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 Biochemical activity and core stability are essential properties of proteins, maintained usually by 

conserved amino acids. Structural dynamics emerged in recent years as another essential aspect 

of protein functionality, which enables the adaptation of the protein to substrate binding. It also 

underlies its ability to undergo allosteric transitions, while maintaining its fold. Key residues that 

mediate structural dynamics would thus be expected to be conserved, or exhibit co-evolutionary 

patterns at least. Yet, the correlation between sequence evolution and structural dynamics is yet 

to be established. To this end, we have performed in-depth analyses of a number of 

representative proteins, using a combined approach of sequence analyses and coarse-grained 

physics-based models. For the Hsp70 family, we studied the interactions of Hsp70 ATPase 

domains with four different nucleotide exchange factors (NEFs) and revealed two classes of key 

residues: (i) those highly conserved residues involved in nucleotide binding, which mediate the 

ATPase domain opening via a global hinge-bending, and (ii) those co-evolving and highly 

mobile residues engaged in specific interactions with NEFs. The observed interplay between 

these respective intrinsic (pre-existing, structure-encoded) and specific (co-evolved, sequence-

dependent) interactions provides us with insights into the allosteric dynamics and functional 

evolution of the modular Hsp70 ATPase domain, and inspired a follow-up study that identified a 

group of key residues mediating the Hsp70 allosteric pathways using perturbation analysis. 

Along the same lines, a systematic study has been performed on a set of 34 enzymes representing 
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various folds and functional classes, which generalizes the previous findings and unravels a 

unique correlation between sequence evolutionary properties and conformational dynamics. Our 

findings suggest that there is a balance between physical adaptability (enabled by structure-

encoded motions) and chemical specificity (conferred by correlated amino acid substitutions), 

and this balance underlies the selection of a relatively small set of versatile folds by proteins. In 

another study, HIV-1 protease was investigated as a special case in which short-term 

evolutionary pressure plays a significant role. With advanced clustering techniques, we 

differentiated multi-drug resistant mutations from those arising from phylogenetic variations; 

correspondingly, these mutations exhibit distinctive structural/dynamical features, underlying the 

role of protein dynamics in conferring drug resistance. 
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1.0  INTRODUCTION 

Many proteins are molecular machines. They function because their three-dimensional (3D-) 

structure allows them to undergo cooperative changes in conformation that maintain the native 

fold while enabling their biological functions. These collective changes have been pointed out to 

be structure-encoded, intrinsically accessible to proteins, as deduced from simple physics-based 

approaches (Bahar et al., 2010). They are predominantly determined by the overall shape or 

architecture of the protein. On the other hand, amino acid specificity is another important 

property that selectively mediates the interactions with specific partners and ligands (Tokuriki 

and Tawfik, 2009). Overall, a subtle balance exists between structure-encoded mechanical 

properties and sequence-encoded specific properties, and this balance must be evolutionarily 

optimized to achieve precise functioning. 

The interplay between these two effects becomes particularly important in the case of 

allostery. Allostery is the regulation of the activity by binding another molecule to the “allosteric 

site”. It enables signal transduction across the structure (Changeux and Edelstein, 1998; 

Kovbasyuk and Kramer, 2004; Gunasekaran et al., 2004; Changeux and Edelstein, 2005). Two 

classical models have been proposed on the mechanism of allosteric interactions. The first, also 

known as the Monod-Wyman-Changeux (MWC) model (Monod et al., 1965), hypothesizes a 

flip-flop machinery in which all subunits of multimeric structures undergo the transition from 

one conformation to another simultaneously. The Koshland-Némethy-Filmer (KNF) model 
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(Koshland, Jr. et al., 1966), on the other hand, proposes a different scenario. According to this 

model, also called sequential allostery model, the conformational change propagates through the 

structure via an induced-fit mechanism. There is a sequence of events, as opposed to the all-or-

none transition of the MWC model. MWC model has found broader support in recent years. 

Many computational and experimental data collected in recent years point to intrinsic, structure-

encoded dynamics, which cooperatively affects the intact structure (Henzler-Wildman et al., 

2007; Lange et al., 2008; Bahar et al., 2010). However, some systems are also observed to obey 

KNF-type motions (Schmeing et al., 2005). It has been proposed that many events may involve a 

combination of both cooperative (intrinsic to the protein structure) and induced (triggered by 

substrate binding) events (Tobi and Bahar, 2005; Csermely et al., 2010). 

The most important system investigated in this dissertation, the heat shock protein 70 

(Hsp70) family of chaperones, is known to be allosterically regulated, as will be shown in the 

next section. We will elaborate on the structure-encoded dynamics of the Hsp70 ATPase domain 

in particular, and focus on the collective motions intrinsically favored by the domain 

architecture. In principle, such motions may have important functional implications, especially if 

they cooperatively involve a large portion of the structure. Their impairments would thus be 

consequential and resisted by compensating mutations. The multi-drug resistance in HIV-

protease, another important component of our study, will showcase how the interplay between 

sequence variation and structural dynamics affects the response of the enzyme to external 

perturbations under well-defined evolutionary pressure. 
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1.1 HEAT SHOCK PROTEIN 70 

Heat shock proteins (HSPs), also known as molecular chaperones, are ATP-regulated machines 

that perform several housekeeping activities in the cell: they assist in folding newly synthesized 

peptides, or unfolding and refolding partially folded or misfolded proteins; they regulate the 

intracellular trafficking of proteins; they facilitate, in particular the recognition of those to be 

degraded by the proteasome, and most importantly, assist in the correct folding, and prevent the 

aggregation, of the proteins denatured in response to heat and other environmental stresses (Hartl 

and Hayer-Hartl, 2002; Hartl and Hayer-Hartl, 2009).  

Hsp70 is one of the most ubiquitous members of the HSP family, existing in almost all 

organisms (Bukau and Horwich, 1998). It is composed of two domains (Figure 1): the ATPase 

domain, also referred as nucleotide binding domain (NBD (Flaherty et al., 1990)), is the major 

regulatory unit of the molecular machine, and is further divided into four subdomains known as 

subdomains IA, IB, IIA and IIB; the substrate binding domain (SBD (Zhu et al., 1996)), on the 

other hand, binds to the client proteins to perform the chaperoning function. The two domains 

regulate the activity of each other via allosteric communication: ATP hydrolysis at the NBD 

increases the substrate binding affinity of the SBD, thus lowering the substrate exchange rate of 

the latter; on the other hand, the replacement of the ADP produced upon ATP hydrolysis by a 

new ATP (nucleotide exchange) lowers the binding affinity of the SBD thus enhancing the 

release and exchange of substrates (Bukau and Horwich, 1998). 

The regulation of substrate binding affinity during the ATPase cycle is a crucial aspect of 

the chaperone activity of Hsp70, and notably, of other HSP family members (Ali et al., 2006). 

The ATPase domain undergoes conformational changes between open and closed forms during 

the ATPase cycle, which correspond to different nucleotide binding states (Figure 1). The open 
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conformation has been observed in the presence of ATP (Bhattacharya et al., 2009; Bertelsen et 

al., 2009). Nucleotide exchange efficiency is viewed to be largely dependent on the 

conformational change to an open state. The alternation between the two states forms the 

ATPase cycle. 

The precise functioning of the Hsp70 ATPase domain involves an interaction with two 

families of co-factors, also called co-chaperones: the J-domain proteins that catalyze ATP 

hydrolysis (Craig et al., 2006), and the nucleotide exchange factors (NEFs) that assist in the 

replacement of ADP with ATP, by significantly increasing the ADP dissociation rate (Kabani, 

2009). A molecular understanding of Hsp70 function requires a systematic analysis of the 

structural basis and mechanism of interaction with these co-chaperones. In Chapter 3, we present 

our results from the study of the interactions between the Hsp70 ATPase domain and the NEFs. 

In Chapter 4, we present the results from perturbation scanning analysis to identify allosteric 

pathways that mediate the interdomain interactions.. 

 

Figure 1. Hsp70 ATPase cycle. 

In the ADP-bound state (left), the two domains are loosely connected by the inter-domain linker, and the SBD has a 

bound substrate. In the ATP-bound state (right), the SBD is docked onto the ATPase domain at its α-helical lid and 

β-sandwich, leaving the substrate-binding site open. The alternation of the two states is achieved by ATP hydrolysis 
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or the ADP replacement by ATP. The nucleotide and substrates are shown in stick representation and colored 

yellow. The four subdomains of the ATPase domain are colored differently as indicated by the label in the ADP-

bound state, and the SBD is colored purple. The ribbon diagrams are generated using the PDB files 1DKG (Harrison 

et al., 1997), 1DKX (Zhu et al., 1996), and a homology model of DnaK (Smock et al., 2010). 

1.2 HIV-1 PROTEASE AND ITS DRUG-RESISTANT MUTATIONS 

HIV-1 protease is a homodimer with 99 residues in each subunit. It plays an important role in the 

late stage of viral replication: it cleaves the premature viral polypeptides to peptides that fold into 

mature virus proteins (Brik and Wong, 2003). HIV-1 protease has been a major drug target for 

AIDs therapy; however, the ability of HIV-1 protease to rapidly acquire a variety of mutants in 

response to various protease inhibitors (PIs), known as multidrug resistance (MDR), confers the 

enzyme with high resistance to anti-AIDS treatments. In addition, a high cooperativity has been 

documented among drug-resistant mutations observed in HIV-1 protease (Ohtaka et al., 2003).  

In the current study, HIV-1 protease is used as model system to study the relation 

between the sequence, dynamics, and sequence-evolution constraints developed in the presence 

of highly specific external perturbations (drug treatment). Because of the large sets of sequences 

available and the observed fast rate of mutations in response to drug treatments, HIV-1 protease 

is particularly suitable for sequence covariance analysis. The intrinsic dynamics of the molecule 

can be inferred from its native structure using elastic network models. 
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Figure 2. Structure of HIV-1 protease bound to an inhibitor. 

The ribbon diagram is generated using the PDB id 1HIV (Thanki et al., 1992). The two monomers are colored 

orange and cyan. The inhibitor is colored green, and the active site residues (Asp25, Thr26 and Gly27) are shown in 

sphere representation.  

 

Figure 2 shows the structure of HIV-1 protease in complex with a protease inhibitor (PI). 

The active site (or catalytic residues Asp25, Thr26 and Gly27) is located at the dimerization 

interface, and the flaps at the top of the molecule undergo significant conformational fluctuations 

that allow for the opening/closing of the active site. Extensive studies have been made on this 

protein structure and dynamics (Cecconi et al., 2001; Zoete et al., 2002; Perryman et al., 2004; 

Hornak et al., 2006) although the molecular mechanisms of MDR are yet to be elucidated. Our 

findings on this problem are presented in Chapter 6. 
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1.3 OUTLINE OF THE DISSERTATION 

Figure 3 shows an overview of the work presented in this dissertation. Our work is composed of 

two groups of topics: the first is to investigate the interplay between sequence, structure, 

dynamics, and function in different proteins. This part focused on two representative systems, the 

Hsp70 ATPase domain (Chapters 3) and HIV-1 protease (Chapter 6). In addition, a systematic 

study of 34 enzymes is presented in Chapter 5, to evaluate and generalize our findings made for 

the individual proteins. The second group of studies investigates the key residues and their roles 

in the allosteric communication of Hsp70 domains using a combination of sequence analyses and 

structural dynamics (Chapter 4). This is a challenging task since much less is known about the 

mechanism of interdomain interactions in Hsp70. Our studies on Hsp70 structure, dynamics and 

allostery have been conducted in collaboration with Prof. Lila Gierasch‟s lab. Finally, in Chapter 

7, we discuss potential work that can be pursued in the future. 

 

Figure 3. Outline of the dissertation. 
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Overall, our study led to 3 papers published in peer-reviewed journals or conference 

proceedings, one book chapter, one submitted manuscript, and another manuscript in 

preparation. Below is a list of the published and submitted studies. 

 

1. Ying Liu, Lila M.Gierasch, Ivet Bahar. (2010) Role of Hsp70 ATPase Domain Intrinsic 

Dynamics and Sequence Evolution in Enabling its Functional Interactions with NEFs. 

PLoS Computational Biology  6: e1000931. 

2. Ying Liu and Ivet Bahar. (2010) Toward Understanding Allosteric Signaling 

Mechanisms in the ATPase Domain Of Molecular Chaperones. Pacific Symposium on 

Biocomputing  2010:269-80. 

3. Ying Liu and Ivet Bahar. (2011) Sequence evolution correlates with structural dynamics. 

(submitted to Molecular Biology and Evolution) 

4. Ying Liu*, Eran Eyal*, Ivet Bahar. (2008) Analysis of Correlated Mutations in HIV-1 

Protease Using Spectral Clustering. Bioinformatics 24:1243-1250. (* equal contribution) 

5. Pemra Doruker, Ying Liu, Zheng Yang, Ivet Bahar. (2012) Coarse-grained methods: 

Applications to allosteric proteins. Book chapter in Comprehensive Biophysics, Elsevier. 

(to appear in 2012). 
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2.0  THEORY AND METHODS 

The last decade has witnessed a rapid growth in protein sequence and structure data (Figure 4) 

and the development of a broad array of computational tools to refine and analyze this wealth of 

information. Recently, the integration of information derived from different data sources using 

multiple approaches invites increasing attention to the emerging field of systems biology, 

opening the way to a more comprehensive understanding of biological systems dynamics. 

 

Figure 4. Growth of biological databases over the last decade. 

(a) Number of structures in the Protein Data Bank (Berman et al., 2000) and (b) number of sequences in the 

UniprotKB/TrEMBL database (Jain et al., 2009). 

 

Protein structure is one of the most important sources for understanding the mechanism 

of protein functions. However, proteins are subject to continuous structural fluctuations under 

native state conditions, and sometimes they undergo significant conformational changes, or 

allosteric switches to achieve their function; the static structure can provide limited information 
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only about the mechanism of protein function. Protein dynamics is recognized as the bridge 

between structure and function (Smock and Gierasch, 2009; Bahar et al., 2010). Inasmuch as 

structure and dynamics are closely related, structures-based computational models have found 

great success in studying protein dynamics. 

Protein sequence analysis provides another important approach toward understanding 

protein function. Sequence variation patterns reflect the evolutionary constraints to maintain the 

proper function of proteins, and the same constraints underlie the intrinsic correlation between 

dynamics and sequence. Sequence variations observed in multiple sequence alignments (MSAs) 

result from an evolutionary process over years, whereas molecular dynamics describe molecular 

events at the time scale of nanoseconds; hence protein dynamics and sequence evolution entail 

complementary information regarding the protein function. A combined analysis can help to 

cross-validate hypotheses using different perspectives, and gain more insights into the sequence 

 structure  dynamics  function mapping paradigm. The computational tools described in 

the dissertation are developed to make progress toward this goal. 

Here is the outline of this chapter. Section 2.1 is devoted to the description of elastic 

network models, including the Gaussian Network Model (GNM) and Anisotropic Network 

Model (ANM). Section 2.2 introduces two methods that follow the line of perturbation analysis, 

perturbation response scanning (PRS) and residue centrality. Section 2.3 focuses on the 

techniques of sequence analysis used in the current work. Information-theoretic approaches are 

introduced in subsection 2.3.1, and phylogeny-based evolutionary trace method is presented in 

subsection 2.3.2. Finally section 2.4 elaborates on spectral clustering, with its applications to co-

evolution analysis. 
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2.1 ELASTIC NETWORK MODELS (ENMS) 

Elastic network models (ENMs) have been widely used to study the collective dynamics of 

biomolecules (Rader et al., 2006). This coarse-grained models approximate the bio-molecular 

structure in its equilibrium state as a network composed of a group of beads inter-connected by 

elastic springs. In the case of protein modeling, the bead serves as the abstraction of an amino 

acid residue, and the spring stands for inter-residue interactions (Figure 6a). The equilibrium 

state is thus stabilized by a sum of harmonic potentials contributed by the individual springs.  

 

Figure 5. Approximating the vicinity of the equilibrium state by harmonic potentials. 

 

The model could be made more complicated/detailed with different combinations of 

force constant and criteria for inter-residue interactions. However, the pursuit of every detail of 

the molecule could render the model mathematically intractable, and also obscure the dominant 

patterns that govern the functionally relevant motions of the molecule. Hence we employed a 

minimalist model which adopts a uniform force constant and a single cutoff distance between the 

C
α
 atoms of residues to determine their interaction. 
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Figure 6. General scheme for constructing an ENM using PDB coordinates (adopted from (Rader et 

al., 2006)). 

(a) Representation of the protein structure as an elastic network. (b) Deformed position vector due to conformational 

fluctuations. See the text for the definition of the variables. 

 

In our study, two most widely used ENMs are employed, the Gaussian Network Model  

(Bahar et al., 1997; Yang et al., 2006) and Anisotropic Network Model (Doruker et al., 2000; 

Tama and Sanejouand, 2001; Atilgan et al., 2001). Their differences arise from the underlying 

potentials (Rader et al., 2006): the GNM potential penalizes the orientational changes in inter-

residue separations in addition to magnitude changes, whereas the ANM potential only considers 

the change in magnitude of the position vector. This difference also leads to different 

mathematical treatments of the force constant matrix, as will be demonstrated in the following 

subsections. 

2.1.1 Gaussian network model (GNM) 

The potential used in GNM takes the following form 
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2
0

GNM

,

γ
( )

2

N

ij ij c ij

i j

V H r R   R R  (1) 

where Rij
0
 is the position vector between residues i and j in the equilibrium state, and Rij is the 

deformed position vector due to fluctuations (see Figure 6b). N is the total number of 

beads/residues in the network/structure. H is the heavyside step function which equals (1) if the 

argument is positive, and 0 otherwise. rc is the cutoff distance that determines if residues i and j 

are close enough to interact with each other. Equation (1) can be expressed in terms of the 

Kirchhoff matrix Γ, defined as  

,

1,            if  and 

0,              if  and 

,    if 

ij c

ij ij c

ij

j j i

i j R r

i j R r

i j



  


   

  



 (2) 

VGNM can thus be written as 

2
0

GNM

,

γ

2

N

ij ij ij

i j

V    R R  (3) 

Note that the change in inter-residue distance vector may be expressed as ∆Rij = Rij - Rij
0
 = ∆Rj - 

∆Ri (see Figure 6b) . Writing ∆Ri in the vector form as (∆Xi   ∆Yi   ∆Zi)
T
, we obtain 

2 2 2

GNM

,

T T T

γ
[( ) ( ) ( ) ]

2

γ
( )

2

N

ij i j i j i j

i j

V X X Y Y Z Z         

        



X Γ X Y Γ Y Z Γ Z

 (4) 

where ∆X = (∆X1  ∆X2   … ∆XN)
T
 and so on. 

Because of the isotropic assumption inherent to the GNM, the probability distribution of 

the fluctuations ∆R can be decomposed as the product of the distributions for different 

components, i.e., 
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( ) ( , , ) ( ) ( ) ( )P P p p p        R X Y Z X Y Z  (5) 

By the Boltzmann‟s law 

T

B

1

T 1B

γ
( ) exp

2

1
exp

2 γ

p
k T

k T




 
     

 

    
           

X X Γ X

X Γ X

 (6) 

where kB is the Boltzmann constant and T is the absolute temperature. Note that the expression of 

p(∆X) obtained in equation (6) is actually the probability density function of a multivariate 

Gaussian distribution where the N×N covariance matrix T X X  is equal to (kBT/γ) Γ
-1

. 

Considering 

T T T T1

3
          X X Y Y Z Z R R  (7) 

we then obtain 

2 1B3
( )

γ
i ii

k T  R Γ  (8) 

to compute the mean square fluctuations (MSF) of residues and 

1B3
( )

γ
i j ij

k T   R R Γ  (9) 

to compute the correlations between the fluctuation of different residues. 

A caveat in equation (6) lies in the fact that the Kirchhoff matrix Γ has a zero eigenvalue, 

and is therefore not invertible. However, this can be circumvented by taking the pseudo-inverse 

of Γ. Because Γ is semi-positive definite, singular value decomposition (SVD) yields Γ = UΛU
T
, 

where Λ is a diagonal matrix with the eigenvalues on the diagonal and U is an orthonormal 

matrix with the k
th

 column u
(k)

 being the eigenvector corresponding to eigenvalues λk. Then Γ
-1 

= 

UΛ
-1

U
T
, and in component form equation (8) becomes 



 15 

1
2 1 1 T 1 ( ) ( )TB B B

1

3 3 3
( ) [ ] [λ ]

γ γ γ

N
k k

i ii ii k ii

k

k T k T k T 
  



    R Γ UΛ U u u  (10) 

Note that the summation is performed over non-zero eigenvalues of , which are indexed from 1 

to N-1. 

The obtained eigenvectors u
(k) 

are designated as collective modes of the dynamics, and 

the corresponding eigenvalues λk serve as frequencies of each mode; thus the mode 

corresponding to the smallest nonzero eigenvalue is the slowest, or softest mode. The correlation 

matrix can be decomposed into the contributions from individual modes 

1
1 1 T 1 ( ) ( )TB B B

1

3 3 3
( ) [ ] [λ ]

γ γ γ

N
k k

i j ij ij k ij

k

k T k T k T 
  



     R R Γ UΛ U u u  (11) 

indicating the softest mode makes the largest contribution to the Γ
-1

 among others. The i
th

 

element, [u
(k)

]i, of u
(k) 

describes the displacement of residue i along the k
th

 mode axis; the plot of 

[u
(k)

]i
2 

as a function of residue index i defines the mobility profile Mi
(k)

 in mode k. The mobility 

profile averaged over a set of m modes is  

 

λ λ

λ λ

m m
k k

k i k i

k k
i m m m

k k

k k

M

M

 

 

 

 

 

 

 

u
1 ( ) 2 1 ( )

1 1

1 1

1 1

[ ]

|  (12) 

where the reciprocal λk
-1

 serves as the statistical weight of mode k. The above equation yields the 

contribution of the first m modes to the overall dynamics, using the probabilistic contribution of 

each mode, given by 

-1

λ λ/
m N

k k

k k

 

 

 1 1

1 1

 (13) 
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The soft modes correspond to large motions that are usually beyond the time scale typically 

accessible to all-atom simulations, and such motions are usually relevant to the biological 

function of the protein (Yang and Bahar, 2005; Bahar et al., 2010). In particular, residues 

exhibiting restricted mobility in the slow modes have been shown in numerous applications to 

play key mechanical roles, serving as hinges, for example, at the interface between domains 

subject to concerted motions.  

  

2.1.2 Anisotropic network model (ANM) 

The total potential of the structure in the ANM is defined as (Atilgan et al., 2001)  

0 2

ANM

γ
[( ) ( )]

2
ij ij c ijV H r R  R R  (14) 

The force constant matrix in ANM is derived from the equilibrium condition of each residue. Let 

fij be the elastic force between residues i and j due to their interaction, sij be the distance between 

the C
α
 atoms of residues i and j. In the equilibrium state, the net force applied on any residue i is 

0 in all directions, i.e. 

X
( )

cos 0
j i

ij ij ij

j j ij

X X
f f

s



     

Y
( )

cos 0
j i

ij ij ij

j j ij

Y Y
f f

s



    (15) 

Z
( )

cos 0
j i

ij ij ij

j j ij

Z Z
f f

s



     

The relation can be written in matrix form by introducing the 3N×M cosine matrix B and the 

M×1 force vector f, where M is the total number of interactions. Then  
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Bf 0  (16) 

In addition, by Hooke‟s law, the force is related to the deformation by f = K∆s, where K is the 

M×M diagonal matrix with each diagonal element being the force constant of an interaction, and 

K = γI in the case of ANM. Then 

γ   BK s B s 0  (17) 

Let ∆R be the 3N×1 deformation vector, then ∆R and ∆s can be related through B 

T  B R s  (18) 

Substituting ∆s in equation (17) with the expression in equation (18) yields  

T BB R 0  (19) 

Since Γ∆RN×1 = 0 in the case of GNM, BB
T
 serves as the counterpart of Γ in the anisotropic 

case. It can also be shown that BB
T
 is equivalent to the Hessian matrix H derived in the context 

of normal mode analysis (NMA). Let V be the potential between residue i and j, then the Hessian 

matrix H is composed of N
2
 super-elements each with size 3×3, and the ij

th
 super element Hij is 

2 2 2

2 2 2

2 2 2

/ / /

/ / /

/ / /

i j i j i j

ij i j i j i j

i j i j i j

V X X V X Y V X Z

V Y X V Y Y V Y Z

V Z X V Z Y V Z Z

         
 

          
          

H  (20) 

The evaluation of the normal modes of motions is performed by eigenvalue 

decomposition of H, similar to the eigenvalue decomposition of Γ in the GNM. Since this time 

the 3N-dimensional mode provides directional information about the motions, it can be 

conveniently compared with the deformation vectors observed in experiments (obtained by 

comparing different conformations of the same protein resolved experimentally). Suppose the 

3N-dimensional deformation vector is denoted by d, then correlation cosine between the k
th

 

ANM eigenvector v
(k)

 (k = 1,…, 3N-6) and d is (|v
(k)

 • d| / |d|),  and the cumulative overlap (Yang 

et al., 2009) achieved by the m softest modes is defined as 
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CO
m

k

k

m / | |


  ( ) 2

1

( ) ( )v d d  (21) 

The deformation d, is obtained by superposing the two conformations and evaluating the 

differences in the C
α
-coordinates. Kabsch‟s algorithm (Kabsch et al., 1990) is used for optimal 

superposition that eliminates rigid-body translations and rotations. 

2.2 PERTURBATION ANALYSIS 

Perturbation analysis is used here as a general term referring to the evaluation of the global effect 

of locally perturbing/altering the protein molecule. In the current study, we considered two such 

methods to investigate the allosteric pathway of Hsp70. Both methods are structure-based and 

involve an iterative procedure: we perturb one residue at a time and evaluate the effect on other 

residues.  

2.2.1 Perturbation response scanning 

Perturbation Response Scanning (PRS) method (Atilgan and Atilgan, 2009; Atilgan et al., 2010) 

is based on linear response theory (Ikeguchi et al., 2005). The goal is to investigate how the force 

applied on a single amino acid propagates through the entire structure. The protein structure is 

modeled as an elastic network with the 3N × 3N Hessian matrix H as the force constant matrix 

(Atilgan et al., 2001), where N is the number of residues. Then the 3N-dimensional force vector 

F exerted on the network model and the resulting displacement vector ∆R can be expressed 

using the Hooke‟s law  
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F = H R  (22) 

Or equivalently 

1R = H F  (23) 

Note that ∆R is also a 3N-dimensional vector that represents the displacement of each residue in 

the 3D-space. Suppose the force is only applied on residue i, i.e., F takes the following form 

 

x y z T0 0 0    0 0 0)i i i iF F FF = (   , (24) 

then the corresponding displacement vector ∆R
(i)

 represents the response of all the residues to 

the perturbation Fi.  

 

Figure 7. Protocol of perturbation–response scanning (PRS) methodology. 

 

Figure 7 illustrates the workflow of PRS calculations in the current study. At the i
th

 

iteration, a random force with unit magnitude is applied on residue i and the 3N-dimensional 

displacement vector R
(i)

 elicited in all C

-coordinates in response to the perturbation at residue 

i,  ∆R
(i)

 = (r1
x
  r1

y
  r1

z
 … rN

x
  rN

y
  rN

z
)  is calculated. To avoid the bias in a particular direction, 
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this procedure is repeated multiple times (e.g., m times). This way, a sphere centered at the C
α
 

atom of residue i is almost uniformly sampled. Then given the obtained m response vectors, the 

average magnitude of the response of the k
th

 residue to a perturbation exerted at position i is 

2
( ) x 2 y 2 z 21

) + ) )i

k k k k m
m

r r r
m

   R = ( ( (  (25) 

An N×N matrix is thus obtained by using <║∆Rk
(i)

║
2
> in its ki

th
 element. This matrix is referred 

to as the PRS matrix SPRS.  

The self-response of a residue, i.e., the displacement of a residue when itself is perturbed 

(the diagonal terms of SPRS) is closely related to its mean-square fluctuations (MSFs). Although 

this is an intrinsic property of the residue, it can conceal the actual “preference” of different 

residues in response to the same perturbation. To solve this problem, we normalized the PRS 

matrix by scaling the response of residue i with its self-response di 

 

1

PRS PRS

1/

1/

0

0 N

d

d

 
 
 
 
 

S = S  (26) 

where di is the i
th

 diagonal term of SPRS. Thus the diagonal of  PRSS is all 1, and the i
th

 column in 

PRSS  is referred to as the response profile generated upon perturbing residue i, denoted as 

<║∆R
(i)

║2>norm. 

2.2.2 Residue centrality 

Residue centrality has its root in the small world network theory (Watts and Strogatz, 1998). The 

small world network exhibits a combination of high regularity and certain amount of 
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randomness. It has found application in a broad array of fields such as the social network and 

world wide web (Barabasi and Albert, 1999). In our study, we employed the method of residue 

centrality (del Sol et al., 2006), which exploits the small world network theory to investigate the 

residue‟s role in mediating the propagation of interactions. The central residues are those 

residues exhibiting a high probability of participating in shortest-path communication when all 

such paths between all residue pairs are examined. The protein is modeled as a network to this 

aim, each node representing a residue. The procedure of calculating the centrality of residue i is 

by removing it from the protein structure and calculating the average shortest path length of the 

remaining network, referred to as the characteristic path length Li. The pairwise shortest path 

length between residue i and j is computed using Dijkstra‟s algorithm (Cormen et al., 2001), and 

the adjacency matrix A is defined as 

c   if 

0     otherwise

ij ij

ij

d d r



(A) =  (27) 

where dij is the shortest distance between any two atoms in residue i and j, and rc is the cutoff 

distance for interatomic interactions, which is typically taken as 4.5Å. In previous studies, such 

contact-based network models have been pointed out to exhibit properties of small-world 

networks (Greene and Higman, 2003). The centrality of residue k is measured by the difference 

ΔLk = Lhyp(k) - L in the characteristic path length with respect to the original network, obtained 

for the hypothetical (or perturbed) network  where node k and all connected edges have been 

removed. If there is a significant increase in the characteristic path length due to removal of 

residue k, then residue k is considered to be a “central residue” in establishing internode 

communication. Central residues are hypothesized to play a role in allosteric signal transduction. 

Those residues with the highest centrality are considered to be most critical to facilitate the 

communications of the network. 
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The calculation of residue centrality is solely based on the geometrical properties of the 

structure and is highly sensitive to side chain orientations, which allows it to capture local 

interactions, but at the same time makes it less robust than ENM. Central residues are typically 

located near the active sites or at interdomain interfaces (Liu and Bahar, 2010). 

2.3 SEQUENCE EVOLUTION 

The main goal of sequence analysis in this study is to add yet another dimension to the 

information obtained from the 3D protein structure. The techniques used here for sequence 

analysis are well-established and have been successfully applied to a large number of systems in 

the literature. 

We focused on extracting two types of information from the MSA: sequence 

conservation level of each residue and the co-evolution of residue pairs. Our approach is based 

on information theory, which adopts a probabilistic view of the evolutionary process such that 

sequence variation of a residue is modeled as a random variable. We also incorporated 

phylogenetic information embedded in the sequence alignment, which is reflected in the 

evolutionary trace method. 

2.3.1 Information entropy and mutual information 

Information entropy (Shannon, 1948) was originally proposed to measure the uncertainty of a 

probability distribution. It is defined for all types of random variables. In our application, it is 

sufficient to consider the simple case in which the random variable is discrete with finite sample 
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space. In a MSA, each sequence is considered as a sample, and each of the N columns 

(representing N residues) is considered as a discrete random variable that takes on one of the 21 

amino acid types (gaps are treated as the 21
st
 type) with some probability. Then the entropy of 

column i is defined as 

21

1

1
( ) ( ) log

( )
i

i

ix

S i P x
P x

  (28) 

where P(xi) is the probability of observing amino acid type xi at the i
th

 position. The widely used 

sequence logo representation is based on the entropy (Schneider and Stephens, 1990). 

Mutual information (MI) (Cover and Thomas, 1991) can be considered as a 

generalization of entropy; it measures the level of dependence between two random variables. 

Using the same notation as above, we can calculate the MI between residues i and j using 

log

i j

i j

i j

i jx x

P x x
I i j P x x

P x P x 

 
21 21

1 1

( , )
( , ) ( , )

( ) ( )
 (29) 

Here P(xi, xj) is the joint probability of occurrence of amino acid types xi and xj at the i
th

 and j
th

 

positions respectively, P(xi) and P( xj) are the corresponding singlet probabilities. Then an N × N 

MI matrix I corresponding to the examined MSA can be constructed with I(i, j) being the ij
th

 

element. The MI profile for each residue i (denoted as <I (i)>) is calculated by taking the average 

along the i
th

 row of the MI matrix. 

MI is widely used for identifying correlated sites in proteins. Such correlations are 

usually inferred from the statistical analysis of pairwise amino acid substitutions among the 

members of the examined family of proteins. Because correlated substitutions are expected to 

occur between residue pairs directly interacting in the 3D structure, sequence covariance 

analysis, also referred to as correlated mutation analysis (CMA), has long been used for detecting 

inter-residue contacts within proteins (Eyal et al., 2007).  
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The CMA procedure consists of three steps, in general: (i) generation of MSA using 

homologous protein sequences; (ii) quantifying the covariance between different columns in 

MSA and (iii) identifying groups of highly covariant positions, also called clustering. The 

underlying assumption is that co-varying residues reflect essential structural/functional inter-

residue couplings. 

These techniques have some major limitations. The purpose of the method is to identify 

inter-residue couplings that are directly relevant to protein structure or function. However, the 

observed signals may not solely arise from such couplings. In fact sequence data are known to be 

noisy. A strong covariance may be detected among columns due to evolutionary signals that 

originate from early random mutation events. (Noivirt et al., 2005) have shown that the signal 

due to inter-residue interactions is comparable in magnitude to the noise caused by other 

stochastic evolutionary events. 

2.3.2 Evolutionary trace 

The evolutionary trace (ET) method (Lichtarge et al., 1996; Lichtarge and Sowa, 2002) identifies 

conserved residues within protein subfamilies. The procedure starts with the construction of a 

phylogenetic tree based on the MSA; in the present study the Fitch-Margoliash method (Fitch 

and Margoliash, 1967; Innis et al., 2000) is used to this aim. Figure 8 illustrates the application 

of the procedure to the Hsp70 ATPase domain as an example (Liu et al., 2010). The method 

consists of three steps:  

(1) The constructed phylogenetic tree is marked with multiple levels as indicated by the red 

vertical bars, where each level corresponds to a certain time point of the evolutionary 

clock. 
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(2) for each level,  

(2.1) the marking line partitions the tree into different sub-trees; sequences within the 

same sub-tree are considered as belonging to the same subfamily, and are 

examined to see if each residue is conserved within the subfamily. The result is 

summarized as the “class consensus sequence” for each subfamily, as shown in 

the box in Figure 8a.  

(2.2) The consensus sequences from different subfamilies at this level are cross-

examined to identify fully conserved (across subfamilies) and class-specific or 

trace residues (conserved within but not across subfamilies), and the resultant ET 

sequence is written by the single-letter code of conserved amino acids and by the 

symbol „X‟ for the trace residues, and the remaining residues as blank. 

(3) The ET sequences generated at each level are organized in rows (Figure 8b). An ET rank 

(leftmost column) is assigned to each residue. A fully conserved residue is assigned the 

highest rank (rank of 1). 

In practice, the conservation of a given residue in all subfamilies is a very strict condition when 

large sets of aligned sequences are considered. This limitation have been shown to restrict the 

applications of the ET method to MSAs of 100 and 200 sequences (Yao et al., 2003). To adapt 

the ET method and its variations to our dataset of >1,500 sequences, we relaxed the condition for 

defining an ET residue from conservation across all members in a given level to conservation in 

90% of the members. 

In contrast to information entropy which only considers single columns and treats them 

independently, the ET method has incorporated phylogenetic information based on the entire 
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MSA. It has also inspired subsequent methods for detecting conserved sites such as Consurf 

(Armon et al., 2001). 

 

 

Figure 8. Schematic description of evolutionary trace (ET) method. 

(a) The phylogenetic tree is constructed using the ET server and the set of 1627 ATPase domain sequences retrieved 

from Pfam database (DB) (Finn et al., 2008) for the Hsp70 family. Each vertical line corresponds to a given distance 

threshold. The boxes in different colors refer to the partitions obtained at the 12
th

 distance threshold (also called 

level). Each box yields a different consensus sequence. The class consensus sequence for each partitioning level is 

then identified, as illustrated. Dots therein refer to positions that are sequentially variable between the members of 

the class. The ET sequence for the particular level is determined by assigning letter code X to all positions that are 

conserved within classes, but not conserved across classes. Those amino acids conserved across classes are indicated 
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by their single letter code (e.g., glycine G in the illustrated ET sequence). (b) A portion of the ET map is shown for a 

20-level partitioning of the phylogenetic tree. Peaks indicate the most conserved residues, with their conservation 

level (or ET rank) indicated by the row numbers on the left. 

 

2.4 SPECTRAL CLUSTERING 

Spectral clustering (von Luxburg, 2007) has its theoretical root in spectral graph theory (Chung, 

1997), to exploit the graph Laplacian and linear algebra theory to optimize its objective function. 

In this scenario. graph G is a similarity graph; i.e., the weight wij represents the similarity 

between node vi and vj. The general objective is to partition the nodes such that the similarity is 

high between nodes within the same partition/cluster and low across different partitions/clusters. 

There are several ways to define the objective function underlying this criterion, and accordingly 

several versions of algorithms have been proposed, yet the basic idea is the same. In our study, 

the algorithm based on normalized cut (Shi and Malik, 2000) is used. 

We start with the simplest case where the nodes are partitioned into two clusters A and B. 

The normalized cut of this “conformation” of partitioning is defined as 

cut cut
Ncut

assoc assoc

A B A B
A B

A B
 

( , ) ( , )
( , )

( ) ( )
 (30) 

where cut(A, B) is the total weight of edges connecting the nodes in A and B, 

cut

i j

ij

v A v B

A B w
 

 
,

( , )  
(31) 

and assoc(A,V) is the total weight of connections from A to all nodes in the graph. Shi and Malik 

have derived an algorithm to approximately solve the optimization problem of minimizing 
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Ncut(A, B). By adopting a solution for the discrete clustering problem in a continuous space, the 

problem reduces to solving the generalized eigenvalue problem  

( - ) λD W y Dy  (32) 

where W = (wij) is the matrix of the edge weights, also called similarity or affinity matrix, D is 

the diagonal matrix with elements di = Σj wij. λ and y are the generalized eigenvalues and 

eigenvectors of W, respectively. The difference D − W, also called the Laplacian matrix, is 

symmetric and positive semi-definite (Chung, 1997). In order to partition a graph of N nodes into 

k clusters, we utilize the first k eigenvectors y1, …,yk. For the particular case of bi-partitioning 

the graph (i.e. k = 2), y2 becomes the only eigenvector used as a criterion, since λ1 = 0. In our 

application, each column in the MSA corresponds to a residue, which, in turn, is represented as a 

node in the graph. The degree of co-evolution of pairwise residues is considered as a metric of 

their similarity. Since we adopted mutual information to this end which is non-negative, it can be 

directly used as weight in the similarity graph, thus the MI matrix I replaces W, and the graph 

(protein) is bi-partitioned based on the elements of y2.  

We also performed k-way partitioning of the data in combination with k-means 

clustering. For each k we performed ten runs, and reported the results for the one with the 

minimum point-to-centroid distance sums. 
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3.0  ROLE OF HSP70 ATPASE DOMAIN INTRINSIC DYNAMICS AND SEQUENCE 

EVOLUTION IN ENABLING ITS FUNCTIONAL INTERACTIONS WITH 

NUCLEOTIDE EXCHANGE FACTORS 

In the present study, we examine the interactions between the Hsp70 ATPase domain and 

different nucleotide exchange factors (NEFs), using sequence-, structure- and dynamics-based 

computations and identify their shared features. The Hsp70 ATPase domain is composed of four 

subdomains: IA and IB in lobe I, and, IIA and IIB in lobe II (Figure 9a). ATP binds the central 

cleft at the interface between subdomains IIA and IIB such that the geometric and energetic 

effects of its binding and hydrolysis are efficiently transmitted throughout the ATPase domain.  

To date, four classes of NEFs have been identified: GrpE in prokaryotes (Harrison et al., 1997), 

and BAG-1 (Alberti et al., 2003), HspBP1 (McLellan et al., 2003) and Hsp110 (Andreasson et 

al., 2008) in eukaryotes. Their diverse 3D structures exhibit a variety of binding geometries and 

interfacial interactions with the Hsp70 ATPase domain. Our analysis provides insights into the 

generic and specific aspects of ATPase domain-NEF interactions, as well as the molecular 

machinery and sequence design principles of this highly versatile module, the Hsp70 ATPase 

domain, thus reconciling robust structure-encoded cooperative dynamics properties and highly 

correlated amino acid changes that enable specific recognition.  

Here is a brief summary of the approach and rationale. First, we examine the structural 

properties of known Hsp70 ATPase domain-NEF complexes from different organisms to identify 
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the interfacial residues. Second, we analyze the intrinsic (structure-encoded) dynamics of the 

ATPase domain using the GNM, with an eye on the dynamic characteristics of the NEF-binding 

residues, on the one hand, and ATP/ADP-binding residues, on the other. A clear difference 

emerges between these two groups of functional residues: the former is distinguished by 

enhanced mobility in the softest modes while the latter is severely restricted. Third, calculations 

repeated with NEF-bound ATPase domains reveal how the open form of the ATPase domain is 

stabilized in order to facilitate ADP release, which is enabled by the intrinsic mobility of the 

NEF-binding regions. Nucleotide-binding sites, on the other hand, are shown to maintain their 

generic structure and dynamics irrespective of NEF binding, pointing to the robustness of the 

ATP-regulation by the ATPase domain. Fourth, detailed sequence analysis of Hsp70 family 

members reveals the distinctive sequence properties of the two regions: NEF-binding sites 

exhibit highly correlated mutations, consistent with the recognition of specific NEFs. 

Nucleotide-binding sites on the other hand, are almost fully conserved. In a sense, sequence 

variability is accompanied by conformation variability and vice versa.  

Overall, Hsp70 ATPase domains appear to have been evolutionarily optimized to acquire 

a dual character: functional variability accompanied by structural variability at the co-chaperone 

binding sites and conservation/robustness both in terms of sequence and structural dynamics at 

the nucleotide-binding sites. This dual character is proposed to be essential for adapting to 

interactions with different co-factors while maintaining ATPase activity. 
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3.1 STRUCTURAL DYNAMICS 

We examined the interface between the Hsp70 ATPase domain and the corresponding NEF in 

four structurally resolved complexes: with GrpE, BAG-1, HspBP1 or Sse1. We retrieved from 

the PDB structural data for HSP70 ATPase domains complexed with GrpE (PDB id: 1DKG 

(Harrison et al., 1997)), BAG-1 (PDB id: 1HX1 (Sondermann et al., 2001)), HspBP1 (PDB id: 

1XQS (Shomura et al., 2005)), and Sse1 (Hsp110, PDB id: 3D2E (Polier et al., 2008)), shown in 

Figure 9b-e. Additionally, the structure of bovine Hsc70 ATPase domain resolved at 1.7 Å 

resolution (PDB id: 1HPM (Wilbanks and McKay, 1995)) has been used for the unbound form, 

and the PDB structure 1S3X (Sriram et al., 1997) of the human Hsp70 served as a template to 

reconstruct the lobe I missing in the complex with HspBP1 using the method described in the 

Figure 10.  

Despite their structural differences, all four NEFs make contacts with subdomain IIB 

(Figure 9b-e). Subdomain IIB regions making contacts with NEFs include the α-helices 8 and 9, 

the double-stranded β-sheet E, and the loop connecting the two strands (Figure 9a). The NEF-

contacting surface also includes small regions in subdomains IA and IB, but rarely IIA. The 

complete lists of Hsp70 ATPase domain residues that make contacts with each of the four NEFs 

are presented in Tables 1 and 2. Table 1 is based on atom-atom interactions closer than 4Å 

separation. Table 2 is based on the change in solvent-accessible surface areas (SASA), 

Δ(SASA), induced upon NEF binding. The entries in Table 2 form a subset of those in Table 1, 

thus helping consolidate the identity of the NEF-binding residues on the Hsp70 ATPase domain. 

We note in particular Asn57, Arg258, Arg261, Arg262 and Tyr134 shared by both mammalian 

and bacterial chaperones in their NEF binding activity. Table 2 also draws attention to the 

abundance of salt bridges at the mammalian Hsc70/NEF interfaces. In contrast, DnaK-GrpE 



 32 

contacts are predominantly hydrophobic, consistent with previous observations (Sondermann et 

al., 2001). 

 

 

Figure 9. Structure of Hsp70 ATPase domain and its complexes with different nucleotide exchange 

factors (NEFs). 

(a) ATPase domain structure colored by subdomains: IA (red; residues 1–39 and 116–188), IB (blue; residues 40–

115), IIA (green; residues 189–228 and 307-C-terminus) and IIB (orange; residues 229–306). Several subdomain 

IIB residues are involved in NEF recognition and binding, including residues at the C-terminal part of helix 8 

(G230-H249), the helix 9 (K257-S275), and the β-sheet E (strands Q279-I284 and F293-T298 connected by a long 

exposed loop). Residue identifications and secondary structure nomenclature are based on the PDB entry 1HPM. In 

yellow stick representation is a bound ADP. (b–e) Interactions with four different NEFs. (b) DnaK ATPase fragment 

from E. coli complexed with GrpE, (c) bovine Hsc70 complexed with BAG-1, (d) human Hsc70 with Sse1, and (e) 

human Hsc70 with HspBP1. In each case the NEF is colored cyan, ATPase fragment white, and interface residues, 
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shown in space-filling representation, are colored according to their subdomain locations. See Table 1 and Table 2 

for more information on the examined complexes, and the identity of NEF-recognition residues in each case. 

 

 

Figure 10. Reconstruction of the Hsp70 ATPase domain complexed with HspBP1.  

1XQS is colored cyan, and 1S3X is colored orange. We used 1S3X as a “template” to replace lobe I in the original 

1XQS structure. 1S3X was selected because of its highest sequence homology with respect to 1XQS (189 identical 

amino acids out of 190 in lobe I). The reconstruction procedure was based on the superposition of C
α
 atoms of the 

matching residues (i.e., lobe I) in 1S3X and 1XQS, since the reconstructed structure is solely intended for analysis 

with coarse-grained models. Optimal match between the C
α
 atoms was obtained using the C alpha Match webserver 

(Fischer et al., 1992). After 1S3X was optimally superimposed onto 1XQS, the original lobe I in 1XQS was replaced 

by the complete ATPase domain. Note that a closed-form was substituted for an open form in this reconstruction, 

which gave rise to steric clashes between a few atom pairs at the interface between the subdomain IB and HspBP1. 

These could be alleviated by minor side chain reorientations, and would have minimal, if any, effect on the slow 

modes obtained with the GNM, because the GNM analysis is based on the backbone topology as a whole (with little 

effect from inaccuracies in atomic coordinates that fall below the resolution of the model) or the distribution of C
α

 - 

C
α
 contacts within a cutoff distance of 7-10 Å, and the global modes are robust to minor changes in structural 

coordinates. 
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Table 1. Hsp70 ATPase domain residues making close atom-atom contacts with different NEFs 
(a)

 

PDB 

ID 

Molecule and  
Organism 

NEF NEF-Recognition/Binding Residues
(b)

 

Subdomain IIB Subdomain IA Subdomain IB 

1DKG DnaK E.coli GrpE L257 (R258), Q260 (R261), R261 

(R262), E264 (T265), N282 

(E283),  P284 (D285), Y285 

(S286) (c) 

E28 (A30), E31 (Q33), E128 

(E132),  E129 (A133), Y130 

(Y134), L131 (L135), G132 

(G136) (c)  

L49 (L50), P53 (A54), 

R56 (N57), Q57 

(Q58), V59 (A60), 

T60 (M61) (c)  

1HX1 Hsc70 Bovine BAG-1 R258, R261, R262,  T265, R269, 

S281, E283, I284, D285, S286, 

G290, D292, Y294   

 F45, D46, N57, A60-

N62  

1XQS(d) Hsc70 Human HspBP1 R247, K248, K250, R258, R262, 

T265, E268, R269, R272, T273, 

S277, Q279, S281, R282, E283, 

D285,  D292, Y294 

  

3D2E (e) Hsc70 Human Sse1 

(Hsp110) 

R262, T273, S276, T278, Q279, 

S281, E283, D285, S286, T298, 

R299, A300, R301, Glu303, E304  

Q22, H23, K25, E27, D32-

G34, R36, A133-Y134 

A54, N57, Q58 

(a) Close atom-atom contacts are defined as those having interatomic distance less than 4 Å.  

(b) Amino acids are grouped according to their subdomain locations; those written in boldface are also 

detected by SASA calculations (Table 2) to exhibit a decrease in their accessible surface upon NEF 

binding. 

(c) The entries in parentheses refer to the aligned residues in the mammalian Hsp70s 

(d) The original structure of Hsc70-HspBP1 complex only contains lobe II.  

(e) This complex contains four additional interfacial residues, all in subdomain IIA: Lys345, Lys348 and 

Asp352. 
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Table 2. Hsp70 ATPase domain residues making contact with different NEFs based on ∆SASA 

GrpE BAG-1 HspBP1 Sse1 
Pro53 (Ala54) Asp46 Arg247 His23 

Arg56 (Asn57) Asn57 Lys248 Ala54 

Val59 (Ala60) Arg258 Arg258 Asn57 

Thr60 (Met61) Arg261 Arg262 Tyr134 

Tyr130 (Tyr134) Arg262 Glu268 Asp285 

Gly132 (Gly136) Thr265 Arg269 Thr298 

Leu257 (Arg258) Glu283 Arg272 Ala300 

Gln260 (Arg261) Ser286 Thr273 Glu304 

Arg261 (Arg262) Asp292 Ser277 Lys348 

Glu264 (Thr265)  Gln279  

  Ser281  

  Glu283  

  Asp285  

  Asp292  

  Tyr294  
(*) in parentheses are their counterparts in the mammalian Hsp70 ATPase domain.  

The solvent accessibility surface area (SASA) of each residue of the Hsp70 NBD is calculated for both the NEF-

bound and –unbound forms, using PyMol get_area function. All residues with ∆(SASA) < 0 are listed above. Note 

that all these residues are a subset of the residues listed in Table 1. Residue pairs that form salt bridges at the 

interface are written in italic. We note the abundance of such interactions in the mammalian chaperones/co-

chaperone interfaces. 

 

3.1.1 Intrinsic dynamics of the Hsp70 ATPase domain 

Results from the GNM analysis of Hsp70 ATPase domain dynamics are presented in Figure 11. 

Panel a displays the mobility profile Mi
(1)

 in the lowest frequency (global) mode of motion 

intrinsically favored by the overall ATPase domain architecture, calculated for the unbound 

Hsc70 ATPase domain (1HPM, (Wilbanks and McKay, 1995)). Subdomain IIB is distinguished 

by its enhanced mobility (see also the color-coded diagram in the inset of Figure 11a). 
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Interestingly, this region also contains the primary contact surface with NEFs. The symbols on 

the curve indicate the sequence positions of NEF-contacting residues identified using two 

methods: atom-atom contacts (blue open circles) and Δ(SASA) (red filled circles). In particular, 

Glu283, Asp285, Ser286, Asp292 and Tyr294 at β-sheet E loop form the highest peak in the 

mobility profile, succeeded by Arg247-Lys248 on helix 8 C-terminus, suggesting that these 

residues play a role in NEF recognition.  

 

 

Figure 11. Intrinsic dynamics of the Hsp70 ATPase domain: high mobility of NEF-recognition sites in 

contrast to restricted mobility of nucleotide-binding residues. 
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(a) Distribution of residue mobilities Mi
(1)

 in the global mode of motion calculated for the unbound Hsp70 ATPase 

domain. The horizontal bars on the upper abscissa indicate the ranges of the four subdomains IA, IB, IIA and IIB, 

colored as in Figure 9a. Subdomain IIB is distinguished by its enhanced mobility, with peaks at two regions: the C-

terminal part of helix 8, and the β-hairpin loop. NEF-binding residues are indicated by the blue open circles (based 

on atom-atom distances) and red filled circles (based on ΔSASA). The diagram in the inset is color-coded to 

illustrate the global mobility profile (red: most mobile, blue: most rigid). (b) Weighted-average mobility profiles 

based on top-ranking ten GNM modes of motion, calculated using equation (12) for the unbound ATPase domain 

(blue) and for the NEF-bound structures (red), averaged over three mammalian complexes (Table 1). Nucleotide-

binding residues (G12-Y15, G201-G203, G230, E231, E268, K271, R272, S275, G338- S340, R342, I343, D366) 

are indicated by filled squares. (c) Change in mobility between bound and unbound ATPase domain, obtained by 

taking the difference of two curves shown in panel b. The dashed line corresponds to the zero level. NEF-binding 

residues are marked by filled squares. 

 

Thus, the subdomain that makes the majority of the contacts with the NEFs (i.e., 

subdomain IIB) is the one favored by the Hsp70 ATPase domain architecture to enjoy the largest 

mobility in the most cooperative mode of motion accessible to the ATPase domain. We also 

note, among NEF-contacting residues, a few exhibiting more restricted mobilities, located at the 

interface between subdomains IB and IIB, in particular. The tendency of biomolecules to involve 

their most mobile regions (peaks in the softest modes) in ligand recognition appears to be a 

design property noted in other applications; the ATPase domain subdomain IIB conforms to this 

rule. Its intrinsic mobility or conformational adaptability presumably allows for optimal 

interaction with the bound NEFs. On the other hand, final stabilization of a „bound‟ conformer 

and communication of the conformational change locked upon substrate binding to other 

functional sites (e.g., nucleotide-binding site, in this case), may require the involvement of 

spatially constrained regions near the binding site (Yang and Bahar, 2005). The binding site thus 
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tends to exhibit a dual character, comprising both highly mobile residues that easily reconfigure 

for optimal binding and spatially constrained residues that efficiently communicate the structural 

change (from unbound to bound form) to other functional parts of the molecule (Luque and 

Freire, 2000; Lafont et al., 2007). NEF-binding residues His23 in subdomain IA, Asn57, Ala60 

and Met61 in subdomain IB, and Arg258 and Arg261 in subdomain IIB presumably assume this 

allosteric communication role, as will be further clarified below. 

The Hsp70 ATPase domain nucleotide-binding site, on the other hand, coincides with a 

rotationally flexible but spatially immobile global hinge region. These residues, indicated by the 

blue squares in Figure 11b (and listed in the caption), occupy regions that are severely 

constrained in the low frequency modes, i.e., they undergo minimal, if any, displacements in the 

collective movements of the entire domain. They participate in precisely tuned interactions at the 

global hinge region. The hinge region mediates the concerted movements of the subdomains, and 

as such the hinge residues need to remain in their key mechanical positions. Their lack of 

mobility, or displacement/translation in space, does not imply lack of rotational flexibility, 

however. On the contrary, in the same way as hinges operate, these residues are fixed in space, 

but have highly rotatable bonds that allow for the relative motions of the adjoining subdomains. 

Not surprisingly, this set has an abundance of glycines (G12, G201, G202, G203, G230, G338 

and G339). The hinge bending role of these residues is critical to enabling the opening of the 

nucleotide binding pocket in response to NEF binding.  

We also note among nucleotide-binding residues three charged residues, K271, R272 and 

R342, which were distinguished by their „central‟ role in mediating the communication between 

the nucleotide-binding site and the other parts of the Hsp70 ATPase domain (for more details, 

see Chapter 4 and (Liu and Bahar, 2010)). Their central role was deduced from the small-world 
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network approach introduced by del Sol and coworkers (del Sol and O'Meara, 2005; del Sol et 

al., 2006). 

The co-localization of chemically active sites with the global hinge region is another 

design feature consistent with previous observations reported for catalytic sites of enzymes 

(Yang and Bahar, 2005).  

It will be shown below that the NEF-contacting and nucleotide-binding residues form two 

groups fundamentally different in terms of their evolutionary properties, in addition to their 

contrasting (highly mobile vs. highly constrained) dynamics in the global modes intrinsically 

accessible to the Hsp70 ATPase domain. 

3.1.2 NEF binding suppresses the motions of subdomain IIB and stabilizes an open 

conformer 

Figure 11b compares the mobility profiles obtained for Hsp70 ATPase domains in the 

NEF-free form (blue curve) with the average profile exhibited by three NEF-bound structures 

(with mammalian homologues 1HX1, 1XQS and 3D2E in Table 1). For clarity, the average over 

these three cases (red curve) is displayed in Figure 11b, and the individual curves for each 

complex may be seen in the Figure 12. In each case, the ten top (lowest frequency) modes are 

used to display the weight-averaged square displacements, which provide an accurate 

representation of the overall collective dynamics. The results indicate that the NEF-bound form 

of the Hsp70 ATPase domain closely maintains the intrinsic dynamics accessible to its unbound 

form, i.e., the loci of peaks and minima remain practically unchanged; however, binding of a 

NEF alters the relative (quantitative) distribution of mobilities: in particular, a reduction is 

observed in the mobility of subdomain IIB. As can be seen in more details for each of the four 
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complexes in Figure 12, the peak around the β-hairpin loop (residues 285-292) in subdomain IIB 

is almost completely depressed in the case of Sse1 and BAG-1, while GrpE and HspBP1 binding 

suppresses the mobility of the C-terminal end of helix 8 in the same subdomain. 

 

 

Figure 12. Intrinsic mobilities of residues in the ATPase domain. 

(a) The profiles represent the GNM-predicted weighted average mobilities (squared) of all residues, as driven by the 

first ten slowest modes, calculated for the three structures of mammalian homologs of Hsp70 listed in the inset (see 

also rows 2–4 in Table 1). The profiles are normalized such that the area under each curve is 1. The thick black 

curve corresponds to the unbound form. (b) GNM-predicted weighted average mobilities of all residues, as driven 

by the first ten slowest modes, calculated for the structure of DnaK bound with GrpE. 

 

Figure 11c shows the change in the mobility profile of the Hsp70 ATPase domain upon 

NEF binding. In addition to the suppressed motions at the β-hairpin, we also observe a drop in 

mobility at a number of NEF-contacting residues in subdomain IA (e.g., D32-G34). Notably, 

while NEF-binding residues on the ATPase domain experience reduced mobility upon NEF 



 41 

binding, the NEFs themselves enjoy large conformational freedom, as illustrated in the Figure 

13, as if their global fluctuations are conferred by the dissipation of those in the ATPase domain.  

 

 

Figure 13. Softest mode of the ATPase domain in bound and unbound forms. 

(a) Ribbon diagram of the ATPase domain in the unbound state color-coded by the mobilities in the first (lowest 

frequency, largest amplitude) GNM mode (Mi
(1)

). Figure generated with PDB entry 1HPM. The slowest mode of the 

ATPase domain complexed with NEF is displayed for four different cases: (b) DnaK in contact with GrpE. (c) 

Hsc70 in contact with BAG-1. (d) Hsc70 in contact with Sse1. (e) Hsc70 in contact with HspBP1. Structural 

diagrams are generated with PDB entries (b) 1DKG (c) 1HX1 (d) 3D2E (e) 1XQS. The ATPase domain backbones 

are shown in stick representation, all in the same orientation, and the NEFs, as ribbon diagrams. In each case the 

complex is color-coded according to mobility (see the scale at the bottom). 
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By and large, all these observations support a common mechanism shared by all NEFs: 

they bind the most mobile subdomain of the Hsp70 ATPase domain - subdomain IIB, and in 

essence „lock‟ the ATPase domain in a fixed conformation. This newly stabilized conformation 

is the „open‟ form of the ATPase domain, as will be elaborated below. The stabilization of the 

open form is essential to facilitating nucleotide exchange, which is the co-chaperone activity of 

NEFs. 

3.1.3 Induced vs. intrinsic dynamics 

Comparison of the NEF-bound and –unbound structures of the Hsp70 ATPase domain shows 

that the distance between the subdomains IIB and IB is larger in the NEF-bound form. Figure 

14a illustrates this „opening‟ for BAG-1-bound ATPase domain. In this complex, subdomain IIB 

undergoes a rotation of 14° with respect to the rest of the structure (Sondermann et al., 2001), 

and in Sse1-bound ATPase domain, subdomain IIB is observed to rotate 27° sideways. The 

stabilization of an open conformer is a common feature in all NEF-bound structures, although 

they exhibit slight variations in the detailed geometry of the accompanying conformational 

changes (Sondermann et al., 2001; Shomura et al., 2005; Polier et al., 2008; Schuermann JP et 

al., 2008). By stabilizing the open form, NEFs assist in increasing the nucleotide exchange rate 

and communication with the SBD.  

The observed conformational change of the Hsp70 ATPase domain may be explained by 

three possible scenarios: (i) induced upon NEF binding, (ii) a pre-existing equilibrium/path 

where the open form is already sampled, or can be readily reached via a soft mode, by the NEF-

free ATPase domain, (iii) pre-existing equilibrium/path followed by induced fit. The former 

would be NEF-specific; the latter, would be intrinsic to the ATPase domain; and the third is an 
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intermediate behavior, i.e. the original recognition requires the pre-disposition of the suitable 

„binding‟ conformation (pre-existing equilibrium); and binding of NEF induces further 

rearrangements to optimize the intermolecular interactions. For a more extensive discussion see 

for example a previous work of our lab (Tobi and Bahar, 2005). Clearly, in the case of 

intrinsically disordered proteins, folding upon binding is a common phenomena (Uversky et al., 

2008; Wright and Dyson, 2009), in line with an induced fit. On the other hand, structural 

adaptability to increase substrate specificity would be explained by scenarios (ii) or (iii) 

(Tokuriki and Tawfik, 2009). 

In order to examine quantitatively to what extent the observed reconfiguration is an 

intrinsic property of the Hsp70 ATPase domain (as opposed to a property induced by NEF), we 

focused on the softest motions predicted by the ANM. The black curve in Figure 14b displays 

the correlation cosine between the ANM modes (v(k), k=1-20) predicted to be intrinsically 

accessible to the unbound ATPase domain and the experimentally observed deformation (a 3N-

dimensional vector d; see section 2.1.2 in Chapter 2) between the open and closed forms of the 

ATPase domain. Note that the complete space of equilibrium motions comprises a collection of 

3N-6 modes in the ANM, and by definition these form an orthonormal basis vector such that a 

cumulative overlap CO(3N-6) = 1 is obtained by adding up all modes‟ contributions (see 

equation (21)). In the absence of correlations between the predicted modes and the 

experimentally observed changes, i.e., if the modes were completely random, their correlation 

cosine with d would therefore be (3N-6)
-1/2 

= 0.029, using N = 380. In contrast, a single mode 

alone (k = 3) is found here to exhibit a correlation cosine of 0.62 with the observed deformation, 

and the cumulative overlap reaches 86% by moving in the subspace spanned by 6 eigenvectors 

(modes) only (black curve with circles in Figure 14b). This result suggests that NEF binding 
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exploits to a large extent the reconfiguration accessible to the Hsp70 ATPase domain via this 

particular mode (mode 3) to drive the transition of the Hsp70 ATPase domain from its closed 

(NEF-free) state to an open (NEF-bound) state. Selection from a pre-existing path appears to be 

the dominant mechanism, although there is a minor contribution from higher modes selected via 

induced fit mechanism, in support of scenario (iii). 

 

 

Figure 14. Comparison of experimentally observed and computationally predicted structural changes in the 

Hsp70 ATPase domain. 

Experimental changes are illustrated for BAG-1-bound and free forms of the bovine Hsp70 ATPase domain 

(respective PDB ids: 1HX1 and 1HPM). Computational results are obtained by the ANM applied to the respective 

two structures. (a) Structural alignment of NEF-bound and unbound ATPase fragments. The unbound ATPase 

fragment (1HPM) is colored gray. The NEF-bound ATPase fragment (1HX1) is color-coded according to its extent 

of deformation with respect to the unbound ATPase, the regions showing the largest deformation being colored red, 

and those unchanged, blue. The distance between Ala60 and Arg258 C
α
-atoms is 5.0 Å in the closed form and 10.9Å 

in the open form. Panel b displays the results for the unbound (black) and BAG-1-bound (red) ATPase domain. The 

solid curve represents the correlation cosine between the experimentally observed deformation vector d and the 

ANM modes 1–20 accessible to the ATPase domain (either NEF-bound or -free). The curve with circles describes 
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the cumulative overlap (equation (21)). A subset of 6 slow modes accessible to the unbound form ensures the 

passage to the NEF-bound conformer with an overlap of 0.86. The NEF-bound form exhibits an even stronger 

potential to be reconfigured back to its closed form, consistent with the preferred conformation of the ATPase 

domain in the absence of NEF binding: top ranking two modes yield a cumulative overlap of 0.88 with the 

experimental deformation d. 

 

We further explored the transition between the open and closed forms of the Hsp70 

ATPase domain by examining the reverse process, i.e., we examined the ability of the open form 

of the ATPase domain to restore its conformation back to the closed form in the absence of a 

NEF (red curves in Figure 14b). The results show that the intrinsic tendency to go back to the 

closed form is even stronger (than the tendency to open up). In fact, the 2
nd

 softest mode in this 

case exhibits a correlation cosine of 0.85 alone with the experimentally observed deformation d. 

Therefore, the movement along this single mode coordinate is practically sufficient to restore a 

significant portion of the conformational perturbation selectively stabilized by NEF. Calculations 

performed for different NEF-bound forms exhibited similar features. We conclude that the 

restoration of the NEF-free conformation after the dissociation of NEF is an intrinsic change 

almost exclusively favored by pre-existing one or two softest modes, in line with scenario (ii).  

Notably, this type of intrinsic ability of the Hsp70 ATPase domain to undergo changes in 

its structure is consistent with the experimental observations made by Zuiderweg and co-workers 

(Bhattacharya et al., 2009). Zuiderweg and co-workers determined by NMR residual dipolar 

coupling measurements the ensemble of structures sampled in solution by the ATPase domain of 

DnaK from Thermus thermophilus in the ADP-bound state. Interestingly, the conformational 

variabilities observed in this ensemble, as noted by the authors, were found to be consistent with 

the structural change crystallographically observed (Sondermann et al., 2001) in the ATPase 
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domain upon NEF binding. This provides strong support, and experimental validation, for the 

intrinsic ability of the ATPase domain, in the absence of NEF, to have access to conformers that 

are pre-disposed to bind NEF, and for the utility of ANM analysis for accurately predicting the 

intrinsically favored changes in structure (softest modes). 

3.2 SEQUENCE CONSERVATION 

We began with 4,839 sequences retrieved from the Pfam DB 22.0 (Finn et al., 2008) for the 

Hsp70 family of molecular chaperones (Pfam id: PF00012). We refined the generated MSA by 

using the consensus sequence of the ATPase domain (380 residues) in the bovine cytosolic 

homolog of Hsp70 (Wilbanks and McKay, 1995). The refinement consists of three steps: (i) 

iterative implementation of Smith-Waterman algorithm (SW) for pairwise alignment (Smith and 

Waterman, 1981) using our consensus sequence, and elimination of those sequences below a 

threshold SW score (or less than 40% sequence identity) to retrieve the closest orthologs to 

human (Hsc70) and bacterial (DnaK) chaperones; (ii) deletion of MSA columns that correspond 

to insertions with respect to the consensus sequence, and (iii) removal of the sequences 

containing more than 10 gaps. These three steps resulted in a MSA of 1627 sequences with N = 

380 columns (corresponding to residues 6 to 385 in Hsc70 ATPase domain), which has been 

subjected to evolutionary trace  and mutual information  analyses for detecting residue 

conservation and co-evolution patterns, respectively. 
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Figure 15. ET calculations for Hsp70 family. 

(a) The phylogenetic tree is constructed using the ET server (Innis et al., 2000) and the set of 1627 ATPase domain 

sequences retrieved from Pfam DB for the Hsp70 family. Each vertical line corresponds to a given distance 

threshold. The boxes in different colors refer to the partitions obtained at the 12
th

 distance threshold (also called 

level). Each box yields a different consensus sequence. The class consensus sequence for each partitioning level is 

then identified, as illustrated. Dots therein refer to positions that are sequentially variable between the members of 

the class. The ET sequence for the particular level is determined by assigning letter code X to all positions that are 

conserved within classes, but not conserved across classes. Those amino acids conserved across classes are indicated 

by their single letter code (e.g., glycine G in the illustrated ET sequence). (b) Results are shown for a 20-level 

partitioning of the phylogenetic tree. Peaks indicate the most conserved residues (among the 380 amino acids 

represented in each sequence), with their conservation level (or ET rank) indicated by the row numbers on the left. 

The columns highlighted in gray correspond to nucleotide binding residues. Those corresponding to the NEF 

binding residues are colored by the subdomains to which they belong (see Figure 9a). 
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3.2.1 Evolutionary trace analysis 

An ET analysis highlights a cluster of conserved residues at the nucleotide-binding site. The 

results presented above lend strong support to the evolutionary selection/stabilization of a fold 

(by the Hsp70 ATPase domain) that endows suitable mobility and flexibilities at particular sites 

so as to favor functional changes in conformation (between open and closed forms), and optimal 

recognition and binding of the co-chaperones (NEFs). Next, we take a closer look at the 

evolutionary properties of Hsp70 ATPase domain sequences. 

The results from ET analysis are presented in Figure 15b. Peaks therein represent the 

most conserved sites, within subfamilies (indicated by X), or across subfamilies (indicated by the 

single-letter amino acid code). The large majority, if not all, of the key residues reported in 

previous studies to be important to Hsp70 activity is captured by the ET peaks, including those 

participating in the hydrogen bond network proposed to form a proline switch (P147 and R155 in 

Hsc70; or their counterparts P143 and R151 in DnaK) (Vogel et al., 2006a). Residues known to 

coordinate the nucleotides are shown in gray shade. As expected, most of these residues are 

highly conserved. Among them, G201 exhibits ET rank 1, succeeded by G338 and R342, and 

then G12. We also note among the peaks K71 and E175, two residues identified in our previous 

studies to play a key role in ATPase domain allosteric communication (Liu and Bahar, 2010). 

Residues involved in NEF recognition and binding, on the other hand, are colored red, orange, 

blue and green depending on their subdomains. These residues exhibit low levels of 

conservation. 
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Figure 16. Correlation between residue mobility and its sequential variability. 

(a) Ribbon diagram colored by the ET rank of residues, from red (most conserved) to blue (most variable). (b) The 

average mobility of residues corresponding to different ET ranks. The mobilities are evaluated using equation (12). 

The bars display the standard error for each ET rank. Best fitting second order polynomial (red curve) is shown to 

guide the eye (correlation coefficient of 0.92). See also Appendix Figure A1 panel b for a similar plot, based on 

ConSurf score (instead of ET rank). 

 

3.2.2 Correlation between structural dynamics and sequence conservation 

The color-coded ribbon diagram in Figure 16 (based on the ET displayed in Figure 15b) shows 

that conserved residues (colored red) are mostly located in the nucleotide-binding pocket. The 

comparison of the weighted-average mobility profile in Figure 11b and the ET trace in Figure 

15b suggests an inverse correlation between the extent of mobility of a given residue and its 

level of conservation: the ET trace indeed exhibits high peaks not only at nucleotide-binding 

sites, but also at other sites indicated by the GNM to participate in global hinge motion.  
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Towards a more detailed examination of this tendency, we have grouped residues based 

on their ET ranks, starting from the most conserved residues (ET rank = 1), and computed the 

average mobility profile of residues for each ET rank. Figure 16b displays the resulting relation 

between sequence conservation (ET rank) and global mobility. The ordinate represents the 

average displacement <M|10> ET for all residues that exhibit a given ET rank (abscissa), and the 

bars display the standard error in each case. The observed decrease in mobility with increased 

conservation suggests that constraints on the collective mechanics of the molecule may be as 

important as those associated with chemical activity, such that the residues at key mechanical 

sites also tend to be evolutionarily conserved.  

A closer examination (Appendix Figure A1) shows that G34, D292 and L274 are outliers 

when comparing their ET rank with their global mobility (they are too mobile for their level of 

conservation). Their enhanced mobilities may however be explained by their functionalities: G34 

is presumably critical to maintaining the loop structure near the nucleotide-binding site; D292 is 

a class-specific residue recognized to be a key element of the signature loop that differentiates 

subfamilies (Brehmer et al., 2001). It takes part in conserved salt-bridges with NEF basic 

residues in mammalian homologues (K238 for BAG; K245 for BP1). L274 is located at the C-

terminus of helix 9 near the nucleotide-binding site, and may be playing a key role in stabilizing 

this long helix in a functional state. This helix indeed appears to be bridging between the NEF-

contacting residues on subdomain IIB and the nucleotide-binding residues in the central cleft, 

hence its high conservation (or high ET rank). E268 and R272 are two other residues on helix 9 

in contact with both NEF and nucleotide, and as such, they may be playing a role in initiating the 

allosteric communication between the bound NEF and the nucleotide-binding pocket. Like most 

of other nucleotide-binding residues, E268 is relatively conserved (ET rank = 11) (Figure 15b); 
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R272, on the other hand, is highly variable (ET rank of 17) and more exposed. Its high 

correlation with other NEF-contacting residues (discussed in the next section) and the orientation 

of its side chain (exposed) support its primary role in NEF recognition rather than nucleotide 

interaction.  

As an additional verification of the relationship detected between collective mechanics 

and evolutionary conservation, we have examined the mobilities of residues as a function of their 

ConSurf scores. ConSurf scores provide a measure of the level of conservation, higher scores 

corresponding to less conserved residues (similar to ET rank) (Glaser et al., 2003). The plot in 

Appendix Figure A1 also confirms the relation between the extent of restrictions in mobility and 

the level of conservation, again suggesting that sequential and structural variabilities go hand in 

hand. 

3.3 SEQUENCE CORRELATIONS 

3.3.1 Co-evolutionary patterns for NEF-recognition residues 

The results from the MI analysis of the 1627 Hsp70 ATPase domain sequences examined here 

are presented in Figures 17 and 18. The ribbon diagram in panel a highlights the residues 

distinguished by their co-evolutionary patterns. These are determined by analyzing the MI map 

for the complete sequence shown in Figure 17b.  Close-up views of the two highlighted regions 

that contain the large majority of NEF-binding residues are presented in panels c and d. These 

two regions (residues 246-305 and 16-75) include 90% of all NEF-contacting residues. The bar 

plots below the MI map in panel b indicate the contribution of individual residues to the most 
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correlated pairs in the MI matrix (upper plot), and the frequency of NEF-ATPase domain 

contacts made by these residues in the examined three mammalian complexes (lower plot). The 

bar plots and enlarged panels c and d clearly show that NEF-contacting residues exhibit high 

sequence correlations. Residue pairs that exhibit the highest MI values are listed in Table 3. 

 

Figure 17. Co-evolution of NEF-binding residues. 

(a) Amino acids distinguished by their high co-evolutionary patterns in the maps c and d (residues with average MI 

value greater than 0.32), shown in stick representation and colored by subdomains. Among them, the NEF 

contacting residues (Table 1) are labeled black, and others are colored by subdomain. Note the large proportion of 

charged or polar residues. (b) MI map for the ATPase domain sequence included in the MSA (residues 6–385). The 
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color-coded bar on the right indicates the level of correlation between the evolution of residue pairs. Two regions 

containing a large number of NEF-binding residues are enlarged in panels c and d. The bar plots under the map 

display the contribution of each residue to the most correlated residue pairs (top 1%, 720 pairs) in the MI matrix 

(upper plot), and the frequency of NEF-ATPase domain contacts in three mammalian complexes (lower plot). (c) 

and (d) Close-up views of the MI map portions between residues 246–305 (containing the helix 9 and β-sheet E of 

subdomain IIB) and residues 16–75 (containing NEF-contacting segments in subdomains IA and IB) (c), and within 

residues 246–305 (d). The corresponding secondary structural elements are indicated along the abscissa by cylinders 

(α-helices) and arrows (β-strands). The bar plots display the average MI per residue, NEF binding residues being 

colored by their subdomain. 

 

Figure 18 provides a broader view of co-evolution patterns for Hsp70 ATPase structural 

elements. Here average MI values are displayed for all pairs of secondary structural elements and 

loop regions (panel a), and all pairs of subdomains (panel b). The strong co-evolutionary 

property of residues within the subdomain IIB is clearly seen from panel b, succeeded by that 

within subdomain IB. Among the inter-subdomain correlations, we distinguish the pair of 

subdomains IB and IIB. Consistent with these patterns, four groups of secondary structural 

elements are distinguished in panel a by their most correlated evolutions: sheet E and connecting 

loop (Q279-T298) in subdomain IIB, the β-strand R100-Y107, and loop (V59-N62) between 

helices 1 and 2 in subdomain IB, and a β-strand and preceding turn (His23-Ile28) in subdomain 

IA. 
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Table 3. Residue pairs distinguished by their sequence correlation (MI values above 0.8) in 

Hsp70 ATPase domain. (*) 

Residue pair MI value 

Asp97---Lys102 1.010 

Thr265---Thr273 0.909 

Glu27---Arg258 0.885 

Arg261---Thr265 0.878 

Arg258---Tyr288 0.869 

Thr265---Asp285 0.857 

Lys102---Thr295 0.856 

Thr265---Ser385 0.854 

Pro101---Arg258 0.843 

Glu27---Asp69 0.842 

Glu27---Tyr288 0.835 

Arg100---Lys102 0.832 

Glu27---Pro101 0.830 

Lys102---Lys108 0.829 

Gln33---Thr265 0.828 

Tyr107---Thr265 0.825 

Asp69---Pro101 0.820 

Ala60---Thr265 0.820 

His23---Lys102 0.818 

Lys102---Tyr107 0.817 

Ser281---Thr295 0.814 

Thr265---Glu283 0.812 

Arg100---Tyr288 0.811 

Arg100---Arg258 0.811 

Gln33---Glu283 0.808 

Thr265---Ser281 0.806 

Thr273---Tyr288 0.805 

Thr265---Tyr288 0.805 

Lys102---Tyr294 0.803 

Tyr107---Tyr288 0.803 

Glu27---Arg100 0.802 

Gln33---Thr273 0.801 

Asp69---Arg258 0.801 

(*) residue pairs separated by at least two amino acids along the sequence 

 

Figure 17d describes in more detail the co-evolutionary properties within the subdomain 

IIB. The bar plots along the upper abscissa indicate the average MI values corresponding to each 

residue.  The residues involved in NEF recognition are colored by the Hsp70 ATPase domain 

subdomain to which they belong. We note in particular the remarkably high MI values 

corresponding to the pairs of residues within the β-sheet E, except for the discontinuity at the 

loop residue G290. Furthermore, these residues display remarkably high co-evolutionary patterns 
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with amino acids on helix 9 (K257-S275). Examples of such highly correlated pairs are R258-

Y288, T265-D285 and T273-Y288 (ranking 5
th

, 6
th

, and 27
th

 respectively among all MI pairs, see 

Table 3). Notably, helix 9 also contains highly conserved residues (E268, K271 and S275) 

involved in nucleotide binding. This combination of co-evolving (NEF-recognition) and 

conserved (nucleotide-binding) residues endows helix 9 with a unique mediating role between 

the NEF-binding region and the nucleotide-binding pocket. Notably, the two β-strands and 

preceding α-helix on subdomain IIB emerge as a co-evolved structural entity, distinguished by 

its NEF-recognition and binding role, reminiscent of the functional „sectors‟ pointed out by 

Ranganathan and coworkers (Halabi et al., 2009) for S1A serine proteases.  

 

Figure 18. Average MI values calculated for different structural elements (helices/strands) and for 

different subdomains. 

The panels demonstrate the mean MI value between and within (a) pairs of secondary structure elements (the names 

of helices and sheets are based on the PDB entry 1HPM, H: α-helix, S: β-sheet) and (b) pairs of subdomains. 
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Figure 17c reveals the cross-correlations between the evolutionary trends of subdomain 

IIB residues and the residues 16-75 on subdomains IA and IB. The above noted (β-hairpin and α-

helix 9) residues of subdomain IIB appear to have co-evolved with well-defined residues on 

subdomains IA and IB. In particular the pairs E27-R258, E27-Y288, Q33-T273 and Q33-E283, 

exhibit remarkably high correlations (see Table 3), despite their long distance separation on the 

structure.  

The observed sequence correlations may arise from several reasons (Atchley et al., 2000; 

Noivirt et al., 2005; Halabi et al., 2009) including those originating from the splits between 

subfamilies (phylogenetic noise). In particular, subdomain IIB has phylogenetic history 

contributing to its high variability, and subfamilies have evolved to partner with different NEFs. 

Regardless of the origin of these correlations, the MI map unambiguously shows that NEF-

binding residues are distinguished by their co-evolutionary properties. As a further test, we 

performed a statistical coupling analysis (Lockless and Ranganathan, 1999) of sequence 

correlations (Appendix Figure A2) which confirmed the results found from MI analysis, while 

the signals provided by MI are more pronounced due to the weighting strategy employed in 

SCA. 

3.3.2 Complementary information provided by MI maps and ET analysis 

The ET diagram (Figure 15b) and MI maps (Figures 17 and 18) provide complementary 

information. Those residues distinguished by their high conservation (peaks in Figure 15b) 

cannot usually be detected by the MI map, simply because they exhibit minimal, if any, 

mutations and it may be hard to capture their co-evolutionary couplings to other residues due to 

scarcity of data. For example, subdomain IA is known to be relatively more conserved as also 
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confirmed by ET analysis (see the block of residues 140-185 belonging to this subdomain in 

Figure 15b), and the corresponding region in the MI map (Figure 17b) exhibit practically no 

signals indicative of correlated mutations. The less conserved subdomain IB, on the other hand, 

has several correlated residue pairs, including in particular those involved in NEF binding, which 

are furthermore correlated with the NEF binding residues on subdomain IIB.  

Therefore, the sets of residues highlighted by these two analyses tend to be mutually 

exclusive, and involved in different roles, intrinsic (to ATPase domain, per se) vs. specific (to its 

interaction with different ligands/substrates such as NEFs). The structural regions where these 

two groups of residues are clustered and/or closely coupled (e.g., α-helix 9; see above) are 

suggested here to play a key role in reconciling the specific functions (e.g., NEF binding) of the 

Hsc70 ATPase domain with its intrinsic conserved properties (of nucleotide binding and ATP 

hydrolysis).  

Yet, we note that in some cases some relatively conserved residues are also captured by 

their MI maps, because their (relatively infrequent but possible) mutations indeed require 

compensating mutations that can be detected, even if such mutations are rare. NEF binding R262 

and D292 (with respective ET rank of 12 and 9) belong to this group of residues, and can sustain 

mutations provided that these are accompanied by compensating substitutions. As mentioned 

above R292 is a class-specific residue involved in salt-bridge formation with NEF residues, and 

likewise, R262 takes part in conserved interactions with acidic residues on NEF in mammalian 

homologues (D222 for BAG; E132 for BP1). Note that its counterpart in DnaK (R261) makes a 

contact with M174. This can be explained by the fact that binding of GrpE to DnaK is based on 

hydrophobic interactions instead of salt bridges (Sondermann et al., 2001). 
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3.4 DISCUSSION 

3.4.1 Interplay between structure-encoded global dynamics and sequence-specific local 

interactions 

Organisms comply with the evolutionary pressure to maintain their phenotype by genotypic 

variations that are compensated or correlated as needed, conserving certain sequence fragments 

vital to preserving their functions (Nowak et al., 1997). Understanding the co-evolving and 

conserved sequence patterns in modular domains is an interesting problem in its own right 

(Livingstone and Barton, 1993; Olmea et al., 1999). Understanding these patterns in the light of 

structural data, if available, provides us with further insights into shared mechanisms of 

interactions that form the molecular basis of the biological function of such modular domains. 

The Hsp70 ATPase domain is such a modular protein common to functionally diverse actin, 

hexokinase, and Hsp70 protein families (Bork et al., 1992). The present combined analysis of 

structure-encoded dynamics and sequence evolution for Hsp70 ATPase domain discloses a 

subtle interplay between conserved interactions and those involving co-evolved residues. 

Conserved interactions define generic properties of the Hsp70 ATPase domain: these include the 

concerted dynamics of its four subdomains, which allow for sampling functional conformations 

(e.g., that stabilized upon NEF binding, allowing for ADP release; shown in Figure 15), and the 

physicochemical events (ATP hydrolysis) at the nucleotide-binding site. Those residues involved 

in NEF recognition, on the other hand, show low-to-moderate conservation, but exhibit a 

remarkably high tendency to co-evolve, or undergo correlated mutations, again to achieve 

specific NEF-dependent recognition and binding activities. 



 59 

An observation of interest is the similarity between the interactions of the Hsp70 ATPase 

domain with different NEFs, in terms of structural dynamics. While Hsp70 ATPase domains are 

highly conserved both sequentially and structurally, the four NEFs examined have distinct 

structures and consequently different dynamics. The key point is that their binding to the ATPase 

domain involves in all cases the subdomain IIB of the ATPase domain, although not in exactly 

the same arrangement. Their binding to a common interfacial region on the ATPase domain 

point to a shared mechanism of interaction: The ATPase subdomain IIB is originally 

distinguished by its high mobility in the slowest mode, especially at the β-sheet E and the 

exposed loop connecting the two strands of this sheet; and after NEF binding, there is a 

significant suppression in its mobility. The conserved dynamics of the complexes suggests a role 

of subdomain IIB as an “adjustable handle”, which regulates the Hsp70 chaperone machine, to 

facilitate other proteins making use of its SBD.  

Many applications using the ANM have shown that the substrate recognition involves a 

region distinguished by its enhanced mobility in the most cooperative (or softest) modes, which 

enables the molecule to optimize its interactions with the substrate. Here we can see that the C-

terminal part of helix 8 and the loop of β-hairpin E enjoy this type of high mobility/adaptability. 

On the other hand, substrate „binding‟ may also involve more constrained residues in the close 

neighborhood, which may play a role in transmitting allosteric effects. In the opposite case of a 

binding site composed exclusively of floppy residues, the structural changes induced upon 

substrate binding could dissipate locally and not efficiently transmitted. In this respect, we 

propose that the involvement of residues such as Arg258, Arg261 and Arg262 in subdomain IIB, 

or N57, A60 and M61 in subdomains IB is critically important in establishing the 
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communication between subdomains and transmitting allosteric signals between NEF-binding 

and nucleotide binding sites.   

A putative communication pathway that couples distant residues in different subdomains 

of the Hsp70 ATPase domain is suggested here by the structural mapping of correlated and 

conserved residues, which needs to be further established. Figure 17a displays those residues 

identified to be co-evolving. Notably, we observe several pairs making interdomain contacts, in 

addition to spatially distant residue pairs (e.g. H23 in subdomain IA and N57, A60 and M61 in 

subdomain IB correlated with R258, R261, E283 and D292 in subdomain IIB). In a recent study, 

R272, R261, Y15 and Y41 have been identified to play a central role in establishing the allosteric 

communication in the unbound Hsp70 ATPase domain, along with highly conserved residues 

K71, R72, E175 and H227 (Liu and Bahar, 2010). It remains to be seen if these central residues 

play a key role in mediating between these co-evolving, spatially distant residues. We also note 

that Smock et al. recently identified a sparse but structurally contiguous group of co-evolving 

residues at the interface between the ATPase domain and the SBD in Hsp70/110 protein family, 

which has been proposed to underlie the inter-domain allosteric coupling (Smock et al., 2010), in 

support of the role of co-evolved residues in mediating allosteric signaling.  

3.4.2 Pre-existing paths of reconfiguration intrinsic to Hsp70 ATPase domain and their 

role in accommodating co-chaperones binding 

Many recent studies have pointed out the validity of “pre-existing equilibrium” concept where a 

substrate or ligand simply selects from amongst an ensemble of conformations already accessible 

to the protein prior to binding (Tobi and Bahar, 2005; Swain and Gierasch, 2006; Henzler-

Wildman et al., 2007; Bahar et al., 2007; Lange et al., 2008; Bakan and Bahar, 2009; Smock and 
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Gierasch, 2009). The present results, and recent applications of ENMs, suggest that more 

important than the pre-existence of these „states‟, is the existence of energetically accessible 

„paths‟ that provide access to those states, or the intrinsic tendency of the native structure to 

reconfigure towards such functional states. In terms of energy landscape description, what is 

needed is not the existence of multiple minima, the depths of which change upon ligand or 

substrate binding, but the existence of one or more directions of reconfigurations, or paths along 

the energy landscape, that are easily accessible to the protein and lead to the targeted (functional) 

conformer. The softest modes provide such paths. They define directions of motion in the space 

of collective coordinates, which incur a minimal energy ascent as the molecule moves away from 

its original energy minimum. They also present the best mechanisms of dissipating energy, if the 

system is perturbed. These are the modes that are being exploited when proteins bind ligands or 

substrates. Notably these functional conformations accessible near the native state can be 

observed by NMR residual dipolar coupling, as shown for Hsp70 ATPase domain by Zuiderweg 

and coworkers (Bhattacharya et al., 2009). Figure 14 clearly shows that movements along a 

handful of modes satisfactorily ensures the passage to the alternative (functional) open form, and 

that the open form itself has a strong tendency to restore its conformation back to the closed 

form, in the absence of NEF. 

3.4.3 Bridging between residue conservation and global dynamics 

Protein-ligand binding interfaces and protein-protein contact interfaces are characterized by 

different sequence variation patterns. The protein-protein contact interfaces usually expose larger 

contact areas (James et al., 2003) and exhibit high mutation rates. Moreover, if the contact 

interface is a common recognition site for multiple targets (possibly in different organisms), co-
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evolution is likely to occur among the binding residues to preserve specific interactions and 

conformations at the sequence motif. On the other hand, the protein-ligand interface is usually 

buried in the folded core of the protein; in contrast to protein-protein interaction, the protein-

ligand interaction is usually characterized by higher specificity, requiring sequence conservation 

(Lichtarge et al., 1996; Lichtarge and Sowa, 2002).  

The Hsp70 ATPase domain exhibits patterns in close agreement with these general 

features: Its ligand (nucleotide) binding site essentially consists of highly conserved residues, 

which not only precisely coordinate the ligand, but also take part in a global hinge-bending 

region so that they are both chemically and mechanically required to be highly conserved. NEF 

recognition sites, on the other hand, exhibit much lower conservation properties; and in addition 

to their sequence variability, the subdomain IIB, which is observed to be most often involved in 

NEF binding, enjoys enhanced mobility. Briefly, global dynamics requirements entail residue 

conservation, and specific recognition entails sequence variation along with enhanced mobility. 

However, neither the sequence variability, nor the conformational mobility at NEF recognition 

sites, is random. The sequence variability takes place under unique restrictions, compensating 

mutations, as unraveled by the MI map. Conformational variability, on the other hand, is 

uniquely defined by the ATPase architecture, and precisely adept to accommodate the passage to 

the functional open state that is stabilized upon NEF binding. The ATPase domain uniquely 

juxtaposes such structure-encoded dynamics and sequence-specific interactions, which underlie 

its ubiquitous activities.   

In general, subdomains IA and IIA are more conserved and more rigid than subdomains 

IB and IIB (Flaherty et al., 1990), as also indicated by the ET in Figure 15b; notably, they also 

serve as binding site to a number of proteins. For example, subdomain IA accounts for the 



 63 

binding of J-domain proteins (Jiang et al., 2007); subdomain IIA is reported to contain a putative 

binding site near its interface with subdomain IA (V189-V195) to the chaperonin-containing 

TCP-1 (Cuellar et al., 2008), and it is connected to the SBD by an inter-domain linker, which is 

considered important for the allosteric interactions between the two domains (Vogel et al., 

2006b; Swain et al., 2007). It remains to be seen if the correlated sites on Hsp70 ATPase domain 

emerging from the MI analysis play a role in the functional communication with other co-

chaperones or the SBD. Extensive experimental studies have been performed to date with the E. 

coli Hsp70, DnaK, to understand the molecular mechanism of activity of the molecular 

chaperones in the Hsp70 family.  The analysis in the present paper will guide our interpretation 

of the NMR, FRET, and EPR data on different states accessible to DnaK. Each of these methods 

gives us a different window into the ensemble of conformational states populated in response to 

ATP, ADP and NEFs. Excitingly, a detailed chemical shift analysis of six different ligand bound 

states for the nucleotide-binding domain of DnaK, with and without the linker that connects it to 

the substrate-binding domain (i.e., 12 NMR samples compared pairwise and as a group) has 

pointed to the same subdomain interface rearrangements indicated in the present study 

(Zhuravleva & Gierasch, in preparation). Moreover, the NMR results point to the fundamental 

feature that subdomain IIB can undergo a hinge-like movement to enable nucleotide entry and 

release. It is this fundamental movement, intrinsic to Hsp70 ATPase domains, that different 

NEFs have exploited. They bind in different, sequence-specific ways, but modulate the same 

fundamental movement. Further detailed analysis of the ensemble distributions and rates of 

interconversion between states can be achieved using a synergistic battery of computational and 

experimental tools. 
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4.0  HSP70 ALLOSTERIC PATHWAY IDENTIFICATION USING PERTURBATION 

ANALYSIS 

The allosteric communication between the two domains, ATPase domain and SBD, of Hsp70 is 

essential to Hsp70 functioning as a molecular chaperone; understanding the structural/dynamical 

basis of this allosteric communication is critical to rational design of Hsp70 inhibitors. To this 

end, we explored the key residues involved in this process, and identified putative pathways of 

allosteric communication in the molecule using the results from structural dynamics and 

sequence co-evolution analyses. 

Our study consists of two parts, both based on perturbation analysis. Part I concentrates 

on the Hsp70 ATPase domain, and uses residue centrality concepts to identify the key residues 

that establish network communication. The 2
nd

 part focuses on the communication between the 

two domains, using a homology model constructed for the ATP-bound state, and identifies key 

residues using PRS methodology.  

4.1 PART I: PATHWAYS IN THE HSP70 ATPASE DOMAIN  

In this part, we examined the type of conformational changes occurring in the ATPase domain, 

and their influence on inter-residue communication pathways. Our group‟s previous examination 

of another ATP-regulated allosteric machine, the bacterial chaperonin GroEL, showed that the 
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structure has access to intrinsically favored collective dynamics, on the one hand, and to well-

defined signal transduction pathways that transmit allosteric effects away from the ATP binding 

site, on the other (Chennubhotla and Bahar, 2006). Redistribution of on-pathway interactions 

during the most cooperative (global) modes of motion of the chaperonin has been proposed to be 

a mechanism of allosteric regulation (Chennubhotla et al., 2008). Toward gaining insights into 

the dynamic aspects of allosteric regulation, this time in the Hsp70 ATPase domain, we adopted 

here a multi-pronged approach: First, we identified a number of key residues distinguished by 

their central role in so far as the allosteric signal transduction across the molecule is concerned. 

A number of residues lining the cleft between the two lobes of the ATPase domain appear to 

modulate the opening and closing of the cleft. Second, we analyzed the sequence conservation 

and co-evolution patterns of these residues. Third, we examined their collective dynamics using 

GNM. 

We used the structures of the bovine homolog of Hsp70 (Hsc70) (PDB id: 1HPM 

(Wilbanks and McKay, 1995)) for the closed form of the ATPase domain. For the open form, we 

considered two structures of the same species complexed with mammalian NEFs: a complex 

with BAG-1, and another with Sse1, with respective PDB identifiers of 1HX1 (Sondermann et 

al., 2001) and 3C7N (Schuermann JP et al., 2008). The structural alignment in Figure 19 shows 

that there is a global change in the relative positions of subdomains IB and IIB, as the structure 

undergoes a conformational change between closed and open forms. 
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Figure 19. Superposition of the closed and open conformations of Hsp70 ATPase domain.  

The closed form (white) is a structure observed in the absence of nucleotide (PDB id: 1HPM). Two open forms are 

shown, both observed in the complexes formed with NEFs: in cyan is the structure from the complex with the Sse1 

(PDB id: 3C7N); and in orange is that assumed when complexed with BAG-1 (PDB id: 1HX1). The NEFs (Sse1 and 

BAG) are not shown here. The three structures have been aligned using the Kabsch algorithm ((Kabsch et al., 1990) 

as implemented in PyMol). 

 

4.1.1 Different conformations of ATPase domain  

We adopted the approach proposed by Nussinov and coworkers (del Sol et al., 2006) to identify 

the central residues of the ATPase domain. The details of the method are presented in section 

2.2.2. We calculated the centrality profile for residues in all three structures, including one with 

the ATPase domain in the closed state and two others, in the open state. The results are shown in 

Figure 20 for unbound (panel a) and Sse1-bound (panel b) ATPase domain. The centrality 

profile for the BAG-bound form exhibits patterns similar to those observed in panel b (not 
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shown). The characteristic path lengths and the RMSDs calculated after optimal structural 

alignment indicate that the lobes of the Sse1-bound ATPase domain are further apart than the 

BAG-bound form. 

 

Figure 20. Centrality profile for Hsp70 ATPase domain residues. 

The profiles are calculated for (a) the closed form, and (b) the open form in the Sse1-bound ATPase domain. The 

abscissa represents the fractional change ΔLk/L in characteristic path length compared to the original network. 

Maxima refer to nodes that have a strong impact on communication efficiency, if removed. 

 

Comparison of panels a and b shows that the two profiles exhibit similar features (i.e., 

peaks and minima at the same regions), while the relative heights of the peaks vary. In particular, 

the peaks near residues located at the inter-lobe interface, that is residues 257-276 (helix 9) and 

residues 10-60, are suppressed in the open form (panel b). In contrast, some residues located at 

the nucleotide binding pocket (e.g., Arg342 and Asp366) display more pronounced centrality 

properties in the open form compared to the closed form (note that the ordinate scales are 

different in the two panels). The increase in centrality suggests that they assume an enhanced 

role in establishing the communication away from the active site in the open form. 
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We consider the top ranking (top 2%, or equivalently, top eight) residues in the centrality 

profile in each case, and refer to them as the central residues in the following text. Among them 

four are distinguished as central residues in all of three structures, regardless of the open or 

closed state of the ATPase domain: His71, Arg72, Glu175 and His227; in contrast, the other four 

residues vary with the conformation (Table 4). 

Table 4. Central residues in the closed and two open conformations of Hsp70 ATPase domain. 

PDB 

id 
L(Å) 

Binding 

NEF 
conformation 

Central residues(*) 

shared 

by all 
Specific to examined structures 

1hpm 14.06  None closed Lys71 

Arg72 

Glu175 
His227 

Tyr15 Tyr41 Arg261  Arg272 

1hx1 14.67 BAG open Ala60 Arg261 Arg342  Asp366 

3c7n 15.26 Sse1 open Leu73 Asp232 Lys271  Arg342  

(*) fully conserved residues are written in boldface (see Figure 22a). Leu73 and Asp232 are also highly conserved. 

4.1.2 Structural and sequence variations among central residues  

We examined the position of the central residues on the structure (Figure 21), and performed 

sequence analyses to examine their conservation profile and co-evolutionary properties (Figure 

22).  

The four residues that are invariant to conformational changes are colored cyan in Figure 

21, and are labeled in Figure 21b. Interestingly, these (sequentially separated) residues appear to 

form a (spatially contiguous) communication path across the lobes, starting from Arg227 and 

ending at Glu175. Indeed, Lys71 and Glu175 serve as catalytic residues (O'Brien et al., 1996; 

Vogel et al., 2006a) and regulate a proline switch that, in turn, regulates the inter-domain 

allosteric interactions. The central residues are found to be mediating allosteric communications 

in a variety of protein families (del Sol et al., 2006). We propose that the residues detected here 
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also play an important role, not only a catalytic, but also a signaling. The are therefore proposed 

to be implicated in the communication of the nucleotide exchange events to the other regions of 

the ATPase domain, including for example the interface with the substrate-binding domain. 

 

Figure 21. Position of Hsp70 ATPase domain central residues. 

Panels a and b display the positions on the ATPase domain closed form, (c) on the ATPase domain open form bound 

to BAG and (d) on ATPase domain open form bound to Sse1. Panel e highlights the interaction of Arg72 and 

His227. The conserved central residues are colored cyan; other central residues are colored orange. Panel b is the 

rotated view of panel a, and the conserved central residues are only labeled in panel b. 
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The analysis of the MSA generated for the same set of sequences (described in section 

3.2) reveals that these four residues are highly conserved.  See the sequence logo (Crooks et al., 

2004) presented in Figure 22a, which clearly indicates that Lys71, Arg72 and Glu175 are fully 

conserved. His227, although not conserved, can only be substituted by phenylalanine, although 

histidine probability is much higher, suggesting that a large aromatic group may be functional at 

this position. The interaction of Arg72 and His227, shown in Figure 21e, can be viewed as a 

highly conserved amino-aromatic interaction (Burley and Petsko, 1986), which is presumably 

maintained when histidine is replaced by phenylalanine. So even though His227 tolerates a 

mutation to phenylalanine, its interaction with Arg72 is conserved. In the following text we will 

refer to these 4 residues as the shared central residues (SCR). 

The other central residues also exhibit patterns relevant to the functional changes in 

ATPase domain conformation. In the closed form, these residues (Tyr15, Tyr41, Arg261 and 

Arg272) are distributed along the cleft formed by lobes I and II to form two closely interacting 

pairs: Arg272---Tyr15 and Arg261---Tyr41. These pairs serve as two bridges that connect the 

subdomain IIB with subdomain IA (Arg272---Tyr15) and with subdomain IB (Arg261---Tyr41). 

Bukau and coworkers (Brehmer et al., 2001) have shown that the salt bridges formed between 

helices 1 and 9, labeled in Figure 19, affect the nucleotide exchange of ATPase domain. We 

speculate that among the residues located on these two helices, these two pairs arginines and 

tyrosines, also involved in amino-aromatic interactions, play a key role in controlling the 

subdomain closure and opening, which in turn ensure nucleotide stabilization or release, 

respectively. Moreover, since the central residues are supposed to be the most “indispensable” 

residues in establishing the shortest-path communications, the two pairs we identified might be 



 71 

the “anchors” that maintain the closed conformation of the ATPase domain. Indeed, this 

conjecture is reinforced by the collective dynamics of the ATPase domain in the next section.  

 

Figure 22. Sequence analysis of central residues. 

(a) Sequence logo of the SCRs (marked with cyan triangles) and other central residues (marked with orange 

triangles) identified in the closed and open (BAG-complexed) ATPase domains. (b) MI map between residues 173-
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274 and 10-80, which includes the central residues located at the lobe interface in the closed state. The SCRs‟ 

residue numbers are written in cyan, whereas others are written in orange. 

 

Interestingly, residues at these four positions tend to co-evolve, when they are not 

conserved, as may be seen from the MI map in Figure 22b. By examining the sequence logo 

(Figure 22a), we found that the variation of amino acids at these residues primarily arises from 

the difference between the Hsp70 mammalian homolog Hsc70 and the Hsp70 bacterial homolog 

Dnak. The interactions between the two lobes of DnaK, as well as the interaction of the Hsp70 

ATPase domain with NEF (GrpE in this case), primarily consist of hydrophobic contacts; 

whereas in Hsc70, there is a prominence of electrostatic interactions. The co-evolution of these 

central residues is in line with the specificity of their interactions in different organisms.  

In the BAG-bound ATPase domain, which assumes a less open conformation between 

the two NEF-bound structures, there still remains a contacting residue pair between the tips of 

subdomains IB and IIB (Arg261---Ala60, see Figure 21c), but this interaction can hardly 

account for the interface between the lobes. On the other hand, Arg342 and Asp366 are both 

conserved and they line the nucleotide binding pocket. Their interactions are crucial for 

maintaining the conformation of the active site. In the Sse1-bound ATPase domain, because 

subdomains IB and IIB have undergone a rotation, Asp232 interacts with Lys227, which implies 

a putative extension of the SCR to subdomain IIB. Similarly, Leu73 extends the SCR to 

subdomain IB. Lys271 and Arg342 are both conserved residues at the active site. 
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4.1.3 Global dynamics of ATPase domain and role of central residues 

As suggested in previous work (del Sol et al., 2006), the central residues generally relate to the 

system fragility; that is, these residues ought to remain "stable" to maintain the biological 

function of the molecule. From the sequence perspective, this requires sequence conservation; 

from the structural dynamics perspective, one might expect to see little variations, if any, in their 

spatial positions. In order to critically examine their dynamical characters, we examined the 

equilibrium dynamics of the ATPase domain using the GNM. We focused in particular on the 

low frequency end of the spectrum of modes, given that these modes are usually highly 

cooperative and relevant to function (Bahar et al., 1998; Bahar and Rader, 2005). We compared 

the centrality profile and the mobility profile resulting from the weighted average of the 10 

slowest modes of the closed-form ATPase domain (Figure 23). Strikingly, the mobility profile 

(which represents the normalized distribution of square fluctuations in residue positions driven 

by these modes) exhibits minima at the peaks of the centrality profile, and vice versa. Minima in 

the mobility profile represent sites that act as hinges (or anchors) in the collective modes. 

Notably, all the central residues coincide with minima (Figure 23a), which is indicative of their 

mediating role in the global motions of the ATPase domain. Arg261 and Arg272 are of particular 

interest: first, their mobility is higher than that of other central residues, suggesting a lower 

energy barrier for them to dissociate from lobe I to facilitate the cleft opening; second, helix 9 as 

the linkage between two most mobile regions of ATPase domain, is implicated in functional 

motions. 

Overall, the centrality profile and the slow modes curve are negatively correlated, which 

can be observed in Figure 23b. Figure 23a indicates the correspondence between the peaks of 

one curve and the valleys of the other, in most cases. In Figure 23b, the residues with high 
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centrality (≥ 0.05) are shown to be characterized with low mobility, except for Asp86 (labeled in 

italic in Figure 23b). Indeed, Asp86 is located in an exposed helix that accounts for the rotation 

of subdomain IB and forms a salt bridge with Arg72, which in turn is one of the shared central 

residues presently identified. It appears that the salt bridge between Asp86 and Arg72 is critical 

to the motion of the exposed helix. On the other hand, the residues with negative centrality are 

usually located at the ends or tips of the structure, consistent with their high mobility. 

 

Figure 23. Comparison of the slowest modes and the centrality profile. 

(a) Mobility profile resulting from the weighted average of the 10 slowest modes and the re-scaled centrality profile 

of the ATPase domain closed form. The centrality profile is re-scaled for visual comparison. The peaks 

corresponding to central residues are labeled, in addition to another outlier, Asp86, distinguished by its high 

mobility. (b) Mobility versus centrality for all residues in the ATPase domain closed form. The points corresponding 

to central residues are labeled. The ordinate and abscissa values are taken from the two curves in panel a, for each 

residue. 
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4.1.4 Summary of different types of central residues  

We can group the central residues into three categories depending on their location on the 

structure and/or their role in the structural dynamics: (i) The hinge point, (ii) bridging point at the 

interface near the cleft (or contact interface), and (iii) stretched linker (or long helix/loop 

stretching out). These three categories are illustrated in Figure 24.  

 

Figure 24. Three scenarios for the central residue‟s location on the structure. 

 

In the first case, the central residues (e.g., SCR) connect two parts, at least one of which 

is highly mobile. These residues mediate the communications between different parts of the 

molecule, and transmit the information necessary for the proper functioning of the molecule. 

Perturbations at these residues are most likely to impede function. These residues are also highly 

conserved and serve as hinge points not only with respect to the two structural elements that are 

directly connected, but in the global dynamics of the entire ATPase domain. In the second case, 

the central residues serve as linkages at the interface between substructures that have intrinsically 

access to alternative (e.g. open and closed) conformations. They act as the “anchoring point” of 

the interface, and can be the determinants of the motions of the moving parts. These residues are 

more exposed to the environment and more tolerant to mutations compared to the first case. Yet, 

their important role is signaled by correlated mutations that take place which presumably aim at 

restoring the key role (that of locking the closed form in this case). For residues in the third 
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category, although we did not observe any such residue in this study, they have been observed in 

other systems. For example, the inter-domain linker between the ATPase domain and SBD of the 

Hsp70 possesses such residues, which evidently play a key role in establishing the allosteric 

communication between the two domains (Swain et al., 2007). 

4.2 PART II: PATHWAYS IN THE TWO-DOMAIN MODEL 

There is no structural data available to date for the intact Hsp70 composed of the two domains, 

ATPase domain and SBD, except for a structure where the two domains are connected by a loose 

linker (ADP-bound state) (Bertelsen et al., 2009). In order to examine the allosteric interactions 

between the two domains of Hsp70, we utilized the homology model of DnaK, the E. coli. 

homolog of Hsp70 (Smock et al., 2010), where the two domains are in close contact (ATP-bound 

state).  This structural model was generated using the conformation of Sse1 (a member of the 

Hsp110 family) (Liu and Hendrickson, 2007; Schuermann JP et al., 2008) as template in 

Modeller (Sali and Blundell, 1993).  The resulting structure, representative of the ATP-bound 

state, is shown in Figure 25b (and Figure 1).  

We also evaluated the sequence conservation and co-evolution properties within the full-

length DnaK. To this aim, a MSA of 2608 sequences (and 601 representative columns/sequence 

positions, corresponding to residues 4-604 in DnaK) was generated by refining the data retrieved 

from Pfam for Hsp70 family members (Pfam id: PF00012, Pfam version 24.0). The acquisition 

of the MSA follows the same protocol and parameters from another study of ours (section 5.1). 

Briefly, the DnaK wild type sequence (Bertelsen et al., 2009) was used to search against the 

Pfam MSA to identify therein a reference sequence with one-to-one residue mapping to the 
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query sequence, then the columns of the MSA corresponding to the reference sequence residues 

were retained to represent the DnaK residues. The MSA was then subjected to further 

refinement, including removal of redundant sequences and those with extensive gaps. A detailed 

description can be found in section 5.1. The conservation profile (information entropy) is 

calculated using equation (28) for each residue (Figure 26). The results based on ET analysis 

(see section 2.3.2) are shown in the Appendix Figure A3. 

As a second step, we performed a GNM analysis. To this aim, we considered the first 530 

residues denoted as DnaK530. The remaining C-terminal portion of the structure has been 

truncated because of its high mobility, which might obscure the collective motions, in accord 

with previous examination of the same model (Smock et al., 2010).  Figure 25a displays the 

global mobility profile based on the weighted average of the m = 10 slowest modes (which 

account for 40% of the overall dynamics). Three major observations are made. First,  the portion 

of the profile corresponding to Hsp70 ATPase domain (residues 4-388 in the examined structure) 

is highly similar to that previously obtained for the Hsp70 ATPase domain alone (Figure 11 in 

Chapter 3). This indicates that this domain maintains its intrinsic dynamic character in the 

Hsp70.  Second, the linker residues 389-392 are located at low mobility regions (indicated by the 

red dots).  The linker region thus serves as a hinge that modulates the concerted motions of the 

two domains. Third, we distinguish three interfacial residues that occupy an important 

mechanical position (hinge-site indicated by the minima of the global mobility profile) in the 

SBD: Thr417, Asp481 and Gly506. These are all clustered at the interface with the ATPase 

domain, presumably playing a role in mediating interdomain interactions (Figure 25b). These 

residues are not conserved, but exhibit high co-evolution tendencies with other functional 

residues, as will be shown below. Interestingly, the loop containing Thr417 has been shown to 
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exhibit a large structural reorientation in an apo form of Hsp70 SBD (Pellecchia et al., 2000), 

suggesting that the observed constrained mobility in the homology model is due to the 

interaction with the ATPase domain. 

 

 

Figure 25. Mobility profile of DnaK530. 

(a) Global mobility profile of DnaK530 plotted as the function of the residue number. The linker and the key 

mechanical residues are marked with red dots. (b) Color-coded ribbon diagram of the DnaK530 based on the extent of 

mobility (red: most mobile; blue: list mobile). The three key interfacial SBD residues, which appear to be highly 

stable (participating in hinge-bending region) are highlighted in yellow sphere representation. Note that the most 

mobile region on the ATPase domain (colored pink-red) is the NEF-binding subdomain IIB, consistent with 

previous observations (Liu et al., 2010). 
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Figure 26. Conservation profile of DnaK residues 4-604. 

 

4.2.1 Sensitivity and influence profiles derived from the PRS matrix  

The PRS analysis (see section 2.2.1) was then performed on DnaK530. Figure 27a shows the 

obtained normalized PRS matrix. Note that the diagonal of the matrix has been set to 0 

(originally all 1) for visual clarity. 

The bar graphs in Figure 27a indicate the average taken along the rows and columns of 

the map. The average value of the i
th

 row of PRSS  is the average response of residue i, 

representing its sensitivity to external forces applied to the structure. Here a numerical technique 

is used to identify peaks on the response profiles: a cubic spline with smoothing parameter 0.1 

(Wahba, 1990) is used to approximate the response profile, on which the stationary points are 

identified. Then the local maxima around these stationary points are considered (within 5 

neighboring sites) as the peaks. In this way 13 such sites are identified among the top 50 highly 

sensitive residues (Figure 27b). These residues tend to be located at three regions of different 
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subdomains/domains: the NEF-binding site (subdomain IIB, colored orange), the substrate 

binding site (colored purple), and four residues close to the interface (subdomain IA, colored 

red). As we shall see in the following sections, many of them exhibit high responses to 

perturbations at the active site and the inter-domain interface. 

 

Figure 27. Results of Perturbation Response Scanning (PRS) analysis. 

(a) Normalized PRS matrix. The bar graph on the right hand side shows the average of each row (sensitivity profile), 

and the one below the map shows the average value along each column of the map (influence profile). In the former 

case the peaks among the 50 top-ranking residues are marked with red dots and labeled, whereas in the latter case 

the 5 most distinguishable peaks are highlighted. The labels of these residues are colored according to the 

subdomain locations shown in Figure 1. (b) Ribbon diagram of DnaK530 with the highly sensitive residues (labeled 

in the same color as in the bar graph in panel a) shown in spheres. (c) Ribbon diagram of DnaK530 with highly 

influential residues (labeled in the same color as in the bar graph in panel a) shown in spheres. 

 

On the other hand, the average value of column j in PRSS  indicates the average response 

of other residues to the perturbations at residue j, reflecting how “influential” residue j is to 

account for the conformational changes of the protein. The obtained results for all residues are 

collectively referred to as the influence profile. Five residues are easily distinguishable in the 
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influence profile: Q248, G292, N432, R467, and G494. These residues tend to be located at the 

exposed loop regions of the molecule (Figure 27c). Among them, R467 has been shown to form 

salt bridge with the α-helical lid (Liebscher and Roujeinikova, 2009) in the ADP-bound state. 

4.2.2 Perturbing the ATP γ-phosphorus atom 

ATP hydrolysis provides the driving potential for cooperative structural transitions in many 

allosteric proteins. Toward a mechanistic understanding of the effect of structural changes at the 

ATP-binding site, on the collective dynamics of Hsp70, we adopted a recently introduced 

methodology, PRS, and examined the response of the molecule to perturbations introduced at the 

γ-phosphate group of ATP. ATP was placed in the active site of the homology model by 

structural alignment against the ATP-bound Hsc70 structure resolved by McKay and coworkers 

(PDB id: 1NGF, (Flaherty et al., 1994)). In the present coarse-grained (ANM) representation of 

the structure, a node was identified with the position of the γ-phosphorus atom; other ATP atoms 

included in the network as additional nodes were two carbon atoms, C4‟ and C2, and the α- and 

β-phosphorus atoms. 

The bar graph in Figure 28a shows the response profile generated upon perturbing the γ-

phosphorus atom on the ATP bound to the Hsp70 ATPase domain, denoted as an N-dimensional 

array, <║∆R
(γ)

║2>norm. The residues that exhibit high responses to the perturbation, shortly referred 

to as high-susceptibility (HS) sites, tend to form clusters composed of 5-10 sequential residues. 

We identified the top-ranking HSs in the computed <║∆R
(γ)

║2>norm profile (some of which are 

labeled in the panels a and displayed by the same color sphere representation in label b). We note 

these residues are distributed across all subdomains, indicating the multiple directions in which 

the perturbation propagates. Notably, the residues close to the active site exhibit strongest 
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responses, such as Pro143, Glu171, Thr199, and Thr12. Both Pro143 and Glu171 have been 

shown to play an important role in relaying the activity at the nucleotide binding pocket to the 

SBD (Vogel et al., 2006a), and Glu171 is close to the interfacial residue Asp481 distinguished 

above to occupy a key position at the interface between the two domains (Figure 25).  

Two residues in the Hsp70 ATPase domain subdomain IIB (Leu283 and Met296), on the 

other hand, exhibit distant, yet strong, responses to the perturbation. Both of these residues are 

located at the tip of a β-hairpin involved in NEF recognition (Figure 28b). As shown in Figure 

25b, this region also enjoys an enhanced mobility in the global modes. The strong response of 

this region to perturbations at the ATP-binding site suggests that the ATP hydrolysis is 

exploiting the intrinsic high mobility of this region to regulate its interaction with NEFs. In our 

previous work, we have shown that NEFs interact primarily with the subdomain IIB, and lock 

this subdomain in an open conformer to facilitate nucleotide exchange (Liu et al., 2010). The 

current observation complements our previous findings by suggesting an effective two-way 

signal transduction mechanism between the NEF- and nucleotide-binding sites. 

The inset diagram in Figure 28a displays the mapping of the response profile 

<║∆R
(γ)

║2>norm onto the 3D structure. The dynamical coupling between the two functional sites, 

ATP-binding and NEF-binding, is clearly seen.  The examination of the figure suggests that the 

strong response of the NEF-binding site is due to the mediating role of the long helix 8 on the 

ATPase domain. It can also be seen that the perturbation propagates toward the interdomain 

interface, including the regions in contact with both the α-helical lid and β-sandwich on the SBD. 
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Figure 28.  Responses to perturbation at the γ-phosphorus atom of the ATP. 

(a) Response profile obtained upon perturbing the γ-phosphorus of the ATP (<║∆R
(γ)

║
2
>norm). The highly 

susceptible sites (HSs) are labeled; the labels are colored according to their subdomain location on the ATPase 

domain, as shown in the colored bar above (also in Figure 9). The inset diagram is color-coded according to 

<║∆R
(γ)

║
2
>norm, and the red sphere represents the atom being perturbed. (b) Ribbon diagram highlighting the HS 

residues. The HS residues labeled in panel (a) are shown in spheres and colored according to their subdomain 

location in the ATPase domain and SBD. The ATP molecule is shown in stick representation and colored yellow. 

The force exerted on the ATP is illustrated by the encircled diagram. 

 

4.2.3 Perturbing the interfacial residues between the two ATPase and SBD domains of 

Hsp70 

Next, we perturbed the three interfacial key mechanical residues identified above (Figure 25), 

and the interdomain linker, and examined the resulting response profiles. We begin with Val389 

at the inter-domain linker. The resulting profile is shown in Figure 29. Note that the bars 
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corresponding to the perturbed residue and three sequential neighbor on both sides (residues 386-

392) are not shown in the figure for visual clarity as their high response is trivial (see Appendix 

Figure A4), and would obscure the cooperative response of the overall molecule. The HS 

residues that emerge in response to Val389 perturbation are mainly located at five regions on the 

structure, three in the ATPase domain, and two in the SBD, as displayed in Figure 29b. These 

regions are: (i) the hydrophobic pocket adjacent to the linker in the ATP-bound state (Ile174, 

Leu181, Ile205, Ile215, and Val377 in subdomains IA and IIA; colored green and red); (ii) the 

close neighborhood of the nucleotide-binding site  (Ile5, Ile18, and Arg25 ; colored red); (iii) a 

distal site centered at Glu306 (orange) at the interface between subdomains IIA and IIB; (iv) the 

close neighborhood of the interdomain global hinge site on the SBD (Asp393, Ile418, and 

Ala480; colored purple); and (v) another distal region, this time on the SBD, located at the 

exposed end of the SBD β-barrel (Phe426, Ile462, and Ile472; colored purple).  

 

 

Figure 29. Responses to perturbation at the linker residue Val389. 
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(a) Response profile of perturbing Val389 (<║∆R
(389)

║
2
>norm). Peaks highlight the HS residues in the presence of 

this perturbation. Labels are colored according to the subdomains in which the labeled residues participate. The inset 

ribbon diagram is color-coded in the order of decreasing response <║∆R
(389)

║
2
>norm, from red to blue. (b) Location 

of five clusters of HS residues. The HS residues are shown in sphere representation and colored according to their 

subdomain. Val389 is shown in yellow spheres, and the ATP molecule is shown in yellow stick representation. 

 

The residues in the groups (i) and (iv) appear to act as sensors that detect the perturbation 

and initiate its propagation toward the nucleotide binding site (cluster (ii)), and even to distal 

regions on the ATPase domain and SBD (clusters (iii) and (v)). Note that the cluster (ii) that 

comprises several residues at the ATP-binding site serves as an efficient effector for transmitting 

signals, given its tight packing properties complemented by highly specific interactions. Indeed, 

the coupling between the linker-neighboring site and the nucleotide-binding site has been noted 

in previous studies (Swain et al., 2007; Zhuravleva and Gierasch, 2011). Figure 29b suggests 

that the Glu306, located near helix 10, presumably plays a mediating role between the linker site 

and the subdomain IIB.  

The linker thus transmits signals to both domains, and even to the distal regions in these 

domains, if subjected to an external perturbation. As we will see in Figure 30, the cluster (v) is 

highly sensitive to perturbations at other key mechanical residues as well. Note that our response 

profiles have been normalized with respect to the equilibrium MSFs of residues. As such, they 

essentially reflect the changes in fluctuations elicited in response to perturbations. Like their 

counterpart at the NEF-binding site (Leu283 and Met296 in Figure 28), the distal residues, 

Phe426, Ile462, and Ile472, on the SBD may potentially serve as recognition/binding site for the 

substrate. Previous work has shown that mutations at F426 and I462 reduce the substrate-binding 

affinity, and in particular mutation at I462 can impair the DnaK function in vivo (Davis et al., 
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1999; Montgomery et al., 1999). Their functional relevance to substrate binding is also supported 

by their high conservation. 

Figure 30 shows the ribbon diagrams of the Hsp70 colored-coded by the responses 

profiles triggered upon perturbing the three key interfacial residues on the SBD, Thr417, Asp481 

and Gly506. Panels a and b indicate that <║∆R
(417)

║
2
>norm and <║∆R

(481)
║

2
>norm exhibit 

similarities, while <║∆R
(506)

║
2
>norm presents new features.  

 

Figure 30. Responses to perturbation at key mechanical residues. 

The ribbon diagram is color-coded according to the response profile of perturbing (a) Thr417, (b) Asp481, and (c) 

Gly506. In each diagram the residue being perturbed is shown in spheres and colored in red. The scale of the heat 

map is shown between panels b and c. The ATP molecule is shown in yellow sticks in all panels. 

 

Let us first examine more closely <║∆R
(417)

║
2
>norm and <║∆R

(481)
║

2
>norm. Their SBD 

profile is similar to that observed for <║∆R
(389)

║
2
>norm, and the linker-binding pocket and helix 

10 again appear to be involved in mediating the interactions between subdomain IIB and the 

inter-domain interface.  On the other hand, we note that the perturbation of Thr417 causes 

significant response from both the linker and Asp481, whereas perturbing Asp481 induces most 

significant response from Arg167 on the ATPase domain, close to the core region of this domain 

(see Figures 31 and 32). Therefore, Asp481 displays a more direct communication with the 
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nucleotide binding pocket. We note in particular that three charged residues R167, K155 and 

D393 appear to act as sensors via electrostatic interactions (Figure 32a) and R167 closely 

interacts with Q378, which, together with Val139 apparently serve as effectors for signal 

transduction. 

Previous studies invited attention to the involvement of exposed conserved, polar and 

charged residues in substrate binding  (Hu et al., 2000; Ma et al., 2003).  Our previous work 

suggests that while coordinating residues at substrate binding site are usually conserved, those at 

„recognition‟ sites may (and are apparently functionally required to) undergo correlated 

mutations to maintain a balance between substrate specificity and structural adaptability (Liu and 

Bahar, 2011).  The propenderance of co-evolving amino acids in the subdomain IIB of Hsp70 

ATPase domain was indeed attributed to the adaptability to specific NEF recognition (Liu et al., 

2010). In the same way, it is of interest to examine the sequence conservation, or co-evolution, 

properties of amino acids that emerge here as highly susceptible sites. Indeed, the residues within 

the neighborhood of Asp481 on the ATPase domain is populated with highly conserved 

polar/charged residues (see Figure 32b), suggesting a functional role in establishing interdomain 

communication. As will be further elaborated in the next subsection, the residues that serve as 

sensors and effectors exhibit distinctive co-evolutionary properties as well, in support of their 

role in facilitating the allosteric response of Hsp70. 
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Figure 31. Responses to perturbation at residue Asp481. 

(a) Response profile of perturbing Asp481 (<║∆R
(481)

║
2
>norm). Peaks highlight the HS residues in the presence of 

this perturbation. Labels are colored according to the subdomains in which the labeled residues participate. The inset 

ribbon diagram is color-coded in the order of decreasing response <║∆R
(481)

║
2
>norm, from red to blue. (b) Ribbon 

diagram highlighting the HS residues. The HS residues are shown in sphere representation and colored according to 

their subdomain location in the ATPase domain and SBD, and the ATP molecule is shown in yellow stick 

representation. 
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Figure 32. Interactions between the high-susceptibility (HS) residues identified upon perturbing 

Asp481. 

(a) Stick diagram illustrates the HS residues acting as sensors of perturbation in the neighborhood of Asp481 labeled 

in Figure 31a, along with Thr417.  The inter-residue interactions are shown as dashed line with distance measure. 

The ATP is shown in yellow stick representation. The background ribbon diagram of DnaK530 is color-coded by 

<║∆R
(481)

║
2
>norm. (b) Sequence logo plots describing the conservation level of these HS residues. The height of the 

entire column indicates the level of conservation of the residue, and the size of individual symbols indicates the 

relative frequency of the corresponding amino acid type(s). 

 

The perturbation of Gly506 yields a different pattern of responses as shown in Figure 

30c. The most strongly responding structural element is helix 6 (residues Asn147-Ala161) in the 

ATPase domain. Notably, helix 6 also responds strongly to events at the ATP binding site 

(Figure 28a). In addition, the α-helical lid on the SBD exhibits a strong response, suggesting the 

perturbation at Gly506 may also affect its docking onto the ATPase domain. It is worth noting 

that although the α-helical lid makes contribution to the allosteric interactions (Moro et al., 
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2003), the allosteric communication can be retained in its absence (Pellecchia et al., 2000), 

which may explain the less prominent response compared to the other HS sites. However, 

previous studies have noted that there is a dynamical coupling between the α-helical lid and the 

inter-domain linker (Liebscher and Roujeinikova, 2009). It is also interesting to note that the 

subdomain IIB again shows a detectable response, despite its spatial distance.  Overall 

perturbation of G506 appears to elicit a more cooperative and stronger response, compared to the 

other two key mechanical residues (see Appendix Figures A5 and A6).  

 

 

Figure 33. Interactions between the high-susceptibility (HS) residues identified upon perturbing 

G506. 

Stick diagram illustrates the HS residues acting as sensors of perturbation in the neighborhood of G506 labeled in 

Appendix Figure A6. The inter-residue interactions are shown as dashed line with distance measure. The ATP is 
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shown in yellow stick representation. The background ribbon diagram of DnaK530 is color-coded by 

<║∆R
(506)

║
2
>norm.  

4.2.4 Sequence co-evolution analysis 

The analysis of Hsp70 MSAs suggests the involvement of co-evolving residues, in addition to 

those pointed out above to be highly conserved, in establishing inter-domain allosteric 

interactions (Figure 32).  Our approach has been to evaluate the MI maps using equation (29), 

applied to the same MSA obtained for calculating the conservation profile. While the resulting 

MI map (shown in Appendix Figure A7) appears to be highly diffuse, the pairs of amino acids 

which have undergone correlated mutations are easily distinguished by focusing on portions of 

the MI map. For instance, Figure 34 displays the inter-domain portion of the MI map. Figure 35 

and Table 5 give an overview of highly co-evolving residue pairs across the two domains. Of 

particular interest is the distinctive co-evolutionary propensities of residues 503-505 which are 

adjacent to the key mechanical residue G506. 
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Figure 34. Cross-domain portion of the DnaK MI map. 

The bar graphs at the bottom and right hand side of the MI map correspond to the average MI values I(i) calculated 

along the columns and rows of the current MI map, respectively. 

 

Figure 35. Residues contributing to the top-ranking interdomain I(i, j). 
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The ribbon diagram of DnaK is color-coded by the average MI value <I(i)>, increasingly from blue to red. The 

residues contributing to the top 20 inter-domain I(i, j) pairs are shown in spheres and labeled. 

 

 

 

 

Table 5. Top-ranking 100 pairs inter-domain co-evolving amino acids* in DnaK. 

residue pair (i, j) I(i,j) residue pair (i, j) I(i,j) residue pair (i, j) I(i,j) 

Glu206-Ser505 0.817 Ile39-Ser505 0.678 Asp289-Ser504 0.645 

Asp100-Ser505 0.811 Glu272-Ser505 0.677 Glu206-Ala448 0.645 

Asp100-Ser504 0.766 Asp33-Ser505 0.675 Glu272-Met404 0.644 

Asp100-Ala503 0.761 Lys294-Ser505 0.674 Ile298-Met404 0.643 

Leu257-Ala503 0.759 Ile373-Ser505 0.672 Asn297-Phe529 0.643 

Asp100-Met404 0.756 Val313-Met404 0.672 Val59-Ser505 0.643 

Glu264-Met404 0.750 Arg56-Ser505 0.670 Asn297-Ala503 0.642 

Leu257-Ser505 0.744 Ala68-Ser505 0.669 Ala276-Ser505 0.642 

Leu257-Met404 0.724 Ile39-Met404 0.667 Ala68-Ala503 0.641 

Asp289-Ser505 0.723 Gln277-Lys452 0.667 Arg25-Ala503 0.641 

Glu206-Lys452 0.722 Lys294-Met404 0.666 Asp100-Ala448 0.641 

Glu264-Ser505 0.721 Tyr285-Lys452 0.665 Ile373-Met404 0.641 

Ile286-Ser505 0.721 Asp100-Lys597 0.663 Asp100-Ala575 0.640 

His295-Ser505 0.715 Gln277-Ser505 0.662 Ile373-Lys452 0.640 

Asn297-Met404 0.715 Asp289-Lys452 0.662 Val309-Met404 0.638 

Ile286-Met404 0.711 His295-Lys452 0.661 Glu206-Ala571 0.638 

Asp100-Lys452 0.708 Asp100-Leu532 0.660 Met89-Ser505 0.637 

Pro284-Ser505 0.701 Glu272-Lys452 0.657 Asp20-Phe529 0.637 

Glu264-Lys452 0.698 Asp100-Ala571 0.657 Thr189-Ser505 0.635 

Ala288-Met404 0.698 Ala68-Met404 0.656 Glu206-Ser504 0.635 

Glu206-Met404 0.695 His295-Ala503 0.655 Leu257-Ala448 0.634 

Ala288-Ser505 0.695 Asp20-Ser505 0.654 Ala288-Ala503 0.634 

Asp289-Met404 0.693 Ile39-Lys452 0.653 Ile271-Ala503 0.633 

Ile286-Lys452 0.690 Arg25-Ser505 0.653 Met19-Met404 0.632 

Leu257-Ser504 0.688 Pro284-Lys452 0.652 Asp208-Ala553 0.631 

Pro113-Ser505 0.688 Asn297-Ser504 0.652 His295-Met404 0.630 

Glu206-Ala503 0.684 Gly21-Ser505 0.650 Glu31-Ser505 0.630 

Asp100-Ala553 0.683 Ala30-Ser505 0.649 Trp102-Ser505 0.629 

Met89-Met404 0.683 Asn297-Ser505 0.647 Ile286-Ala503 0.629 

Asp289-Ala503 0.680 Ile271-Met404 0.647 Trp102-Phe529 0.629 

Leu257-Lys452 0.679 Ile271-Lys452 0.647 Ile88-Met404 0.626 

Tyr285-Ser505 0.679 Thr189-Met404 0.647 Arg56-Lys452 0.625 

Ile271-Ser505 0.678 Asp100-Thr437 0.646 Val281-Lys452 0.623 

    Met89-Lys452 0.623 

(*) The rank is based on I(i, j) values (see Figure 34) 
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Examination of the positions and conformations of these pairs in the Hsp70 structural 

model helps us rationalize these correlations among sequentially distant amino acids on the basis 

of close tertiary contacts.  These contacts are proposed to potentially underlie the close coupling 

of the two domains.  In particular, the linker residues are found to be highly co-evolving with 

residues from both domains (Figure 36). At the ATPase domain side, Val389 appears to co-

evolve with Leu177, one of the hydrophobic residues at the linker-binding pocket. Leu177 

position, in turn, is highly correlated with that of Ile373 at the pocket adjacent to the linker. 

Interestingly, both Leu177 and Ile373 have been experimentally shown to be highly sensitive to 

domain binding (Swain et al., 2007). Their co-evolution may thus be explained by their close 

hydrophobic interactions. In the core region of the ATPase domain, the sequence evolution at the 

position of Ile373 is found to be highly correlated with those of Asn13, Ala17, and Met19 on one 

of the β-hairpin loops that participates in the nucleotide-binding pocket. Closer examination of 

the correlated substitutions shows that these sites (except for Asn13) retain their hydrophobic 

character despite the mutations. They essentially form the hydrophobic core of the ATPase 

domain. Leu177, Ile373 and the linker are involved in transmitting signals upon J-domain 

protein binding (Jiang et al., 2007). Their sequential and spatial proximity to the HS residues of 

<║∆R
(389)

║
2
>norm (e.g., to the highly conserved I174 and intermediately conserved V377) 

suggests a mechanism of allosteric mediation in which these co-evolving residues are implicated. 
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Figure 36. Highly co-evolving residues between the nucleotide-binding site and the substrate binding 

site, mediated by the inter-domain linker and the key mechanical residue Thr417.  

The ribbon diagram on the left displays the highly co-evolving residues in orange spheres, except the linker residues 

Val389 and Leu392 that are colored red. The co-evolving pairs of amino acids and their relative positions are shown 

by stick representation. Notably, they form an interdomain communication path. The inter-residue interactions are 

shown as dashed line with corresponding closest inter-atomic distances. The panels display the regions of the MI 

matrix corresponding to the identified highly co-evolving residue pairs. The pairs illustrated are marked with red 

circles and connected to the corresponding dashed line with red arrows.  
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Figure 37. Critical secondary structural contacts at the boundary of the α-helical lid and β-sandwich 

involve highly co-evolving residues. 

The highly co-evolving residues (see Figure 36) are shown in stick representation and labeled. The ribbon diagram 

in the background is the β-sandwich.  

 

At the SBD side, we notice the strong co-evolution between the linker residue Leu392 and key 

mechanical residue Thr417. These residues were both identified in the sector that mediates inter-

domain interactions (Smock et al., 2010). We also notice a number of charged residues across the 

β-sandwich, namely, Lys421, Asp477, and His485. These residues show relatively weaker 

response to the interfacial perturbation compared to the exposed end of the SBD β-barrel (Figure 

30), which may be attributed to their high conformational flexibility/adaptability. But they 

appear to be instrumental in transmitting the signals to Ser504 (across the β-strands β3, β6, and 

β7, see Figure 36). These residues are located along the loci of the key mechanical residues and 

obviously Ser504/Ser505 is bonded to Gly506. Perturbation of Lys421 is thus expected to induce 

a strong response as indicated by the Appendix Figure A8 for <║∆R
(421)

║
2
>norm. The connection 
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between the α-helical lid and the β-strand leading to the substrate binding site is manifested by 

the closely interacting (and highly co-evolving) residue pair Ser504 and Gln456, along with 

several other highly co-evolving residues on the secondary structure β5 (Figure 37). 

4.2.5 Summary 

In the present work, we investigated the allosteric signal propagation mechanisms within the 

Hsp70 through physics-based perturbation analysis combined with sequence co-evolution 

analysis. Our computational strategy relies little on the side chain orientation of residues, and is 

therefore insensitive to possible inaccuracies in atomic positions, justifying the use of the 

homology model. Several key mechanical residues at the interdomain interface as well as the 

linker are shown to have restricted mobility, suggesting their important role in serving as a hinge 

center in for the concerted motions of the two domains of Hsp70 in the ATP-bound state. 

Physical perturbations of these residues‟ coordinates revealed the highly susceptible sites and 

probable patterns of signal propagation via perturbations of co-evolving residue pair contacts.  

Our results point to a number of key residues on the ATPase domain that propagate the 

interfacial perturbation to the nucleotide binding site. Sequence analysis also indicates specific 

interactions in this region. Certain secondary structure elements are found to mediate distant 

communications in the ATPase domain. For instance, helix 10 couples subdomains IA and IIB 

(Figure 30a and 30b), and helix 8 in subdomain IIB mediates the coupling of the nucleotide 

binding site to NEF-binding site, indicated by the results obtained for perturbing the γ-phosphate 

(Figure 28).  

In the SBD, it is interesting to observe that the interfacial perturbation propagates all the 

way to the exposed end of the β-barrel despite the relatively weaker responses of the β-strands. 
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Sequence co-evolution patterns among residues participating in the β-sheet disclose close 

interactions which may be important to maintaining the long-range coupling. These secondary 

structure elements (the loop connecting the α-helical lid and the β-sandwich, and the strands β3, 

β5-β7 in the β-sandwich) are not particularly flexible, presumably due to the need to stabilize the 

conformation of the molecule; yet their small displacement may induce effects on distal regions 

that are less constrained, as observed here at the exposed end of the SBD.  
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5.0  SEQUENCE EVOLUTION CORRELATES WITH STRUCTURAL DYNAMICS 

The role of structural dynamics in enabling protein function has been underlined in recent work 

(Bhabha et al., 2011). In some cases, dynamics is manifested by large-scale collective motions of 

intact substructures. Examples are the opening/closing of domains around a catalytic cleft, or the 

allosteric switches that cooperatively engage multiple subunits in multimeric structures. Many 

enzymes and molecular machines such as the bacterial chaperonin or the ribosome undergo such 

concerted motions triggered by substrate binding (Tama and Brooks, 2006; Yang et al., 2009; 

Bahar et al., 2010). These are usually referred to as global motions due to their collective nature. 

In other cases, the motions are local, e.g., rearrangements of recognition loops or rotational 

isomerizations of side chains. 

Global motions are predominantly encoded by the architecture of the protein. Models 

based exclusively on native contact topology, such as ENMs, have proven to closely reproduce 

the structural variabilities observed in experiments for proteins resolved in multiple substrate-

bound forms (Bakan and Bahar, 2009; Bahar et al., 2010). The fact that these motions are 

uniquely and robustly defined by the architecture, suggests that native folds may have evolved to 

favor functional motions. This also suggests that there are key mechanical sites that control the 

global movements while preserving the stability of the fold. To date, no systematic study of the 

evolutionary conservation properties of amino acids in relation to the structure-encoded 

dynamics of proteins has been performed to our knowledge. 



 100 

Local motions, on the other hand, may facilitate the recognition of substrates, optimize 

binding interactions, usually complementing global motions (e.g., domain closure) or 

accompanying structure formation upon substrate binding (Wright and Dyson, 2009). Substrate 

recognition sites tend to exhibit suitable sequence variations so as to enable specific recognition 

(Liu et al., 2010); and at the same time, they may enjoy structural flexibility, consistent with 

conformational adaptability required for mediating substrate specificity (James et al., 2003). In 

contrast, conserved residues are highly ordered, as evidenced by NMR relaxation experiments 

(Mittermaier et al., 2003). Our examination of the collective dynamics of catalytic sites (Yang 

and Bahar, 2005) and metal-binding proteins (Dutta and Bahar, 2010) also showed that residues 

involved in biochemical activities exhibit minimal fluctuations. 

All these observations suggest that sequence variability and structural dynamics go hand 

in hand, i.e., the need to sample functional motions may underlie the evolutionary selection of 

amino acids that encode the „proper‟ fold which lends itself to those required motions as its 

softest modes of conformational change naturally accessible under physiological conditions. Yet, 

the prevalence of such a relationship remains to be analytically investigated and established.  

In the present study, we present the results from the analysis of 34 enzymes that represent 

a diversity of protein families, functional classes and sizes (Table 6). For each enzyme, we 

determined the relative mobility each residue enjoys in the collective dynamics, on the one hand, 

and the amino acid conservation or correlated mutation propensities at the corresponding 

sequence position, on the other. Our analysis shows that (i) conserved residues have minimal 

fluctuations in the global modes, their high stability being a prerequisite for their precise 

functioning, (ii) increase in sequence variability is accompanied with increase in conformational 

mobility, this feature being most distinctive at intermediate levels of conservation/mobility 
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typical of co-evolving pairs of amino acids, (iii) the co-evolving residues fall into two groups: 

those at highly flexible/mobile regions in the global modes, involved in substrate recognition; 

and those in the close neighborhood of catalytic or ligand-binding sites assist in stabilizing the 

ligands and/or transmitting signals from/to the active site, (iv) it is possible to define an intrinsic 

mobility scale for the twenty types of amino acids, which is inversely proportional to the 

conservation propensity of amino acids, and may be utilized for customizing protein dynamics. 

5.1 OVERVIEW OF THE PROCEDURE 

Figure 38 illustrates the method of approach. We adopted a two-pronged analysis for each 

enzyme: (i) perform a GNM analysis of collective dynamics using the PDB structure, and (ii) 

analyze the residue conservation and co-evolution properties using the MSA retrieved from the 

Pfam DB. 
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Figure 38. Workflow of the study of 34 enzymes.  

For each query enzyme in the dataset, we retrieve the structure from the PDB and the MSA from Pfam DB. These 

are used as input for (1) GNM evaluation of residue mobilities (right branch), and (2) generation of conservation 

profile and co-evolution (MI) maps (left branch), respectively. Comparison of the outputs indicates that sequence 

entropy is accompanied by conformational mobility (enhanced dynamics), correlated mutations exhibit a broad 

range of mobilities depending on the type of underlying evolutionary pressure, and conserved sites are practically 

immobile. Results are consolidated by compiling the results for all 34 studied enzymes. 

 

The dataset used in a previous study (Zen et al., 2008) was adopted as starting point. This 

dataset contained 76 enzymes with a broad range of functions. Among them, we focused on the 

monomeric X-ray structures that contained at least 120 structurally resolved residues in the PDB. 
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For each enzyme, the MSA for the corresponding protein family in the Pfam DB was retrieved, 

and further refined using the following procedure: 

(1) iteratively align the primary sequence from the PDB structure (of the query enzyme) with 

each sequence in the MSA using the Smith-Waterman algorithm (Smith and Waterman, 

1981), and identify a matched sequence with the highest score. If the matched sequence 

has less than 95% sequence identity with respect to the PDB sequence, it is discarded 

from the dataset since the PDB sequence is not well represented in the MSA. 

(2) based on the residue mapping between the PDB sequence and the matched sequence, 

truncate the columns of the MSA so as to retain those in the PDB sequence. 

(3) remove the redundant sequences in the refined MSA using a threshold of 99%, and 

eliminate the sequences that have more than 20% gaps. 

The procedure described above corresponds to steps 3 and 4 in Figure 38, and yielded 34 

proteins that formed our final dataset (see Table 6). The numbers of rows (sequences) and 

columns (residues) in each refined MSA are also presented in Table 6. 

The GNM analysis yields a mobility profile for each enzyme. The mobility profile 

obtained with the contribution of all modes scales with the MSFs of residues. N-1 GNM modes 

of motion contribute to MSFs for an enzyme of N residues. Among them, the low frequency 

modes, also called the soft modes or global modes, play a dominant role in defining the most 

cooperative events. We examined the contribution made by these modes to MSFs. To this aim, 

we considered subsets of m1 and m2 modes at the low frequency end of the mode spectrum, which 

make fractional contributions of 0.1, and 0.4, respectively, to collective dynamics (Table 7). 

The MSAs are utilized to generate the conservation profile as a function of residue index, 

and the correlated mutation maps for each pair of residues. The level of conservation is 
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expressed by the Shannon information entropy S(i) for each sequence position i; and the co-

evolutionary propensities are evaluated using the mutual information (MI) theory (Dunn et al., 

2008; Liu et al., 2010). Comparison of mobility profiles and conservation/co-evolution trends for 

each enzyme, consolidated over the entire dataset, discloses three different classes of residues 

based on their mobility/evolution behavior. Conserved residues distinguished by S(i) values 

below a threshold undergo minimal changes in their positions in the 3D structure. Conversely, 

the sites that exhibit uncorrelated variations in their amino acid identity display enhanced 

mobilities, although the extent of mobility broadly varies. In the intermediate regime, which 

includes the majority of co-evolving residues, there is a linear increase in mobility with 

increasing sequence entropy. These results highlight the importance of structural adaptability in 

sustaining the functional dynamics of the enzyme notwithstanding sequence variations that 

confer specificity. 
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Table 6. Dataset of 34 enzymes, their Protein Data Bank (PDB) and Pfam identifiers, and the 

properties of MSAs
 

 

   PDB id protein name and reference 
# of matched 

residues (range) a 
Pfam id  

# of seqs 

in MSA 

EC code 

(Webb, 

1992) 

1.3cd2 dihydrofolate reductase 199 (6-204) PF00186 91 1.5.1.3 

2. 1k03 nadph dehydrogenase 1  353 (15-367) PF00724 2712 1.6.99.1 

3. 1fp9 4-α-glucanotransferase 487 (11-497) PF02446 642 2.4.1.25 

4. 1ajz dihydropteroate synthase 206 (20-225) PF00809 1930 2.5.1.15 

5. 1u32 Ser/Thr prot phosphatase 1, γ catalytic 

subunit  

196 (57-252) PF00149 3658 3.1.3.16 

6. 2f6f Tyr protein phosphatase, non-receptor 

type1  

237 (40-276) PF00102 1157 3.1.3.48 

7. 2ffz phospholipase C  241 (1-241) PF00882 80 3.1.4.3 

8. 1ako exonuclease III  266 (1-266) PF03372 4019 3.1.11.2 

9. 1vas T4 endonuclease V 135 (2-136) PF03013 39 3.1.25.1 

10. 1goc ribonuclease H  141 (2-143)b PF00075 4172 3.1.26.4 

11. 1bol ribonuclease Rh 206 (1-206) PF00445 96 3.1.27.1 

12. 1k2a eosinophil-derived neurotoxin  130 (5-134) PF00074 328 3.1.27.5 

13. 1kab staphylococcal nuclease 109 (33-141) PF00565 1057 3.1.31.1 

14. 1b1y β-amylase 423 (13-435) PF01373 133 3.2.1.2 

15. 2fba glucoamylase GLU1 457 (27-483) PF00723 191 3.2.1.3 

16. 3eng endoglucanase V cellobiose complex 199 (2-200) PF02015 81 3.2.1.4 

17. 1bhe polygalacturonase 341 (36-376) PF00295 607 3.2.1.15 

18. 2ayh 1,3-1,4-β-d-glucan 4-glucanohydrolase 185 (26-210) PF00722 1061 3.2.1.73 

19. 1dy4 cellobiohydrolase I 431 (2-432) PF00840 170 3.2.1.91 

20.4sknc uracil-DNA glycosylase 162(131-292) PF03167 1599 3.2.2.3 

21. 8cpa carboxypeptidase A  279 (18-296) PF00246 854 3.4.17.1 

22. 3pbh procathepsin B  250 (1-250) PF00112 1970 3.4.22.1 

23. 1avp adenoviral proteinase  183 (20-202) PF00770 43 3.4.22.39 

24. 1qjj astacin  192 (8-199) PF01400 590 3.4.24.21 

25. 1f82 botulinum neurotoxin type B  416 (2-417) PF01742 50 3.4.24.69 

26. 1lba T7 lysozyme 128 (6-133) PF01510 1685 3.5.1.28 

27. 1lqy peptide deformylase 2 170 (4-173) PF01327 1581 3.5.1.88 

28. 1ko3 VIM-2 metallo-β-lactamase 179 (62-240) PF00753 8255 3.5.2.6 

29. 1rgy β-lactamase  350 (12-361) PF00144 2742 3.5.2.6 

30. 2had haloalkane dehalogenase 231 (75-305) PF00561 8679 3.8.1.5 

31. 1v9i carbonic anhydrase II  254 (6-259) PF00194 618 4.2.1.1 

32. 1vbl pectate Lyase 220(111-330) PF00544 362 4.2.2.2 

33. 2plc phosphatidylinositol-specific 

phospholipase C 

140 (39-178) PF00388 568 4.6.1.13 

34. 1h0p peptidyl-prolyl cis-trans isomerase 5  158 (31-188) PF00160 3594 5.2.1.8 

a. The residue range corresponds to the residues in the PDB file that were aligned with the matched sequence in the 

MSA. 

b. Residue 81 of 1goc was not present in the matched sequence; therefore the number of residues is 141 instead of 

142.  

c. Here and in the following tables, the entries for the example enzyme (see Figures 38 and 40) are highlighted to 

let the reader easily locate the corresponding data.  
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Table 7. Number of GNM modes included in generating the mobility profiles for the 34 enzymes 

PDB 

id 

Number of modes
(a)

 
PDB id 

Number of modes
(b)

 

m1  m2 N-1 
(b)

 m1 m2 N-1 
3cd2 1 9 205 2ayh 2 13 213 

1k03 2 20 398 1dy4 2 23 432 

1fp9 2 18 499 4skn 1 11 222 

1ajz 2 14 281 8cpa 2 16 306 

1u32 2 15 292 3pbh 2 15 254 

2f6f 2 13 301 1avp 1 12 214 

2ffz 1 12 244 1qjj 1 10 202 

1ako 2 13 267 1f82 2 16 423 

1vas 1 6 136 1lba 1 7 145 

1goc 1 7 155 1lqy 1 11 183 

1bol 1 11 221 1ko3 2 14 229 

1k2a 1 8 135 1rgy 2 15 359 

1kab 2 10 135 2had 2 16 309 

1b1y 2 23 499 1v9i 2 16 260 

2fba 2 21 491 1vbl 1 19 415 

3eng 2 15 212 2plc 2 17 273 

1bhe 2 21 375 1h0p 2 15 181 
(a)

 m1, m2 refer to the subset of modes that account for 10% and 40%, respectively of the 

overall dynamics. 
(b)

 N is the number of residues in the PDB file
 

 

5.2 SEQUENCE ENTROPY VS. CONFORMATIONAL MOBILITY 

5.2.1 An illustrative example 

Some of the basic steps and outcomes are illustrated for a DNA repair enzyme, uracil-DNA 

glycosylase (UDG), in Figure 39. Panel a displays the mobility profiles based on m1, m2 and N-1 

GNM modes. In UDG, m1 = 1, i.e., the softest mode alone accounts for >10% of the dynamics 

(see highlighted entry in Table 6). <Mi>|m1 shows the distribution of square displacements of 

residues in this softest mode. <Mi >|N-1 scales with the MSF profile of residues, and contains 

contributions from both global and local motions; yet the shape of the curve is dominated by 
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slow/soft modes as the close resemblance to <Mi >|m2 reveals. The gray bars in Figure 39a 

represent the Shannon entropy profile. Peaks represent the most variable sites, and minima, the 

most conserved. Notably, mobility and entropy distributions exhibit similarities, as also 

evidenced by the color-coded ribbon diagrams displayed in panel b.  

The relation between sequence variations and structural dynamics at the level of 

individual residues is clearly seen by evaluating the effective mobilities based on entropy bins of 

∆S = 0.1 and compiling the results for all enzymes in our database. To allow for the compilation 

and combined analysis of the results for all enzymes, the entropy and mobility profiles of 

residues in each enzyme have been normalized to represent probabilistic distributions, and then 

uniformly rescaled by the number of residues in that particular enzyme. This way we eliminate 

the dependence of the resulting mobility/conservation profiles on the size of the proteins. We 

have further evaluated effective properties using a grid-based mapping scheme. The basic idea 

therein is to cluster residues with similar entropy (using bin sizes of ∆S = 0.1) and assign an 

average mobility to each bin. The resulting <Mi
eff 

>|N-1 values yielded a correlation of 0.82 with 

sequence entropy, while the plot for individual residues gave a correlation of 0.52 (see Appendix 

Figure A9). This observation underscores the significance of consolidating the outputs with an 

ensemble of proteins, rather than examining single proteins where the patterns are barely 

detectable. 

The MI map in Figure 39c displays the co-evolutionary properties of UDG residue pairs. 

Yellow/red regions indicate the residue pairs that exhibit high MI values, i.e., the loci of 

correlated mutations. The upper right portion of the map magnified in panel c reveals the high 

co-evolutionary properties of residues near DNA-binding site, shown in panel d. The curve under 
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the map shows the average MI, < I(i) >, for each column i, a metric of the co-evolution 

propensity of residue i.  

Our previous examination of sequence evolution properties of Hsp70 ATPase domain in 

relation to its intrinsic dynamics suggested that among co-evolving residues those distinguished 

by high mobility in the global modes serve as substrate recognition sites (Liu et al., 2010). The 

same observation, recognition enabled by conformationally mobile, sequentially correlated 

residues, was also made for PDZ domains by Kosik and coworkers (Sakarya et al., 2010). E182, 

D183, R276 and E282 are such residues in UDG (Figure 39a). Notably, as evidenced by the 

structure shown in Figure 39d, the residues R276-G280 do interact with DNA, consistent with 

these earlier observations (for other systems). 
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Figure 39. An illustrative example: comparative analysis of residue conservation, conformational 

mobility and co-evolutionary patterns for uracil-DNA glycosylase (UDG). 
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(a) Conformational mobility and residue conservation as a function of residue index. Blue, red, and black curves 

represent the mobility profiles <Mi >|m1, <Mi >|m2, and <Mi>|N-1 (or MSFs) computed using the GNM. The curves are 

shifted vertically for clearer visualization. The bars represent the information entropy derived from 1599 Pfam 

sequences (Table 6). Results are shown for the structurally resolved residues 131 ≤ i ≤ 292 that are fully represented 

in the MSA. (b) Comparison of conservation (upper) and mobility (lower) profiles using color-coded ribbon 

diagrams. (c) MI map for the same family. The lower curve displays the co-evolution propensity of individual 

residues <I(i)>, averaged over all entries in the corresponding column/row of the MI map. The portion of the map 

corresponding to DNA-binding residues is magnified. (d) Location of highly co-evolving residues (shown in 

spheres) and their involvement in DNA binding. The diagram is color-coded based on the X-ray crystallographic B-

factors (red/blue: most/least mobile) reported for UDG.  

 

5.2.2 Sequence entropy vs. conformational mobility for all enzymes 

We repeated the comparative analysis summarized for UDG for all 34 enzymes in our dataset. 

The results, compiled in the Table 8 confirm that the MSFs of residues and their 

substitution/mutation propensities exhibit weak but statistically significant correlations; and 

these correlations become particularly apparent when the results for the complete set of enzymes 

are consolidated for sequence entropy intervals of ∆S
 
= 0.1. Figure 40a shows the results for all 

the 8,254 residues in our dataset of 34 enzymes. The dots show the effective mobilities <Mi
eff 

>|m1 (red, filled) and the MSFs (or <Mi
eff 

>|N-1) (blue, open).
   

The number distribution of residues 

in each entropy interval is shown by the histogram (gray bars). <Mk
eff 

>|m2 values (not shown) 

closely approximate the MSFs. 

Several interesting features are observed in Figure 40a. First, the coupling between 

structural dynamics and sequence variability is more pronounced when the global motions driven 
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by a few soft modes (m1 = 1-2; Table 7) are examined, as opposed to the resultant of all N-1 

modes.  

 

Table 8. Pearson correlation coefficients between sequence-based entropy and structure-based 

mobility profiles based on m1, m2 and N-1 modes
 

PDB id 

<M>|m1 <M>|m2 <M>|N-1 

correlation  

coefficient(a) 
p-value 

correlation  

coefficient 
p-value 

correlation  

coefficient 
p-value 

3cd2 0.41 0.75 6.04e-10 0.36 0.76 9.62e-08 0.33 0.74 9.91e-07 

1k03 0.50 0.73 0.00e+00 0.46 0.76 0.00e+00 0.46 0.85 0.00e+00 

1fp9 0.19 0.32 1.36e-05 0.33 0.68 2.44e-14 0.38 0.78 0.00e+00 

1ajz 0.33 0.86 4.86e-07 0.54 0.88 0.00e+00 0.54 0.91 0.00e+00 

1u32 0.45 0.91 1.32e-11 0.47 0.87 1.22e-12 0.47 0.81 1.90e-12 

2f6f 0.36 0.86 6.27e-09 0.47 0.93 8.99e-15 0.51 0.94 0.00e+00 

2ffz 0.48 0.68 7.77e-16 0.56 0.88 0.00e+00 0.56 0.92 0.00e+00 

1ako 0.33 0.84 1.63e-08 0.47 0.86 4.44e-16 0.48 0.82 0.00e+00 

1vas 0.35 0.78 1.23e-05 0.39 0.68 1.81e-06 0.36 0.58 9.03e-06 

1goc 0.33 0.55 3.24e-05 0.41 0.78 2.22e-07 0.41 0.85 1.68e-07 

1bol 0.12 0.23 4.66e-02 0.19 0.59 2.93e-03 0.25 0.59 1.76e-04 

1k2a 0.11 0.43 1.03e-01 0.57 0.83 9.91e-13 0.61 0.86 7.11e-15 

1kab 0.23 0.15 8.34e-03 0.39 0.71 1.71e-05 0.44 0.84 6.52e-07 

1b1y 0.27 0.81 1.31e-08 0.32 0.79 4.01e-12 0.37 0.90 3.11e-15 

2fba 0.34 0.91 8.19e-14 0.37 0.78 2.22e-16 0.35 0.70 1.22e-14 

3eng 0.20 0.48 2.49e-03 0.31 0.60 3.00e-06 0.35 0.65 2.25e-07 

1bhe 0.41 0.87 6.66e-16 0.45 0.87 0.00e+00 0.44 0.89 0.00e+00 

2ayh 0.11 0.16 7.47e-02 0.34 0.73 1.10e-06 0.39 0.80 1.46e-08 

1dy4 0.21 0.61 7.96e-06 0.47 0.72 0.00e+00 0.51 0.77 0.00e+00 

4skn 0.18 0.72 1.27e-02 0.50 0.80 8.36e-12 0.52 0.82 5.38e-13 

8cpa 0.31 0.72 4.41e-08 0.49 0.84 0.00e+00 0.51 0.89 0.00e+00 

3pbh 0.36 0.71 2.69e-09 0.47 0.82 1.33e-15 0.52 0.85 0.00e+00 

1avp 0.18 0.41 8.01e-03 0.34 0.62 1.43e-06 0.38 0.63 4.70e-08 

1qjj 0.14 0.50 2.80e-02 0.33 0.75 1.03e-06 0.38 0.77 1.78e-08 

1f82 0.38 0.79 9.99e-16 0.44 0.76 0.00e+00 0.46 0.82 0.00e+00 

1lba 0.43 0.69 1.56e-07 0.49 0.85 2.20e-09 0.49 0.95 2.01e-09 

1lqy 0.36 0.78 5.07e-07 0.47 0.76 3.11e-11 0.40 0.65 2.17e-08 

1ko3 0.29 0.64 5.42e-05 0.39 0.86 4.48e-08 0.35 0.56 5.60e-07 

1rgy 0.21 0.62 3.91e-05 0.35 0.79 1.58e-11 0.36 0.83 1.51e-12 

2had 0.40 0.75 9.86e-11 0.35 0.83 2.71e-08 0.36 0.84 1.29e-08 

1v9i 0.31 0.82 1.80e-07 0.43 0.92 2.56e-13 0.44 0.90 1.26e-13 

1vbl 0.48 0.75 1.77e-14 0.60 0.79 0.00e+00 0.63 0.85 0.00e+00 

2plc 0.36 0.68 6.94e-06 0.45 0.75 9.97e-09 0.49 0.64 2.90e-10 

1h0p 0.21 0.47 3.58e-03 0.37 0.69 7.26e-07 0.39 0.69 2.73e-07 

AVG 0.31 0.65  0.42 0.78  0.44 0.79  
 (a)

 The two correlation coefficients refer to results obtained for individual residues (left) and those based on entropy 

intervals of size 0.1. 

 

Second, this dependence is not linear. Higher sequence entropy (or lower conservation) is 

accompanied by increased mobility as expected, but this increase does not take effect until the 

entropy reaches a threshold value of S(i)
 
≈ 0.8 (orange arrow). In the range S(i)

 
< 0.8, the global 

mobility is minimal with little dependency on the conservation level. About 1/4
th

 of residues lie 

in this regime. Then, there is a sharp increase in mobility tied in with decrease in entropy. 
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Sequence variability above this threshold value cannot presumably be sustained unless the global 

dynamics endows suitable structural flexibility. In the other extreme case of high entropy regime 

(S(i)
  
> 1.5, delimited by green arrow), residues exhibit a broad variation in their mobility, partly 

due to the scarcity of data (9% of residues lie in this regime). Therefore, we distinguish three 

regimes, with the strictest dependence on mobility manifested at the intermediate level 0.8 ≤ S(i) 

≤ 1.5 of sequence entropy.   

Third, the histogram for entropy (gray bars in Figure 40a) exhibits a unique behavior 

with a peak at the most conserved region (leftmost bar), thus departing from a unimodal 

distribution. This peak refers to fully conserved residues. The size of this group (322 residues) is 

much larger than that expected for a normal distribution tail. Calculations confirm that this 

subgroup of residues exhibit minimal fluctuations (see Appendix Figure A10). In contrast, the 

most variable group (the rightmost bar in the histogram) contains 117 residues that span a wide 

range (1.9 ≤ S(i) < 2.9) of entropy and effective mobility, preferentially sampling larger 

fluctuations in space (Figure A9). 
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Figure 40. Relationship between structural dynamics and sequence evolutionary properties. 

(a) Effective mobility as a function of sequence conservation. Computed data are based on softest modes (red 

circles) or N-1 modes (open circles) as a function of the level of conservation, deduced from the analysis of all 34 

enzymes in the dataset. The histogram shows the number of residues in consecutive sequence entropy intervals 

(right ordinate). The curves are the weighted least square fits, with respective correlation coefficients of 0.90 and 

0.95. Entries with S(i) > 2 are merged in the last bin. Arrows delimit distinctive mobility vs. conservation regimes. 

(b) Sequence entropy distribution for all residues (orange) and for the highly co-evolving residues identified by MI 

analysis of all enzymes (cyan). (c) Mobility histograms for three groups of residues, as labeled.  Respective mean 

values and variances are 1.00 ± 0.134, 0.79 ± 0.059, and 1.06 ± 0.127. 
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5.3 BROAD RANGE OF MOBILITY EXHIBITED BY HIGHLY CO-EVOLVING 

RESIDUES 

We evaluated the MI maps for all the enzymes in our dataset, and identified the residues that 

yielded the highest MI values.  Figure 40 panels b and c show the respective conservation and 

mobility distributions (cyan bars) evaluated for the residues that yielded the top 20% <I(i)> 

values (1,639 of them), referred to as highly co-evolving residues. Panel b compares their 

sequence entropy distribution to that of the entire set (orange). Notably, a large majority (82%) 

of highly co-evolving residues fall in the intermediate entropy regime identified above. And the 

distributions in Figure 40c show that these residues tend to enjoy larger mobilities compared to 

„all‟ residues. This tendency may be associated with their substrate recognition role and 

positioning on the protein surface, as noted for UDG (Figure 39). Panel c also displays the 

histogram (green) for the most conserved sites, referred to as C-sites (lowest 20% S(i) values), 

again showing their lower mobility compared to all residues. 

Co-evolution of amino acids appears to enable the adaptability of ubiquitous proteins or 

their modular domains to cope with diverse substrates (Gotoh, 1992; Liu et al., 2008; Xu et al., 

2009; Liu et al., 2010; Smock et al., 2010). Our earlier study invited attention to the enhanced 

global mobility of such sites involved in substrate recognition (Liu et al., 2010). Observations 

made here further support this notion.  Figure 41 illustrates the results for procathepsin B 

(Podobnik et al., 1997). Results for other proteins (staphylococcal nuclease, T7 lysozyme, 

carbonic anhydrase II and carboxypeptidase A) may be seen in Figure 42 and in the Appendix 

Figure A11 and Table 9. In all cases, a number of co-evolving residues are detected at the 

highest peaks in the global mode, and these residues are noted to assist in substrate recognition. 

Figure 41 shows that in procathepsin B the residues distinguished by their strong MI values lie 
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in the occluding loop N113-T125 that is involved in substrate recognition (Illy et al., 1997) and 

inhibitor binding (Renko et al., 2010). Among fifteen residues that yield the top 0.05% MI 

values, ten (N113-P117, G121-T125) belong to this loop. Figure 41b shows the pronounced 

mobility of this loop in the softest mode. 

It is important to note that not all highly-co-evolving residues are subject to large 

mobility, i.e., co-evolution is not always confined to substrate recognition sites on the surface. 

Residues involved in substrate binding near the catalytic site or in signal transduction may also 

exhibit co-evolutionary trends, if they are not conserved. Binding and signaling are achieved 

more efficiently in the case of tight packing and minimal energy dissipation or residue 

fluctuations in the global modes. The inhibitor-bound structure of cathepsin B (Renko et al., 

2010) shown in the inset of Figure 41b,  presents two such sites, C67 and G68 (purple), in close 

spatial proximity of other highly-co-evolving residues; the restricted mobility of these two 

residues in the global mode suggests a signal transduction role. 

 

Figure 41. Sequence co-evolution and high mobility properties at the ligand recognition site of 

procathepsin B catalytic domain. 
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(a) MI map, highlighting highly co-evolved amino acid pairs such as (N113, T125) and (P117, G121). The bar plot 

under the map shows the <I(i)> values. Residues corresponding to the top 0.05% MI values (C67, G68, N113-P117, 

G121-T125, H190, V191 and H239) are highlighted with orange bars, and labeled by different colors (lines at the 

bottom). (b) Mobility profiles of cathepsin B. The residues identified in panel a are indicated by squares on the 

<M
eff

>|m1 curve, color-coded after the lines at the bottom of panel a. They are shown by color-coded spheres in the 

ribbon diagram for the complex formed with stefin A (cyan).  

 

 

Figure 42. Detection of highly co-evolving amino acids in the regions distinguished by enhanced 

global mobility. 
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Global mode shapes and MSF profiles are presented for (a) staphylococcal nuclease (b) T7 lysozyme (c) carbonic 

anhydrase II (d) carboxypeptidase A. The residues participating in the top ranking 0.05% MI pairs are marked as 

squares on the mobility profiles. The corresponding PDB id‟s are shown in each panel. The most prominent peaks in 

these profiles include: the near neighborhood of Glu43, a residue that promotes the nucleophilic attact required for 

catalytic activity of staphylococcal nuclease (Cotton et al., 1979); the helix Val28-Glu38 of T7 lysozyme involved 

in T7 RNA polymerase recognition/binding (Jeruzalmi and Steitz, 1998) (see Appendix Figure A11); two highly 

flexible solvent-exposed regions (around residues 5-23 and loop 231-241) flanking from both sides the entrance of 

the hydrophobic ligand-binding pocket in carbonic anhydrase II (Nair et al., 1991); and several residues in the 

substrate recognition loop R127-S157 of carboxypeptidase A (Kimura, 2001). See Table 9 for the complete list of 

residues identified to be highly co-evolving, indicated by the symbols on the curves. 

 

 

Table 9. List of highly co-evolving residues identified for selected enzymes (*). 

   PDB id Residues distinguished by high mutual information values (*)  

3pbh C67, G68, N113, G114, S115, R116, P117, G121, E122, G123, D124, T125, H190, V191, 

H239 

1kab H46, P47, K48, N118, N119 

1lba I14, Q34, W35, H36, T55, H68, F91 

1v9i H11, N12, D20, F21, I23, S100, S101, D102, D103, Q104, A135, Q136, F231, N232, A233, 

E234, E236, P237, E238, L239, L240, G258, F259 

8cpa R127, K128, S135, S136, V139, K153, A154, A156, S157, Q200, D273, T274, G275, R276, 

Y277, L280, I287, P288, W289, L290, T293, W294 

(*) residues with I(i, j) values ranking in the top 0.05 percentile (based on the complete dataset of enzymes). See 

Figures 41 and 42 for the corresponding mobility profiles. 
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5.4 MOBILITY, CONSERVATION AND CO-EVOLUTION PROPENSITIES OF 

AMINO ACIDS 

We developed automated procedures to identify in the entire ensemble of 8,254 amino acid, three 

different subgroups, distinguished by their high mobility (M-sites), high conservation properties 

(C-sites) and high co-evolutionary (correlated mutations) propensities (E-sites). After identifying 

the subgroups composed of such X-sites (where X = M, C or E) we evaluated the propensity PM 

of different types of amino acids to take part in these subgroups. The propensity of amino acid 

type i in the subgroup of X-sites is defined as the ratio of the frequency of i in that particular 

subgroup to that in the entire dataset, i.e., 

,X X

X

total

( ) i

i

N N
P i

N N


/

/
 (33) 

Here Ni,X is the number of occurrences of amino acid type i in the subgroup, NX is the total 

number of residues in the subgroup. Ni is the number of occurrence of i in all sequences included 

in the MSAs, and Ntotal is the summation over all Ni.. The value of PX = 1 indicates that the 

probabilistic participation in X-sites is not different from that expected from a priori frequency 

of amino acids; PX > 1 refers to amino acids that exhibit a high propensity for the examined 

property (conformational mobility, evolutionary conservation, correlated mutations); and PM < 1, 

to those exhibiting low propensities. 

M-sites were selected by approximating the mobility profiles with cubic splines (Wahba, 

1990), and identifying the local maxima. For higher accuracy, two rounds of calculations were 

performed: first, we identified the “global peaks” on the curve, and a large smoothing parameter 

(0.99) was adopted; second, more detailed descriptions of mobility profiles were adopted, using a 

much smaller smoothing parameter (0.3). Finally, local maxima in the sequential neighborhood 
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(±5 residues) of global maxima were retained as additional highly mobile sites.. The resulting 

ensemble of M-sites comprises 309 (m1), 457 (m2), or 641 (N-1) residues depending on the 

mobility profile used as metric. 

C-sites were those residues that yielded the lowest 20% Shannon entropy values. A total 

of 1,706 such residues have been extracted.   

E-sites were based on two criteria: the signals observed in the MI maps and the <I(i)> 

values derived from the maps. In the former case, we selected the residue pairs that yielded the 

strongest 0.05% signals. In the latter case, the top ranking 20% were selected. 

 

Figure 43. Mobility, conservation and co-evolution propensities of amino acids. 

(a) Distributions of amino acids within the subgroups composed of highly conserved (C-) (green bars) and highly 

mobile (M-) sites (orange-red bars, based on m1, m2 or N-1 modes, as labeled). The bars represent the propensities 

with respect to those expected a priori based on the frequency of occurrence of the particular amino acid types in the 
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dataset.  (b) Co-evolution propensities based on mutual information I(i, j) or average MI (<I(i)>) values, as labeled. 

Amino acid types (shown by 1-letter codes) are listed in the order of decreasing entropy in both panels. 

 

Figure 43 displays the resulting propensities. The light orange bars in panel a describe 

the propensity of amino acids to undergo high mobilities in the global modes (based on m1 

modes at the lowest frequency end of the mode spectrum). Calculations repeated with m2 and N-

1 modes yielded similar propensities, as shown by the respective dark orange and red bars. The 

same panel also displays the distribution of amino acids among the most conserved (C-) sites 

(green). Higher bars indicate higher conservation propensity. Amino acids are ordered along the 

abscissa according to their conservation propensity. Cysteines are most conserved, followed by 

His and Trp; and Lys is least conserved. The high level of conservation of histidines (and the 

occurrence of compensating mutations, if they are not conserved; see below) is presumably due 

to their unique multi-directional proton transfer capability (Rebek, 1990) , which also makes 

them the most common amino acid at active sites (Betts and Russell, 2007). Their lowest PM 

value among charged amino acids is probably due to aromatic stacking interactions that restrain 

their flexibility, like other aromatic residues (Trp, Phe, and Tyr).  In contrast, Lys and Glu are 

distinguished by high mobilities (in both global and local motions); whereas Cys is one of the 

least mobile residues, along with Val, Ile and Leu. The latter group usually lies in the 

hydrophobic core. The mobility ranking of amino acids is reminiscent of hydrophobicity scales, 

consistent with the tendency of hydrophobic residues to be buried in the core and thereby have 

limited motions.  

The most striking observation in Figure 43 is the converse mobility and conservation 

propensities of amino acids: an amino acid type with high conservation propensity PC generally 
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has low propensity PM for large movements and vice versa. These opposite propensities are most 

pronounced at the two ends of the spectrum. 

The co-evolution propensities, PE, of amino acids are presented in Figure 43b. The 

propensities based on the strongest signals observed in the MI maps (dark blue), and based on 

the highest <I(i)> values (light blue) exhibit similar features, suggesting that the strong signals in 

the MI maps also dominate the <I(i)> values. For ease of comparison, the amino acids along the 

abscissa are listed in the same order as panel a. Comparison with the histograms in panel a 

reveals that co-evolutionary propensities are practically independent of their conservation or 

mobility scales. Trp is distinguished by its highest propensity, i.e. highest tendency to take part 

in correlated mutations. This is presumably due to its large size and its ability, along with other 

aromatic residues such as tyrosine, to make specific interactions (e.g., aromatic-guanidinium 

interactions with Arg) at protein-protein interfaces (Crowley and Golovin, 2005). Other residues 

distinguished by their high co-evolutionary tendencies are Met, Cys and His, which, similarly to 

Trp, are usually conserved and/or highly constrained (see panel a), thus unable to sustain 

substitutions unless compensated by a correlated mutation. 

Polar residues, on the other hand, represent a unique group because of their relatively 

high co-evolvability and high mobility. Ser, Gln, and Asn, and despite their slightly lower 

mobility Thr, Pro and Arg (a charged but versatile residue that has hydrophobic and polar 

moieties) lie in this group. Their combined co-evolution propensity and conformational mobility 

suggests that they are suitably recruited by proteins at substrate recognition sites being at the 

same time specific and flexible enough to mediate substrate selectivity.   
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5.5 DISCUSSION 

The present study of the collective dynamics of enzymes in relation to amino acid conservation 

and co-evolution propensities exposes how the evolution of sequence is tied to structural motions 

intrinsically accessible to enzymes. Several recent studies have highlighted the significance of 

collective dynamics in achieving biological functions, or enabling biochemical activities. It is not 

surprising to see therefore that the sequence evolution or correlated mutations go hand in hand 

with structure-encoded dynamics. Yet, in previous studies, emphasis has been usually on the 

evolutionary pressure originating from structure stabilization requirements. For example, 

mutations that can be accommodated without altering the structure have been pointed out to be 

evolutionarily selected. Or, alternatively, a designable protein has been viewed as one that can 

sustain many substitutions while maintaining its structure (Li et al., 1996). In a recent excellent 

review, the need to retain functional interactions, in addition to conserving the architecture has 

been pointed out (Worth et al., 2009). Our study further shows that it is equally important to 

design a structure that enables the required conformational flexibility, or collective dynamics; It 

further demonstrates that the conservation and co-evolution trends of amino acids correlate with 

the intrinsic dynamics of the structure: regions severely constrained in global modes are either 

conserved, or undergo correlated mutations. Conversely, the most mobile regions exhibit the 

larger sequence variabilities. 

The intermediate regime is of interest, in particular, where there is a net proportionality 

between effective mobility and sequence entropy. Many co-evolving amino acids lie in this 

regime. Among them, those enjoying enhanced mobility in the global modes appear to be 

particularly suitable for substrate recognition. This feature noticed in previous studies (Liu et al., 

2010; Sakarya et al., 2010) supports the notion that substrate binding entails the conformational 
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adaptability and physicochemical specificity of recognition sites (Luque and Freire, 2000; 

Dobbins et al., 2008) prior to stabilization by conserved interactions at the binding epitope. It is 

widely accepted that the stabilization of the bound ligand is primarily achieved by residues 

conserved within families or subfamilies. However, prior to binding, the first step is recognition; 

and the mobility/co-evolution of the recognition sites appears to be a design principle required to 

accommodate the geometry and chemistry of the substrate (Mittag et al., 2010; Lovell and 

Robertson, 2010). Our analysis reveals which amino acids have high co-evolution propensities 

along with enhanced mobilities to satisfactorily fulfill these requirements. Arg and polar residues 

are distinguished in this respect as versatile mediators of interactions with specific substrates.  

We also note that there is another, somewhat less prominent, group of co-evolving amino acids, 

which appear to be assisting conserved residues in either binding the substrate or coordinating 

cooperative responses, and this group has, in contrast to the former group, significantly 

suppressed mobilities in the global modes. 

The correspondence between residue rigidity (or spatial confinement) and sequence 

conservation reflects in a sense a functional requirement. The reaction at the active site of an 

enzyme usually requires high precision: s catalytic residues need to be accurately positioned and 

oriented, and highly conserved, to achieve chemical specificity (Sacquin-Mora and Lavery, 

2006; Dutta and Bahar, 2010). Conserved residues that serve as folding nuclei also need to be 

highly stable (Mirny and Shakhnovich, 1999). On the other hand, surface-exposed residues are 

generally involved in substrate recognition or intermolecular interactions, and their high mobility 

is, not only easily afforded from structural perspective, but even required to accommodate 

sequence variations that confer substrate specificity. 
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The evolutionary vs. dynamic properties of binding sites may depend on the size and 

specificity of the substrate, whether it is a small molecule (e.g., ATP) or a biopolymer (e.g., 

protein). The two types of interactions have been shown to exhibit distinct structural properties: 

the former is conserved and almost rigid; whereas the latter tend to exhibit correlated mutations 

and higher mobility (Jones and Thornton, 1997; Liu et al., 2010). Pre-organization of conserved 

residues with restricted mobility has been suggested to help in stabilizing the bound conformer 

with minimal entropic penalty (Yogurtcu et al., 2008), while in the opposite case of high 

mobility the favorable enthalpic interaction with the binding partner may more than compensate 

the unfavorable entropic contribution provided that the interaction surface is large enough 

(protein-protein interactions). Insights into such design properties may be gained by performing 

similar investigations for different classes of complexes. Interfacial residues of obligate pairs are 

more conserved than that of transient pairs, or alternatively, they contain correlated mutations 

(Mintseris and Weng, 2005), although the distinctive dynamics of these two classes have yet to 

be established. Likewise, although the present analysis has been performed for enzymes, it 

remains to be seen if/how the observations hold for other classes, including in particular 

membrane proteins whose growing number of structures is expected to soon lend themselves to 

systematic analyses. 
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6.0  CORRELATED MUTATIONS ANALYSIS (CMA) OF HIV-1 PROTEASE USING 

SPECTRAL CLUSTERING 

In the present study, we introduce the use of spectral partitioning methods for efficient analysis 

of the MI matrices derived for HIV-1 protease sequences. Spectral clustering was originally 

proposed for partitioning the nodes in an undirected weighted graph G = (V, E). The weight wij 

of each edge is defined as a measure of similarity between nodes vi and vj. This weight matrix W 

is replaced in our work by the MI matrix (see section 2.4), with the objective to examine 

sequence co-variance and distinguish between correlations of different origin. 

We show that the method successfully identifies the residues cooperatively involved in 

MDR, as well as the mutational patterns arising from different drug treatments. The results 

suggest that spectral partitioning of the data obtained from correlated mutations analysis (CMA) 

can help in detecting cooperative functional relations and discriminating to a certain degree 

between the covariance patterns originating from functional constraints and those associated with 

neutral/stochastic mutation events that occur early in the evolution of the species/family. 

6.1 SPECTRAL CLUSTERING OF CMA RESULTS 

To investigate the correlation between drug treatment and mutational patterns, we compiled six 

datasets of sequences retrieved from the Stanford HIV Drug Resistance DB 
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(http://hivdb.stanford.edu; (Rhee et al., 2003)) (Table 9). This DB includes sequences obtained 

from isolates along with information on the type of protease inhibitors (PIs) given to the patients 

(accessible via the „Detailed Treatment Queries‟ interface of the DB). We collected sequences of 

all subtypes and aligned them against the consensus subtype B sequence (Korber and Myers, 

1992). Any sequence shorter than 99 residues was excluded, and all residues with ambiguity 

were treated as gaps. A MI matrix was generated for each dataset of HIV-1 protease sequences 

listed in Table 10. 

 

Table 10. Summary of the HIV-1 protease sequence data subjected to spectral clustering 

Dataset Treatment Number of sequences 

1 Treated 7758 

2 Untreated 8761 

3 IDV only 1112 

4 IDV + 2569 

5 NFV only 885 

6 NFV + 2131 

In the „Treatment‟ column, „treated‟ means at least one PI is used in the treatment. „IDV +‟ and „NFV +‟ means that 

at least one of the other PIs has been used in combination with the one before the „+‟ sign. IDV and NFV are the 

respective PI drugs indinavir and nelfinavir. 

 

The result for dataset 1 is illustrated in Figure 44. The plot underneath represents the 

entropy profile. Peaks are distinguished at positions such as 10, 20, 63 and 82, reflecting the high 

tendency of these residues to undergo substitutions. 
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Figure 44. Mutual information (MI) map (a) and entropy profile (b) for HIV-1 protease sequences in 

Dataset 1. 

The entries in the map are calculated using Equation (29) for the 7758 sequences compiled in Dataset 1 (Table 10). 

The MI varies in the range 0 < I(i, j) < 0.25, as indicated by the gray scale on the right. Panel b displays the entropy 

profile, with the peaks indicating those sites exhibiting the largest variation among the members of this dataset. 

 

In order to extract more distinctive information, each MI matrix was subjected to spectral 

graph bi-partitioning as described above, and the elements were re-ordered (i.e. rows/columns 

were shuffled) according to the rank of residues indicated by the dominant eigenvector y2 (i.e. by 

sorting the elements of y2 in descending order). Figure 45 displays the MI maps as a function of 

the re-ordered residues for datasets 1 and 2. Equivalent figures for the other four datasets can be 

found in Figure 46. The exact labeling of residues following rank ordering can be found in the 

Table 11. For visual clarity, the top ranking (highest MI) pairs of amino acids (500 out of a total 

of 99 × 99 pairs) are displayed. The bar plots refer to the entropy at each site. 
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Figure 45. MI maps with residues re-ordered according to spectral graph bi-clustering. 

(a) Re-organized MI matrix for treated data (dataset 1). Two distinctive types of correlated mutations can be seen at 

the lower left and upper right portions of the map. (b) Re-organized MI matrix for untreated data (dataset 2). One of 

the previous clusters is observed (lower left), while the 2
nd

 (top right) is non-existent. The latter is attributed to 

correlated substitutions induced in the presence of inhibitors, while the former (upper right) refers to evolutionary 

changes observed between HIV-1 protease subtypes. See Figure 47 for the identity of residues belonging to the two 

clusters, and the Table 11 for the identity of rank-ordered residues for each dataset listed in Table 10. The bar plots 

refer to the sequence entropy associated with each position.  
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Figure 46. MI maps with residues re-ordered according to spectral graph bi-clustering for datasets 3-

6. 
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Comparison of panels a and b of Figure 45 reveals that dataset 1 (panel a) contains two 

distinctive clusters of correlated residues located at the upper right and lower left portions of the 

map, while dataset 2 does not contain the 2
nd

 cluster (at the upper right) (panel b). The identity of 

the residues at these two extreme ends of the maps generated for all datasets in Table 10 can be 

seen in Figure 47. Here we colored in blue and red the first and last 12 residues rank ordered 

after the spectral bi-partitioning of the MI matrix for each dataset (labeled). Interestingly, all 

datasets, treated with different regimens or untreated, exhibit similar patterns, with the two 

groups of residues exhibiting most distinctive correlation behavior clustered at similar sequence 

positions. 

6.1.1 Examination of the two distinctive clusters 

Given that the respective datasets 1 and 2 refer to treated and untreated sequences, the cluster at 

the top right in Figure 45a, which does not exist in panel b, is attributed to the substitutions 

induced by drug treatment. We will refer to these positions as drug resistance cluster (DRC) 

sites. 

The 2
nd

 cluster of residues, on the other hand, is interestingly found to primarily contain 

positions reported to exhibit sequence variability between different viral subtype isolates 

(Gonzales et al., 2001). To verify this feature, we collected 5149 untreated non-B subtype 

sequences from the Stanford DB, and calculated the variation frequency at each position with 

respect to the consensus subtype B sequence (Figure 48a). (More detailed information on the 

variation for each individual non-B subtype isolates can be found in Figure 2 of Gonzales et al., 

2001). This suggests a phylogenetic origin for the observed covariance, which can well be 

obtained simply based on few neutral substitution events in the evolution of the HIV subtypes. 
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These residues do not necessarily possess important functional/structural associations (Noivirt et 

al., 2005). We will refer to this cluster of residues as the phylogenetic variation cluster (PhVC). 

 

Figure 47. Sequence position of two most distinctive clusters of residues deduced from CMA of HIV-

1 protease sequences. 

Results are reported for each of the six datasets listed in Table 10. The two clusters include the two extreme subsets 

of 12 residues rank ordered according to the spectral bi-partitioning of the MI matrix computed for each dataset. The 

DRC residues are colored blue, and the residues belonging to the PhVC are colored red. 

 

Table 11. Reordering of amino acids in each dataset based on spectral clustering.  

Residue 

Number  

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 

1 Glu35 Leu89 Thr96 Met36 Leu89 Met36 

2 Met36 Met36 Leu97 Glu35 His69 Glu35 

3 Val77 His69 Met36 Val77 Arg41 Val77 

4 Arg41 Arg41 Phe99 His69 Val82 Arg41 

5 His69 Lys20 Leu89 Ile15 Met36 His69 

6 Ile15 Lys14 His69 Arg41 Glu35 Leu89 

7 Leu89 Ile13 Lys20 Leu89 Gly48 Ile15 

8 Arg57 Glu35 Arg41 Lys20 Thr4 Lys20 

9 Lys14 Ile64 Ile13 Arg57 Val77 Arg57 

10 Ile13 Val77 Thr26 Pro1 Ile13 Lys70 

11 Lys20 Leu63 Glu35 Lys14 Leu23 Asn83 

12 Gly40 Asn37 Lys14 Ile13 Lys20 Glu65 

13 Lys70 Ile62 Val77 Thr96 Lys14 Lys14 

14 Phe99 Lys70 Arg8 Lys70 Ile54 Thr4 

15 Thr26 Lys45 Ile15 Glu65 Leu76 Ile13 

16 Leu19 Pro1 Glu65 Leu38 Asn83 Ile50 

17 Leu97 Thr80 Glu21 Gly52 Val11 Ala28 

18 Glu65 Val82 Arg57 Gly16 Leu24 Leu97 

19 Asn37 Leu33 Gly16 Asn83 Pro9 Gly49 

20 Thr12 Val56 Leu23 Gln61 Ala22 Ala22 

21 Ala28 Gly52 Leu63 Thr26 Gly40 Phe99 

22 Pro1 Gly16 Asn98 Gln2 Thr26 Leu38 
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23 Asn83 Ala71 Ile50 Thr12 Leu97 Asn37 

24 Gln61 Ile72 Leu38 Leu19 Cys95 Thr96 

25 Gly49 Leu97 Asp30 Asn37 Leu90 Ile93 

26 Asp25 Leu38 Gly17 Gly68 Lys45 Leu19 

27 Thr96 Thr74 Val56 Ala28 Arg8 Ile3 

28 Val56 Ile50 Val75 Thr31 Leu63 Glu21 

29 Gln7 Ile66 Gln2 Gly49 Lys70 Gly52 

30 Gln2 Glu65 Leu19 Thr91 Leu19 Gln7 

31 Gly52 Thr96 Lys70 Trp42 Asp30 Gly17 

32 Ala22 Ala22 Pro9 Glu21 Arg87 Gly86 

33 Pro39 Asn83 Ile93 Ile93 Leu38 Leu5 

34 Arg87 Cys95 Asn83 Thr4 Val75 Asp25 

35 Arg8 Ile47 Asp25 Asp25 Arg57 Thr12 

36 Gly17 Leu19 Arg87 Phe99 Trp6 Trp42 

37 Gly68 Gln2 Gly86 Ile3 Ile50 Pro39 

38 Leu5 Gly78 Gly48 Leu97 Pro39 Gln61 

39 Asn98 Cys67 Ile64 Trp6 Ile15 Gly51 

40 Leu38 Phe53 Leu5 Val56 Ile84 Thr80 

41 Ile93 Trp42 Ile66 Asp60 Ile66 Ile62 

42 Tyr59 Gln18 Thr12 Ala22 Thr12 Gly68 

43 Thr31 Ile15 Gln61 Arg87 Thr91 Leu63 

44 Ile3 Thr12 Asn37 Ile62 Pro81 Cys67 

45 Ile64 Pro39 Glu34 Leu63 Gly16 Val56 

46 Glu21 Pro79 Val11 Asp29 Thr74 Arg8 

47 Gly86 Arg87 Thr4 Cys67 Glu21 Val11 

48 Leu63 Glu34 Pro39 Gly27 Gly68 Pro9 

49 Trp6 Ile93 Cys67 Val11 Asn37 Ile64 

50 Asp29 Ile3 Gln18 Ile64 Ile85 Gly27 

51 Gly16 Arg57 Tyr59 Gln7 Gly17 Thr74 

52 Pro9 Pro81 Ile72 Leu5 Glu34 Thr91 

53 Trp42 Phe99 Lys45 Pro39 Cys67 Arg87 

54 Pro44 Gly68 Gln92 Gly78 Met46 Gln92 

55 Lys45 Val75 Leu33 Gln92 Asn88 Trp6 

56 Gly27 Asn98 Gly51 Glu34 Ile93 Gly16 

57 Asp60 Gly17 Leu76 Leu33 Ile64 Asp60 

58 Thr74 Ala28 Thr31 Gln18 Gly73 Gln2 

59 Gly78 Leu23 Thr74 Ile72 Gly49 Ile72 

60 Cys67 Val11 Asp60 Ile50 Thr31 Glu34 

61 Gly51 Gly48 Ile62 Pro9 Glu65 Thr31 

62 Gly94 Thr4 Gln7 Val75 Leu33 Lys45 

63 Gln92 Leu76 Ile85 Lys45 Pro79 Ile85 

64 Thr91 Thr31 Ile84 Gly51 Gln58 Leu23 

65 Thr4 Asn88 Pro79 Leu76 Ala71 Leu33 

66 Gln18 Pro9 Ala28 Arg8 Gln92 Pro1 
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67 Val75 Pro44 Cys95 Pro79 Val32 Thr26 

68 Pro81 Leu10 Ile3 Gly94 Val56 Pro79 

69 Ile72 Gln61 Thr80 Pro44 Gln61 Cys95 

70 Cys95 Gln58 Trp6 Gly17 Ile62 Lys43 

71 Ile62 Lys43 Lys43 Thr80 Leu10 Gln18 

72 Val11 Ile85 Val82 Pro81 Asp60 Tyr59 

73 Ile66 Thr91 Asn88 Thr74 Ile72 Ile66 

74 Thr80 Glu21 Phe53 Cys95 Tyr59 Val75 

75 Ile85 Tyr59 Gly73 Tyr59 Lys55 Leu76 

76 Ile50 Trp6 Leu10 Lys43 Asn98 Asn98 

77 Pro79 Lys55 Ala71 Leu23 Gln2 Gln58 

78 Leu23 Gly40 Gln58 Ile85 Gln7 Phe53 

79 Leu33 Gln92 Leu90 Ile66 Leu5 Lys55 

80 Lys43 Asp60 Lys55 Gln58 Pro1 Gly73 

81 Glu34 Gln7 Met46 Gly73 Ile3 Val32 

82 Leu76 Leu90 Ile54 Lys55 Gln18 Gly48 

83 Val82 Leu5 Ile47 Phe53 Lys43 Ala71 

84 Gly73 Arg8 Val32 Ile47 Gly51 Gly94 

85 Gln58 Leu24 Gly52 Ala71 Asp25 Ile84 

86 Ala71 Val32 Leu24 Val82  Val82 

87 Lys55 Gly27  Gly48  Ile47 

88 Gly48 Ile54  Val32  Leu10 

89 Phe53 Asp29  Leu10  Met46 

90 Asn88 Ile84  Ile54  Leu90 

91 Ile84 Gly73  Ile84  Ile54 

92 Leu90 Gly94  Leu90  Leu24 

93 Leu10 Gly51  Met46  Asn88 

94 Ile54 Asp25  Asn88  Asp30 

95 Asp30 Thr26  Leu24   

96 Val32 Met46  Asp30   

97 Met46 Gly86     

98 Leu24 Asp30     

99 Ile47 Gly49     

*Each column corresponds to the re-ordered sequence (shown for datasets 1 and 2 in the abscissa in Figure 45). The 

two extreme subsets of 12 residues used in Figure 47 are colored red (PhVC) and blue (DRC). 
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Figure 48. Comparison of computationally predicted sites on HIV-1 protease with experimental data. 

(a) Sequence variation profile compiled from experimental data for the non-B subtype HIV (from Stanford DB). 

Note the correspondence between peaks (most variable sites) and the phylogenetic variation sites (red in the 

alignment) identified in the present study. (b) Comparison with drug resistance profile (based on data in Stanford 

DB http://hivdb.stanford.edu/cgi-bin/PIResiNote.cgi). Dark blue lines refer to residues that exhibit major drug 

resistance; light blue, to minor drug resistance sites. 

 

It should be noted, however, that sequence variations between subtypes are not 

necessarily functionally insignificant. This is reflected for example by the fact that different 

subtypes have different tendencies for acquisition of resistance mutations (Kantor et al., 2005). 

Indeed, residues related to drug resistance can be found in this cluster. Positions 20 and 36 

exhibit enhanced mutation rates in the presence of PIs (Wu et al. 2003, Table 2; Hoffman et al., 

2003, Figure 1a). It is possible that the evolution of HIV subtypes is partially related to the 

exposure to natural or unnatural PIs. Residue Leu89 in the PhVC is known, for example, as a 

minor drug-resistant residue (meaning that a mutation at this position contributes to drug 
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resistance only in the presence of a major resistant mutation, whereas a major resistant mutation 

reduces drug susceptibility by itself (Shafer, 2002). Yet, overall, the members of the PhVC are 

best characterized as those demonstrating sequence variability between subtypes with no clear 

functional relation between them. 

In contrast to the PhVC, the DRCs identified for datasets 1, 3, 4 and 6 mostly contain 

drug-resistant mutations (Figure 48b). In particular, some residues belonging to these clusters 

are associated with mutations involved in multi-drug cross-resistance, such as Leu10, Met46, 

Ile54, Ala71, Val82, Ile84 and Leu90 (Hertogs et al., 2000; Kozal, 2004). In a previous study 

(Ohtaka et al., 2003), Leu10, Met46, Ile54, Val82, Ile84 and Leu90 were shown to exert a 

cooperative effect in lowering the affinity of multiple PIs. Leu10, although not causing resistance 

alone (it is a minor resistance residue), plays a critical role in eliciting the cooperative response 

along with Leu90 (Ohtaka et al., 2003), consistent with the high correlation detected here among 

these residues in the DRC. We also note that some major mutation sites in the DRC are not 

active in MDR; or say, they are specific to one PI, like Leu24 and Asp30 (Shafer, 2002). Still, 

their participation in the DRC suggests that the resistance mechanism cooperatively involves 

several residues. 

The DRCs for datasets 2 and 5 contain a number of sites that depart from those shared by 

other datasets (Figure 47). For dataset 2, which contains untreated isolates only, this is clear, and 

even the observed level of similarity to other datasets is striking. For dataset 5, on the other hand, 

the result implies that NFV elicits unique responses at specific sites, quite different from that of 

most other drugs. We note in particular that Asp30 and Asn88 exhibit extraordinarily high MI. 

As shown before (Rhee et al., 2003), the double mutation D30N and N88D can reduce nelfinavir 

susceptibility by 50-fold, explaining the selection pressure for their co-variation. When NFV is 
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used in combination with other PIs (dataset 6), the DRC sites shared with other datasets are 

observed, indicating that the cooperative effect is related to cross-resistance in this case. Most of 

the residues of the DRC remain unchanged in the IDV set (dataset 3), suggesting that the 

correlations revealed in our analysis are not only due to individual resistance mutations 

developed against different drugs, but reflect real cooperativity. 

An exhaustive search for correlated mutations among drug-resistant sites in HIV-1 

isolates was performed by (Wu et al., 2003), which yielded small groups of correlated residues, 

ranging in size from three to six residues. On the other hand, the present study yields one large 

cluster providing evidence for the high cooperativity of the residues belonging to these small 

groups. We also note that the presently detected positions 47 and 48 in the flap region do not 

appear in the study by Wu et al. as prominent drug resistance sites, but they are known to be 

major resistant mutations. Wu et al. listed other residues, e.g. Ile62, Leu63 and Ile93, together 

with known drug resistance residues. We have not detected these residues in our DRC, and 

neither do they appear in the Stanford PI DB drug resistance notes as drug-induced mutations. 

Note that our study is based on a larger dataset of isolates, and a major merit of the present work 

is to identify the DRC sites without prior knowledge of drug-resistant mutation sites, while the 

study of Wu et al. analyzes the mutations at 45 (out of 99) positions that have been significantly 

associated with protease inhibitor treatment. 

Hoffman et al, 2003 analyzed the correlations between 31 positions in HIV-1 protease, 

which showed the highest variability in their dataset of HIV-1 isolates (from 648 untreated, and 

531 treated persons). These were grouped in three clusters based on the comparison of mutation 

rates between treated and untreated datasets. This criterion is different from the one (based on MI 

data) adopted in our study, but it is still tempting to compare the two sets of results. Those 
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residues in Class III therein are similar to those in our DRC, while Class I resembles our 

phylogenetic cluster PhVC. Notably, residues Lys20, Met36 which are part of our phylogenetic 

cluster appear in cluster II and cluster III, respectively. These residues exhibit substantial 

sequence variability between subtypes, and appear to be relevant to drug resistance, but 

apparently not in a cooperative manner with other residues. 

6.1.2 k-way clustering using more eigenvectors 

The results from k-way clustering of dataset 1 using k = 3, 4 and 5 are presented in Table 

12. The most correlated residues identified above take part in the same clusters, consistent with 

results from bi-partitioning. Notably, Asp30 and Asn88, which originally belonged to the DRC, 

exhibited a tendency to form a separate cluster together with Val75. This triplet (Asp30, Asn88, 

Val75) was also reported to form a cluster in previous work (Wu et al., 2003). It has long been 

known that co-substitutions at Asp30 and Asn88 are most effective in reducing the susceptibility 

of nelfinavir; however, little attention has been given to date to their possible association with 

Val75. As indicated in Figure 49, the high correlation of Val75 with Asp30 and Asn88 (Figure 

49a), consistent with their structural proximity (Figure 49b), may originate from a cooperative 

mechanism for drug resistance between these three sites. 
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Table 12. Results from k-way spectral clustering of the HIV-1 protease treated dataset 

k Cluster 

3 C1: 30, 75, 88 

C2: 1– 9, 12–15, 17, 19, 20, 22, 25, 26, 28, 31, 35–42, 45, 49, 52, 56, 57, 59, 61, 65, 

68–70, 77, 83, 87, 89, 96–99 

4 C1: 1, 2, 9, 26, 30, 40, 45, 56, 59, 75, 81, 88, 98 

C2: 13–15, 20, 35–38, 41, 42, 49, 57, 69, 70, 77, 83, 89 

C3: 10, 23, 24, 27, 32–34, 43, 46–48, 50, 53–55, 58, 71, 76, 80, 82 

5 C1: 30, 75, 88 

C2: 1, 2, 9, 26, 40, 45, 59, 87, 98 

C3: 13–15, 20, 35–38, 41, 49, 57, 69, 70, 77, 83, 89 

C4: 10, 23, 24, 27, 32–34, 42, 43, 46–48, 50, 53–55, 58, 71,76, 80, 82 
For clarity, the largest cluster that includes all the remaining residues in each case is not shown. 

 

 

Figure 49.  Examination of Asp30, Asn88 and Val75. 

(a) The MI profile of Val75 with other residues in the treated dataset (dataset1). (b) The structural vicinity of Asp30, 

Asn88 and Val75. 

 

6.2 INTERPRETATION WITH RESPECT TO PROTEIN DYNAMICS  

The examination of HIV-1 protease 3D-structure reveals that the residues participating in the 

DRC tend to occupy the flap region (Met46, Ile47, Ile54), the close neighborhood of the active 
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site (Asp30, Val32, Val82, Ile84), and the dimerization interface (Leu10, Leu90). Most of PhVC 

residues, on the other hand, are located away from the interface, toward the exterior of the 

protein (Figure 50a). Interestingly, both groups of residues assume regular secondary structures 

(helices or strands), although their relative positions with respect to the interfacial region differs. 

 

Figure 50. Comparison of results from correlated mutation analysis (CMA) and GNM dynamics. 

(a) The location of the two clusters identified for dataset 1 on the 3D-structure of HIV-1 protease. The DRC is 

colored blue, and the PVC is colored red. We displayed the residues that have appeared at least three times (out of 

six examined datasets) in the same cluster in Figure 47. (b) Ribbon diagram color-coded after the mobilities of 

residues in the first slow mode predicted by the GNM. The residue mobility increases from blue to red. (c) GNM 

slow-mode profile as a function of residue index. Note that calculations are performed for the dimer, but results are 

shown for a monomer, the curves for the two monomers being identical. The HIV-1 protease mutant bound with 

IDV (PDB id: 2B7Z) was used. 

 

We also examined the distance separation between the closest atoms of residue pairs 

belonging to the two clusters. For each pair two values have been considered: intra-molecular 
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(monomers A–A or B–B contacts) or intermolecular (A–B contacts). These data clearly 

demonstrate that the correlated pairs essentially refer to intra-molecular interactions, rather than 

inter-molecular. Note that the MI method cannot detect the correlations between the fully 

conserved residues at the interface between the monomers (e.g. P1-F99 and D29-R8). 

A further comparison between the results from CMA and the mobilities of residues 

predicted by the GNM elucidates the close correspondence between the global dynamics of the 

enzyme and its function. The lowest frequency GNM mode usually defines the global dynamics 

of the enzyme accessible under native state conditions, and such cooperative motions 

intrinsically favored by the structure have been shown to relate to enzymatic function (Yang and 

Bahar, 2005). In particular, the global hinge regions (minima in the mobility profiles driven by 

global modes) play a critical role in conferring the mechanical properties of enzymes that 

complement their chemical (catalytic) activities. 

In order to examine the dynamics of residues belonging to the DRCs and PhVCs, we 

performed GNM calculation for an HIV-1 protease mutant bound to IDV (PDB file 2B7Z). This 

structure contains 10 mutations, most of which belong to the DRC presently identified for the 

IDV-treated dataset. The color-coded ribbon diagram in panel b of Figure 50, and the slow-

mode profile in panel c, display the mobilities in the lowest frequency mode predicted by the 

GNM for this structure. Comparison of panels a and b shows that the DRC residues tend to 

occupy positions that are highly constrained in the global mode, whereas PhVC residues are 

located at relatively flexible positions. These distinctive dynamics of the two groups of residues 

explains the fact that the PhVCs are accommodated without altering the structure and function; 

whereas mutations at the DRC sites that are more buried and spatially constrained have 

functional consequences. Calculations repeated for the substrate-bound complex (PDB id: 2FNS 
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(Prabu-Jeyabalan et al., 2006)) confirmed that the slow-mode profile is insensitive to structural 

asymmetry and yielded the almost identical profiles for the two subunits, while the 2
nd

 mode 

exhibited a stronger dependence on structural asymmetry. 

Finally, we compare the global mobility profile (panel c) with the sequence position of 

the two clusters (Figure 47) reproduced in Figure 50 to ease the visual comparison. The residues 

in the DRC are seen to usually lie close to global hinge regions (minima), while those in the 

PhVC are distributed in high mobility regions. Calculations were repeated for the 2
nd

 and 3
rd

 

GNM modes as well. Comparison of the minima and maxima in these modes with the PhVC 

(red) and DRC (blue) sites along the sequence shows that PhVC modes exhibit relatively high 

mobilities in modes 2 and/or 3 as well, whereas the confinement of DRC residues to hinge sites 

is characteristic of the first (global) mode. The DRC residues located at the flap region (residues 

46–54) show a high mobility in modes 2 and 3. Co-localization of MDR sites with global hinge 

regions thus emerges as an effective means of impacting the cooperative dynamics, and hence 

the function of the enzyme (Bahar et al., 1998) and on the catalysis. 

6.3 CONCLUSION 

In the present study, we analyzed the covariance patterns in HIV-1 protease sequences using a 

simple metric, MI, followed by spectral clustering. The approach proved to discriminate between 

two groups of correlated mutation sites, shortly referred to as DRC and PhVC. Mutations in the 

DRC tend to confer MDR while those in the PhVC seem to differentiate between different HIV-

1 protease subtypes. We have further explored the biophysical basis of the observed differences 

between the two clusters of correlated sites. The two clusters were found to significantly differ 
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with regard to their role in the intrinsic structural dynamics of the enzyme. The DRC sites select 

key mechanical regions, near the global hinges that control the most cooperative motions of the 

enzyme; PhVC residues, on the other hand, preferentially occupy flexible regions that can easily 

accommodate residue substitutions. 

Covariance analysis of related protein sequences is known to be problematic in many 

aspects (Fodor and Aldrich, 2004; Halperin et al., 2006). Many options exist to improve the 

basic method presented here. In the future, it may be worth considering different essential 

covariance measures for further analysis. Methods for assigning significant scores using the 

original MI scores and shuffling of the original data (Hoffman et al., 2003; Shackelford and 

Karplus, 2007) can also help in obtaining more meaningful results. 

One major goal here was, however, to draw attention to the utility of clustering the 

covariance data. This step is important due to various reasons. First, although the CMA is 

performed in a pairwise manner (mainly due to technical and statistical reasons), it is clear that in 

nature larger sets of residues are expected to co-evolve to meet particular structural/functional 

requirements. Second, the clustering procedure is expected to help in distinguishing the real 

correlations from the background noise. The choice of clustering technique may also depend on 

the adopted CMA. When an asymmetric metric is used in step 2, a hierarchical clustering is 

conveniently applied (Hatley et al., 2003; Shulman et al., 2004; Chen et al., 2006). For 

symmetric metrics such as Pearson correlation coefficient and MI, on the other hand, a common 

procedure is to perform a principal component analysis (Fleishman et al., 2004). Here we 

utilized a relatively less detailed, but objective and theoretically robust approach. Significantly, 

this approach allowed us to separate the sequence covariance arising from functional pressures 

(e.g. MDR) from those evolutionarily selected within the examined phylogeny. Both groups of 
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correlations exhibit strong signals when covariance properties are quantified in terms of MI. Yet, 

the distinctive character of the two groups, confirmed by experiments (Figure 48), and 

rationalized by comparison with structural dynamics (Figure 50), supports the utility of adopting 

a spectral bi-clustering method for efficiently discriminating between potential correlations of 

fundamentally different nature/origin. It will be of interest to further explore the utility of 

spectral bi-clustering for differentiating between correlated mutations that reflect „real‟ inter-

residue interactions and those reflecting other evolutionary signals, often considered as noise for 

most analyses purposes (Noivirt et al., 2005). 

Notably, some of the sites for potential MDR, indistinguishable in the untreated 

sequences (Figure 45b), can be detected upon rank ordering the residues via spectral clustering 

of MI data; furthermore, treated sequences subjected to different regimens share common DRC 

residues (Figure 47). These two observations invite attention to the intrinsic tendency of the 

enzyme to potentially select those effective sites to develop mutations that confer MDR, 

irrespective of treatment. 

A challenging, yet important task, which is a natural continuation to this work, is to 

detect correlations between protease residues and residues of other mature/pre-mature proteins of 

HIV-1. A recent work demonstrates how such correlations can be detected between a protease 

mutation (V82A) and a mutation at the nucleocapsid-p1 cleavage site (Prabu-Jeyabalan et al., 

2004). It remains to be seen if current methodology can be extended to investigating the relation 

between the protease and other cleavage sites as well as the correlations with other regions in 

HIV-1 pre-proteins, toward shedding more light on the late stages of the virus maturation. 
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7.0  CONCLUSION AND FUTURE WORK 

In this dissertation we have performed comprehensive analyses of a collection of example 

proteins, combining the computational tools of both sequence and structural analysis. Our results 

have indicated the intrinsic correlation between sequence evolution and structural dynamics, 

which provide related yet complementary information about the protein functions. The current 

results have improved our understanding about the interplay between sequence, structure, 

dynamics, and function; nevertheless, it still remains to search for more quantitative descriptions 

to some of the fundamental questions. For example, what is the statistical significance of 

claiming a loop as being involved in substrate recognition if it contains highly co-evolving 

residues with high mobility? Or more generally, to what degree can we predict the function of 

the protein given sufficient sequence and structural information? The answers to these questions 

are critical for developing knowledge-based models aiming to predict the protein function. 

As shown in Chapter 5, a common feature shared by the conservation and mobility 

profiles is their continuity: sequentially neighboring residues tend to exhibit similar level of 

conservation/mobility. Based on the co-varying conservation and mobility profiles, the residues 

are naturally divided into groups centered at the peaks/valleys. For allostery, this means the 

interactions that mediate the signal transduction may largely depend on the collective efforts of 

groups of aggregated residues. Most existing computational models, unfortunately, have not 

accounted for such information by only focusing on pairwise interactions/co-evolution between 
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individual residues. It may be interesting to see if the incorporation of such information can lead 

to significant improvement of the existing approaches. 

Our current work on the Hsp70 has focused on identifying key interactions based on 

structure information in the “stable” states; a more challenging problem is to understand the 

conformational changes involved in the state transition, which may underlie multiple transient 

states of both domains. Indeed, the interfacial residues studied in Chapter 4 may play a key role 

in the early stage of the conformational transition; e.g., the PRS results can be used to investigate 

the driving forces that yield the initial departure of the two domains. Our collaborators are 

performing “soft mutations” (personal communications with Dr. Zhuravleva from Gierasch lab) 

to probe the local dynamical influence of mutating some of the key residues without impairing 

the stable conformation, and the obtained results may be used to benchmark against our 

computational results. In addition, the directional analysis using PRS may also be used to obtain 

more specific information about the mutual regulation between the allosteric sites. 

More recently, increasing attention has been drawn to the C-terminus of the SBD, 

including the α-helical lid and an unstructured C-terminal fragment. In 2009, an anti-cancer 

inhibitor of human Hsp70 (PES, (Leu et al., 2009)) has been proposed to interact with the α-

helical domain; moreover, a study from our collaborator has proposed the C-terminal disordered 

region interacts with the folding client transiently to enhance the chaperone function (Smock et 

al., 2011). It is expected that the emerging new experimental data may help to explain some of 

the observations obtained from the computational studies, thus to reveal a more complete view of 

the Hsp70 allosteric mechanism. 
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APPENDIX A 

SUPPLEMENTARY MATERIALS 

 

Figure A1. Comparison of residue mobilities with their evolutionary conservation properties. 

(a) The mobility for each residue averaged over the first 10 GNM modes is plotted against its ET rank. Three 

outliers for ET rank 6, 8 and 9 are labeled, two of which (Gly34 and Asp292) are NEF-contacting residues. (b) 

Proportionality between the discretized ConSurf score and the average mobility (average <M>|10) for residues with 

the same discrete ConSurf score. The discretization is performed by sorting all residues according to the ConSurf 

score, grouping every 20 consecutive residues and evaluating the mean mobility for each group. The correlation 

coefficient between average mobility and discrete ConSurf score is 0.88. 
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Figure A2. Comparison of correlated mutations map obtained by MI analysis and by the SCA. 

The first two panels are the correlation maps calculated using (a) SCA and (b) MI. (c) The SCA correlation map 

after hierarchical clustering (note that the abscissa does not correspond to sequential residues anymore, but those 

rank-ordered according to their extent of correlated mutations. (d) The MI correlation map with residues re-ordered 

according to the same permutation in panel c. 

 

As a benchmark of performance, we performed SCA calculations (SCA version 3.0) on 

the same MSA that were used for MI analysis, and compared the results (Figure A2).   
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The correlation matrices calculated in both analyses show similar patterns. Subdomain 

IIB exhibits the highest degree of correlation with a wide range of residues in both cases; 

however, we notice that the signals in the MI analysis are more distinctive, whereas the range of 

values in the SCA matrix is range (0-4.8 as opposed to 0-1 in the MI matrix). In the clustered 

maps, the high correlation in certain regions of the MI matrix has been suppressed in the SCA 

matrix, which may be attributed to the noise reduction step in SCA. Overall, in both matrices the 

majority of NEF-contact residues are identified as highly correlated with each other. 
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Figure A3. Evolutionary trace (Lichtarge et al., 1996) of DnaK residues 4-604.  
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Figure A4. Displacement of residues in response to 100 pN applied at Val389 in DnaK530. 

The force constant (48 pN/Å) of the homology model DnaK530 is calculated based on its template using the ANM 

web server (Eyal et al., 2006). 

 

 

Figure A5. Responses to the perturbation at Thr417. 

(a) Response profile of perturbing Thr417 (<║∆R
(417)

 ║
2
>norm). Peaks highlight the HS residues in the presence of 

this perturbation. Labels are colored according to the subdomains in which the labeled residues participate. (b) 
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Ribbon diagram highlighting the HS residues. The HS residues are shown in spheres representation and colored 

according to their subdomain location in the ATPase domain and SBD, and the ATP molecule is shown in yellow 

stick representation. 

 

 

Figure A6. Responses to the perturbation at Gly506. 

(a) Response profile of perturbing Gly506 (<║∆R
(506)

 ║
2
>norm). Peaks highlight the HS residues in the presence of 

this perturbation. Labels are colored according to the subdomains in which the labeled residues participate. . (b) 

Ribbon diagram highlighting the HS residues. The HS residues are shown in spheres representation and colored 

according to their subdomain location in the ATPase domain and SBD, and the ATP molecule is shown in yellow 

stick representation. 
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Figure A7. Mutual information map of DnaK (residues 4-604). 

The blue bars below show the average MI values I(i) of each residue. 
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Figure A8. Responses to the perturbation at Lys421. 

(a) Response profile of perturbing Lys421 (<║∆R
(421)

 ║
2
>norm). Peaks highlight the HS residues in the presence of 

this perturbation. Labels are colored according to the subdomains in which the labeled residues participate. The inset 

ribbon diagram is color-coded in the order of decreasing response <║∆R
(421)

║
2
>norm, from red to blue.. (b) Ribbon 

diagram highlighting the HS residues. The HS residues are shown in spheres representation and colored according to 

their subdomain location in the ATPase domain and SBD, and the ATP molecule is shown in yellow stick 

representation. 
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Figure A9. An illustrative example: uracil-DNA glycosylase (UDG). 

(a) Scatter plot of mobility against entropy. Each point refers to a residue. Red and black dots correspond to <Mi 

>|m2, and <Mi>|N-1, respectively. The respective correlation coefficients are 0.50 and 0.52, although the correlations 

are statistically significant (p-values of the order of 10
-12

) (Table 8). (b) Relationship between the conservation and 

effective mobility for UDG. The data in panel a are consolidated by evaluating the average mobilities (here MSFs) 

for entropy intervals of ∆S = 0.1, and the corresponding grid-based mapping scheme of <Mk
eff 

>|N-1 values are plotted 

for 1 ≤ k ≤ 15. Best fitting curve and error bars are indicated. The resulting correlation coefficient is 0.82.  
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Figure A10. The location of highly conserved (red dots, S
 
< 0.1) and most variable residues (black 

dots, S
 
> 1.6) on the MSF. 

The curves refer to all 34 enzymes studied here (Table 6). Enzymes are grouped based on their size.  
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Figure A11. Interaction of T7 lysozyme with T7 RNA polymerase. 

Highlighted T7 lysozyme residues (in red) are Arg30, Glu31, Gln34, Lys37 and Glu38.  Among them Gln34 is 

distinguished by their high co-evolutionary properties (shown by squares in Figure 42, panel b). The structure has 

been generated using the PDB file 1ARO (Jeruzalmi and Steitz, 1998).  
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