQs is crucial for scalability.

The need for scalability means that the underlying processing techniques a DSMS adopts

should be optimized for high throughput (i.e., tuple output rate). Towards this, two main ap-

proaches were proposed in the literature: (1)Query processing optimization(e.g., [46, 47, 45,

81, 28, 29]) and (2)Scheduling(e.g., [11, 70, 30]). While query processing optimization aims at

minimizing the processing delays, scheduling on the other hand aims to dynamically decide which

operator to execute next in order to minimize queuing delays. In this dissertation, we focus on

optimizing the processing of multiple Aggregate Continuous Queries (ACQs).

Towards optimizing the processing of ACQs, two categories of optimization techniques have

been proposed in the literature: (1) efficient implementation of individual continuous operators and

(2) multiple query optimization (MQO). Efficient implementation aims to adopt the most efficient

techniques an operator can utilize to perform its task. On the other hand, MQO aims to generate

query execution plans, typically statically, in order to minimize the tuple processing delay. The

query execution plan consists of the operators of the submitted CQs and their execution order

based on their interdependency.

Under the first category of techniques (i.e., operator implementation),Partial Aggregationhas

been proposed to minimize the repeated processing of overlapping data windows within a single

ACQ (e.g., [46, 47, 29, 45]). In particular, thePartial Aggregationprocessing scheme aims at

processing each input tuple only once and assemble the final aggregate value from a set of partial

aggregate values. In this scheme, ACQ processing is modeled as a two-level (i.e., two-operator)

query execution plan: in the first level a sub-aggregate function is computed over the data stream

generating a stream of partial aggregates, whereas in the second level a final-aggregate function is

computed over those partial aggregates.

Under the second category of techniques (i.e., multiple query optimization), the general princi-

ple is to minimize (or eliminate) the repeated processing of overlapping operations across multiple

ACQs. This repetition occurs as a result of processing the same data by different queries, which

exhibit an overlap in at least one of the three specifications, as mentioned earlier: (1) window

specifications, (2) predicate conditions, or (3) group-by attributes.

In general, MQO is well known to be NP-hard for traditional database systems [67] as well

2

as for DSMSs [83]. Therefore, MQO techniques are typically based on heuristics that aim to

share the processing ofcommon sub-expressionsamong the execution plans of the various queries.

This raises the challenge of identifying which sub-expressions are beneficial to share, if any

[85, 42]. The optimization of multiple ACQs goes beyond the classic identification of common

sub-expressions to exploiting the window semantics, the overlap of predicates, the overlap of the

group-by attributes, and thePartial Aggregation; this is the challenge we are addressing in this

dissertation.

On one hand, leveraging overlaps in predicate conditions and group-by attributes across dif-

ferent queries has been the focus of intense research in classical multiple query optimization. On

the other hand, the shared processing of overlapping windows is a new area of research that has

emerged with the paradigm shift for handling continuous queries with the use of scalable DSMSs.

A first step towards optimizing multiple ACQs,Partial Aggregationhas been utilized to share

the processing of multiple similar ACQs with different windows and predicates, but same group-by

attributes, assuming it is always beneficial to share the partial aggregation [45]. The assumption

that it is always beneficial to share is based on the premise that data arrival rate is the predomi-

nant factor in determining the sharing decision, where a high rate is always a precursor for plan

sharing. It is also based on the observation that, in most practical applications, data streams do

in fact exhibit a high rate. This approximation, however, considers only one facet of the problem

(i.e., the characteristics of data streams) while diminishing the impact of the other facet (i.e., the

characteristics of the registered ACQs).

Orthogonally, [59] proposed an extension to the classical subsumption-based multiple query

optimization techniques towards sharing the processing of multiple ACQs with varying group-

by attributes, but similar windows and predicates. This technique utilizesPartial Aggregation

in a hierarchical fashion (i.e., more than two levels of aggregate operators). Regardless of the

differences between the above multiple query optimization techniques, they all rely on the same

concept of partial aggregation.

Given the crucially of optimizing the processing of multiple similar ACQs, and given the lack

of a general technique that handles all different cases, one is intrigued to ask the following ques-

tions.

3

Q1. In addition to the data streams input rate, what other factors of the workload characteristics and

ACQs properties affect the cost of a shared query plan? And more importantly, how do these

factors interact with each other to affect the cost of a query plan?

Q2. Given our understanding of how the factors that affect the cost of the shared plan interact, can

we design a multiple ACQs optimizer that considers all these factors while making the sharing

decision? Could this new optimizer comprehensively handle all three cases of variability in the

ACQs specifications (i.e., windows, predicates and group-by attributes)?

Q3. Given that ACQs are added to, and deleted from, the DSMS over time, and given that input

rates also fluctuates, what is the best adaptive sharing strategy? In other words, when the

workload characteristics changes, should the query plan be recomputed or be incrementally

updated?

Q4. Is the currently widely-acceptedPartial Aggregationtechnique the best continuous aggregation

operator implementation for the shared processing of multiple ACQs?

In this dissertation, in answering the above questions, we argue that the properties and speci-

fications of the installed ACQs are of equal importance to the workload characteristics (i.e., input

rate and number of ACQs) in determining the sharing decision. In fact, the main thesis of this

dissertation is thatintelligent shared processing of ACQs that (1) considers all factors that affect

the processing cost of ACQs and (2) handles all cases of variability in ACQs specifications, is the

key solution for achieving scalability in DSMSs. We discuss our approach to address the above

questions next.

1.1 APPROACH AND CHALLENGES

The objective of this dissertation is to identify the best strategies a DSMS should adopt in order

to optimize the processing of ACQs, to achieve the desired level of system scalability. Towards

achieving this goal, this dissertation tries to answer the main four intriguing questions mentioned

above. Briefly, we first study the interaction between the properties of ACQs and the characteristics

of the workload that affect the cost of the shared processing of ACQs. Once we understand the

4

interaction between the different factors, we can devise a multiple ACQs optimizer that utilizes

this knowledge. Then, given the insights gained from the previous step, we explore the efficient

processing schemes searching for an efficient scheme that is more suitable for shared processing

and that is efficiently adapting to changes in the workload. Finally, we revisit the multiple ACQs

optimization problem given the new processing scheme. Below, we detail these steps and the

challenges involved with each step.

Addressing Q1: What other factors of the workload characteristics and ACQs properties

affect the cost of a shared query plan?

To address this question, we first formulate the problem and build the cost model of the shared

query plan. Given this cost model, we can identify the tradeoffs involved in optimizing the shared

processing of multiple ACQs. We can further study the tradeoffs by performing a thorough ex-

perimental analysis which considers many different settings of the workload parameters. Once we

identify the tradeoffs, the hope is to develop a formula that captures the interaction between the

different workload characteristics that affect the cost of the shared query plan.

Challenge: Uncorrelated Factors

We observed that the most challenging part in this task is that the performance of an aggregate

operator relies on a set of uncorrelated, and sometimes contradicting, factors. These factors are the

input arrival rate, the size of the workload (i.e., number of ACQs), as well as per ACQ specifica-

tions (e.g., window specifications, predicate and group-by attributes). The effect of these factors

varies depending on the underlying single ACQ processing scheme. For example, in thePartial Ag-

gregationprocessing scheme not only the number of ACQs, but also which ACQs are being shared

affects the processing overhead. Unfortunately, all these factors are not correlated. Prior work in

multiple ACQ optimization has considered only one factor. Therefore, there is a need for solutions

that consider all factors comprehensively in order to achieve the best possible performance.

Addressing Q2: Can we design a multiple ACQs optimizer that considers all these factors

comprehensively while making the sharing decision?

Once we have devised a formula that captures the interaction of the different factors that affect the

cost of processing ACQs, we search for an optimizer that utilizes this formula. We first consider

5

the simple case where all similar ACQs vary in window specifications only. Then we consider the

more general case when ACQs can arbitrary vary in any specification, i.e., windows, predicates

and group-by attributes.

Challenge: Exponential Search Space

As it is the case with traditional multiple query optimization (MQO), finding the optimal query

plan of multiple ACQs, given a set of workload parameters, is an NP-Hard problem [67]. In

terms of search space, the number of possible plans is exponential in the number of ACQs. The

research community has investigated several heuristics to approximate the optimal query plan in

both traditional MQO (e.g., [66]) as well as in multiple ACQs (e.g., [83]). The challenge is to

develop a multiple ACQs optimizer that efficiently prunes the search space without compromising

the quality of the generated query plan.

Addressing Q3: To recompute or not to recompute?

Given that the factors that affect the cost of a query plan, in addition to being uncorrelated, are

dynamic, i.e., change over time, we investigate how to adapt the query plan efficiently. We consider

different options between over-provisioning and recomputation from scratch in order to find the

best online strategy.

Challenge: Quality versus overhead tradeoff

There are many factors that are dynamic. The stream arrival rate is known to be of bursty nature.

ACQs can be added and deleted on demand, at run time. This further complicates the task of

finding the optimal query plan and calls for solutions capable to adapt to workload changes in real

time. That is, the optimizer should be able to choose the best way to update the query plan when

faced with different types of changes, balancing the tradeoff between the quality of the query plan

and the overhead needed to compute the updated plan or to recompute the new query plan from

scratch.

Addressing Q4: Is thePartial Aggregationtechnique the best continuous aggregation opera-

tor implementation?

Based on the experience of developing a new optimizer, we investigate whether we can improve

the underlying aggregation operator processing scheme. Specifically, we revisit thePartial Ag-

gregationscheme to devise a new scheme that better suits the new sharing scheme (i.e., the new

6

optimizer), and the dynamic nature of the problem. Given this new sharing-friendly processing

scheme, we revisit the multiple ACQs optimizer to explorer potential chances for further improve-

ments.

Challenge: Multiple dimensions to optimize for

The new processing scheme should be designed to optimize the shared processing of similar ACQs

that have arbitrary different specifications. The challenge is that it is unclear which dimension of

these specifications should the new scheme prioritize to optimize for to promote sharing. Further,

in such dynamic environment of changing workload characteristics, the new processing scheme

should be online by design, i.e., support adaptive optimization of multiple ACQs.

1.2 CONTRIBUTIONS

In this dissertation, we address all the above challenges and make contributions to the theory and

practice of efficient processing of multiple ACQs in DSMSs alike. We identify the sharing tradeoff

and introduce the concept ofWeaveabilityof ACQs. TheWeaveabilityof a set of ACQs is an

indicator of the potential gains from sharing their processing.

We then proposeWeave Share, a cost-based multiple ACQs optimizer, which exploits weave-

ability to optimize the shared processing of multiple ACQs that vary in window specifications

only. Weave Shareselectively groups ACQs into multiple execution trees to minimize the total

plan cost by considering all factors that affect the cost of the shared query plan. We experimen-

tally evaluate and analyze the performance ofWeave Sharein terms of quality of the generated

plans using all possible settings of workload characteristics. Our experimental analysis shows that

Weave Sharegenerates up to four orders of magnitude better quality plans compared to the best

alternative sharing schemes. We develop and experimentally evaluate a practical implementation

and several optimizations that dramatically improve the efficiency of theWeave Shareoptimizer in

generating high quality plans.

Given theWeave Shareoptimizer, and in order to efficiently handle the addition and deletion of

ACQs in an online fashion, we proposeIncremental Weave Sharethat efficiently weaves the new

ACQs into the execution trees of an existing plan, as long as the quality of the query plan is not

7

compromised, i.e., remains within specified tolerance limits.Incremental Weave Sharebalances

the tradeoff between quality and efficiency by triggering a recomputation from scratch whenever

the quality of the incrementally maintained query plan deteriorates beyond a certain threshold. We

experimentally evaluateIncremental Weave Shareand perform sensitivity analysis of the threshold

with respect to performance.

To fully reap the benefits of the newWeave Sharemultiple ACQs optimizer, we investigate a

new underlying aggregate operator implementation. This implementation allows more flexibility

in the data flow between the sub-aggregation and final-aggregation levels so that partial aggregate

results are easily pipelined to different final-aggregate operators, or equivalently, to different trees

of operators as in the case ofWeave Share. Specifically, we proposeTriOps, a new aggregate opera-

tor implementation that works in synergy with the newWeave Shareoptimizer towards minimizing

the total cost of processing multiple ACQs.TriOps employs a novel three-level data processing

model that minimizes the repetition of operations at the sub-aggregate level. Given theTriOps

framework, we proposeTriWeavea TriOps-aware multiple ACQs weave-based optimizer. We ex-

perimentally demonstrate the performance gains provided byTriWeaveand show it is superior to

other alternatives includingWeave Sharebased on the two-levelPartial Aggregationtechnique.

In addition to those gains,TriOps still maintains all the attractive features of the two-level

aggregation model, which allows it to directly incorporate traditional multiple query optimization

techniques for exploiting overlapping predicates and group-by attributes. As such, we generalize

TriWeaveto integrate the classical subsumption-based multiple query optimization techniques (i.e.,

overlapping predicates and group-by attributes) with the new weaveability-based multiple ACQs

optimization.

A design goal of all solutions proposed in this dissertation is to adapt to changes in workload

characteristics in an online fashion. TheTriOps framework enables a smooth and efficient query

plan switching and, therefore, enables adaptivity to changes to all workload settings.

We extended the AQSIOS DSMS prototype [6, 19], which implementsWeave Shareand the

two-operators shared processing scheme. Previous version of AQSIOS did not support sliding

windows, a serious shortage. Our realization ofWeave Shareand the two-operator processing

scheme introduces the support for the sliding windows. The basic evaluation ofWeave Sharein

AQSIOS confirmed our simulation results. Finally, the implementation ofWeave Sharein AQSIOS

8

(v. 3.0) sets up the stage for future studies, in a real-system, of the synergy between the query

optimizer and the other DSMS modules, such as the scheduler, load shedder and admission control.

The interaction with the scheduler is particularly important given the underlying two-operators

scheme, where each operator is typically scheduled independently. As mentioned earlier, different

scheduling techniques and query optimizers have been proposed independently to optimize the

performance of ACQs. It is crucial that the different adopted techniques for the different DSMS

modules work well together to avoid the undesired situation where the optimization efforts of one

module, e.g., scheduler, are canceled by the optimization efforts of another module, e.g., query

optimizer. AQSIOS 3.0 is expected to enable the design of new synergistic strategies among the

DSMS modules.

In summary, the contributions of this dissertation are:

• Weaveability, a new concept that captures the potential gains from sharing the processing of

multiple ACQs. We introduce the concept of weaveability after we identify and demonstrate

the tradeoffs in optimizing the shared processing of multiple ACQs.

• Weave Share, a new multiple ACQs optimizer that comprehensively considers all cost factors

and applies to ACQs with different window specifications as well as different predicates.

• Incremental Weave Share, the online version ofWeave Sharethat efficiently handles the addi-

tion and deletion of ACQs.

• TriOps, a new aggregation processing scheme that is designed to optimize the shared pro-

cessing of ACQs that can vary in any specification (i.e., window, predicates or group-by at-

tributes).TriOpsalso enables efficient adaptive processing to changes in the workload in terms

of changes in the input rate and addition or deletion of ACQs.

• AQSIOS 3.0, which is our realization ofWeave Shareoptimizer in the AQSIOS DSMS proto-

type.

• Extensive performance evaluation and sensitivity analysis of multiple ACQs optimization tech-

niques using the developed simulation platform and the AQSIOS prototype.

9

Road map: The rest of the dissertation is organized as follows: the background and related work

are discussed in Chapter2. In Chapter3 we define weaveability of ACQs and how to exploit it to

achieve better plans using theWeave Shareoptimizer. The online incremental version ofWeave

Sharethat handles the addition and deletion of ACQs is discussed in Chapter4. We then propose

TriOps, a new aggregation processing scheme, that enables adaptive weaving of stream aggregation

with different window specifications, predicates and group-by attributes in Chapter5. TriWeave,

the generalized multiple ACQs optimizer that utilizesTriOps is also presented in Chapter5. Then

we summarize the realization of our proposed solutions in AQSIOS prototype in Chapter6. We

finally conclude the dissertation discussing the future work and how to generalize our proposed

weaving techniques to handle more complex CQs in Chapter7.

10

2.0 BACKGROUND AND RELATED WORK

In order to set up the stage for the rest of this dissertation, in this chapter, we first furnish the

necessary background on data streams management systems (DSMSs). Second, we discuss our

assumed underlying model for aggregation over data streams. Then we describe our experimental

platform. Finally, we provide a survey of other related work on Aggregate Continuous Queries

(ACQs) processing.

2.1 DATA STREAM MANAGEMENT SYSTEMS

As mentioned in the Introduction chapter, DSMSs deviate completely from thestore-then-query

paradigm of traditional database management systems (DBMS). Specifically, in a DSMS, the con-

tinuous queries are registered ahead of time and continuously process arriving data. The data,

therefore, need not to be stored except for archival purposes. Data arrives in the form of unbounded

streams from different data sources, where the arrival of new data is similar to aninsertionopera-

tion in traditional database systems. A DSMS is typically connected to different data sources and

a single data stream might feed more than one query.

That is, in DSMSs, users of monitoring applications register Continuous Queries (CQs) which

continuously process unbounded data streams looking for data that represent events of interest

to the end user. DSMSs are designed to efficiently handle such large and burst volumes of data

and large number of continuous queries. That is DSMS are designed to exhibit scalability, while

at the same time providing fast response times. Towards developing a scalable DSMS, several

prototypes have been proposed (e.g., [6, 3, 7, 2, 39, 56]) as well as several commercial products

(e.g., [73, 77, 39, 74, 56, 22]).

11

Figure 1:DSMS Architecture.

The typical architecture of a DSMS is illustrated in Figure1 which shows the main modules

of the DSMS, namely, theQuery Optimizer, Query Scheduler, Buffer/Memory Manager, Load

Shedder, Admission ControlandResults Dissemination. We now briefly describe the functionality

of each of these modules.

As CQs are registered to the DSMS, theQuery Optimizeris invoked to generate an optimized

CQ evaluation plan that minimizes the processing overhead. A CQ evaluation plan can be concep-

tualized as a data flow tree [15, 11] (e.g., the Query Plan in Figure1). The nodes are operators

that process tuples and edges represent the flow of tuples from one operator to another. An edge

from operatoroi to oj means that the output ofoi is an input tooj. Each operator is associated with

a queuewhere input tuples are buffered until they are processed. A continuous query evaluation

plan is usually, and in this dissertation hereafter, referred to as anexecution treeas well.

Optimizing the execution tree to minimize the processing overhead is achieved in two lev-

els. First is optimizing the query plan of a single CQs by applying traditional query optimization

heuristics, such as pushing selections and projections down the execution tree. Second, at a more

global level, is the multiple query optimization, which exploits common sub-expressions among

the individual query execution trees to avoid repeating processing of the same operators on the

same data.

12

The query optimizer also utilizes as much information available about the data semantics and

meta-data, whenever available, to generate the most possible efficient evaluation plan [82]. Since

the data semantics (e.g., data ranges and distributions) and meta-data (e.g., workload settings such

as arrival rate and CQs) change over time, a continuous adaption of the query evaluation plan is

also needed [50, 49, 9, 10].

Once the query plan is generated, the DSMS utilizes theSchedulerto chose the order at which

CQ operators shall be executed. Different metrics have been proposed to capture the requirements

of difference monitoring applications. Different scheduling algorithms are needed to optimize, at

run time, the execution of the queries for the different metrics [11, 70]. Two categories of metrics

have been utilized, namely,Quality of Service(QoS) metrics andQuality of Data(QoD) metrics.

The most common QoS metric is theresponse time, which is the time span between when an event

of interest occurs (i.e., a data tuple arrives) and when it was produced as an output of the interested

CQs (i.e., all CQs that this input tuple is part of their output).Data freshness, on the other hand, is

usually used to capture the QoD of the output. In [71, 69], the output tuple is fresh if and only if it

is still valid, i.e., no overwriting output tuple is due.

The Scheduleris also sometimes utilized as a query optimizer, in the sense that it is used to

synchronize the execution of operators that share partial processing [30, 38, 81] to avoid repeating

that processing and minimize the memory used for storing intermediate results [11].

TheMemory Manager(Buffer Manager) role is to dynamically allocate memory buffers to dif-

ferent queues and operators. Shared queues to store intermediate results among different operators

are typically utilized [14]. The memory manager is a crucial module, given the memory intense

nature of the DSMSs. That is, given the real-time requirements of the monitoring applications

DSMSs support, all data should fit into main memory (similar to main-memory databases). Since

a DSMSs support a large number of registered CQs, as well as the large and bursty volumes of input

data streams, main memory could become a bottleneck. This memory intense nature might lead to

overloading situations, where the DSMS might fail to meet the promised performance guarantees.

In such cases, load shedding is employed to resolve this issue [3, 48, 65, 64, 78].

Load shedding is one of the two approaches to load management in a DSMS. Under overload-

ing situations, theLoad Sheddermodule would select certain tuples to discard without processing

them in order to reduce the memory and processing requirements at the moment. This is per-

13

formed on the hope that by reducing the load, the DSMS could meet the QoS guarantees [27, 75].

Typically this comes at the expense of deteriorating the QoD. Thus, the load shedder main goal is

to improve the QoS while minimizing the deterioration of the QoD. Semantics of the input data

streams could be utilized to better select which tuples to shed [48, 64, 65].

Orthogonal to load shedding,Admission Controltries to avoid overloading situations. The

Admission Controlmodule would decide which CQs to admit into the DSMS, so that to minimize

the chances for the system to run into an overload situation. TheAdmission Controlmodule would

selectively admit CQs to be registered into the the system, given the system capacity, in order to

guarantee the promised QoS and QoD. One can regard theAdmission Controlas avoidance scheme,

while theLoad shedderis a detect and resolution scheme. In [52], a game theoretic approach was

proposed to pick the set of CQs to admit in a way to maximize the system profit while maintaining

user satisfaction.

TheResults Disseminatortask is to timely return query results to users. Each ACQ is associ-

ated with a socket, or network connection, which has a limit depending on the multi-programming

level (MPL) of the system. The objective of theResults Disseminatoris to prioritize results deliv-

ery, i.e., scheduling the connections, in order to minimize the response time as perceived by the

end user. In a wireless setting, whenever the delivery media is a broadcast network, theResults

Disseminatoralso schedules the delivery of the results with the objective of minimizing the energy

consumption [61, 62].

Thus far, we have described the different main modules of a general purpose DSMS. In addi-

tion, there is a lot of work done in specialized DSMSs, such as for spatio-temporal applications

[56, 58, 5, 55]. For example, PLACE [56, 57] and its extension SOLE [55] presented a scalable

scheme of processing moving queries over a stream of moving objects. Moving queries are spatio-

temporal queries with continually changing (i.e., moving) spatio-temporal predicates. PLACE

[56] is a location-aware database server that utilizes a set of spatio-temporal operators. SOLE [55]

achieves scalability by keeping track of only the significant spatio-temporal objects. A spatio-

temporalLoad Shedderis utilized to handle overloading situations.

In the following section we discuss our assumed underlying model for aggregation processing

over data streams.

14

2.2 AGGREGATION OVER DATA STREAMS

Multiple query optimization (MQO) of ACQs poses a challenge because of the variability in win-

dow specifications, predicates and group-by attribute across multiple ACQs. In particular, it goes

beyond the level of identifying common sub-expressions as in traditional MQO (e.g., [66, 25, 43])

to the level of exploiting the window semantics, the overlap of predicates and the overlap of group-

by attributes and the partial aggregation. In the following sections, we first discuss the window

semantics of ACQs and explain thePartial Aggregationprocessing scheme. Then, we discuss the

problem of sharing multiple ACQs.

2.2.1 ACQ Semantics

Since the input stream is continuous, i.e., unbounded, an ACQ is defined over a sliding window

which is specified in terms of two intervals: 1)range (r), and 2)slide (s). For example, in a stock

monitoring application, a user may register an ACQ that computes the average stock price over the

last hour (range) and update it every 30 minutes (slide). In addition, an optional predicate could be

used to filter tuples before performing the aggregation.

The settings of both the range and slide parameters per ACQ determine its semantics. For

instance, whenever the slide equals the range (r = s), the window is called atumbling window,

and if the slide is greater than the range (s > r) then it is called ahopping window. Otherwise, it is

aslidingor overlapping window. Further, both the range and slide intervals could be defined either

as tuple-based or time-based, where the former is set to a certain number of tuples, whereas the

latter is set to a certain time period. In this dissertation, we consider the more general time-based

definition for both the range and slide parameters.

The settings of range and slide also determine the data processing requirements per ACQ.

In particular, producing a new result requires processing each subset of tuples within the range

interval. Slide, on the other hand, defines how the window boundaries move over the continuous

data stream. For instance, when slide is less then range (sliding window), different consecutive

windows overlap and a single tuple will belong to more than one window, hence, it is involved in

the computation of different aggregate instants.

15

Example 1. Consider an ACQ with range = 1 hour and slide = 10 minutes. For this window

definition, a boundary line is reached every 10 minutes and an aggregation is performed over the

tuples within the last 1 hour. Hence, each input tuples will be involved in the computation of 6

consecutive windows (=1 hour/10 minutes).

In a straight forward implementation of aggregates, input tuples are buffered and once a win-

dow boundary is reached, the aggregate function is evaluated using the buffered tuples that are

within the range boundaries. After evaluating the aggregate, the range boundaries are shifted and

all the buffered tuples that fall outside the new boundaries are expired and discarded since they

cannot contribute to in any future computation.

2.2.2 ThePaired WindowTechnique

Towards efficient processing of a single ACQs over sliding window, current techniques exploit

Partial Aggregation, where the final aggregate value is assembled from a set of partial aggregate

values (e.g., [46, 45]). In general, under such techniques the input data is divided into a set of

partitions where an initialsub-aggregatefunction is applied on each partition separately to generate

a partial aggregate. Then afinal-aggregatefunction is applied on the set of partial aggregates to

generate the final result. This concept is materialized via an aggregate query plan composed of two

operators: 1) sub-aggregate operator, and 2) final-aggregate operator.

As an example, under thePartial Aggregationscheme, an aggregateCOUNT(*) over a certain

window range is computed using (1) aCOUNT(*) on each partition and (2) aSUM(*) over the

partial count of each partition. Clearly, partial aggregation is applicable over all distributive and

algebraic aggregate functions that are widely used in database systems and monitoring applications

such as:MAX, MIN, SUM, COUNT, andAVERAGE. Formally:

Definition 1. For a datasetG of disjoint fragmentsg1,g2, ..., gn, an aggregate functionA over

G can be computed from sub-aggregate functionS over each datasetgi and a final-aggregate

functionF over the partial aggregates.

A(G) = F({S(gi)|1 ≤ i ≤ n}) (2.1)

16

Partial Aggregationallows for reducing data processing cost since each input tuple is processed

only once by the sub-aggregate function/operator. As the window slides, only partial aggregates

are buffered and processed to generate new results, whereas individual input tuples are processed

only once to produce those partial aggregates then discarded.Partial Aggregationalso reduces the

memory needed, since input tuples are buffered until they are aggregated once (as opposed to the

number of overlapping windows it belongs to). Further, storing partial aggregates requires less

space.

Clearly, the less the number of partial aggregates in a window, the better because it means that

the final-aggregate operator performs fewer operations per output. The work in [45] proposes what

is called thePaired Windowtechnique for ACQ processing and shows that it is possible to partition

each slide into at most twofragments(i.e., a pair). Hence, producing a final aggregate requires at

most2d r
s
e operations, whered r

s
e is the number of slides per sliding window and 2 is the maximum

number of fragments per slide. Formally:

Definition 2. Under thePaired Windowtechnique, the slides of an ACQ with ranger is split into

two fragmentsg1 andg2, where:

g1 = r%s, andg2 = s− g1 (2.2)

Figure2(a)illustrates the idea of aPaired Window. The lower part of Figure2(a)shows the set

of input tuples, while the upper part shows different overlapping window instances of a window

of sizer and slides. As shown in Figure2(a), eachslide is paired into exactly twofragments

of length: g1 andg2, whereg1 = r%s andg2 = s − g1. In the partitioning of Figure2(a), the

range consists of a sequence ofg1, g2, g1 fragments, where the length of a pair of fragments equals

g1 + g2 = s. In general, whenr > 2s, the range would consist of a sequenceg1, g2, g1, g2, ..., g1

fragments. Notice that ifr is a multiple ofs, then only one fragment per slide is produced. In the

rest of this dissertation, however, we will consider the general case of 2 fragments per slide.

Figure 2(b) shows the execution tree of an ACQ, assuming thePaired Windowprocessing

scheme. The plan consists of a sub- and final-aggregation operators, and the input queue of each

operators. As illustrated in Figure2(b), the sub-aggregate operator processes the input tuples as

they arrive generating a sequence of partial aggregates. Specifically, the end of each fragmentg

corresponds to anedge, where the tuples ing are assembled into a partial aggregate. Since the ACQ

17

(a) Range, slide and fragments (b) Query Plan

Figure 2:Paired Windowtechnique

results are due every slide (i.e., two edges), the final aggregation is computed every two edges. All

fragments (partial aggregates) that are within the new window boundaries (i.e., within the ranger)

are aggregated by the final-aggregation operator to produce a results. This is further illustrated in

the following example.

Example 2. Consider an ACQ illustrated in Figures2(a) and 2(b). The figures shows that the

ranger consists of exactly three fragments (i.e.,r = g1 + g2 + g1). A window instance is due every

two fragmentsg1 andg2 and is computed by applying the final-aggregation functionF to exactly

three fragments, that isF(S(g1),S(g2),S(g1)). Then the first pair of fragments can be discarded

immediately since they do not contribute to any further computations.

Notice that the sub-aggregate operator processes each tuple exactly once and produces a se-

quence of non-overlapping fragments. On the other hand, the final-aggregate operator needs to

process each fragment several times to generate the sequence of overlapping windows results.

18

Figure 3:Sharing the partial aggregations.

2.2.3 Sharing Multiple ACQs

Several shared processing schemes as well multiple ACQs optimizers that utilize thePaired Win-

dow technique have been proposed [45, 59]. Below we describe theShared Time Slicestechnique

which handles the case of varying windows, theShared Data Shardswhich handles varying pred-

icates, and theIntermediate Aggregateswhich handles varying group-by attributes.

2.2.3.1 Shared Time Slices TheShared Time Slices[45] (we refer to asSharedhereafter) tech-

nique was proposed to share the processing of multiple ACQs with varying windows but same pred-

icates and same group-by attributes. The main idea behindSharedis to share the sub-aggregation

operators and to generate fine grained fragments in a way to satisfy all varying windows. Specif-

ically, thePartial aggregationscheme allows for sharing the computation performed at the tuple-

level (i.e., sub-aggregate level) across multiple queries and, hence, avoid repeating that phase for

each and every query individually.

For example, if the system has three ACQs: aSUM, COUNTandAVERAGE. TheSUMis rewrit-

19

ten asSUMof sub-SUMs, theCOUNTasSUMof sub-COUNTs, and theAVERAGEas theSUMof

sub-SUMs divided by theSUMof sub-COUNTs. Then the sub-aggregate operator that performs the

sub-SUMcan be shared among theSUMandAVERAGEqueries, while the sub-aggregate opera-

tor that performs the sub-COUNTcan be shared among theCOUNTandAVERAGEqueries. The

execution tree of this example is illustrated in Figure3.

In order to utilizePaired Windowscheme, while at the same time allow for sharing between

multiple ACQs, the process of fragment generation is extended to accommodate shared process-

ing. That is, the fragments produced by thePaired Windowtechnique are merged to support the

variability in ranges and slides exhibited by the different ACQs sharing the same sub-aggregate

operator.

For a set of ACQs{q1, q2, ..., qn} with slides{s1, s2, ..., sn}, to determine the new sequence of

fragments (or equivalently, edges) under thePaired Windowscheme, the following three steps are

needed:

1. Define composite slide: Multiple slides are integrated into a newcomposite slide (CS), where

the period (length) of the composite slide is the lowest common multiple of the slides of indi-

vidual ACQs (i.e., length ofCS = lcmi(si)).

2. Stretch individual slides: Each slidesi is then stretched into a new slides′i where the length

of s′i is equal toCS. Further, the edges (i.e., end of each fragment) in each slidesi are then

copied and repeated to the length ofs′i (=repeateds
′
i

si
times, or equivalently =CS

si
).

3. Merge edges: The fragments in the composite slide are created by overlaying the edges from

each individual slides′i onto the new composite slideCS. Specifically, each individual slide

s′i is scanned and each edge is added to the new composite slide unless it already exists (i.e.,

common edge).

Example 3. Consider two ACQsqa andqb with rangesra = 12 andrb = 10, and slidessa = 9

andsb = 6 seconds. As illustrated in Figure4, the fragments inqa’s slide are of lengthga,1 = 3

andga,2 = 6 and forqb, the fragments aregb,1 = 4 andgb,2 = 2. For this setting, thelcm(s1, s2) is

of length 18. By stretching each slide to the lcm period, the edges forqa appear at times (3, 9, 12,

18) and those forqb appear at (4, 6, 10, 12, 16, 18) and the edges in the composite slide appear at

times (3, 4, 6, 9, 10, 12, 16, 18).

20

Figure 4:Example3: stretching slides, merging edges, and shared plan.

2.2.3.2 Shared Data Shards TheShared Data Shards(SDS) [45] technique was proposed to

share the processing of multiple ACQs with different predicates but same windows specifications

and group-by attributes, assuming thePaired Windowtechnique. The main advantage ofSDS

is that it avoids any unnecessary repeated evaluation of predicates. In particular, each predicate

is evaluated for each tuple exactly once in a preprocessing phase prior to the sub-aggregation

level. The outcome of this preprocessing phase is a set of augmented tuples, where each tuple is

augmented with a predicates signature which encodes the results of evaluating all the predicates

for this tuple. This signature is a bitmap vector, where each bit represents a predicate and is set to

one only if this predicate evaluates to 1 for this tuple. In this way, this signature identifies which

set of ACQs this tuple belongs to.

Given the set of augmented tuples, the sub-aggregation operator then aggregates tuples of

identical signatures together, resulting in a set of fragment-signature pairs. Once an edge is due,

each fragment-signature pair is pushed and routed into the input buffers of all ACQs that it satisfies

their predicates, i.e., have matching signature.

21

Figure 5:Intermediate Aggregates tree

2.2.3.3 Intermediate Aggregates The problem of optimizing multiple ACQs with different

group-by attributes, but same windows and same predicates was addressed in [83, 84, 59]. Moti-

vated by the constrained memory on the Network Interface Card (NIC), a shared processing scheme

calledPhantoms[83, 84] was proposed.Phantomsessentially introduces a set of sub-aggregates

(i.e., Phantoms) to share the processing of the ACQs that have identical window specifications,

same predicates, but have different group-by attributes.Phantomstechnique is developed for the

specific architecture of Gigascope [23], where the sub-aggregation is performed in the limited

memory of the NIC. In this architecture, the goal is to minimize the rate with which data is copied

between the NIC and the main memory. In [59], theIntermediate Aggregatestechnique generalizes

thePhantomstechnique to general, yet memory-constrained, DSMS. In the latter case, moving data

from one operator to another is not the most expensive operation anymore, rather, it is the number

of aggregation operations.

The main concept ofIntermediate Aggregatesis that if two similar ACQs have different group-

by attributes, then a sub-aggregation that uses for its group-by attributes the union of the group-by

attributes of both ACQs can be shared among the two ACQs. For more than two ACQs, the

same concept is recursively applicable to sub-sets of the final-aggregation operators (which are

essentially ACQs). Thus,Intermediate Aggregatesaims to exploit the overlapping of group-by

attributes to generate the best possible execution tree. We further illustrate the idea in the example

below.

22

Example 4. Assume four ACQsqa, qb, qc andad with same window specifications and same pred-

icates. Assume also that the ACQs have group-by attributes:A, BC, AC andCD, respectively, as

illustrated in Figure5. The label of each node in the figure represent the set of group-by attributes

used by this node. That is, each node represent an aggregation operator that performs a group-by

aggregation using this set of attributes. The figure shows thatqa,qb andqc share a sub-aggregation

that uses the union of attributesABC for its group-by attributes. This sub-aggregation further

shares withqc another sub-aggregation operator that uses the union of attributesABCD for its

group-by attributes.

It was mentioned without further details in [59] that if the ACQs have different windows speci-

fications, then either an epoch (i.e., a fragment) of size equals to the greatest common divisor of the

ranges or thePaired Windowsscheme can be utilized. In this dissertation, we investigate strategies

that best minimize the processing overhead of multiple ACQs, with varying windows, predicates

and group-by attributes, exploiting sharedPartial Aggregation.

2.3 EXPERIMENTAL PLATFORM

In order to study the sharing trade off and to evaluate the schemes we propose in this dissertation

in a controlled environment, we built a simulation platform in C++. We validated our simulation

model by reproducing same results trends as reported in the related work and by running exhaus-

tive search to find the optimal plan for small cases that we solved by hand. In this section, we list

the baseline algorithms we used in our experiments and describe the generated workload charac-

teristics, experiments parameters and the performance metrics.

Algorithms: We have implemented thePaired Windowprocessing scheme as the underlying ACQ

processing scheme. In terms of multiple ACQs optimizers, we implementedRandom, Exhaustive

Search, Shared(where all ACQs are merged in one single tree [45]), No Share(as a base line, where

each ACQ is executed separately) and an adapted version ofLocal Search(LS) (see AppendixA).

ACQs: We generated ACQs randomly with different parameters summarized in Table1. We used

the SUMas the aggregate function, so that the sub- and final-aggregate operators both perform a

23

Table 1:Queries parameters

Parameter Values

Slide Length (s) [1–100000] using Zipf distribution

Slide Skewness [0.0–3.3] (skewed to large-slide)

Overlap Factor [1–Ωmax]

SUM. The type of the aggregate function, however, does not affect the performance of the opti-

mization algorithms. The parameters of the queries are as follows:

• Slide (s): randomly generated from a Zipf distribution with minimum 1 second and maximum

100000 seconds. The Zipf’s skewness parameter is in the range [0.0–3.3], where a value of 0.0

is equivalent to uniform distribution, whereas higher values result in a more skewed distribution

that has more large-slide ACQs. This reflects the different levels of interest the users typically

have in real world applications.

• Range (r): the range (r) of each query was generated relative to the query’s slide using an

overlap factor (Ω). That is, for each queryqi, ri = Ωi × si, whereΩi is generated randomly

from a uniform distribution in the range [1–Ωmax]. Ωmax is themaximum overlap factorwhich

is a simulation parameter.

Experimental Parameters: In addition to changing the ACQs parameters, each experiment has

a set of parameters that are summarized in Table2. Briefly, these parameters are the number

of ACQs, the input rate and the initial state and the iterations bound ofLocal Search(LS). The

input rate values are chosen to cover the input rate ranges of all different monitoring applications.

Specifically, the 1M tuples/sec covers network monitoring applications, while the105 tuples/sec

covers Web Analysis applications. Financial applications, however, have a typical input rate of

couple hundreds [60] and sensor networks and phenomena monitoring applications have a typical

input rate of few tuples, or less, per second.

Dataset: We chose to use synthetic workload, which allows us to control the system parameters,

in order to conduct detailed sensitivity analysis and gain better insight into the behavior of the

24

Table 2:Experimental Parameters

Parameter Values

Number of ACQs [50–1000]

Input arrival rate [0.5–1,000,000] tuples/sec.

Max. Overlap Factor (Ωmax) [50 - 2000]

LS initial state {No Share, Random}
LS iterations bound {2x, 5x, 10x} proposed optimizer iterations

different techniques by setting the parameters to cover all possible real scenarios. For instance,

controlling the skewness of windows specifications allows us to depict different cases, from the

simple pre-specified time-scale classes as inTruvisoto the more demanding uniform distribution

as in [45]. Our choices based on [45] were also for fairness and validation.

Performance Metrics: We measured the quality of the optimized shared plans in terms of their

total cost. The cost is measured as the number of aggregate operations per second (which also

indicates the throughput). We chose this metric because it provides an accurate and fair measure

of the performance, regardless of the platform used to conduct the experiments. We also evaluate

the different algorithms efficiency in terms of their overhead to generate the query plan.

2.4 OTHER RELATED WORK

As discussed in Section2.2, the main idea of paired windows scheme is to split the slide into

two fragments to be processed using the sub-aggregation operator. ThePane[46] scheme was

the first to propose the idea of rewriting the ACQ as a final-aggregation of sub-aggregation and

split the slide into fragments. Opposed toPaired Window, Panesplits the window into equal sized

fragments.Paired Windowimproves overPaneby splitting the slide into exactly two fragments to

minimize the processing needed at the final-aggregation operator.

25

TheWindow-ID(WID) technique proposed in [47] improves the performance of an ACQ by

maintaining multiple aggregates of multiple window extents at the same time. A bucket operator

is utilized to tag the input tuples appending a range of window extents that the tuple belongs to, or

may contribute to. The tagged tuple is then aggregated to all window extents at once. It was shown

in [47] that WID can be easily integrated withPanescheme and sincePaired Windowscheme is a

variation ofPane, it can similarly be integrated withWID.

There are also alternative approaches for processing ACQs. For example, optimization tech-

niques for processing sliding-window queries that utilize thenegative tuplesapproach have been

proposed in [29]. ACQs are instances of sliding-window queries. In the negative tuples approach,

tuple expiration is determined when a negative tuple is inserted. This doubles the number of tuples

through the query plan. Also, in [29], query operators were classified into two classes according to

whether an operator can avoid the processing of negative tuples or not. Based on this classification,

several optimization techniques over the negative tuples approach where presented to reduce the

overhead of processing negative tuples.

At the multiple ACQ processing level, sharing results of aggregation among different queries

has also been proposed in [30], where a scheduling technique to optimize the execution of ACQs

has been developed. This technique utilizes a window-aware scheduling scheme that synchronizes

the re-execution times of similar queries to execute common parts only once.

In general, there is a rich literature on multiple query optimization (MQO) in traditional

databases [68, 66, 42, 51, 40, 80] as well as in data streams [80, 3, 81, 49]. Multi-query opti-

mization in traditional databases aims at exploiting common sub-expressions to reduce evaluation

cost [66]. Similarly, shared processing is exploited in multiple continuous query optimization. In

both cases, finding the optimal query plan is an NP-Hard problem [67], and hence the data manage-

ment research community has investigated heuristic approaches to optimize the generated query

plans.

For instance, two cost-based and one greedy heuristics where proposed in [66]. The main idea

behind the two cost-based heuristics in [66] is to extend theVolcano[32] query optimizer, which

performs a depth-first search in the state space of alternative query plans. Different alternatives

are represented using AND-OR graphs. The proposed heuristics improves the performance of

Volcanoby augmenting the AND-OR DAG representation to enable the detection of common sub-

26

expressions across different queries as well as expressions’ subsumption. Thus, while performing

the depth-first search-and-prune phase, Volcano can generate much more efficient plans.

Recently, DSMSs and monitoring applications are being moved to the cloud [21]. In [21]

in particular, a demonstration of implementing event monitoring application using the modified

Hadoopframework was presented. This shows the importance of optimizing the processing of

aggregate continuous queries.

Closely related to the DSMSs in the cloud is the distributed DSMSs (D-DSMSs). In [18], D-

DSMSs have been motivated by the fact that monitoring applications are inherently geographically

distributed. The Medusa [13] was proposed to address the main new challenge of D-DSMSs,

which is adaptive load balancing. Special operator implementations for D-DSMSs have also been

proposed, such as the binary join [76] and aggregation approximation, with differential accuracy

requirements per data items [37]. In general, moving traditional relational operators to the data

streams involves new queuing requirements that has been studied in [41].

Finally, adaptive processing of queries traditional DBMSs has been proposed [9, 10] as well as

adaptive processing of CQs in DSMSs [49]. In the former case, the motivation was the changing

characteristics of resources and data distributions in large-federated and shared-nothing databases.

In such settings, assumptions made at query optimization may not hold at the execution time. The

Eddies [9] adaptive processing scheme continuously determine the order of operators in a query

plan, per tuple, depending on operators selectivities and resources characteristics. The continu-

ously adaptive continuous query (CQCQ) [49] scheme was proposed to extend Eddies scheme to

process CQs, adaptively.

2.5 SUMMARY

In this chapter, we presented the general background on DSMSs, and the specific background on

optimizing the processing of ACQs;Partial Aggregationand thePaired Windowprocessing scheme

for optimizing individual ACQs andShared, Shared Data Shardsand Intermediate Aggregates

optimizers for multiple ACQs. We also presented our experimental platform and summarized

other related work.

27

3.0 WEAVE SHARE: EXPLOITING WEAVEABILITY TO OPTIMIZE ACQS

In this chapter, we study the interaction of the factors that affect the cost of a shared plan and

identify the sharing trade off. The problem is first motivated and formally defined in Sections3.1

and3.2, respectively. The proposed solution and a discussion about practical implementation of

the proposed optimizer is discussed in Sections3.5and3.6, respectively. Finally, we evaluate our

proposed schemes experimentally in Section3.7.

3.1 MOTIVATION

Examining theSharedoptimizer (discussed in Section2.2.3.1) that utilizesPaired Windowpro-

cessing scheme (discussed in Section2.2), it becomes clear that there is a tradeoff involved in the

sharing of multiple ACQs. On one hand, partial aggregation is performed only once for all ACQs,

as opposed once for each ACQ.

On the other hand, sharing might lead to increasing the number of fragments (and in turn edges)

for each individual ACQ. This means that for each ACQ, more partial aggregates are generated at

the sub-aggregate level and in turn, more operations are needed at the final-aggregate level. In

some cases, the increase in number of final-aggregate operations per ACQ might outnumber the

gains from sharing the sub-aggregate operations leading to an overall cost higher than processing

each ACQ individually.

In particular, in a shared execution plan of a set of ACQsQ, if l = {si|si is the slide of qi ∈
Q, 1 ≤ i ≤ |Q|}, then during a period oflcmi(si) each queryqi ∈ Q sees a number of edges equal

to M , whereM is the number of merged edges in the common slideCS = lcmi(si). For a set of

queriesQ with slidesl, theedge rateE perQ is defined as:

28

Definition 3. Edge Rate(E) is the rate of sub-aggregate fragments (or equivalently, edges) pro-

duced by a shared sub-aggregate operator and is computed as:E = M
lcm(S)

.

To illustrate sharing trade off, consider again Example3 of two ACQsqa andqb with ranges

ra = 12 andrb = 10, and slidessa = 9 andsb = 6 seconds, respectively. According to thePaired

Window(Definition 2), the fragments inqa’s slide are of lengthga,1 = 3 andga,2 = 6 and forqb,

the fragments aregb,1 = 4 andgb,2 = 2.

If qa andqb are processed independently, their sub-aggregation operators will produce 2 frag-

ments every 9 and 6 sec, respectively. That is, anedge rate(i.e., number of fragments generated

per sec) ofEa = 0.22 andEb = 0.33 edges per sec. Thus, the total final-aggregation operations

performed per sec is 0.55.

Meanwhile, if qa and qb share their partial aggregation, thensa and sb are integrated into

composite slideCSa,b = lcm(sa, sb) = 18 and the union of edges inCSa,b will appear at times

(3, 4, 6, 9, 10, 12, 16, 18). Hence, each ofqa andqb would examine a combined edge rate of

Ea,b = 0.44, resulting in more final-aggregation operations (0.88 per sec). This simple example

clearly shows the presence of a trade off in the shared processing of multiple ACQs.

The increase in edge rate, in turn, presents a trade-off in the total cost between shared and

unshared processing of ACQs. In particular, for:

• No Share:Partial aggregation is performed once ofeachquery, whereas the final-aggregate

operator for each queryqi receives at mosttwo fragments per slidesi.

• Sharing: Partial aggregation is performed once forall queries, whereas the final-aggregate

operator of each queryqi receivesE × si fragments per slidesi.

From the above, and given an input data stream with arrival rateλ tuples per second, we can

compute the total processing cost ofunsharedset of n queriesQ in terms of total number of

aggregate operations per second as [45]:

CNo Sharing= nλ +
∑

i

2

si

× dri

si

e (3.1)

The termnλ is the total number of operations required for partial aggregation and the term
∑

i
2
si
× d ri

si
e is the total number of final-aggregate operation. In particular,2

si
is the number of

edges (fragments) per second for ACQqi, which is the edge rateEi of qi. Each of those edges

29

participates in the final-aggregate computation ofd ri

si
e window instances, which is the overlap

factor ofqi.

Definition 4. Overlap factor (ωi) of ACQ qi is the number of overlapping windows each tuple

(and hence each fragment) belongs to and is computed as:ωi = d ri

si
e. Similarly, theOverlap

Factor (Ω) of a set of shared ACQsQ is the number of overlapping windows each tuple/fragment

belongs to and is computed as the sum of overlap factor of each ACQ in the shared set. That is

Ω =
∑

∀qi∈Q ωi.

Similarly, we can compute the total processing cost ofsharedset (Q) of n ACQs in terms of

total number of aggregate operations per second as:

CShared = λ + E × Ω (3.2)

whereE is the output edge rate of the sub-aggregate operator. Notice that the cost of partial aggre-

gation under sharing is onlyλ (as opposed tonλ in Equation3.1). The cost of final-aggregation,

however, is computed as:E × Ω; sinceE is the number of edges generated per second and each

of those edges participates in the final-aggregate computation ofΩ window instances.

From Equation3.2, it is clear that at high input rateλ, a shared processing is beneficial since

it avoids repeating the work needed to compute partial aggregates leading to a constant cost of

λ operations per second regardless of the number of queries inQ. The more sharing of ACQs,

however, might lead to a significant increase in the cost of final-aggregation. This is due to two

factors:

1. High Edge Rate: This is especially the case when the queries inQ have very few edges in

common resulting in a highE.

2. High Overlap Factor: This is especially the case when the queries inQ exhibit a large number

of slides per window resulting in a high
∑

id ri

si
e or equivalently, highΩ.

To further study that conflict, we performed an experiment to compare the costs of theShared

scheme [45] vs. No Sharewhere queries are executed separately. Please, refer to Section2.3 for

the experimental setup. The results obtained by varying the input rate and by varying the number

of ACQs are shown in Figure6.

30

Input Rate (tuples/sec)

0 20 40 60 80 100

C
os

t (
ag

gr
eg

at
io

ns
/s

ec
)

0

5000

10000

15000

20000

25000

30000

No Share
Shared

(a) Input Rate

Number of Aggregate Queries

0 200 400 600 800 1000

C
os

t (
ag

gr
eg

at
io

ns
/s

ec
)

0

20000

40000

60000

80000

No Share
Shared

(b) Number of Queries

Figure 6:Sharevs No Share

Figure6(a) shows that for a workload of 250 queries,SharedoutperformsNo Sharefor all

input rates above 25 tuples/sec. For instance, at input rate 50 tuples/sec,Sharedreduces the cost

by 50%. This result is consistent with the result in [45]. Figure6(b), however, shows that at the

same input rate of 50 tuples per second, No share consistently outperformsSharedas the number

of ACQs increase. This is due to the increase in cost of final-aggregates as explained above.

Figures6(a)and6(b) show that there is no clear winner betweenSharedandNo Share. That

is, sharing at the sub-aggregate level is sometimes at odds with the amount of processing needed at

the final-aggregate level. This conflict depends on several factors such as data input rate, the size

of workload (i.e., number of queries), as well as per query specifications (i.e., range and slide).

The above observations motivated us to consider a new technique for optimizing multiple ACQs

that would use a criterion that considers all the factors that impact the cost of the query plan.

31

3.2 FORMALIZATION

Our proposed optimizerWeave Shareaims at reaping the benefits of cost reduction provided by

sharing of partial aggregation phase while at the same time minimizing the increase in cost incurred

at the final aggregation phase when sharing. This led us to the idea of grouping ACQs inmultiple

execution trees, where each tree contains only those ACQs thatfit best together.

Under our scheme, a set of ACQsQ = q1, q2, ..., qn are distributed over a set ofm trees

t1, t2, ..., tm where all ACQs that belong to the same treeti are shared. Hence, the cost of each

execution tree is the same as Equation3.2, but is calculated for the set of ACQs in the tree. Thus

the total cost of theWeave Sharequery plan is simply the sum of the cost of the individual trees.

Formally:

Definition 5. For a query plan that containsm execution trees, the total cost of the query plan in

terms of total number of aggregate operations per second is computed as:

CWeave Share= mλ +
m∑

i=1

EiΩi (3.3)

whereλ is the data input rate,Ei andΩi are the edge rate and overlap factor for treeti, respectively.

Equation3.3above represents the objective function that we are trying to minimize. The first

term of the cost function (mλ) is the number of operations needed to generate the fragments (i.e.,

sub-aggregation), wheres the second component is the number of aggregate operations performed

on the fragments to produce outputs (i.e., final aggregation).

Notice, that bothSharedandNo Shareare two special cases of Equation3.3. In particular,

underShared, the number of trees is equal to 1 (m = 1), whereas underNo Share, the number

of trees is equal to the number of individual queriesn (m = n). On one hand, settingm = 1

enables Share to minimize the cost of the first component of the objective function (i.e., cost of

partial aggregation). On the other hand, settingm = n enablesNo Shareto minimize the second

component (i.e., final-aggregation).

Our goal inWeave Shareis to find the balance between the two components of the objective

function so that to minimize the total cost of the query plan. In particular, our objective is to find

the most beneficial number of trees (i.e.,m) as well as the best assignment of queries to each tree

in order to provide the lowest execution time and highest throughput.

32

To this end, finding an optimal solution for ACQ sharing is provably an NP-hard combinatorial

optimization problem as was formally shown in [83]. This motivated us to explore solutions based

on greedy heuristics as it is the case in [83] and in traditional multiple query optimization and

materialized views selection [66, 51].

3.3 WEAVEABILITY

The affinity of ACQs, i.e., their similarity, is an important factor that determines whether it is bene-

ficial to share two ACQs or not. We refer to this affinity as theweaveabilityof ACQs. Specifically,

given the paired-window processing scheme, two ACQs are said to beperfectly weaveableif the

edges of both ACQs are identical. That is, when the two ACQs are shared, the edge rate does not

increase for either of the ACQs. If the ACQs are not perfectly weaveable, the morecommonedges

between the ACQs in their composite slide, the less the increase in edge rate for the ACQs when

shared, hence the moreweaveablethey are. Thus, we define the degree of weaveability as follows.

Definition 6. Given two ACQsqa andqb with slidessa andsb, respectively, the degree of Weave-

ability of qa andqb (WVa,b) is the ratio of the number of common edgesMc in the composite slide

CSa,b = lcm(sa, sb), to the total number of edges (Ma,b) in CSa,b. Specifically,

WVa,b =
Mc

Ma,b

(3.4)

Note that the definition of weaveability is recursively applicable to two groups of shared ACQs,

i.e., execution trees.

Thus, if the edges of one ACQ is contained in the other, then all edges of the composite slide

are common edges, and they have weaveability degreeWV = 1.0. This definition is recursively

applicable to two groups of shared ACQs, i.e., execution trees. That is the degree of weaveability

of two trees is the ratio of the common edges to the total number of edges in their composite slide.

Sharing weaveable ACQs has a minimum impact on increasing the final-aggregation cost since

they encounter minimal increase in the edges rate of the shared ACQs. For example, for the two

ACQs qa andqb (Example3), the set of edges of the composite slide are (3, 4, 6, 9, 10, 12, 16,

18), while the common edges are (12, 18). Thus, the weaveabilityWVa,b = 2
8

= 0.25, which is a

33

weak weaveability and that is why their shared tree encounter a high increase in the edge rate as

discussed in Example3.

3.4 CHALLENGES OF GROUPING MULTIPLE ACQS

Grouping ACQs to multiple trees involves three major challenges. Namely: 1) designing a tech-

nique that effectively prunes the combinatorial search space, 2) handling the dynamic addition and

deletion of ACQs over time, and 3) efficiently computing the weaveability with minimal overhead.

Towards the first challenge, grouping ACQs could be seen as first determining the optimal

number of execution trees and then assigning ACQs to the trees. Thus, we have initially considered

mapping our ACQ sharing problem to the generalized task assignment problem which is known to

be NP-Hard [26]: the input is a set of heterogeneous machines and a set of tasks, where each task

has a certain cost when processed on a certain machine. The output is an assignment of tasks to

machines that minimizes the total cost.

This mapping, however, assumes the knowledge of number of machines (i.e., trees), which is

not the case. Furthermore, even if we assume the knowledge of the optimal number of trees to

use, the increase in processing cost when adding an ACQ to a tree is not constant as it depends on

which other ACQs have already been assigned to that tree. This is simply true because the cost

function in Equation3.3 involves the edge rate term, which depends on which ACQs are shared

and the degree of weaveability of those ACQs.

Thus, we can not directly use any of the classical algorithms for solving the task assignment

problem (e.g., Dynamic Programming) to solve our ACQ sharing problem. This is mainly because

an optimal solution for a sub-problem is not necessarily a part of the optimal solution of the whole

problem. In other words, there is no optimal substructure property.

Given the problem complexity discussed above, we have explored a suite of alternative algo-

rithms towards the efficient sharing of ACQs. In this paper, we presentWeave Share, an efficient

heuristic that fully considers all cost factors in generating shared plans (Section3.5).

The second challenge is the need for an online version of the algorithm that handles the addition

and deletion of ACQs as time advances. To handle this challenge, we proposeIncremental Weave

34

Share, the online version ofWeave Sharethat avoids the reconstruction of the query plan every

time an ACQ is added or deleted. BothWeave Shareand its online version are discussed in the

following section (Section3.5).

The third challenge (i.e., computing weaveability) stems from the complexity of counting the

number of common edges between two different trees. This is because when merging two trees,

there is no closed-form formula that determines the common edges. Specifically, this problem

maps to small sieve theory problem which is a hard problem, and whose current solutions mostly

deal with approximations and there is no closed formula to solve it [12]. Yet, the degree of weave-

ability directly determines the amount of increase in total processing cost (if any) when merging.

To efficiently consider the weaveability while generating the shared plan, we propose several opti-

mizations for the process of counting the number of common edges (Section3.6).

3.5 THE WEAVE SHAREALGORITHM

In this section, we describeWeave Share, our proposed algorithm for minimizing the execution

cost of multiple aggregate continuous queries. Our proposedWeave Shareexploits weaveability to

reap the benefits of cost reduction provided by sharing partial aggregation, while minimizing the

increase in cost incurred at the final aggregation. Basically,Weave Sharetries to group ACQs in

multiple execution trees, where each tree contains only ACQs thatweavebest together.

To achieve our goal,Weave Sharetakes a global view of the execution plan as well as the

objective function to minimize (i.e., Equation3.3). In particular, it simultaneously considers both

of the cost components (i.e., partial- and final-aggregation) to group ACQs in multiple trees with

minimum execution cost.

Weave Share(pseudo-code in Algorithm1) takes as an input a set of ACQsq1, q2, ..., qn and

produces a set ofm shared trees where each tree contains one or more ACQs. Initially, the number

of trees is equal to the number of individual queries,m = n and each ACQ forms a separate tree,

which is equivalent to the case of no sharing.

Weave Shareadvances towards sharing one step at a time in a greedy manner, where in each

iteration two weaveable execution trees are merged, reducing the number of trees by one, until

35

Algorithm 1 TheWeave ShareAlgorithm
1: Input: A set of n ACQs

2: Output: Weaved query plan P that consists ofm execution trees

3: begin

4: P ← Create an execution tree for each ACQ

5: l← n {current number of trees}
6: (max-reduction, t1, t2)← (0,−,−) {current tree-pair to merge}
7: repeat

8: for i = 0 to l − 1 do

9: for j = i + 1 to l do

10: temp← cost-reduction-if-merging(ti, tj)

11: if temp > max-reductionthen

12: (max− reduction, t1, t2)← (temp, ti, tj)

13: end if

14: end for

15: end for

16: if max-reduction> 0 then

17: merge(t1,t2)

18: l← l − 1

19: end if

20: until No merge is done

21: ReturnP

22: end

either no more merging is beneficial or a single tree is reached. In particular, at each iteration,

given a setT of l trees:T = t1, t2, ..., tl (l ≤ n), Weave Shareestimates the benefits of merging all

possible pairs of trees inT and merges the pair of trees that yields the maximum reduction in total

cost.

Given Equation3.2, it is expected that for a pair of trees (tx andty) to qualify for merging, they

must satisfy either one or both of the following properties:

36

1. High degree of weaveability. The higher the degree of weaveability of the merged trees, the

less the increase in the combined edge rateEx,y and the less the overall merged tree cost.

2. Low total overlap factor (Ωx,y = Ωx +Ωy), which is the total number of final-aggregation oper-

ations performed on each fragment in the new tree. The less the number of window instances,

the less the number of final-aggregate operations performed on each fragment.

The benefit (i.e., cost reduction) from mergingtx andty is:

∆(Cx,y) = λ + ExΩx + EyΩy − Ex,yΩx,y (3.5)

Note the termλ in Equation3.5 above denotes the savings at the sub-aggregation level. That is,

each tuple is processed once instead of twice. The rest of the terms in the equation represents the

savings in the final aggregation level.

Clearly, any two trees that exhibit the two properties above are good candidates for merging

as they allow us to exploit the sharing of partial-aggregation while at the same time minimize

the increase in final-aggregation. These are the main optimization criteria forWeave Share. We

demonstrate howWeave Shareiterations work using the example below.

3.5.1 Weave Shareby Example

Consider three queriesqa, qb andqc with sliding window specifications as shown in Table3. Addi-

tionally, consider an input rateλ = 1.2 tuples per second. Figure7 shows the sequence of iterations

performed byWeave Shareas well as the resulting query plans along with the trees weaveability.

Figure7 shows that initially (first column to the left of the Figure), the number of trees is three,

with no sharing, i.e., where each ACQ is to be processed independently. This results in a total

cost of 11.6 based on Equation3.3, as shown in the Figure (the calculations details are omitted for

brevity). Next, the algorithm enters the main loop where it tries to merge a pair of trees that would

reduce the cost the most.

In the first iteration, there are three possible pair-wise merges as illustrated in the second col-

umn of Figure7. Specifically, the possibilities are<qa, qb >, <qa, qc >, or <qb, qc >. Merging the

pair < qa, qc > leads to the maximal reduction in cost, reducing it to 4.3 aggregations per second

37

Figure 7:Weave Shareby example - Iterations ofWeave Share.

according to Equation3.5. Thus, the algorithm merges them together into treeta,c and proceeds to

the second iteration.

In the second iteration (the third column in Figure7, the only possibility is to mergeta,c with

qb. This, however, would lead to an increase in the cost to 4.4 aggregations per second. Since

there is no room for improvement,Weave Shareterminates the loop and returns the query plan it

constructed:ta,c andqb, whereqa andqc are shared inta,c andqb is executed independently.

Note thatqa andqc weavewell together, in the sense that all the edges ofqa exist in edges of

qc (i.e., common). This is due to the fact that their slides are equal. This results in no increase in

the edge rate when they are merged and in turn, minimizes the overall execution cost.

38

Table 3:Weave Shareby example - windows’ specifications

ACQ range (ri) slide (si) ωi

qa 16 4 4
qb 10 5 2
qc 8 4 2

3.5.2 Sharing AVERAGE ACQs

SharingAVERAGEACQs is a special case due to the way an average function is rewritten as a

sub- and final-aggregation. In particular, theAVERAGEACQ is rewritten as the division of the

SUMof sub-SUMs by theSUMof sub-COUNTs. This is illustrated in the left-most part of Figure

8. Thus the sub-aggregation operator performs 2 operations:SUMandCOUNT, and the fragments

queue actually holds two fragments per entry. Thus, as illustrated in the middle part of Figure8,

the sub-aggregation is in fact equivalent to two operators, and the intermediate queue is equivalent

to two queues. Similarly, the final-aggregation is equivalent to three operators, one that sums the

sub-sums, second sums the sub-counts, and the last divides the two.

Computational overhead-wise, the two plans on the left- and the right-most parts of Figure

8 are identical. The only difference is that the right-most plan is more flexible to the scheduler

to change order of execution to improve response time. In addition, the right-most plan has the

potential to share the sub-aggregation operators with otherSUMandCOUNTACQs. Therefore, the

AVERAGEACQs can be shared as follows.

1. Rewrite allAVERAGEACQs as SUM
COUNT

2. Apply Weave Share to allSUMACQs, including those of theAVERAGErewriting.

3. Apply Weave Share to allCOUNTACQs, including those of theAVERAGErewriting.

4. After the above 2 steps, if anyAVERAGEfunction is not beneficial to rewrite, both itsSUMand

its COUNTwon’t be shared. Therefore, we re-group these sub-aggregation operators into one

operator that performs both SUM and COUNT at same time, and apply Weave Share to these

set of operators.

5. the final-aggregation operators of re-grouped sub-aggregation operators are also re-grouped.

39

Figure 8:Sharing AVERAGE ACQs.

3.5.3 Varying Predicates and Group-by

Weave Sharecan easily handle the case when different ACQs have different pre-aggregation filters

(i.e., selection operators). For example, one query might monitor the average-volume of stock-

trades that are higher than $100, while another monitors the same for trades that are higher than

$500. To share the execution of such ACQs, we adopt theShared Data Shards(SDS) technique

[45] as follows.

Figure9 illustrates the weaved (orWeave Share) plan, integrated with theShared Data Shards

(SDS) scheme to optimize the handle the case of varying window specifications and different

predicates (as discussed in Chapter3, Section3.5.3). The figure shows that ACQs with predicates

defined on the same set of attributes, calledpredicate-compatibleACQs, are weaved separately,

each yielding to one or more shared groups. That is,Weave Shareis applied to each set of predicate-

compatible ACQs.

The lower part of Figure9 shows the augmentation process, where each tuple is evaluated

against all predicates and augmented with a lineage, i.e. a signature, to encode which predicates

this tuple satisfies. The signature is simply a bitmap vector, where each bit is set to 1 if the

tuple satisfies the corresponding predicate. A router uses the signature of each tuple to route, and

40

Figure 9:An Instance of a Weaved Plan

possibly duplicate, the tuple to every group for which the tuple satisfies a subset of its predicates.

Further, when different ACQs have different group-by attributes,Weave Sharecan utilize the

techniques in [59, 84]. Specifically, each sub-aggregation operator can utilize a hash table based

on the values of the union of all group-by attributes. When a fragment is due, proper hash table

entries are combined together to form the fragment of each set of queries with identical group by

attributes.

3.6 IMPLEMENTATION OPTIMIZATIONS OF THE WEAVE SHAREOPTIMIZER

In this section, we propose a set of implementation optimizations to increase the efficiency of the

Weave Shareoptimizer in generating the weaved plan. We first analyze the time complexity of the

Weave Sharealgorithm to spot potential performance bottlenecks to be optimized.

Given a set ofn ACQs, the time complexity ofWeave Sharealgorithm is asymptoticallyO(n3).

The algorithm starts withn trees and in each iteration it reduces the number of trees by one. Thus,

in worst case, the algorithm needsn iterations. In each iterationi, (n− i)2 comparisons are needed

41

to find the pair of trees that yield the maximum benefit. Thus, the total time complexity isO(n3).

Computing the benefit of merging two trees (saytx andty), requires calculating the new edge

rateEx,y (Equation3.5). Given that there is no closed-form formula that determines the common

edges as as discussed in Section3.4, this is clearly an expensive operation which requires counting

the set of common edges between the two trees,tx andty.

Conceptually, to calculate the new edge rate resulting from merging two execution treestx

and ty into one execution treetx,y, we need to extend the steps needed for merging two ACQs

(described in Section3.1) as follows:

1. Set the composite slideCSx,y to be the least common multiple of the individual slides of all

ACQs intx andty.

2. The edge countM ′
x of the ACQs intx within the new composite slideCSx,y is computed as:

M ′
x = Mx

CSx,y

CSx
, where the last term is the number of timesCSx has been replicated. Similarly,

the edge countM ′
y of the ACQs inty is computed.

3. The composite edge countMx,y is computed as:Mx,y = M ′
x + M ′

y −Mc.

In order to compute the last step, we need to know the number of common edges in the com-

posite slide (Mc) betweentx andty. This could be done by checking each edge in each ACQ in

ty to see if it is the same to any edge of any ACQ intx. Each one of those checks requires two

comparisons. Specifically, to check if edgee of some ACQ inty is the same to some edge of

ACQ qi in tx, we check ife is a multiple of the slide ofqi or a shifted bygi,1 multiple of the slide.

Formally,e is a common edge iff:

e%si = 0 or (e− gi,1)%si = 0 (3.6)

This is illustrated in the following example.

Example 5. Consider a tree with one queryqx that has slidesx = 5 and fragmentsgx,1 = 2 and

gx,2 = 3. Further consider a queryqy which has slidesy = 3 and fragmentsgy,1 = 0 andgy,2 = 3.

If qx andqy are to be merged, the common slide length isCSx,y = 15, the edge counts of stretched

qx and qy are M ′
x = 6 andM ′

y = 5, respectively. Hence,Mx,y is 5 plus 6 minus the number of

common edges (Mc), which is computed by checking each and every edge ofqy against those ofqx.

42

The first edge inqy is e = 3, which is not divisible by the slide ofsx = 5 nor is e − gx,1 =

3 − 2 = 1 divisible bysx = 5. Hence, it is not a common edge andMx,y is kept at 11 edges. The

current edgee is then advanced to next edgee = 6, and the two comparisons are performed and

so on untile = 12, wheree− gx,1 = 12− 2 = 10 is divisible bysx = 5, i.e., it is a common edge

and the count is decremented. Similarly, ate = CSx,y = 15, e is divisible bysx and the count is

decremented once again.

This naive approach encounters a high overhead given that counting the edges process is re-

peated many times in the main loop of the algorithm, where, in each iteration, an edge count is

needed for each pair of trees. We propose three optimizations that can dramatically minimize this

overhead as discussed next.

3.6.1 Optimization I: Cost Lookup.

The first optimization we propose is to memoize the benefit (i.e., reduction in the total cost of the

query plan) gained by merging two execution trees. This is very similar to Dynamic Programming

approach which avoids repeated computations by memoizing previous computations in a look up

table. We utilize a two dimensional array calledCost Lookuptable to store the merging benefits.

Thus, in the main loop of the algorithm, only the first iteration will compute the cost saving for each

pair of trees. Next iterations will use the lookup table for all pairs, except those that involve the

new merged tree from the previous iteration. Thus, the number of computations in each iterationi

is reduced from(n − i)2 to (n − i) computations. This minimizes the number of pairs for which

an edge count needs to be performed.

Figure10shows a possible instance of the Cost Lookup table. To check if merging two treesti

andtj is beneficial or not, we lookup the entryCost Lookup[i][j], which is 101.2 in this instance.

This means that mergingti with tj would reduce the cost by 101.2 operations per second. Negative

values mean that the merge would actually increase the cost.tjustmerged is the merged tree in a

previous iteration and that is why all its entries are nullified in order to be recomputed.

43

Figure 10:Cost Lookup Table

3.6.2 Optimization II: Edges Bitmap.

The second optimization is to use a bitmap vector that acts as a hash table to represent the edges.

The top part of Figure11 shows the bitmap vector for an ACQqx with sx = 5 and edges at

locations 2 and 5 (i.e., fragmentsgx,1 = 2 andgx,2 = 3). Given theEdges Bitmapstructure, finding

the common edges between two trees requires to simply traverse the edges of one of the Edges

Bitmap to probe the other, i.e., check if they exist in the other bitmap. This requires a number of

probes equal to the number of edges in one of the trees, regardless of the number of ACQs in the

other tree. Effectively, this optimization pre-computes and materializes the results of finding the

common edges described in Example 4.

The Edges Bitmap is maintained as follows. When the tree has one query at most two edges are

hashed into the bitmap. When adding a query to a tree, 1) new bitmap is created with length equal

to the new composite slide, 2) the old bitmap is replicated in this new bitmap and the previous

count of edges is updated accordingly, and 3) the edges of the new query are hashed into the new

bitmap, incrementing the edge counter only if no collision occurs.

44

Figure 11:Edges Bitmap and Probing Process

3.6.3 Optimization III: Probing Reorder.

Clearly, given the Edges Bitmap structure, the overall complexity of the algorithm will be affected

by the choice of which bitmap to probe when counting common edges. Similar to join optimiza-

tion, which uses the relation with fewer blocks to probe the other, we propose to use the tree with

fewer edges (i.e., smaller edge rate) to probe the other. (this is illustrated in the lower part of

Figure11, where we usedqy which has 5 edges to probeqx which has 6 edges). Specifically, the

bitmap of the probed tree is replicated to the new composite slide, while the bitmap of the prob-

ing tree is used to generate an array of edges in the new composite slide. Edges in the array are

then hashed into the bitmap of the probed tree, and if collision occurs, then the checked edge is

common.

3.7 EVALUATION

Using the simulation platform introduced in Section2.3 we evaluated the qualityWeave Share

plans (discussed in Section3.7.1), as well as evaluating the performance of theWeave Shareopti-

mizer (discussed in Section3.6).

Before presenting our results, let us review the the algorithms used in our evaluation.

• Random: it initializes by creating a tree for an arbitrary ACQ. Then it proceeds for each ACQ,

45

in random order, to either add the ACQ to the last tree, or to create a new tree for it by flipping

an even coin, i.e., equal probability to both decisions.

• Exhaustive searchsimply tries all possible grouping of ACQs. It worth mentioning that in the

few simple cases (input rates of 200, 300 and 400 tuples/sec, each with 5, 10 and 15 ACQs),

that we were able to get results for exhaustive search (after running the simulator for days-

week),Weave Sharegenerated the same result as exhaustive search.

• We implementedShared(where all ACQs are merged in one single execution tree [45]), No

Share(as a base line, where each ACQ is executed separately) and an adapted version ofLocal

Search(LS) (see AppendixA).

Recall (Table2) that we changed the number of ACQs, the input rate, slide skewness, maxi-

mum overlap factor and the initial state and the steps bound ofLS.

3.7.1 Quality of Weave Share Plans

In this section, we present the evaluation and sensitivity analysis of the quality ofWeave Share

plans.

3.7.1.1 Number of ACQs (Fig.12 to 14) Figures12and13show the cost of theWeave Share

plan as the number of ACQs increases from 50 to 1000, for low (50 tuples/sec) and medium (300

tuple/sec) input rates, respectively. In both plots, the maximum overlap factor is set to 50, and the

slide skewness is 0.6. As shown in the figures,Weave Sharealways outperforms the best of all

other algorithms. For instance, for 1000 ACQs,Weave ShareoutperformsInsert-then-Weaveand

Sharedby three and four orders of magnitude, at low and medium input rates, respectively.

Among the different versions ofLocal Searchwe ran, we plot the results of the best version,

which starts fromNo Sharestate, and proceeds for a maximum of 10 times the steps thatWeave

Shareneeded for the same workload instance.

We note thatNo ShareandRandomgenerate the most expensive plans in both cases.Local

Searchand Insert-then-Weave, on the other hand, performs better thanSharedat low input rate

(50 tuples/sec), whileSharedoutperforms both at medium input rate (300 tuples/sec). We also

46

Figure 12:Impact of #ACQs: Low input rate (50 tuples/sec)

Figure 13:Impact of #ACQs: Medium input rate (300 tuples/sec)

repeated the experiment for high input rate (10K tuples/sec) and the relative behavior of different

algorithms is similar to the medium input case.

In Figure14, we zoom into the performance ofWeave Sharecompared toSharedas the number

47

Figure 14:Impact of #ACQs: low, medium and high input rates

of ACQs increases, for the low, medium and high input rates. Specifically, we plot the normalized

cost ofWeave Shareplan to the cost ofShared, for the three input rates. The figure shows that as

the number of ACQs increases, the gain ofWeave Shareincreases. It also shows that even for high

input rate (10K tuples/sec), as the number of ACQs increase,Weave ShareoutperformsShared.

For instance, at 1000 ACQs, for input rate of 10K tuples/sec,Weave Shareachieves a gain of 62%.

The improvement ofWeave Shareover the best of other algorithms increases as the number of

ACQs increases. This is because, the more ACQs,Weave Shareselectively merges together those

ACQs that weave well together, limiting the increment in edge rate (E) and overlap factor (Ω) per

tree, while gaining the benefits of shared sub-aggregation.Local Searchseemed to need more than

10 times the steps to reach a better plan, while incurring a very high overhead. LS-NS 10x took

thousand times the time needed byWeave Share. It worth mentioning that for an instance of 10

ACQs,Local Searchgenerated a plan that is 13% cheaper than that ofWeave Share. However, this

small size does not reflect the commonality of ACQs in monitoring applications.

Figure15 shows the number of execution trees that were generated byWeave Sharefor the

same settings as in Figure14. As expected, the number of trees increases as the number of ACQs

increases, while it decreases as the input rate increases. It also shows that for high input rate of

48

Figure 15:Number of Execution Trees

10K tuples/sec,Weave Sharestill generates more than one tree for more than 100 ACQs. This

confirms our observation that the properties of the installed ACQs are as important as the input

rate in determining the sharing decision.

Finally, we also tested the performance ofWeave Sharewith the workload used to study the

sharing tradeoff in Section3.1(Figure6(b)). For all data points,Weave Shareoutperforms the best

of theSharedandNo Shareby orders of magnitude. For instance, in Figure6(b), at 1000 ACQs

Weave Sharereduces the cost by 20 times compared toNo Shareand by 30 times compared to

Shared.

3.7.1.2 Input Rate (Fig. 16) In this experiment we study sensitivity ofWeave Shareto the

input rate. We report the normalized cost ofWeave Shareto that ofShared, in all the experiments

hereafter, asSharedis the best alternative (in each experiment).

We plot the normalized cost for different values of number of ACQs in Figure16. The results

in this plot are for workload withΩmax of 50 and slide skewness of 0.6. Similar to the previous

experiment, as the input rate increases, the gain ofWeave Sharedecreases. For instance, for 250

ACQs, the gain ofWeave Sharestarts at 80% at input rate of 50 tuples/sec, and reaches 24% and

49

Figure 16:Impact of Input Rate - different # of ACQs

6% at input rates of 2K and 3K tuples/sec, respectively. For this small number of ACQs (only 250),

Weave Shareconverges to generate one shared tree only at input rate of 4K tuples/sec. Moreover,

even for high input rate (10K tuples/sec),Weave Shareachieves a gain of 12% and 24% for 1000

and 2000 ACQs (which confirms the results of the first experiment).

We observed thatInsert-then-Weaveconverges toSharedvery fast, i.e., at low input rate values.

For instance, for input rate of 300 tuples/sec,Insert-then-Weavegenerates one tree, whileWeave

Sharegenerates a plan that is three orders of magnitude better thanShared. The reason is that the

initial insert phase generates much fewer trees than theNo Sharecase, and thus, the weaving phase

has higher potential to generate one tree (because it merges fewer trees).

Weave Sharealso outperformsNo Share, Local Search, andRandomby orders of magnitude.

For instance, at input rate of 10K tuples/sec,Weave Sharegenerates a plan that is more than 100

times better than the best of them.

3.7.1.3 Maximum Overlap Factor (Fig. 17) In this experiment, we vary the maximum over-

lap factor (Ωmax) for different input rate values. Specifically, we set the input rate to 100, 1K, 10K,

100K and 1M tuples/sec. For all cases, the slide skewness was 0.6, and number of ACQs was 2000

50

Figure 17:Impact ofΩmax: different rates

ACQs. Recall that the overlap factor is the ratio between an ACQ’s range and its slide. Hence,

increasing the overlap factor increases the number of final-aggregations but it has no effect on the

sub-aggregation.

In Figure17 we plot the normalized cost ofWeave Shareto Shared. As expected, as the max-

imum overlap factor increases from 50 to 2000, the gain ofWeave Shareincreases. For instance,

for 1M tuples/sec input rate,Weave Shareachieves a gain of 23% at overlap factor of 2000, while

it achieves a gain of 98% at input rate of 100 tuples/sec.

We also observe that all algorithms exhibit an increment in the cost as the maximum overlap

factor increases, reflecting the fact that the the overlap factor is multiplied by the edge rate in

Equation3.2, which is the cost of final-aggregation. The increment inWeave Sharehowever, is

much slower than that ofShared. This is becauseWeave Sharegenerates plans that consist of more

than one tree, keeping the maximum value ofEΩ as small as possible. This enables Weave Share

to outperform all other algorithms for most cases, or performs similar to the best (Shared) in the

remaining cases.

51

3.7.1.4 Slide Skewness (Fig.18) In this experiment, we examined the slide distribution skew-

ness parameter. By increasing the skewness, the query workload will contain more large-slide

queries as generated by the Zipf distribution. Figure18shows the normalized cost ofWeave Share

to Sharedfor different number of ACQs, at input arrival rate of 100 tuple/second and maximum

overlap factor of 10.

For all number of ACQs, we see that as the skewness increases, the relative gain provided by

Weave Shareincreases. This continues until a global maximum is reached, where the gain starts

to diminish untilWeave Shareperforms similar toShared(i.e., share all ACQs). The reason is that

initially, as the skewness increases the more large-slide ACQs we have, and hence the higher the

penaltyof sharing them with small-slide ACQs which are not weaveable to them.Weave Share

avoids this by selectively sharing ACQs that weave well together.

As the Zipf distribution becomes very skewed towards large-slides, most of the ACQs are

large-slide ones, whereas small-slide ACQs gradually disappear. This means that grouping all in

a single tree is the right choice. In which case,Weave Sharecaptures this phenomenon and does

generate a single execution tree, sharing all ACQs. Figure18 also shows that the more ACQs are

in the system, the larger the maximum gain ofWeave Shareis. This is consistent with the previous

results shown in Figures12and13.

3.7.2 Theoretical Lower Bound

Finding a theoretical lower bound is interesting and challenging, and it is one of our ongoing

efforts. As in traditional multi-query optimization, our goal is to avoid ”worst-case” query plans

and indeed it could be easily shown thatWeave Sharealways avoids the poor plans that might be

generated by eitherSharedor No Share. We also experimentally investigate and demonstrate the

competitiveness ofWeave Shareby comparing it toExhaustive Search(OPT) andLocal Search

(LS).

The OPT experiments (with different settings, some ran for a month and some ran for over

200 days) showed thatWeave Sharegenerates mostly optimal plans. Specifically, for input rates

of 200, 300 and 400, with number of ACQs 5, 10 and 15, respectively,Weave Sharegenerated the

optimal plan. In only one case,Weave Sharegenerated the optimal number of execution trees, but

52

Figure 18:Impact of Slide Skewness

with 3% higher cost, due to a different grouping of ACQs. In this specific case,Sharedplan was

32% more costly compared to the optimal plan.

LS is a near-optimal technique that utilize backtracking to avoid local optima. LS didn’t find

a better plan than those generated byWeave Share, while incurring a very high overhead. Specifi-

cally, LS-NS-10x took thousand times the time needed byWeave Shareand didn’t generate a better

plan. The reason is that an iteration of LS moves a single ACQ from a tree to another, while an

iteration ofWeave Sharemerges two trees, i.e., moves a group of ACQs at once. Thus, Weave

Share reaches a reasonable sub-optimal solution much faster than LS.

3.7.3 Impact of Optimizations

The impact of the above optimizations can be seen in Figure19. The figure shows the overhead

for a setting of 250 ACQs, input rate of 100 tuple/second, a slide skewness of 0.7 and a maximum

overlap factor 10. The figure shows the overhead of the naiveWeave Share, where no optimization

is used, compared to the three optimization variants. In the first variant, only cost lookup is used.

In the second variant, both cost lookup and edge bitmap are used and finally, in the third variant all

three optimizations are used.

53

Figure 19:Optimizations’ Benefits

Figure19 shows orders of magnitude reduction in the overhead with the addition of each of

the proposed optimization techniques (notice the log scale for the Y-axis). This leads to a total

overall reduction of 99% compared to the naive approach. We obtained similar results for different

workload settings.

3.8 SUMMARY

In this chapter, we studied the factors that affect the sharing decision of multiple similar ACQs,

assuming they have the same pre-aggregation predicates and same group-by attributes, but different

window specifications. We introduced the concept ofWeaveabilityto capture the affinity of ACQs

and the potential gains of sharing their processing. We also proposed theWeave Shareoptimizer,

which is a cost-based multiple ACQs optimizer that utilizesWeaveabilityto group ACQs into

multiple execution trees to minimize the total cost of the query plan. We also proposed several

optimizations for theWeave Shareoptimizer that dramatically improves its efficiency, compared

to the naive implementation. We experimentally demonstrated the quality of the generatedWeave

54

Shareplans which are up to four orders of magnitude better than the best alternative. We also

demonstrated the impact of the implementation optimizations.

55

4.0 INCREMENTAL Weave Share

In the previous chapter, we described the basic (offline)Weave Share, which constructs a query

execution plan from scratch. In this chapter, we consider the online case where newly submitted

ACQs are weaved into an existing weave share query plan, as well as the case of re-weaving

existing trees after the deletion of some ACQs.

4.1 ADDING NEW ACQS

Reconstructing theWeave Sharequery plan from scratch is one possible solution to handle

the submission of a new set of ACQs into the system. In that solution, given an already existing

set of ACQsQ in a Weave ShareplanP and a set of new ACQsQ′, Weave Shareis invoked to

generate a new weave share planP ′ which includes the ACQsQ∪Q′. This solution, however, has

two drawbacks: 1) it incurs a large overhead since the algorithm is re-invoked to run from scratch

whenever new ACQs are added, and 2) it might often lead to an unnecessary reconstruction since,

in many cases, the new planP ′ can be directly achieved from the current planP .

To address the above drawbacks, we developIncremental Weave Sharewhich takes a more

lazyapproach for maintaining the weaved plan. This involves the following two steps:

1. Immediately incorporating new ACQs into the existing plan.

2. Reconstruct the query plan from scratchonly when needed.

In this incremental version ofWeave Share, a new treetnew is created for each new ACQ

qnew that is added to the system andWeave Shareis invoked to mergetnew with the trees in the

current planP to generate a new incremental planP ′′. Thus, among the existing trees,tnew will be

56

Algorithm 2 TheIncremental Weaved ShareAlgorithm
1: Input: A new query q and current query plan P

2: Input: Offline slope and tolerance factor ε

3: Output: Updated weaved query planP ′

4: BEGIN

5: t← Create a new execution tree forq

6: P ′ ← P ∪ t

7: repeat

8: l← current number of trees

9: maximumsave← 0

10: for i = 0 to l − 1 do

11: for j = i + 1 to l do

12: calculate the save if treesti andtj are merged

13: update maximum save info

14: end for

15: end for

16: if a pair foundthen

17: merge the trees that would lead to maximum save

18: l← l − 1

19: end if

20: until No merge is done

21: if cost(P ′)
cost(offline weaved plan) > ε then

22: P ′ ← Call(Weaved Share(set of all queries))

23: Update learnedofflineslope

24: end if

25: ReturnP ′

26: END

57

merged with the one tree with which it weaves the best. The newly merged tree might be further

merged with other trees in the plan if this is beneficial. This process continues until no further

improvements are attainable.

The cost of the incremental planP ′′ might, however, be worse than the planP ′ which would

be generated by the offlineWeave Share. In order to detect the magnitude of that degradation,

Incremental Weave Sharemaintains theperformance slopeof the plan-cost curve. This curve is

basically a plot of the offline-generated plan cost vs. the number of ACQs. The points on the curve

are obtained when a planP ′ is generated from scratch.

As new ACQs are submitted to the system, the cost ofP ′′ is compared with the extrapolated

cost using the performance slope. If the difference percentage is more than a certaindeviation

tolerancethreshold, which is a system parameter, a reconstruction phase is triggered and performed

asynchronously. Specifically, for adeviation toleranceof ε, a reconstruction is triggered iff:

cost(P ′′)
extrapolated cost using performance slope

− 1 > ε (4.1)

As such, the deviation tolerance value acts as aknobto control the reconstruction behavior. For

instance, setting the tolerance to zero, resembles reconstructing the weaved plan whenever a new

ACQ is added, whereas setting the tolerance to∞ is equivalent to the case where no reconstruction

is ever performed.

Finally, it worth mentioning that if a reconstruction is triggered, the actual cost of the offline

query plan is compared to the online one and the better is deployed. This is to avoid the case when

the extrapolated cost is misleading.

4.2 DELETING ACQS

We handle the deletion of existing ACQs similarly to the addition of new ACQs. Specifically,

deleted ACQs are first removed from their respective execution trees. Then the benefit of merg-

ing each of those updated trees with each of all the other trees (updated and not updated) in the

weaved plan need to be computed. This is similar toWeave Shareiterations, where the just merged

execution tree entries in the cost-lookup table are updated. This process is repeated until no more

58

improvements are attainable. Similarly to adding ACQs, given the performance slope and a tol-

erance factor, a reconstruction phase may be triggered depending on the degradation from the

extrapolated cost.

4.3 WEAVED PLANS SWITCHING

In this section we describe howIncremental Weave Sharecan switch to new weaved plans without

interrupting in progress data processing. Specifically, the updated weaved plan contains three types

of execution trees: deleted, new and updated trees. Below we describe how to handle each of them.

First, the final-aggregation operators of deleted ACQs are marked in the current executing

weaved plan, and stop executing. Second,Incremental Weave Sharegenerates the updated Weaved

plan while the current plan continues executing. Once the new weaved plan is ready, the new

trees are added to the running plan and starts execution. Finally, the updated trees are handled as

follows.

The current window edge due by each final-aggregation operator is marked both in the current

and updated plans. Input tuples and fragments (sub-aggregations) needed to generate the current

window are fed to both plans. The current plan is allowed to continue execution until each ACQ

produces the current window aggregate result, at which point, the corresponding final-aggregation

operator in the new plan starts executing. Once all ACQs in the current plan produces its output,

the tree is removed from current plan. Eventually, all updated trees will be replaced by the new

plan trees.

4.4 FREQUENCY OF ACQS ADDITIONS AND DELETIONS

The frequency of how often ACQs are being added or deleted has a direct impact on the perfor-

mance ofIncremental Weave Share. The more frequent the additions and deletions are, the more

benefitsIncremental Weave Sharehas, because it avoids frequent expensive reconstructions. In

a typical monitoring application, there are several phases of popularity of the application which

59

is reflected on the frequency of addition of ACQs. The first phase is the setup phase, in which

the application, or the phenomenon to be monitored, is not popular yet. In that phase, ACQs are

added sporadically. The peak phase of an application is when it becomes very popular, during

which ACQs are massively added. Then a calm down phase follows, when saturation of number of

ACQs is reached: a saturation phase. Finally, occasionally, some external events might trigger new

interest in the application, which leads a new epoch of ACQs to be added (epoch phase). Another

possibility is the periodic interest, such as monitoring events that trigger interest periodically. For

instance, sales of flu shots is of interest during the Fall season. ACQs that monitor flu shots sales

is expected to be registered periodically, and be deleted after the season passes. Deleting ACQs in

general is not very common, by definition of the ACQ being a continuous query, i.e., a query that

runs continuously.

Example 6. In a financial market monitoring application, when a new start-up company launches

(setup phase), people starts slowly monitoring its index performance. Once it becomes popular

(peak phase), hundreds of ACQs will be registered to monitor this company, until the saturation

phase is reached. Once a while, some global, technical, economical or political events may trigger

new interest in this company, which lead to a the epoch phase

4.5 ADAPTING TO CHANGES IN INPUT RATE

The data stream input rate affects the cost of the Weaved plan. It is known that input rates typically

fluctuate. To adopt to every single change in the input rate will incur a huge unnecessarily over-

head, especially that the weaved plan won’t change for a small change in the input rate. Dramatic

changes, however, might lead to a change in the weaved plan. By dramatic changes we mean when

the change of the input rate exceeds the edges rate. Vise versa, when the change of the input rate

goes below the edge rate, it is also a dramatic change. A dramatic change essentially changes the

dominating factors of the cost function of the weaved plan, and hence might change the sharing

decision.

To handle the changes in the input rate, we propose to segment the expected input rate range

into low, medium and high ranges. A weaved plan is then generated for each range. Thus, for

60

Figure 20: Incremental vs offlineWeave Share- Deviation

changes between these ranges no computations are needs to be done. If the input rate changes to

a value not contained in the existing ranges, e.g., a burst arrival that exceeds the high range, the

nearest range can be utilized while a reconstruction takes place in offline. The plan for this new

input rate range is memoized to be utilized later if needed.

To handle both changes in ACQs (i.e., addition and deletion) and changes in input rate, when-

ever a reconstruction phase is triggered byIncremental Weave Share, it computes a plan for each

of the input ranges, starting with the current input rate range.

4.6 EVALUATION

In this section we study the performance of theIncremental Weave Shareoptimizer. In the first

experiment shown in Figure20, we plot the cost of the weaved plans that are incrementally gen-

erated byIncremental Weave Shareas ACQs are added to the system. The tolerance factor for the

61

Figure 21:Incremental Weave Share- Overhead

results in this figure was 25%. We also plot, in the same figure, the cost of the weaved plans that

are generated by the offlineWeave Share.

Recall that, forIncremental Weave Share, the tolerance factor is used to determine when to

issue a reconstruction phase. That is, a reconstruction phase is triggered if the ratio of the current

execution plan cost to the extrapolated offline cost, given the learned offline slope, exceeds the

tolerance factor. As such, as the figure shows, with adding more ACQs,Incremental Weave Share

deviates from the offline version until the deviation exceeds the tolerance of 25% that is when

reconstruction is performed and the online and offline performances become the same. The figure

also shows that the rate of reconstruction decreases with increasing the number of ACQs. This is

because the more ACQs, there is a higher chance for a new ACQ to find an existing tree that it

weaves well with.

In Figure21we plot the overhead as number of comparisons on the X-axis, versus the average

relative error between the plan generated byIncremental Weave Shareand the plan generated by

offline Weave Shareon the Y-axis, for different tolerance factor values (the points’ labels). For

62

Figure 22:Incremental Weave Share- Deviation

instance, the point labeled as Infinity shows the online performance when no reconstruction is

issued at all (tolerance =∞). As expected, the Figure shows that as the tolerance factor increases,

the relative error increases while the overhead decreases. It also shows that the relative error is

always less then or equal to the tolerance factor. From the above results, we conclude that a

tolerance factor of 20% or 30% achieves a good balance between performance and overhead.

In Figure22 we plot the average deviation between the plan generated byIncremental Weave

Shareand the plan generated by offlineWeave Share. The corresponding overhead ofIncremental

Weave Shareis plotted in Figure23. The last column in the two plots labeled asInfinity shows

the online performance when no reconstruction is issued at all (tolerance =∞). As expected, the

figures show that as the tolerance factor increases, the relative error increases while the overhead

decreases. It also shows that the relative error is always less then or equal to the tolerance factor.

From the above results, we conclude that a tolerance factor of 20% or 30% achieves a good balance

between performance and overhead.

63

Figure 23:Incremental Weave Share- Overhead

4.7 SUMMARY

In this chapter, we proposed theIncremental Weave Shareoptimizer which handles the addition

and deletion of ACQs by incrementally update the weaved plan.Incremental Weave Shareutilizes

a tolerance factor, which is a system parameter, to control how often a reconstruction from scratch

phase is triggered. We experimentally demonstrated the performance ofIncremental Weave Share

and showed that a tolerance factor of 20% or 30% achieves a good balance between the quality of

the weaved plan and the overhead.

64

5.0 TRIOPS: THREE-LEVEL PROCESSING MODEL

In this chapter, we propose a novel processing model for ACQs, calledTriOps, with the goal

of minimizing the repetition of operator execution at the sub-aggregation level. We also present

TriWeave, aTriOps-aware multi-query optimizer built on the same principles asWeave Share. We

analytically and experimentally demonstrate the performance gains of our proposed schemes which

shows their superiority over alternative schemes. Finally, we generalizeTriWeaveto incorporate

the classical subsumptions-based multi-query optimization techniques.

5.1 MOTIVATION

The ACQ processing model under thePaired Windowtechnique is a two-level (i.e., two opera-

tors) query execution plan,as discussed in Chapter2 (Section2.2.2). TheWeave Shareoptimizer

[35, 34] adopted the two-level processing model, under which model, partitioning of ACQs into

multiple execution trees requires duplicating the sub-aggregation operator across the different dis-

joint trees (i.e., one sub-aggregation operator for each tree). Naturally,Weave Shareconsiders that

duplicated cost in its optimization objective and tries to minimize the number of generated trees to

minimize the overall cost.

While Weave Sharetries to balance the tradeoff between sharing and no sharing, it still suffer

another sharing tradeoff by using the tow-operators processing model. On one hand, fewer exe-

cution trees (i.e., sharing) means fewer sub-aggregation operators, which means less cost at the

sub-aggregation level. On the other hand, more execution trees (i.e., no sharing) means smaller

edge rate for each ACQ, which reduces the cost at the final-aggregation level.

As mentioned in Chapter1, in order to fully reap the benefits of the newWeave Sharemulti-

65

query optimizer, a new underlying aggregate operator implementation is needed that minimizes or

eliminates the effect of replication of sub-aggregation operators. This implementation should allow

more flexibility in the data flow between the sub-aggregation and final-aggregation levels so that

partial aggregate results are easily pipelined to different final-aggregate operators, or equivalently,

to different trees of operators as in the case ofWeave Share.

5.2 TRIOPSAND TRIWEAVE

5.2.1 TriOps Processing Model

TriOps is a new aggregate operator implementation that works in synergy with the newWeave

Share optimizerto minimize the total cost of processing multiple ACQs.TriOpsemploys a three-

level data processing model that minimizes the repetition of operations at the sub-aggregate level.

Consider first the case when similar ACQs have varying window specifications, but same pred-

icates and same group-by attributes (the cases with different predicate and group-by attributes are

discussed next in Sections5.3 and5.4, respectively). As with allPartial Aggregationbased pro-

cessing models,TriOpsuses a sub-aggregation operator to aggregate input tuples once, generating

a stream of fragments. InTriOps, a single sub-aggregation operator is shared among all ACQs.

Instead of directly rolling up into the final-aggregation operators, however,TriOps introduces a

new intermediate level of aggregation.

The intercede-aggregationoperator is introduced to the query plan between sub- and final-

aggregation levels. This new level of aggregation is made aware of the weaved plan and its ACQs

partitions. In particular, it behaves for each group of ACQs that are shared in one execution tree

(which we refer to, hereafter, aspartition group) as its unshared sub-aggregation operators in the

case of the two-operator model underWeave Share.

In this way,TriOps avoids the disadvantages of replicating the sub-aggregation operator for

eachpartition groupand the disadvantages of using a single sub-aggregation operator shared by all

ACQs. By utilizing a single sub-aggregation,TriOpsavoids processing input tuples multiple times,

and by making theintercede-aggregationoperatorpartition groupaware, it avoids the increase in

66

Figure 24:TriOpsShared Processing Scheme

the processing overhead, i.e., the number of aggregate operations, needed at the final-aggregation

level.

The intercede-aggregationperforms the following tasks.

1. It buffers all the fragments generated by the sub-aggregation for all partition groups and keep

them until they are rolled up into allpartition groupsof ACQs that use them.

2. When an edge of a certainpartition group is reached,Intercede-aggregationaggregate all

relevant (smaller) fragments that together form the fragment that this group expects and pass

it to the group’s final-aggregation operators.

Being partition group-aware,intercede-aggregationachieves the last step by coalescing, for

each group, the smaller fragments generated by the single shared sub-aggregation operator into the

stream of fragments that this group would have seen if it had its own sub-aggregation operator.

This is done only once for each group of ACQs, when a window edge is due for one of the ACQs

in that group. Thus, each fragment is aggregated once per group, instead of once per window

instance, as the case with the two-operator model. To illustrate the idea ofintercede-aggregation,

consider the following example.

Example 7. Consider the first two ACQs of our running example, namely,qa(8, 5) and qb(5, 4).

67

Let us assume that the weaved plan decides to not share execution. Thus,qa has the following

sequence of edges timestamps:3, 5, 8, 10, 13, On the other hand,qb has edges at timestamps

1, 4, 5, 8, 9, 12, Under TriOps, the shared sub-aggregate operator would produce fragments

with the timestamps sequence of1, 3, 4, 5, 8, 9, 10, 12, 13, .., that is the union of the two sequences

of edges. When the edge at timestamp3 (of qa) is reached, for instance, theintercede-aggregation

will aggregate the fragments1 and3 to produce the fragment thatqa is expecting, and route this

fragment to the input buffer ofqa. For another instance, when edge4 (of ab) is reached, the

intercede-aggregationwill aggregate fragments3 and4 to generate the fragment thatqb is expect-

ing. This can be easily generalized to groups of ACQs where every edge belongs to a certain

group, instead of a single ACQ, and theintercede-aggregationcomputes the fragment that this

group expects to see.

A weaved plan using theTriOpsprocessing model is illustrated in Figure24. The figure shows

the introduced new level of aggregation, that is theintercede-aggregationoperator. As illustrated

in the figure,intercede-aggregationuses a group-mapping lookup table to generate the proper

fragments for each group. This table is generated and maintained by the multiple ACQs optimizer

(Weave Sharein this case) as will be explained in Section5.2.3.

5.2.2 TriOps Cost and Advantages

In this section, we analyze the cost function of a weaved plan using theTriOpsprocessing model

and discuss its advantages. Recall from Chapter3, Section3.2that the total cost of a weaved plan

that is consisted ofm trees is computed as:

Cm-trees, 2-operator= mλ +
m∑

i=1

EiΩi (5.1)

Note that the first term of Equation5.1 is the cost at the sub-aggregation level, whereas the

second term is the cost at the final-aggregation level.

GivenTriOpsnew processing scheme, however, the total cost of a weaved plan in Equation5.1

changes to:

Cm-trees, TriOps= λ + m.E +
m∑

i=1

EiΩi (5.2)

68

whereE represent the edge rate of the shared sub-aggregation, andEi is the edge rate of fragments

eachpartition groupsees from theintercede-aggregationoperator. The termm.E represents the

cost of theintercede-aggregation, where each fragment is aggregated once for each group.

Comparing the cost function ofTriOps(Equation5.2) to that of the two-operator model (Equa-

tion 5.1), the new processing model reduces the cost ofPartial Aggregation, which is the cost of

the sub-aggregation level in case of two-operator model, frommλ to λ+m.E, which is the cost of

the sub-aggregation plus that of theintercede-aggregationoperators in case of theTriOps. Since

the edge rate (E) is typically much smaller thanλ, theTriOpsscheme typically reduces the cost

by a factor proportional toE
λ

. The only exception is the hypothetical case when the input rate

is one tuple per time unit and the sub-aggregation is generating one fragment per time unit (i.e.,

E = λ = 1). In this case, the cost of using two-operator model will be less expensive by exactly

the value of the input rateλ (= 1 extra aggregations per time unit).

In addition to reducing the cost of the weaved plan,TriOps processing model offers several

other performance advantages, namely, efficient adaptivity, smaller operator invocation overhead

and less memory overhead.

Adaptivity to changes in the workload characteristics becomes more efficient, as mentioned

earlier, because of the fixed physical query plan across thepartition groups. If the input rate

changes, for instance, the new plan might group the ACQs differently. Yet, the physical plan (i.e.,

the set of operators) will still utilize a single shared sub-aggregation operator, a singleintercede-

aggregationand the same set of final-aggregation operators, one for each ACQ. The only change

in the plan is the group-mapping table. Further, the addition and deletion of ACQs becomes as

simple as adding or dropping a final-aggregation operator, and updating the group-mapping table.

In terms of operator invocation overhead,TriOps replacesm sub-aggregation operators of

paired-windows scheme, by exactly two operators; one shared sub-aggregation and oneintercede-

aggregation. The fewer number of operators means fewer context switching, which means less

overhead. Finally, given that theTriOpsprocessing scheme uses a single sub-aggregation operator,

input tuples are buffered until they are consumed only once, as opposed to be buffered until they are

consumedm times, once perpartition group, as in thePaired Windowcase. While theintercede-

aggregationrequires extra buffering of the fragments, the savings from shorter buffering of the

input tuples surpasses this overhead. Specifically, instead of bufferingλ tuples/second until they

69

are consumed by allm sub-aggregate operators, theλ tuples per time unit are buffered until they

are consumed once, andE fragments per time unit are buffered until they are consumed by them

groups.

5.2.3 TriWeaveOptimizer

The fact that our new processing model reduces the cost ofPartial Aggregationsuggests that

a selective grouping of ACQs based onTriOps’s cost model would result to more partition groups

and lead to better performance. This led us to developTriWeave, which is a newTriOps-aware

multiple ACQs optimizer.

The TriWeaveoptimizer works similar to theWeave Shareoptimizer, trying to selectively

weave together in sharedpartition groupsthe ACQs that weave well. That is, to group ACQs in

a way that minimizes the total plan cost as per Equation5.2. The steps of theTriWeaveoptimizer

are shown in Algorithm3 and can be summarized as follows.

• Initialize the plan by creating a group for each ACQ, i.e., no sharing at all.

• While beneficial, i.e., reducing the total cost of the plan, find the pair of groups that yields the

maximum reduction in the plan cost when shared.

• Merge the pair of groups found in the previous step and update the plan.

• When no such pair of groups is found, generate the group-mappings table and return the current

plan as theTriWeavePlan.

Notice that upon changes of the workload, such as addition or deletion of ACQs or major

changes in the input rate,TriWeaveneeds to regenerate the group-mapping table to replace the

current one.

We experimentally demonstrate the performance gains ofTriWeavein Section5.6. The results

confirm our hypothesis thatTriWeavegenerates better quality weaved plans with more partition

groups compared toWeave Share.

70

Algorithm 3 TheTriWeaveAlgorithm
1: Input: A set of n ACQs

2: Output: TriWeavequery plan P

3: Begin

4: P ← Create an execution tree for each ACQ

5: l← n {current number of trees}
6: (max-reduction, t1, t2)← (0,−,−) {current tree-pair to merge}
7: repeat

8: for i = 0 to l − 1 do

9: for j = i + 1 to l do

10: temp← cost-reduction-if-merging(ti, tj)

11: if temp > max-reductionthen

12: (max− reduction, t1, t2)← (temp, ti, tj)

13: end if

14: end for

15: end for

16: if max-reduction> 0 then

17: merge(t1,t2)

18: l← l − 1

19: end if

20: until No merge is done

21: group-mapping← Generate-Mapping-Table(P)

22: ReturnP

23: End

5.3 TRIOPS: WINDOWS AND PREDICATES

In this section, we study the case when ACQs have varying window specifications as well as differ-

ent predicates. We first discuss the drawbacks of the adoptingShared Data Shards(SDS) technique

that handles the case when ACQs have different predicates in Section5.3.1. We provide the details

71

of the Inverted Predicate-signature (IPS) structure, which is howTriOpsefficiently adoptsSDSto

process ACQs with different predicates and varying window specifications, in Section5.3.2.

5.3.1 Drawbacks of Integrating Shared Data Shards Technique withWeave Share

As discussed in details in Section2.2.3.2, theShared Data Shards(SDS) [45] technique was pro-

posed to handle the case when ACQs have the same window specifications but different predicates.

The assumption is that complex predicates over the same data stream may overlap.SDScan be

integrated with theWeave Shareto handle ACQs with different window specifications and different

predicates, as discussed in Chapter3, Section3.5.3. This integration is achieved by introducing an

operator before the sub-aggregation operator that pre-processes the input tuples, augmenting them

with a signature that determines which predicates this tuple satisfies (Figure9). Then, in the sub-

aggregation operator, each set of tuples with the same signature are aggregated together producing

shards of fragments. Finally, each shard is routed to the proper final aggregate operator to produce

the results.

There are two drawbacks of theSDSscheme that theTriOpsprocessing model addresses. The

first drawback is the transient memory overhead involved in replicating the fine grained fragments

in the input buffer. That is, given a set ofl predicates, a signature of lengthl is augmented to each

tuple, yielding2l different possible signatures. This means that each fragment is split into possibly

2l fragment-signature pairs. Replicating these fragments in the input buffers of each and every

ACQ, exponentially increases the memory overhead.

Directly related to this issue is the the second drawback, which is the increase in the processing

overhead. That is, the final aggregation operator of each ACQ needs to perform2l aggregations

per fragment, for every window instance.TriOps overcomes these two drawbacks through the

intercede-aggregationlevel and by fusing the tuple-augmentation with the sub-aggregation level

as we discuss next. Another drawback ofSDS, when utilized byWeave Share, is the need to store

tuple signatures due to the multiple sub-aggregation operators. Under theTriOpsmodel, there is

never a need to store the signatures, since it uses a single sub-aggregation operator.

72

Figure 25:Inverted Predicate Signatures Structure

5.3.2 TriOps: Handling Different Predicates

TriOps efficiently adopts theSDSscheme to process ACQs with different predicates as well as

varying window specifications. To do so,TriOpsfirst fuses the tuple-augmentation with the sub-

aggregation phase. The goal of this merge of tasks is to remedy the need to store the signature of

each tuple, or fragment. Further, it utilizes an inverted-predicate signatures (IPS) index, which is

essentially a multi-level hash-based shared buffer between the sub-aggregation and theintercede-

aggregationoperators. The sub-aggregation operator usesIPSto aggregate the different fragments.

Each entry ofIPS is a list of fragments that have the same signature of that entry, for the different

timestamps, i.e., different partitions of the input data. Thus, the signatures need not be augmented

to the fragments, nor to the input tuples, but are instead embedded in theIPSstructure.

Figure25 illustrates theIPSdata structure using multi-level hashing. Every node in the linked

lists is a fragment of a certain edge, plus a reference count which indicates how many groups shall

read this fragment, so that once the reference counter drops to zero, the fragment is discarded.

Given this structure, the group-mapping table becomes a lookup table, where for each group, a set

of fixed pointers to entries inIPSindicate the set of fragments that satisfies this group’s predicates.

73

Figure 26:TriOps- Windows and Predicates

The second optimization that theTriOps model offers is the reduction of the memory over-

head. Specifically, the fragment-signature pairs are no longer replicated in the input buffers of

each ACQ. Rather, they are maintained in theIPS index until theintercede-aggregationoperator

aggregates them and pushes them to the shared buffer of eachpartition groupof ACQs, observing

the relevance to groups as encoded in the implicit signatures.

Figure 26 shows theTriWeaveplan using theTriOps model for handling different window

specifications and predicates. Given such plan, the execution proceeds as follows:

1. The sub-aggregation operator processes each input tuple and incrementally evaluates all the

predicates (e.g., using predicate indexes and group filters [49]) for this tuple. The results of

these predicate evaluations are used to locate the entry in theIPS index to aggregate the tuple.

2. The group-mapping table is modified by adding, for each group, a list of pointers toIPSen-

tries that represent the set of fragments that belong to this group, i.e., satisfies the predicates

of at least one ACQ in this group. When an edge is due for a certain group, theintercede-

aggregationlooks up the group-mapping table to directly collect the different fragments that

belong to this group, aggregates them and produces the fragments of this group. This is illus-

trated in the example below.

74

Figure 27:Fragment-signature pairs that belong to the same fragment

3. Finally, each final-aggregation operator aggregates the augmented-fragments that satisfy its

predicate to generate the final results.

We further illustrate these steps with the following example.

Example 8. Consider ACQsqa andqb of our running example, where the predicateca is different

from predicatecb. In this case, the signature has two bits, and there are three possible signature

values: 01, 10 and 11. Figure 27 shows a snapshot of theIPS for these two ACQs. The figure

shows the fragments that together constitute the fragment due at edge 3 forqa, assuming that the

most significant bit in the signatures represents predicateca. Thus, theintercede-aggregationwill

aggregate these fragments and push them to the input buffer ofqa.

Figure27 also shows interesting possible scenarios. For the01 signature entry, the fragment

at edge 1 was already consumed byqb and was therefore deleted. Also, the fragment at edge 3 in

the row of10 signature does not exist, because no tuples with this signature were inserted during

this fragment time span. Finally, in the11 signature row, the Figure shows that some tuples arrived

with this signature and were aggregated to form a new fragment for edge 5.

To efficiently handle addition of new ACQs, the new predicate is represented by adding a

75

most significant bit in the signature. Thus, all previous hash entries remain valid and new entries

are hashed properly. Deletion of ACQs needs a careful handling. If the deleted ACQ results in

deleting the predicate represented by the most significant bit, then theIPS table can be reduced to

half, or the top most level hashing if multi-level hashing is utilized. If that is not the case, then a

new IPSwith half the size is instantiated for new entries. The twoIPSwork simultaneously until

no entries exist in the old IPS at which point it is to be discarded. It worth mentioning that if the

two-levels processing model adopts theIPStechnique, it mainly converts into theTriOpsmodel.

Finally, it worth mentining thatIPScan be utilized by the two-level processing scheme, which

will essentially convert it into a three-levels processing scheme.

5.4 TRIOPS: WINDOWS, PREDICATES AND GROUP-BY

In this section, we demonstrate howTriOps can efficiently optimize the processing of multiple

ACQs with varying window specifications, predicates and group-by attributes. We first consider

the case when all ACQs have the same predicate, but varying window specifications and different

group-by attributes in Section5.4.1. Then we consider the general case when window specifica-

tions, predicates and group-by attributes are all different in Section5.4.2.

5.4.1 Windows and Group-by

In order to optimize the shared processing of multiple ACQs that have varying window specifi-

cations, as well as different group-by attributes, we utilize theintermediate-aggregatesoptimizer

[59]. As discussed in details in Chapter2, Intermediate-aggregateshandles the case of same win-

dow specifications, same predicates but different group-by attributes. We utilize it in the following

manner.

1. We apply theintermediate-aggregatesoptimizer as if all windows are identical to generate the

group-by tree for this case.

2. Given the group-by tree, each first level node (i.e., a node that is a child of the root) represents

a set of ACQs that can share their processing, given their different group-by attributes, but

76

(a) The group-by tree (b) TriWeaveWeaving

Figure 28:An Instance of Four ACQs

assuming same windows. We then applyTriWeavefor each of these sets, independently to

generate theirpartition groups.

3. Finally, we integrate the ACQspartition groupswith the group-by tree using theTriOpspro-

cessing model.

The last step is achieved by replacing each first level node in the group-by tree with aintercede-

aggregationthat is aware of thepartition groups, and also performs a group-by aggregation using

the set of attributes of that group-by tree node. To illustrate these steps, consider our running

example (Figures28and29).

Example 9. Assume we have four ACQsqa, qb, qc and ad with windows’ specifications:(8, 5),

(5, 4), (10, 1) and (5, 4), respectively. Assume also that the ACQs has group-by attributes:A,

BC, AC andCD, respectively. We first generate the group-by tree for the four ACQs, using the

intermediate-aggregatescheme, which is shown in Figure28(a). The label of each node represent

the set of group-by attributes used by this node. That is, each node represent an aggregation

operator that performs a group-by aggregation using this set of attributes. The group-by tree in

this case has one internal node labeledABC. Thus, the set of leaf nodes (i.e., ACQs) of the sub-

tree for whichABC is the root, represent a set of ACQs that share their processing given their

different group-by attributes, but assuming they have the same window specifications. Specifically,

77

Figure 29:IntegratingTriWeavePlan with Intermediate-aggregates Tree

qa, qb and qc are shared together, whileqc is shared with the sub-aggregation of the other three

ACQs. Thus, we have two set of ACQs, setT1 = {qa, qb, ac} and setT2 = {qd}. We proceed by

generating the weaved plan for each set, i.e., applyTriWeaveon T1 thenT2. Figure 28(b)shows

the output of this step which weavesT1 into two groups, one that sharesqa andab, while the other

hasqc by itself. The weaved plan ofT2 is trivial as it has one ACQ. The last step is to integrate the

results of the first two steps together into aTriOps plan. Figure29 shows the integratedTriOps

plan. Simply, the root of group-by tree is mapped to the sub-aggregation operator, while each

internal node is mapped into aintercede-aggregationoperator, whenever possible.

The rational behind this procedure is to follow a conservative approach towards sharing. Specif-

ically, two ACQs are shared only if they are shared under both the group-by tree and the weaved

plan. For instance, whileqb andqd have identical window specification, they were not shared in

the group-by tree, so we do not share them. Notice that the group-by tree might has multi-levels of

nodes, for further processing optimization. For example, in Example9 above,qa andqc could have

a common parent node labeledAC, which performs a group-by aggregation using the attributes

setAC and is a child of the nodeABC. Mapping such internal nodes to theTriOpsplan depends

78

on the weave plan of the set of ACQs of this internal node, following the same conservative ra-

tional. Specifically, if the weaved plan shares the ACQs of the internal node, then this internal

node is mapped into anotherintercede-aggregationoperator. Otherwise, it is just dropped from the

integrated plan.

Another remark on the integration process is that in case the group-by tree has the input stream

as its root, we still use the first level nodes to determine the sets of ACQs to be weaved sepa-

rately. Finally, it worth mentioning that if thePaired Windowscheme is utilized, each node except

leaf ones, can be mapped to a sub-aggregation, and the leaf nodes mapped to final-aggregation.

This however does not allow any optimization for the varying window specifications. Using the

TriOpsprocessing scheme, specifically theintercede-aggregationallows such optimization being

weaving-aware. Further, it enables efficient handling of predicates using theIPSas we discuss in

the following Section.

5.4.2 Windows, Predicates and Group-by

In order to optimize the processing of multiple ACQs with varying windows specifications, pred-

icates and group-by attributes, we first follow the same integration procedure discussed in Sec-

tion 5.4.1above, which optimizes the plan for varying window specifications and different group-

by attributes. Then, to support different predicates, we augment the plan withIPSstructures before

each and everyintercede-aggregation. Figure30 shows such augmented plan for the ACQs of

Example9.

5.5 GENERALIZED TRIWEAVE OPTIMIZER

In this section we put everything together into the generalizedTriWeave, the weaveability based

optimizer that optimizes the plans to process ACQs with varying window specifications, different

predicates and different group-by attributes. GeneralizedTriWeavefollows the steps discussed in

Section5.4 to handle different group-bys. In Section5.5.1we discuss the impact of predicates on

the optimization process and then present the generalizedTriWeaveoptimizer in Section5.5.2.

79

Figure 30:TriWeavePlan - Varying Windows, Predicates, and Group-by

5.5.1 Impact of Predicates on Weaving

Assume there aren ACQs which are weaved intom groups, and each group hasni ACQs, s.t.
∑

i ni = n. If each ACQ has its unique predicate, then the more groups (i.e., largem) the more

buffering (i.e., memory overhead) and aggregate operations needed by theintercede-aggregation

operator. The number of unique signature fragments per edge for groupi is 1 ≤ pi ≤ 2ni. Using

thePaired Windowprocessing scheme, this leads to an increment ofpi aggregations at the final-

aggregation level, per fragment for every edge. However, using theTriOps processing scheme,

this increment on cost is only reflected at theintercede-aggregationoperator, which means it is to

be done once per group. Specifically, for each group, each fragment is computed by aggregating

the fragment-signature pairs that satisfy its predicates only once, and routed to the proper final-

aggregation operators.

Clearly, if two ACQs have two predicates that are disjoint, or are identical, then they are best

shared since this minimizes the number of fragment-signature pairs per fragment. On the other

hand, if the two predicates overlap, this leads to the maximum increase in the cost, depending

80

on data distribution, which is not known a priori. If a predicate is contained in another, this will

be the average case of in terms of number of fragment-signature pairs per fragment. Finally, if

the predicates are orthogonal, i.e., defined on different attributes, it is even harder to estimate the

expected number of fragment-signature pairs per fragment. Now, consider the following cases:

1. Given two ACQs that are not are not weaveable (i.e., should not be shared given their window

specifications), the relationship between their predicates does not impact their weaveability.

In particular, if the two predicates are disjoint or identical (i.e., least number of fragment-

signature pairs), it is still not beneficial to group these two ACQs together, given that they are

not weaveable. Because their sharing leads to an increase in the cost without any gain.

2. Given two ACQs that are perfectly weaveable (e.g., they have the same window specifications),

the predicates relationship might impact the sharing decision. If the predicates are disjoint or

identical (i.e., best to share) and the two ACQs are already shared, then nothing changes. On

the other hand, if the two ACQs has overlapping predicates, it might be beneficial to not share

them, to reduce the number of fragment-signature pairs to be aggregated per fragment. This

however, depends on theedge rate(the higher the edge rate, the more beneficial it is to not

share them) and the number of fragment-signature pairs per fragment, which depends on the

data distribution and the predicates’ constants.

However, given that it is not feasible to have accurate estimates of the data distribution for

data streams, where data characteristics change over time, and given that it is expensive to analyze

predicate containment, especially since ACQs are added and deleted over time, and given that

using theTriOpsprocessing scheme, the cost overhead is at the intermediate level, it is more better

to ignore the impact of predicates on the sharing decision, for the sake of efficiency.

5.5.2 The Algorithm

The steps of the generalizedTriWeaveare shown in Algorithm4 and summarized as follows:

• Generate the group-by tree.

• Generate thepartition groupsfor each set of ACQs that are represented as a root-child node in

the tree. The output of this step is the group-mapping table.

81

• Integrate the group-by tree and the weaved plan.

• Augment the plan withIPSstructures to generate the finalTriWeaveplan that utilizesTriOps.

Notice that upon changes of the workload that lead to changes in the weaved plan only, such

as addition or deletion of ACQs with no new group-by attributes, or major change in the input

rate, only the group-mapping table that is used by theintercede-aggregationneeds to be updated.

However, if the group-by attributes are modified, then the wholeTriWeaveneed to be re-applied. If

the updated plan can be applied using an existing plan by changing the group-mapping table, then

the new plan can be deployed immediately. Otherwise, a more careful plan switching needs to be

done.

It worth mentioning that we chose to first generate theintermediate-aggregatestree, then use

it to determine partitions of ACQs to be used as input toTriWeavesince it sounds more natural,

and efficient mapping to aTriOpsplan. It is interesting however to examine the perforamnce and

overhead of the reverse ordering, i.e., applyTriWeavefirst, then use group-paritions as input for

intermediate=aggregates. We leave that to our future work.

5.6 EVALUATION

Using the simulation platform introduced in Section2.3 we evaluated the performance ofTriOps

processing scheme andTriWeaveoptimizer. We briefly highlight the additions in Section5.6.1,

and discuss the experimental results in Section5.6.2.

5.6.1 Experimental Platform

We used the simulation platform discussed in Section2.3to evaluateTriOpsandTriWeave. Below

we highlight the specific additions used here.

ACQs: In these experiments, we used overlap factor (ωi) with a maximum valueΩmax = 50.

Recall thatri = si × ωi.

Performance Metrics: We measured the quality ofTriWeaveplans in terms of their cost computed

as the number of aggregate operations per second (which also indicates the throughput). We chose

82

Figure 31:TriWeaveperformance gain - Impact of Input Rate

this metric because it provides an accurate and fair measure of the performance, regardless of

the platform used to conduct the experiments. To quantify the performance gains ofTriOps, we

compare different weaved plans, each usingTriOps as the underlying processing scheme versus

using paired-windows.

Algorithms: We usedWeave Share[35] and Shared[45] as the base case algorithms for our

comparisons. Recall thatSharedis the optimizer that shares the sub-aggregation operator among

all ACQs. That is, the weaved plan has exactly one group.Weave Shareis the optimizer that

assumes the two-level processing model in selectively partitioning the ACQs into one or more

partition groups based on their weaveability. We also tried different combinations of optimizers

and processing models. For instance, we generatedWeave ShareandSharedplans, assuming the

two-level model, but then ran the plan using theTriOpsmodel. The goal is to get better insight and

understanding of the behavior ofTriWeaveandTriOps.

83

Figure 32:UsingTriOpsprocessing for different plans (50 tuples/sec)

5.6.2 TriOps Performance

In the first set of experiments, we measured the performance gains ofTriOps-varying windows.

Specifically, we compare the quality of the weave-plan usingTriOps to that using Data Slices. In

Figure31we plot the normalized cost (to reflect the gains) of weaved-plans usingTriOpscompared

to that using Data Slices, as the input rate increases, for different numbers of ACQs. The figure

shows that for the low input rates, the edge rate is the dominating factor of the cost. This is

revealed by the small improvement overWeave Share(less than 40%). Figure31 also shows that

at low input rate, the gain reduces as the number of ACQs increases.

Interestingly, at very low input rates, the role of the number of ACQs is reverted. That is, the

more ACQs, the less the performance gains ofTriOps. This is because when the input rate is very

low, the cost at the final-aggregation becomes the dominating factor of the total cost. Thus, the

more ACQs, the more overlapping operations needed and the less the gainsTriOpsachieves.

In Figure33 we show the performance gains ofTriWeavecompared toWeave Share. We see

thatTriWeaveachieved a further 63% improvement over theWeave Shareoptimizer. We observe

the same phenomena of reverting the impact of ACQs for different input rates.

In the next set of experiments, we take a further look into the performance ofTriOps. Specif-

84

Figure 33:TriWeave- Impact of Input Rate and No. of ACQs

ically, we generated query plans using different optimizers (namely,Weave Share, Shared, and

TriWeave), then we measured the cost of each plan when using the Data Slices vs when using the

TriOpsscheme and report the normalized cost of different alternatives, normalized to the cost of

the Shared plan using Data Slices.

Figures32, 34 and35 show the performance gains of theTriOps processing scheme for low

(50), medium (300) and high (10K tuples/second) input rates, respectively. We plot the normal-

ized cost as the number of ACQs increases. We also highlight the trend of theTriWeaveplan in

each plot. All three Figures show that for each plan, utilizingTriOps achieves gains over Data

Slices, except for theSharedcase. The reason is simply because when there is only one group, the

intercede-aggregationadds an overhead with no benefit. On the other hand, when there are at least

two groups, utilizingTriOpsachieves between 40 and 60% gain.

All three Figures also show that the gain ofTriOpsincreases as the number of ACQs increases.

This is mainly due to the fact that the more ACQs, the more chances for selective sharing. While

Data Slices will be less aggressive to generate more groups (due to its cost function, i.e, the shar-

ing trade-off),TriOps on the other hand is able to take full advantage of such opportunity. We

confirmed that by checking the number of groups each scheme produces, and we found thatTri-

85

Figure 34:UsingTriOpsprocessing for different plans (300 tuples/sec)

Opsconsistently generate plans with much larger number of groups. This is also seen in Figure

35, whenWeave Sharegenerates one shared group, whileTriOps generates multiple groups and

achieves up to 40% gain.

Finally, the rate with which the gain ofTriOps increases as the number of ACQs increases

is faster for higher input rates. The reason is clear by comparing the cost functions of Data

Slices (Equation5.1) and that ofTriOps (Equation5.2). Simply, that the higher input rate,Tri-

Ops achieves larger reduction by replacing the multiple sub-aggregation operators by one sub-

aggregation and oneintercede-aggregation.

5.7 SUMMARY

In this chapter, we questioned the effectiveness of the widely accepted two-level or two-operator

implementation of aggregate continuous queries (ACQs) and proposed a new three-level process-

ing model, calledTriOps, in the context of Weaved Plans which selectively group ACQs into multi-

ple query execution trees (partition groups). We illustrated that the proposedintercede-aggregation

86

Figure 35:UsingTriOpsprocessing for different plans (10K tuples/sec)

operator inTriOps minimizes the total cost of processing multiple ACQs by allowing sharing of

the sub-aggregation across all partition groups and performing partial final-aggregation shared by

the ACQs of a given partition group. Further, we illustrated howintercede-aggregationoperator

can efficiently support the processing of multiple ACQs with different predicates and group-by

attributes in addition to varying window specifications. Finally, we developedTriWeave, aTriOps-

aware multiple query optimizer along the lines of Weave Share optimizer and generalizedTriWeave

to integrate the classical subsumption-based multi-query optimization techniques. We evaluated

the effectiveness ofTriOpsand the quality of the query plans produced byTriWeaveusing simula-

tion. Our experimental results demonstrated the performance gains and superiority of our proposed

schemes to other alternatives.

87

Algorithm 4 GeneralizedTriWeaveOptimizer
1: Input: A set of n ACQs

2: Output: TriWeavequery plan P

3: Begin

4: T ← Generate the group-by tree

5: WP ← ∅ {weaved plan}
6: for For every nodeti that is child ofroot(T) do

7: Ci ← ACQs(ti)

8: Pi ← Create an execution tree for each ACQ{Initialize to no sharing plan}
9: l← ni {current number of partition groups}

10: (max-reduction, t1, t2)← (0,−,−) {current tree-pair to merge}
11: repeat

12: for i = 0 to l − 1 do

13: for j = i + 1 to l do

14: temp← cost-reduction-if-merging(ti, tj)

15: if temp > max-reductionthen

16: (max− reduction, t1, t2)← (temp, ti, tj)

17: end if

18: end for

19: end for

20: if max-reduction> 0 then

21: merge(t1,t2)

22: l← l − 1

23: end if

24: until No merge is done

25: WP ← Pi ∪WP

26: end for

27: P ← integrate(T , WP)

28: P ← augmentIPS(P)

29: ReturnP

30: End

88

6.0 AQSIOS 3.0: REALIZATION OF WEAVE SHARE

In this chapter we describe the challenges and the final design decisions in realizing our proposed

weave-based algorithms to optimize the shared processing of ACQs in a real system. Specifically,

we implementWeave Sharein AQSIOS 3.0 [6]. We first overview the AQSIOS prototype in Sec-

tion 6.1. Then, we describe the challenges involved in implementing thePaired-windowprocessing

scheme as well as theWeave Shareoptimizer in AQSIOS and how we address them in Section6.2.

We finally provide performance results for our implementations in Section6.3.

6.1 THE AQSIOS DSMS PROTOTYPE

Advanced Query System Infrastructure On Streams (AQSIOS) [6] is a prototype DSMS developed

by the ADMT Lab (Advanced Data Management and Technology Laboratory) of the University

of Pittsburgh. When AQSIOS was first developed, it was an effort to prototype the new generation

DSMS, whose design had equal emphasis on optimizing performance and enhancing functionality.

The goal was that these new generation DSMSs will simplify the development of a wide range of

monitoring applications, with diverse requirements.

The AQSIOS project reexamined all four critical components of a DSMS, namely: theQuery

Scheduler, theLoad Shedder, theQuery processor, and theData Disseminationmodules. The two

key innovations of this project are:

1. it formalizes QoS/QoD metrics for DSMSs and develops algorithms designed to optimize these

metrics.

2. it looks at how the four DSMS modules mentioned above, i.e.,Query Scheduler, the Load

89

Shedder, theQuery processorand theData Dissemination, can be integrated to work in syn-

ergy, instead of making isolated decisions that may have a significant negative impact on the

overall performance; and

3. its plans included the analytical and experimental evaluation of the proposed algorithms and

also the implementation and evaluation of a prototype system.

AQSIOS 1.0 prototype is implemented starting from STREAM 0.6.0 code. AQSIOS 1.0 im-

plementsHighest Rate(HR) [71], a priority-based scheduler, in addition to the basicRound Robin

(RR) scheduler.HRscheduler prioritizes operators based on the their output rate, and executes the

operator with the highest priority in order to minimize the response time. Furthermore, AQSIOS

1.0 implements a simple yet complete load manager that monitors the system workload at run time

and automatically decides the appropriate amount of random shedding from the input data when

the system is overloaded.

The second release, AQSIOS 2.0, incorporates the second version of theALoMa[64] load man-

ager and supports priority-classes scheduling incorporating the Continuous Query Class scheduler

(CQC) [53]. CQC is a two-level scheduler which combines weightedRRandHR to effectively

handle different ranks of CQ classes. In addition, AQSIOS 2.0 runsDILoS [65], a complete syn-

ergy betweenALoMaandCQC. DILoSis an integrated approach that exploits the synergy between

scheduling (CQC) and load shedding (ALoMa) to effectively handle different ranks of CQ classes,

each associated with different QoS and QoD requirements, in a a multi-tenant environment. Users

of AQSIOS 2.0 can specify which class a query belongs to and the priorities of the classes, which

will be honored byDILoS.

The new release, AQSIOS 3.0 contains our implementation of theWeave Sharequery opti-

mizer. We describe the challenges we faced to realizeWeave Sharenext.

6.2 CHALLENGES

AQSIOS inherited the basic query processing and optimizer from STREAMS code, which was

mostly based on traditional DBMS techniques. As such, in order to realizeWeave Sharein AQ-

SIOS, we need to first implement thePaired Windowprocessing scheme (Section2.2.2). This, in

90

Figure 36:Current ACQ query plan

turn, involved the full implementation of sliding windows. Another challenge was the modifica-

tion of the current optimizer to recognize similar ACQs and invoke theWeave Shareoptimizer to

generate their execution plan.

To better illustrate the first challenge, Figure36 shows how an Aggregate Continuous Query

(ACQ) plan would look like in the current release of AQSIOS (version 2.0) [6]. The window

operator exists only if there is a window specification clause in the CQL [8]. If no window is

specified in the query, the system applies the aggregation on each input tuple, which is equivalent to

a tuple based window of size 1 and slide 1. AQSIOS supports both time- and tuple-based windows,

which is inherited from STREAMS code. The window operators, however, do not support sliding

windows. More precisely, the current support for sliding windows in AQSIOS is a slide of one

tuple. This is regardless of whether the window is a range (i.e., time) or row (i.e., tuple) based

window for the range specification. This implementation assumes the slide to be always a row-

based slide of length 1. That is for every input tuple, an aggregation result is due. Thus, we needed

to add support for the sliding windows.

Not only is support for sliding windows needed, but also a whole set of new operators, with

91

their semantics, need to be added to AQSIOS in order to support thePaired Windowprocessing

scheme. Specifically, a sub-aggregation, a slice-manager and a final-aggregation operators need to

be implemented.

We chose to implement the slice manager as part of the sub-aggregation operator to reduce

context inter-operator communication and context switching.

To support sliding windows, there are three choices. Either to implement it in: (1) the Window

operator, (2) the Synopsis, which is the buffer area associated with the operator to maintain its

state, or (3) the new slice manager operator. The third choice might be the easiest, but this means

that only ACQs will support sliding windows. On the other hand, the first and second choices

mean that all CQs can support the sliding windows. Given that the ACQ query plan does not

need any window operators, since the slice manager is effectively the window operator, it does not

make sense to extend window operators to support sliding windows. We therefore chose to support

sliding windows in the implementation of the slice manager. Thus, the query plan would look as

the instance in Figure37.

In summary, we performed the following implementation tasks.

1. Supporting Sliding windows. This involves:

a. CQL parsing to get the slide.

b. Processing the Slide window. For this, we have three different options that shall be dis-

cussed next.

2. Optimizing multiple ACQs

a. Allow a CQL directive to instantiate the multiple-ACQs optimizer.

b. Bypass the current optimizer when this directive exists.

3. Implementation of New Operators.

a. Slide Manager, which could potentially be merged with the sub-aggregation operator.

b. Sub-Aggregation operator.

c. Final-Aggregation operator.

4. Modifying current implementation.

a. Range Window operator to be slide-aware.

b. Synopsis operator to be slide-aware.

c. Group Aggregation operator to be slide-aware.

92

Figure 37:The Weaved Query Plan

To enable theWeave Shareoptimizer, we had to to re-do many steps in converting the logical

plan into a physical plan, as mentioned before. That was mainly due to the lack of modularity of

the STREAMS basic optimizer. In order to focus on ACQs, we assumed that all continuous queries

in the system are ACQs that uses the following template.

SELECT <aggregate function>(<attribute>)

FROM <stream source> [RANGE <window range> SLIDE <window slide>];

To invoke theWeave Shareoptimizer, a configuration file parameter need to best properly to

request the query optimizer to utilizeWeave Share. Our implementation of the sub- and final-

aggregation operators do support group-by attributes. However, AQSIOS 3.0 does not support

different group-by attributes, nor different predicates.

93

6.3 EVALUATION

In this section we provide the results ofWeave Shareimplementation in AQSIOS. In addition, we

implementedSharedandNo Share. Sharedis the optimizer that generates a single execution tree,

while No Shareis the one that generates an execution tree for each ACQ. All other optimizers

utilize the same implementation of sub- and final-aggregation operators ofWeave Share.

In these experiments, we used synthetic data to regenerate the settings of our simulation-based

experiments. In all experiments, the data has a Poisson arrival rate of 50 or 300 tuples/sec. We

generated a workload of 2 minutes. The ACQs are generated using a slide length following a Zipf

distribution with skewness of 0.6, and a maximum overlap factor of 50, as in our simulation-based

experiments.

We utilized both the simpleRRscheduler and theHR scheduler. We disabled the load shed-

der in order to study the performance of the query optimizer with minimal effect from the other

modules, i.e., scheduler and load shedder. Reported results are the average of 10 runs.

6.3.1 Performance UnderRR

As mentioned earlier, the Continuous Query Language (CQL) [8] does not support window slide.

The default window operator performs a slide by one tuple by default. We focus in our experiments

on Weave ShareversusSharedto confirm the observed simulation-based performance gains of

Weave Share.

In Figures38 and39 we plot the cost in terms of number of aggregation operations per sec-

ond of Weave ShareandSharedfor 50 and 300 tuples/sec, respectively, as the number of ACQs

increases. For 300 tuples/sec,Weave Shareachieved 3 orders of magnitude improvement over

Share. Also, for 50 tuples/sec,Weave Sharealways reduces the cost overShared, with reduction

between 22% and 62%. These results are similar to the simulation results discussed in Chapter3

(which showed three orders of magnitude improvement compared toSharedfor 500 ACQs.) We

replicate here a snapshot of this simulation results in Figure40.

We also compared the response time ofWeave Shareto that of Sharedand No Share. In

Figure41 we plot the average response time (in micro-seconds) per window, i.e., per ACQ output

94

Figure 38:Cost - 50 tuples/sec

Figure 39:Cost - 300 tuples/sec

tuple. The average was taken across all ACQs, across multiple runs. We see thatWeave Share

reduces the average response time by between 43% to 67%.

We also noticed in Figure41thatNo Shareperforms better thanShared, which is and indicator

that the system is under-loaded sinceNo ShareoutperformsSharedwhen the system is under-

95

Figure 40:Simulation results for 300 tuples/sec

Figure 41:Average Response Time - 300 tuples/sec

loaded. We repeated the experiment with higher input rate of 50K tuples/seconds. The results of

this experiment are shown in Figure42. We first notice that the response time jumps from micro

seconds to few seconds. Performance gains ofWeave Shareare also clearer for this high input rate.

Specifically,Weave Sharereduces the response time between 75% and 99%, compared toShared,

96

Figure 42:Average Response Time - 50K tuples/sec

Figure 43:Average Response Time -HR scheduler - 50K tuples/sec

for more than 100 ACQs. For 50 and 100 ACQs, where the response time is in few milliseconds,

Weave Shareresponse time was similar toShared. No Share, on the other hand, suffers a relatively

huge response time for 100 or more ACQs.

97

6.3.2 Performance UnderHR

HR is better thanRRas a cost-based scheduler, although unfair and hence susceptible to starva-

tion. We expect that utilizing a smarter scheduler, further gains, in terms of response time, can be

achieved. In order to minimize the average response time,HRgives higher priority for execution to

the operator that have a higher production rate. We had to instrument the sub- and final-aggregation

operators to measure and report their production rate.

In Figure43 we plot the average response time (in micro-seconds) f or theWeave Shareand

Sharedoptimizers, for input rate of 50K tuples/second, using theHR [71] scheduler. The results

however did not show the expected further gains forWeave Share. Specifically,Weave Share

response time is less than that ofSharedby 53% and 97%, as opposed to 75% and 99% in the

case of using the round-robin scheduler. The reason is that sub-aggregation operators typically

has higher production rate (which is the edge rate) than that of the final-aggregation (which is

one output every window instance). Thus, underHR, sub-aggregation operators receives higher

priority until they process all the tuples currently in the input buffer, or until the output buffer is

full. At this point, the final-aggregation operators gets chance to process their input fragments,

which increases their priority and gives them a chance to catch-up with the response time.

The performance gains ofHR was not seen when utilizing thePaired Windowprocessing

scheme. This shows that careful choice of the scheduler is needed. In fact, this confirms our

motivation for our suggested future work (discussed in Chapter7) that a study of the synergy

between the query optimizer and the scheduler is needed to discover best practice strategies. Oth-

erwise, while optimizing each component independently, one optimized solution for one module

might cancel the optimization of the other module and vice-versa.

6.3.3 The Optimizer Performance

In Figure44 we plot the number of generated execution trees by theWeave Shareoptimizer, for

two input rate values; 50 and 300 tuples/sec. As expected, the higher the input rate the less the

number of execution trees. On the other hand, for each input rate, the more the number of ACQs,

the more execution treesWeave Sharegenerates, which also confirms our expectations.

In Figure45we plot the optimization time needed byWeave Shareto generate the weaved plan.

98

Figure 44:Number of Execution-Trees ofWeave Share

Figure 45:Weave ShareOptimization Time

The figures show that theWeave Sharetakes up to 16 seconds for 500 ACQs to generate orders of

magnitude better plans. This confirms that utilizing theWeave Shareis practical. As expected, we

also see that the more ACQs the longer it takesWeave Shareto generate the plan.

99

6.4 SUMMARY

In this chapter, we presented our implementation of theWeave Shareoptimizer in the AQSIOS

DSMS prototype. We documented the design and code changes. We also presented the results

of Weave Shareimplementation and compared them with those obtained using simulation. We

comparedWeave Shareto SharedandNo Share, using synthetic data. The results confirmed our

simulation-based results of orders of magnitude improvement overShared. We also measured the

response time, andWeave Shareachieved up to 50% less response time. It remains for our future

work to use benchmarks to evaluate our implementation. Another future extension to this imple-

mentation is to implement theTriOpsprocessing scheme and the generalizedTriOpsoptimizer, to

handle different group-by attributes and different predicates.

100

7.0 CONCLUSIONS AND FUTURE WORK

7.1 SUMMARY OF CONTRIBUTIONS

Optimizing the processing of Aggregate Continuous Queries is imperative for Data Stream Man-

agement Systems (DSMSs) to reach their full potential in supporting (critical) monitoring applica-

tions. Towards this, Shared Processing and Scheduling has been utilized in the literature.

This dissertation provides a new perspective of how multiple ACQs should be shared in order

for DSMSs to achieve the desired scalability. It formalizes the ACQs properties that determine

their affinity to be shared, proposes a new selective sharing optimizer, and proposes a novel ACQs

processing model.

Specifically, in this dissertation we have initially aimed at addressing the following four fun-

damental questions related to multiple ACQs optimization.

Q1. In addition to the data streams input rate, what other factors of the workload characteristics and

ACQs properties affect the cost of a shared query plan? And more importantly, how do these

factors interact with each other to affect the cost of a query plan?

Q2. Given our understanding of how the factors that affect the cost of the shared plan interact, can

we design a multiple ACQs optimizer that considers all these factors while making the sharing

decision? Could this new optimizer comprehensively handle all three cases of variability in the

ACQs specifications (i.e., windows, predicates and group-by attributes)?

Q3. Given that ACQs are added to, and deleted from, the DSMS over time, and given that input

rates also fluctuates, what is the best adaptive sharing strategy? In other words, when the

workload characteristics changes, should the query plan be recomputed or be incrementally

updated?

101

Q4. Is the currently widely-acceptedPartial Aggregationtechnique the best continuous aggregation

operator implementation for the shared processing of multiple ACQs?

During the course of our experimentation with our simulator, a fifth question motivated the last

part of our dissertation.

Q5. Does different optimization techniques for the different DSMS modules integrate well together,

in the sense that the integrated system achieves an aggregated performance gain of the gains of

the individual techniques, or do different techniques negatively impact each other?

In this dissertation, we identified theWeaveabilityproperty of Aggregate Continuous Queries,

which quantifies their potential to benefit from sharing their processing. We demonstrated how

utilizing the Weaveability in optimizing the shared plan of multiple ACQs can yield up to orders

of magnitude better plans using theWeave Shareoptimizer. We also proposedIncremental Weave

Share, to handle the addition and deletion of ACQs.

We questioned the effectiveness of the widely accepted two-level or two-operator implemen-

tation of aggregate continuous queries (ACQs) and proposed a new three-level processing model,

calledTriOps, in the context of Weaved Plans which selectively group ACQs into multiple query

execution trees (partition groups). We illustrated that the proposed theintercede-aggregationop-

erator inTriOpsminimizes the total cost of processing multiple ACQs by allowing sharing of the

sub-aggregation across all partition groups and performing partial final-aggregation shared by the

ACQs of a given partition group. Further, we illustrated how theintercede-aggregationoperator

can efficiently support the processing of multiple ACQs with different predicates and group-by

attributes in addition to varying window specifications. Finally, we developedTriWeave, aTriOps-

aware multiple query optimizer along the lines of theWeave Shareoptimizer and generalized

TriWeaveto integrate the classical subsumption-based multi-query optimization techniques.

We analytically and experimentally demonstrate the performance gains of our proposed op-

timization techniques and processing schemes. Finally, we realizedWeave Shareand thePaired

Windowprocessing scheme in the AQSIOS prototype. We demonstratedWeave Shareperformance

through experiments using synthetic data sets and showed the impact of different schedulers on the

performance of the query optimizer.

102

7.2 IMPACT OF THIS DISSERTATION

This dissertation provides a better understanding of how characteristics of ACQs and properties of

the workload affect the cost of a shared plan. The concept ofWeaveabilitycaptures the interaction

of ACQs characteristics and they affect the cost of a shared plan, in one metric.Weaveability

is a new powerful tool, which this dissertation introduces, that can, and should, be utilized by a

multiple ACQs optimizer to generate better quality shared plans. This opens the door for a new

dimension in multiple ACQs optimization.

To share (share all) or not to share (share nothing) among ACQs has been the focus of the

data management research community in optimizing multiple ACQs with different windows and

different predicates. This dissertation brings in the option of selective sharing, or grouping, of

multiple ACQs in order to generate even better shared plans. TheWeave Shareoptimizer, proposed

in this dissertation, efficiently utilizesweaveabilityand selectively partitions the ACQs into shared

groups. Achieving up to four orders of magnitude improvement over the best other alternative,

Weave Shareinstitutes the corner stone step towards scalability for DSMSs in serving monitoring

applications.

This dissertation also proposes solutions that solves the two problems that have been studied

orthogonally in the literature. Namely, the optimization of multiple ACQs with different window

specifications and/or predicates, and the optimization of ACQs with different group-by attributes.

This dissertation proposes the generalizedTriWeaveoptimizer, which efficiently integrates the

selective sharing ofWeave Sharewith the subsumption-based solutions that handle the overlap

of different group-by attributes.TriWeaveis the first, in the literature, general multiple ACQs

optimizer that solves the general case, which is the real world case.

This dissertation further developed a new processing model for the ACQs.TriOpsis a sharing-

aware processing model that this dissertation proposes to fully reap the advantages of selective

sharing. In fact,TriOps is what enablesTriWeaveto handle all possible cases of variability in

ACQs specifications.

AQSIOS 3.0, which is the implementation ofWeave Sharein the AQSIOS DSMS prototype

and is available online, is the first step towards implementingTriWeave. This contribution of

the dissertation sets the stage for the data management research community to further study the

103

problem of optimizing the processing of multiple similar ACQs and to study the synergy between

the query optimizer and other modules in the DSMS, using real system implementation.

7.3 FUTURE WORK

Our future work is mainly to generalize the proposedTriWeaveOptimizer to handle general com-

plex continuous queries. That is, when the system has Aggregate Continuous Queries as well as

regular SPJ (i.e., Select, Project and Join) continuous queries. We also consider the case when

ACQs are sub-queries of a more complex continuous query. Then, given our realization ofWeave

Sharein AQSIOS, we can study the synergy between the two-levels-based orTriOps-based ACQs

query plan and the scheduler and load shedder, given that these processing schemes involves mul-

tiple operators which can be potentially scheduled independently in an arbitrary order. modules in

the DSMS so that we can integrate our weave-based optimizers with these other modules. These

challenges form the major two possible future extensions to the work in this dissertation discussed

below. Another extension include to examine the reverse ordering of the generalizedTriWeave

optimizer steps, as discussed in Section5.5.2.

7.3.1 Generalization: Optimizing Complex CQs with ACQs

Currently, we consider only (simple) ACQs consisting of only one aggregation, which is the typical

case for monitoring applications. However, the more general case is when some of the aggregations

are actually sub-queries of more complex CQs. We need to generalize our query optimizer so that

it handles the general case. In particular, having non-ACQs might affect the sharing decision.

For example, when the CQ has aHAVINGclause, the results of the aggregation are fed to a filter

(selection) operator. In this case, sharing might not be feasible because the continuous query is

not reporting the aggregate value, it is actually reporting other attributes of the input schema based

on the aggregate value. Further, when the output of an ACQ is fed to different continuous queries

with different rates, sharing might not always be the best thing to do. An investigation of how to

generalize the proposed heuristics in order to handle such cases is needed.

104

7.3.2 Synergy with other Modules

We need to first upgrade our implementation ofWeave Shareto TriWeave. That is to implement

theTriOpsprocessing scheme, so that we can perform our studies with the more generalTriWeave

optimizer. Given this implementation, we can utilize AQSIOS to study the synergy of theTriWeave

optimizer with other modules of the DSMSs. This will lead to designing an integrated query

optimizer and best practices recommendations.

For instance, Admission Control is utilized to avoid overloading situations. In [52] we follow

a Game Theoretic [63] approach and propose an auction-based admission control mechanisms to

host continuous queries on the cloud. Our proposed admission control mechanisms exploit sharing

in making the admission decision. We shall investigate how our proposed admission control mech-

anisms can benefit from the knowledge about our optimizer. For instance, a very expensive ACQ

that weaves perfectly with other ACQs might be admitted, and vice versa. Thus, we can develop

admission mechanisms that exploit weaveability and shared processing of ACQs.

Similarly, Scheduling goes hand in hand with query optimization to optimize for QoS and

QoD metrics. Studying which scheduler performs better for a given shared processing scheme

might lead to new discoveries or at least best practice recommendations. Typically, the DSMS

scheduler utilizes information about the query plan, input rates, operators’ costs and selectivities,

and queue status in order to decide which operator to execute next. In our exploration, we shall

investigate how to improve the scheduler’s performance minimizing the response time givenTri-

Weave. The intuition is that our proposed web-transactions schedulerASETS[36, 72], can be

modified to schedule ACQs in a way to adaptively minimize the response time.

105

APPENDIX A

ADAPTING LOCAL SEARCH TECHNIQUE

Finding a theoretical lower bound is interesting and challenging, and it is one of our ongoing

efforts. As in traditional multi-query optimization, our goal is to avoidworst-casequery plans

and indeed it could be easily shown thatWeave Sharealways avoids the poor plans that might be

generated by either Shared or NoShare. We also experimentally investigated and demonstrated the

competitiveness ofWeave Shareby comparing it to exhaustive search (optimal) and Local Search

(LS) which is near-optimal by supporting backtracking to avoid local optima.

Local search (LS) is a an approach that can be adapted to exploit weaveability to further ex-

plore the solution space and better evaluate our proposed approach. LS is a “meta-heuristic” state

space search approach [1]. It is used for solving computationally hard combinatorial optimization

problems, that can be formulated as finding a solution that minimizes (or maximizes) a certain cost

function.

The Local Search approach start by randomly selecting state (i.e., a valid solution) and pro-

ceeds towards a local minimum one step at a time, where a step is a single small change in the

current solution. The resolution of the step should be small enough in order to guarantee exploring

all possible states that are adjacent to the current state.

In each iteration, LS checks all adjacent states and moves to the one that minimizes the cost

function until no more adjacent steps are better (i.e., a local minimum is reached) or a time, or

number of steps bound is reached. Examples of problems where LS has been applied are the

traveling salesman, vertex cover and boolean satisfiability problems.

In order to adapt Local Search to exploit weaveability of ACQs, we chose the step to be a single

106

move of one ACQ from one execution tree to another existing one, or to a new one. This allows

for backtracking and considering all possible adjacent states. As for the initial state, we considered

two possible simple initial states. The first is the No Share state, where each tree contains one

ACQ only. The second is a randomly generated grouping of ACQs.

107

APPENDIX B

AQSIOS 3.0 RELATED CODE

We modified the existing code, and added new code. In Table4, we summarize both modified and

added code files and the purpose of each addition or modification. Below, we briefly describe the

major changes in the code. We categorize the changes in three tasks: (1) adding the weave share

optimizer, (2) adding the new operators, and (3) adding support for the new optimizer and the new

operators.

B.0.3 AddingWeave ShareOptimizer

The Query Optimization in AQSIOS 2.0 is not modular and does not execute at a certain part

of the code. However, while the client reads in the queries, each query is registered, at which

point a logical plan is generated and converted into a physical plan. While generating the physical

plan, some optimizations take place. Then, after all the queries are registered, a simple global

optimization phase is instantiated. In order to add theWeave Shareoptimizer, we had to redo all

these steps; i.e., generating the logical representation of the plan, converting it into a physical one,

and adding auxiliary structures to the physical plan.

Related code:weaveshare.h, serverimpl.cc, planmgr.cc,

plan mgr impl.cc, planmgr.h and planmgr impl.h

108

Table 4:Summary of New and Modified Code

File Name New/Modified Description

dsms/src/execution/operators/finalaggr.cc

(& .h)

New the finall-aggregation operator

dsms/src/execution/operators/subaggr.cc

(&.h)

New the slice manager and the sub-

aggregation operator

dsms/include/metadata/phyop.h Modified added metadata about the new

physical operators

/dsms/src/metadata/instaggr.cc Modified instantiate the new operators

dsms/include/server/params.h,

dsms/src/server/configfile reader.cc (&.h)

Modified add the Optimizer specifica-

tion tag and input rate

dsms/src/common/include/parser/nodes.h,

dsms/src/common/include/parser/nodesde-

bug.h, dsms/include/parser/nodesdebug.h,

dsms/src/parser/nodes.cc (& .h)

Modified added window slide specifica-

tions to the parser and for the

logical plan representation

dsms/include/querygen/query.h Modified added slide specification for

the query representation

dsms/include/metadata/weaveshare.h New definitions of Data structures

needed byWeave Share

dsms/src/server/serverimpl.cc (& .h),

dsms/src/metadata/planmgr impl.cc (&.h)

Modified added theWeave Shareopti-

mizer

B.0.4 Adding New Operators

We implemented the final-aggregation as well as the sub-aggregation operators. The implemen-

tation of the sub-aggregation operator also also includes the slice manager. The support for the

sliding window was also implicitly implemented in both new operators. Thus, we didn’t need to

modify the existing window operators. The new sub- and final-aggregation operators both allow

109

group-by attributes.

Related code:final aggr.cc, finalaggr.h, subaggr.cc, subaggr.h, phyop.h, and instaggr.cc

B.0.5 Adding Support for Sliding Windows andWeave Share

In order to support sliding windows, we needed to modify the CQL, and hence the parser, to read

in the slide specifications. This required changes in the internal logical representations of the query

and the logical query plan. To supportWeave Shareoptimizer we needed to add two tags in the

configuration file. Namely, a tag to specify if aWeave Shareoptimizer is to be used or not, and

another to specify the initial input rate thatWeave Shareshall use to generate the initial weaved

plan. AQSIOS has mechanisms that monitor the input rate, and hence, the plan could be changed

accordingly. This would, however, require to implement a mechanism for dynamic plan switching.

This was left for future work.

Related code:params.h, configfile reader.cc, configfile reader.h,

nodes.h, nodesdebug.h, nodesdebug.h, nodes.cc, nodes.h and query.h

110

BIBLIOGRAPHY

[1] E. Aarts and J. K. Lenstra.Local Search in Combinatorial Optimizarion. Princeton University
Press, 2003.

[2] D. J. Abadi, Y. Ahmad, M. Balazinska, U. C. etintemel, M. Cherniack, J.-H. Hwang, W. Lind-
ner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B. Zdonik. The design of
the borealis stream processing engine. InCIDR, 2005.

[3] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,
N. Tatbul, and S. Zdonik. Aurora: a new model and architecture for data stream management.
VLDBJ, 12(2):120–139, 2003.

[4] M. H. Ali, W. G. Aref, R. Bose, A. K. Elmagarmid, A. Helal, I. Kamel, and M. F. Mokbel.
NILE-PDT: A phenomenon detection and tracking framework for data stream management
systems. InVLDB, pages 1295–1298, 2005.

[5] M. H. Ali, M. F. Mokbel, and W. G. Aref. Phenomenon-aware stream query processing. In
MDM, pages 8–15, 2007.

[6] AQSIOS, http://db.cs.pitt.edu/aqsios, 2011.

[7] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa, J. Rosenstein, and J. Widom.
Stream: The stanford stream data manager (demonstration description). InSIGMOD. ACM,
2003.

[8] A. Arasu, S. Babu, and J. Widom. The cql continuous query language: semantic foundations
and query execution.VLDBJ, 15(2):121–142, 2006.

[9] R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query processing. InProceed-
ings of the 2000 ACM SIGMOD international conference on Management of data, SIGMOD,
pages 261–272, New York, NY, USA, 2000. ACM.

[10] R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query processing.SIGMOD
Rec., 29:261–272, May 2000.

[11] B. Babcock, S. Babu, R. Motwani, and M. Datar. Chain: operator scheduling for memory
minimization in data stream systems. InSIGMOD, pages 253–264. ACM, 2003.

111

[12] E. Bach and K. Pruhs. Personal communications, June 2010.

[13] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Load management and high availabil-
ity in the medusa distributed stream processing system. InProceedings of the 2004 ACM
SIGMOD international conference on Management of data, SIGMOD ’04, pages 929–930,
New York, NY, USA, 2004. ACM.

[14] M. Cammert, J. Kramer, B. Seeger, and S. Vaupel. An approach to adaptive memory man-
agement in data stream systems. InICDE, 2006.

[15] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul, and S. Zdonik. Monitoring streams: a new class of data management applications.
In VLDB ’02: Proceedings of the 28th international conference on Very Large Data Bases,
pages 215–226. VLDB Endowment, 2002.

[16] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah. Telegraphcq: continuous dataflow
processing. InSIGMOD, pages 668–668. ACM, 2003.

[17] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: a scalable continuous query system
for internet databases. InSIGMOD, 2000.

[18] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing, and
S. Zdonik. Scalable distributed stream processing. InIn CIDR, 2003.

[19] P. K. Chrysanthis. Aqsios - next generation data stream management system.CONET
Newsletter, June 2010.

[20] C. Chung.Evolutionary Solutions and Internet Applications for Algorithmic Game Theory.
PhD thesis, U. of Pittsburgh, Pittsburgh, PA, Aug. 2009.

[21] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot, K. Elmeleegy, and
R. Sears. Online aggregation and continuous query support in mapreduce. InSIGMOD,
pages 1115–1118. ACM, 2010.

[22] http://www.coral8.com/, 2004.

[23] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: a stream database for
network applications. InProceedings of the 2003 ACM SIGMOD international conference
on Management of data, SIGMOD ’03, pages 647–651, New York, NY, USA, 2003. ACM.

[24] C. D. Cranor, T. Johnson, and O. Spatscheck.Streams Book, chapter Data Stream Processing
Techniques for Network Management. November 2006.

[25] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Multi-query optimization for sketch-
based estimation.Inf. Syst., 34(2), 2009.

112

[26] M. R. Garey and D. S. Johnson.Computers and Intractability; A Guide to the Theory of
NP-Completeness. WH.Freeman & Co., New York, NY, USA, 1990.

[27] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. Adaptive load shedding for windowed stream joins.
In CIKM ’05, 2005.

[28] T. M. Ghanem, W. G. Aref, and A. K. Elmagarmid. Exploiting predicate-window semantics
over data streams.SIGMOD Rec., 35(1):3–8, 2006.

[29] T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and A. K. Elmagarmid. Incre-
mental evaluation of sliding-window queries over data streams.IEEE TKDE, 19(1):57–72,
2007.

[30] L. Golab, K. G. Bijay, and M. T. Ozsu. Multi-query optimization of sliding window aggre-
gates by schedule synchronization. InCIKM, pages 844–845, 2006.

[31] L. Golab, T. Johnson, and O. Spatscheck. Prefilter: predicate pushdown at streaming speeds.
In Proceedings of the 2nd international workshop on Scalable stream processing system,
SSPS ’08, pages 29–37, New York, NY, USA, 2008. ACM.

[32] G. Graefe and W. J. McKenna. The volcano optimizer generator: Extensibility and efficient
search. InICDE, pages 209–218. IEEE Computer Society, 1993.

[33] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and
H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub-totals.J. DMKD, 1(1):29–53, 1997.

[34] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Exploiting weaveability to
optimize the processing of multiple aggregate continuous queries. Technical Report TR-11-
177, University of Pittsburgh, 2010.

[35] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Optimized processing of
multiple aggregate continuous queries. InCIKM, 2011.

[36] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Adaptive schedul-
ing of web transactions. InICDE, pages 357–368. IEEE Computer Society, 2009.

[37] R. Gupta and K. Ramamritham. Query planning for continuous aggregation queries over
a network of data aggregators.Knowledge and Data Engineering, IEEE Transactions on,
PP(99):1, 2011.

[38] M. Hammad, M. Franklin, and W. Aref. Scheduling for shared window joins over data
streams, 2003.

[39] M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref, A. C. Catlin, A. K. Elmagarmid,
M. Y. Eltabakh, M. G. Elfeky, T. M. Ghanem, R. Gwadera, I. F. Ilyas, M. S. Marzouk, and
X. Xiong. Nile: A query processing engine for data streams. InICDE, page 851, 2004.

113

[40] R. Huebsch, M. Garofalakis, J. M. Hellerstein, and I. Stoica. Sharing aggregate computation
for distributed queries. InSIGMOD, pages 485–496, 2007.

[41] Q. Jiang and S. Chakravarthy. Queueing analysis of relational operators for continuous data
streams. InProceedings of the twelfth international conference on Information and knowledge
management, CIKM ’03, pages 271–278, New York, NY, USA, 2003. ACM.

[42] R. Johnson, S. Harizopoulos, N. Hardavellas, K. Sabirli, I. Pandis, A. Ailamaki, N. G.
Mancheril, and B. Falsafi. To share or not to share? InVLDB, 2007.

[43] A. Kementsietsidis, F. Neven, D. Van de Craen, and S. Vansummeren. Scalable multi-query
optimization for exploratory queries over federated scientific databases.PVLDB, 1(1):16–27,
2008.

[44] S. Krishnamurthy, M. J. Franklin, J. Davis, D. Farina, P. Golovko, A. Li, and N. Thombre.
Continuous analytics over discontinuous streams. InSIGMOD, pages 1081–1092. ACM,
2010.

[45] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing for streamed aggregation. In
SIGMOD, pages 623–634. ACM, 2006.

[46] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No pane, no gain: efficient
evaluation of sliding-window aggregates over data streams.SIGMOD Rec., 34(1):39–44,
2005.

[47] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics and evaluation tech-
niques for window aggregates in data streams. InSIGMOD, pages 311–322. ACM, 2005.

[48] L. Ma, Q. Zhang, K. Wang, X. Li, and H. Wang. Semantic load shedding over real-time data
streams. International Symposium on Computational Intelligence and Design, 1:465–468,
2008.

[49] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive continuous
queries over streams. InSIGMOD, pages 49–60. ACM, 2002.

[50] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cilimdzic. Robust query
processing through progressive optimization. InSIGMOD, pages 659–670. ACM, 2004.

[51] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Materialized view selection and
maintenance using multi-query optimization. InSIGMOD, pages 307–318. ACM, 2001.

[52] L. A. Moakar, P. K. Chrysanthis, C. Chung, S. Guirguis, A. Labrinidis, P. Neophytou, and
K. Pruhs. Admission control mechanisms for continuous queries in the cloud. InICDE ’10:
Proc. of the 26th International Conference on Data Engineering. IEEE Computer Society,
March 2010.

[53] L. A. Moakar, T. N. Pham, P. Neophytou, P. K. Chrysanthis, A. Labrinidis, and M. A. Sharaf.
Class-based continuous query scheduling for data streams. pages pp. 1–6, August 2009.

114

[54] M. F. Mokbel and W. G. Aref. Place: A scalable location-aware database server for spatio-
temporal data streams.IEEE Data Engineering Bulletin., 28(3):3–10, 2005.

[55] M. F. Mokbel and W. G. Aref. Sole: scalable on-line execution of continuous queries on
spatio-temporal data streams.VLDB J., 17(5):971–995, 2008.

[56] M. F. Mokbel, X. Xiong, W. G. Aref, S. E. Hambrusch, S. Prabhakar, and M. A. Hammad.
Place: A query processor for handling real-time spatio-temporal data streams. InVLDB,
pages 1377–1380, 2004.

[57] M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Continuous query processing of
spatio-temporal data streams in place. InSTDBM, pages 57–64, 2004.

[58] M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. Continuous query processing of
spatio-temporal data streams in place.GeoInformatica, 9(4):343–365, 2005.

[59] K. Naidu, R. Rastogi, S. Satkin, and A. Srinivasan. Memory-constrained aggregate computa-
tion over data streams. InICDE, 2011.

[60] Nasdaq. nastraq: North american securities tracking and quantifying system.
http://www.nastraq.com/description.htm.

[61] P. Neophytou, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Power-aware operator
placement and broadcasting of continuous query results. InMobiDE, pages 49–56, 2010.

[62] P. Neophytou, J. Szwedko, P. K. Chrysanthis, A. Labrinidis, and M. A. Sharaf. Optimizing
the energy consumption of continuous query processing with mobile clients. pages pp. 1–6,
June 2011.

[63] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, editors.Algorithmic Game Theory.
2007.

[64] T. Pham, P. Chrysanthis, and A. Labrinid. An adaptive load manager for the aqsios stream
engine.Technical Report, 2010.

[65] T. N. Pham, L. A. Moakar, P. K. Chrysanthis, and A. Labrinidis. Dilos: A dynamic integrated
load manager and scheduler for continuous queries. pages 1–6, April 2011.

[66] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms for multi
query optimization. InSIGMOD, 2000.

[67] W. Scheufele and G. Moerkotte. On the complexity of generating optimal plans with cross
products. InPODS, pages 238–248. ACM, 1997.

[68] T. K. Sellis. Multiple-query optimization.ACM Trans. Database Syst., 13(1):23–52, 1988.

[69] M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Tuning qod in stream processing engines.
In ADC, pages 103–112, 2010.

115

[70] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Efficient scheduling of hetero-
geneous continuous queries. InVLDB, pages 511–522. VLDB Endowment, 2006.

[71] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Algorithms and metrics for pro-
cessing multiple heterogeneous continuous queries.ACM Transactions on Database Systems,
33(1):1–44, 2008.

[72] M. A. Sharaf, S. Guirguis, A. Labrinidis, K. Pruhs, and P. K. Chrysanthis. Asets: A self-
managing transaction scheduler. InSMDB Workshop at ICDE, 2008.

[73] Streambase: http://www.streambase.com, 2006.

[74] System S, http://domino.research.ibm.com/, 2008.

[75] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load shedding in a
data stream manager. InVLDB Conf, 2003.

[76] J. Teubner and R. Mueller. How soccer players would do stream joins. InProceedings of the
2011 international conference on Management of data, SIGMOD ’11, pages 625–636, New
York, NY, USA, 2011. ACM.

[77] http://www.truviso.com, 2005.

[78] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load shedding in stream databases: a control-
based approach. InProceedings of the 32nd international conference on Very large data
bases, VLDB, pages 787–798. VLDB Endowment, 2006.

[79] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting punctuation semantics in
continuous data streams.TKDE, 15(3):555–568, 2003.

[80] S. D. Viglas and J. F. Naughton. Rate-based query optimization for streaming information
sources. InSIGMOD, pages 37–48. ACM, 2002.

[81] S. Wang, E. Rundensteiner, S. Ganguly, and S. Bhatnagar. State-slice: new paradigm of
multi-query optimization of window-based stream queries. InVLDB, 2006.

[82] G. Xue, Q. Pan, and M. Li. A new semantic-based query processing architecture.Parallel
Processing Workshops, International Conference on, page 63, 2007.

[83] R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava. Multiple aggregations over data streams.
In SIGMOD, pages 299–310. ACM, 2005.

[84] R. Zhang, N. Koudas, B. C. Ooi, D. Srivastava, and P. Zhou. Streaming multiple aggregations
using phantoms.VLDBJ, 19(4):557–583, 2010.

[85] J. Zhou, P.-A. Larson, J.-C. Freytag, and W. Lehner. Efficient exploitation of similar subex-
pressions for query processing. InSIGMOD, pages 533–544. ACM, 2007.

116

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Queries parameters
	2. Experimental Parameters
	3. Weave Share by example - windows' specifications
	4. Summary of New and Modified Code

	LIST OF FIGURES
	1. DSMS Architecture.
	2. Paired Window technique
	(a). Range, slide and fragments
	(b). Query Plan
	3. Sharing the partial aggregations.
	4. Example 3: stretching slides, merging edges, and shared plan.
	5. Intermediate Aggregates tree
	6. Share vs No Share
	(a). Input Rate
	(b). Number of Queries
	7. Weave Share by example - Iterations of Weave Share.
	8. Sharing AVERAGE ACQs.
	9. An Instance of a Weaved Plan
	10. Cost Lookup Table
	11. Edges Bitmap and Probing Process
	12. Impact of #ACQs: Low input rate (50 tuples/sec)
	13. Impact of #ACQs: Medium input rate (300 tuples/sec)
	14. Impact of #ACQs: low, medium and high input rates
	15. Number of Execution Trees
	16. Impact of Input Rate - different # of ACQs
	17. Impact of max: different rates
	18. Impact of Slide Skewness
	19. Optimizations' Benefits
	20. Incremental vs offline Weave Share - Deviation
	21. Incremental Weave Share - Overhead
	22. Incremental Weave Share - Deviation
	23. Incremental Weave Share - Overhead
	24. TriOps Shared Processing Scheme
	25. Inverted Predicate Signatures Structure
	26. TriOps - Windows and Predicates
	27. Fragment-signature pairs that belong to the same fragment
	28. An Instance of Four ACQs
	(a). The group-by tree
	(b). TriWeave Weaving
	29. Integrating TriWeave Plan with Intermediate-aggregates Tree
	30. TriWeave Plan - Varying Windows, Predicates, and Group-by
	31. TriWeave performance gain - Impact of Input Rate
	32. Using TriOps processing for different plans (50 tuples/sec)
	33. TriWeave - Impact of Input Rate and No. of ACQs
	34. Using TriOps processing for different plans (300 tuples/sec)
	35. Using TriOps processing for different plans (10K tuples/sec)
	36. Current ACQ query plan
	37. The Weaved Query Plan
	38. Cost - 50 tuples/sec
	39. Cost - 300 tuples/sec
	40. Simulation results for 300 tuples/sec
	41. Average Response Time - 300 tuples/sec
	42. Average Response Time - 50K tuples/sec
	43. Average Response Time - HR scheduler - 50K tuples/sec
	44. Number of Execution-Trees of Weave Share
	45. Weave Share Optimization Time

	LIST OF ALGORITHMS
	1. The Weave Share Algorithm
	2. The Incremental Weaved Share Algorithm
	3. The TriWeave Algorithm
	4. Generalized TriWeave Optimizer

	PREFACE
	1.0 INTRODUCTION
	1.1 Approach and Challenges
	1.2 Contributions

	2.0 BACKGROUND AND RELATED WORK
	2.1 Data Stream Management Systems
	2.2 Aggregation over Data Streams
	2.2.1 ACQ Semantics
	2.2.2 The Paired Window Technique
	2.2.3 Sharing Multiple ACQs
	2.2.3.1 Shared Time Slices
	2.2.3.2 Shared Data Shards
	2.2.3.3 Intermediate Aggregates

	2.3 Experimental Platform
	2.4 Other Related Work
	2.5 Summary

	3.0 WEAVE SHARE: EXPLOITING WEAVEABILITY TO OPTIMIZE ACQS
	3.1 Motivation
	3.2 Formalization
	3.3 Weaveability
	3.4 Challenges of Grouping Multiple ACQs
	3.5 The Weave Share Algorithm
	3.5.1 Weave Share by Example
	3.5.2 Sharing AVERAGE ACQs
	3.5.3 Varying Predicates and Group-by

	3.6 Implementation Optimizations of the Weave Share Optimizer
	3.6.1 Optimization I: Cost Lookup.
	3.6.2 Optimization II: Edges Bitmap.
	3.6.3 Optimization III: Probing Reorder.

	3.7 Evaluation
	3.7.1 Quality of Weave Share Plans
	3.7.1.1 Number of ACQs (Fig. 12 to 14)
	3.7.1.2 Input Rate (Fig. 16)
	3.7.1.3 Maximum Overlap Factor (Fig. 17)
	3.7.1.4 Slide Skewness (Fig. 18)

	3.7.2 Theoretical Lower Bound
	3.7.3 Impact of Optimizations

	3.8 Summary

	4.0 INCREMENTAL WEAVE SHARE
	4.1 Adding New ACQs
	4.2 Deleting ACQs
	4.3 Weaved Plans Switching
	4.4 Frequency of ACQs additions and deletions
	4.5 Adapting to Changes in Input Rate
	4.6 Evaluation
	4.7 Summary

	5.0 TRIOPS: THREE-LEVEL PROCESSING MODEL
	5.1 Motivation
	5.2 TriOps and TriWeave
	5.2.1 TriOps Processing Model
	5.2.2 TriOps Cost and Advantages
	5.2.3 TriWeave Optimizer

	5.3 TriOps: Windows and Predicates
	5.3.1 Drawbacks of Integrating Shared Data Shards Technique with Weave Share
	5.3.2 TriOps: Handling Different Predicates

	5.4 TriOps: Windows, Predicates and Group-by
	5.4.1 Windows and Group-by
	5.4.2 Windows, Predicates and Group-by

	5.5 Generalized TriWeave Optimizer
	5.5.1 Impact of Predicates on Weaving
	5.5.2 The Algorithm

	5.6 Evaluation
	5.6.1 Experimental Platform
	5.6.2 TriOps Performance

	5.7 Summary

	6.0 AQSIOS 3.0: REALIZATION OF WEAVE SHARE
	6.1 The AQSIOS DSMS Prototype
	6.2 Challenges
	6.3 Evaluation
	6.3.1 Performance Under RR
	6.3.2 Performance Under HR
	6.3.3 The Optimizer Performance

	6.4 Summary

	7.0 CONCLUSIONS AND FUTURE WORK
	7.1 Summary of Contributions
	7.2 Impact of this Dissertation
	7.3 Future Work
	7.3.1 Generalization: Optimizing Complex CQs with ACQs
	7.3.2 Synergy with other Modules

	APPENDIX A. ADAPTING LOCAL SEARCH TECHNIQUE
	APPENDIX B. AQSIOS 3.0 RELATED CODE
	 B.0.3 Adding Weave Share Optimizer
	 B.0.4 Adding New Operators
	 B.0.5 Adding Support for Sliding Windows and Weave Share

	BIBLIOGRAPHY

