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Abstract

The paper looks at the conditional independence search approach to
causal discovery, proposed by Spirtes et al. and Pearl and Verma, from
the point of view of the mechanism-based view of causality in economet-
rics, explicated by Simon. As demonstrated by Simon, the problem of
determining the causal structure from data is severely underconstrained
and the perceived causal structure depends on the a priori assumptions
that one is willing to make. I discuss the assumptions made in the inde-
pendence search-based causal discovery and their identifying strength.

1 Introduction

An accepted scientific procedure for demonstrating causal relations is experi-
mentation. If experimental manipulation of one variable (called the independent
variable) results in a change in value of another variable (called the dependent
variable), assuming an effective control for all possible intervening variables, one
usually concludes that in the system under study the two variables stand in a
causal relation with each other. Unfortunately, conducting such experiments is
for many practical systems impossible, because of our inability to manipulate
the system variables, forbidding costs of experimentation, or ethical considera-
tions. Numerous examples of such systems are found in economics, medicine,
meteorology, or social sciences. Still, one wants to predict the impact of pol-
icy decisions, such as whether to impose a tax, introduce or abolish the death
penalty, or restrict smoking, on such variables as the gross national product,
crime rates, or the number of lung cancer cases in the population. Where ex-
perimentation is impossible, one must rely on observations and assumptions in
order to form a theory of causal interactions.

One discipline where much attention has been paid to model construction
from observations is econometrics. Work in late 1940s and early 1950s (see for
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example [4] or [3]) concentrated on formulating economic theories in the form of
systems of structural equations, i.e., equations describing mechanisms by which
variables interact directly with each other. It was commonly believed that sys-
tems of structural equations should be formulated either entirely on the basis of
economic theory or economic theory combined with systematically collected sta-
tistical data for the relevant variables in the system. Construction of a system
in the second case consisted of proposing a theoretical model, i.e., specifications
of the form of the structural equations (including designation of the variables
occurring in each of the equations) and then estimating the constant parameters
from observations. The limits of such estimation raised the problem of “identi-
fiability,” i.e., whether it is theoretically possible, given prior knowledge about
the functional forms of equations in a set of simultaneous equations, to deter-
mine unique values of parameters of these equations from observations. Simon
[7] related the problem of identifiability to the causal structure of the system,
showing theoretical conditions under which a structure is identifiable.

In their influential work, Spirtes et al. [9] and Pearl and Verma [5],1 pro-
posed that, under certain circumstances, observation is sufficient to determine
all or part of the causal structure of a system. They have outlined methods for
identifying the narrow class of causal structures (ideally a unique causal struc-
ture) that are compatible with particular observations. I will refer to the view of
causality that underlies this work as independence search-based view of causal-
ity (or briefly ISC). As Simon [8] demonstrated, the problem of determining the
causal structure from data is severely underconstrained and the perceived causal
structure depends on the a priori assumptions that one is willing to make. From
this point of view, there is little doubt that these new methods rest on some
powerful identifying assumptions.

The goal of this paper is to explicate these assumptions, express them in
terms of the earlier work in econometrics on structural equation models, and
discuss their identifying strength. I will build on the results presented in [2],
which reviews the mechanism-based view of causality (MBC) and shows a link
between causal ordering and directed probabilistic graphs. The main conclusion
resulting from this analysis is that with respect to the meaning of causality, the
ISC and MBC views are almost identical. The power of the new methods rests
on additional assumptions about causal relations that had not been made in
econometrics. The two new powerful identifying assumptions are (1) that the
causal structure is acyclic and (2) that each observed independence and depen-
dence is a reflection of the causal structure and not merely coincidental (the
latter called in the ISC view “faithfulness assumption”). With respect to the
faithfulness assumption, the new, previously unexplored, element is dependence
of causes conditional on a common effect.

The remainder of the paper is structured as follows. Section 2 starts with a

1I will refer frequently to the book by Spirtes et al. [9] rather than to the work of Pearl
and Verma, because I am more familiar with the former. I believe that for the purpose of
this analysis, both approaches are equivalent. There are other, Bayesian approaches to causal
discovery originating from the seminal work of Cooper and Herskovitz [1], which I will leave
outside this discussion.
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brief review of the mechanism-based view of causality in directed probabilistic
graphs. Section 3 offers a summary of the main assumptions made in the causal
discovery work. Section 4 covers important concepts at the foundations of causal
discovery: independence, conditioning, Markov condition, and faithfulness. It
proposes a deterministic notion of independence and explains the link between
this and the probabilistic view. Section 5 translates the assumptions in ISC into
the MBC and explicates their identifying power.

2 Mechanism-Based View Of Causality

The mechanism-based view of causality rests on the observation that individual
causal mechanisms, while normally symmetric (e.g., forces are reciprocal), ex-
hibit asymmetry when embedded in the context of a model. Simon [7] proposed
a procedure for deriving a directed graph of interactions among individual vari-
ables, called causal ordering, and tied it to the econometric notion of structure.
He postulated that when each of the equations in the model is structural and
each of the exogenous variables is truly exogenous, the asymmetry reflects the
causal structure of the system. Druzdzel and Simon [2] have shown the link
between causal ordering and directed probabilistic graphs. I will briefly review
the main results from that work.

The following theorem demonstrates that the joint probability distribution
over n variables of a Bayesian network (BN) can be represented by a model
involving n simultaneous equations with these n variables and n additional
independently distributed latent variables.

Theorem 1 (representability) Let B be a BN model with discrete random
variables. There exists a simultaneous equation model S, involving all variables
in B, equivalent to B with respect to the joint probability distributions over its
variables.

The following theorem establishes an important property of a structural equa-
tion model of a system with the assumption of causal acyclicity.

Theorem 2 (acyclicity) The acyclicity assumption in a causal graph corre-
sponding to a self-contained system of equations S is equivalent to the following
condition on S: Each equation ei ∈ S : f(x1, . . . , xn, Ei) = 0 forms a self-
contained system of some order k and degree one, and determines the value of
some argument xj (1 ≤ j ≤ n) of f , while the remaining arguments of f are
direct predecessors of xj in causal ordering over S.

The last theorem binds causal ordering with the structure of a directed proba-
bilistic graph.

Theorem 3 (causality in BNs) A Bayesian belief network B reflects the cau-
sal structure of a system if and only if (1) each node of B and all its direct
predecessors describe variables involved in a separate mechanism in the system,
and (2) each node with no predecessors represents an exogenous variable.
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The above results show a link between structural equation models and causal
graphs. They also make it clear that the former give a more general notion of
structure than the letter. Directed probabilistic graphs are acyclic, while causal
ordering in structural equation models can lead to cyclic structures. While
equations can easily model dynamic processes with feedback loops, directed
acyclic graphs can capture only their equilibrium states.

Theorem 3 demonstrates that directed arcs in BNs play a role that is similar
in its representational power to the structure (presence or absence of variables in
equations) of simultaneous equation models. The graphical structure of a BN,
if given causal interpretation, is a qualitative specification of the mechanisms
acting in a system.

3 Causal Discovery

Causal discovery in ISC is based on two axioms binding causality and proba-
bility. Informally, the first axiom, causal Markov condition, states that once we
know all direct causes of an event, the event is probabilistically independent of
its causal non-descendants. For example, suppose that we see a broken glass
bottle on the bicycle path with small pieces of glass lying all around. Learning
the cause of this broken bottle or that a piece from the bottle hurt a passing
dog, does not change our expectation of a flat tire caused by the pieces of glass
on the road.2 The formal statement of the causal Markov condition is as follows:

Causal Markov Condition: [9, page 54,] Let G be a causal graph
with vertex set V and P be a probability distribution over the ver-
tices in V generated by the causal structure represented by G. G
and P satisfy the Causal Markov Condition if and only if for every
W in V, W is independent of V\(Descendants(W ) ∪ Parents(W ))
given Parents(W ).

The second axiom, the faithfulness condition, assumes that all interdependencies
observed in the data are structural, resulting from the structure of the causal
graph, and not accidental (e.g., by some particular combination of parameter
values that result in causal effects canceling out). Spirtes et al. demonstrate
that purely accidental dependencies and independences have, under a wide class
of natural distributions over the parameters, a probability of measure zero. The
formal statement of the faithfulness condition is as follows:

Faithfulness Condition: [9, page 56,] Let G be a causal graph and
P a probability distribution generated by G. < G,P > satisfies the

2Many of these properties of causes have been long known. Reichenbach described “causal
forks” consisting of a cause and two or more effects. The effects are normally probabilistically
dependent because of the common cause, but this dependence vanishes if we condition on
the cause [6, page 158,]. The causal Markov condition is not completely uncontroversial.
Salmon [6] postulates the existence of “interactive forks,” that violate the causal Markov
condition. Spirtes et al. give an appealing explanation of Salmon’s examples and postulate
that interactive forks do not exist, at least in the macroscopic world [9, Section 3.5.1,].
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Faithfulness Condition if and only if every conditional independence
relation true in P is entailed by the Causal Markov Condition applied
to G.

One of the consequences of the causal Markov condition in combination with
the faithfulness condition is conditional dependence: all causal predecessors of
an observed variable v become probabilistically dependent conditional on v.
Suppose that while riding a bicycle we get a flat tire. This makes all possible
causes of the flat tire probabilistically dependent conditional on the flat tire.
Observing pieces of glass on the road, for example, makes thorns less likely (the
glass “explains away” the thorns).

Markov and faithfulness conditions bind causality with probability and along
with other assumptions, such as acyclicity of the causal structure, reliability of
the statistical tests applied, or independence of error terms, place constraints
on the causal structure. The constraints provide clues to the causal structure
that generated the observed patterns of interdependencies. Spirtes et al. show
that given their assumptions, they are often able to reconstruct from a set of
observations a unique causal structure of the system that generated them. The
search for that causal structure is a search for the class of faithful models that
are structurally able to generate the observed independences, and sometimes
this search provides a unique structure.

4 Independence, Conditioning, Markov Condi-
tion, and Faithfulness

This section builds a bridge from the MBC to the ISC view of causality by
introducing a deterministic notion of independence between a system’s variables.
This is a purely theoretical exercise that allows to talk about dependences among
variables in a system of simultaneous structural equations. Please note that the
concept of causal ordering, as explicated by Simon, operates on systems of
simultaneous structural equations with no notion of uncertainty. Uncertainty
enters these systems through variability of exogenous variables (error terms are
simply exogeous variables on the par with other exogenous variables ).

4.1 Deterministic Independence

I propose to base the deterministic definition of independence on the notion of
dimensionality of the Cartesian product of variables. Followings the conven-
tions in physics and mathematics, I define the dimension of a space roughly as
the minimum number of coordinates needed to specify every point within it.
A Cartesian product of n independent variables has dimensionality n, for, as
each of the variables can vary independently over its domain, the points in this
product cover an n dimensional space. If there is any interdependency among
the variables, there will be loss in the dimensionality of this space. For exam-
ple, if the element binding the two variables is an equation describing a unit
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circle, all we need to specify a point in this space is the polar coordinate angle.
The Cartesian product of two independent variables forms a plane. If these two
variables are dependent, then the domain of their Cartesian product will have
a lower dimensionality and will be a line. The value of one of the variables puts
a constraint on the value of the other.

Definition 1 (independence) Sets of variables X and Y in a simultaneous
equation model S are independent if the dimensionality of the Cartesian product
of the variables in X ∪ Y is equal to the sum of dimensionalities of Cartesian
products of variables in X and Y separately.

Loss of dimensions is caused by functional relations that bind variables between
the sets X and Y. Each functional relation causes, in general, loss of one
dimension. Because the exercise is theoretical, I will leave out of this paper
the question how to test for deterministic independence in practice, along the
lines of testing probabilistic independence.

4.2 Conditioning

Conditioning within a system of simultaneous equations means selecting a sub-
set of observations that fulfills some specified condition. Such a condition forms
a constraint on the values that a measured variable or a set of measured vari-
ables can take in the selected subset. Typically, one requires the value of a
variable to be equal to some constant value. Conditioning is a passive way of
“experimenting” with the system without modifying its causal structure. One
selects those instances of the system’s output that produce a specified value. If
we condition on, for example, xi = xi0 , then we add to the system an additional
constraint

xi = xi0 . (1)

It is important to distinguish conditioning from direct manipulation of xi, which
is referred to in econometrics by change in structure. A change in structure is
represented by replacing the equation that is made inactive by an equation
describing the manipulation. In this case, one would replace the equation ei

that determines the value of xi by the equation xi = xi0 . In conditioning, on
the other hand, the selected data set needs to satisfy the equation ei and, in
addition, Equation 1. Conditioning on one variable reduces, thus, the system
from a self-contained set of n equations with n variables to a set of n+1 equations
with n variables (or, if we choose to replace xi by a constant, n equations with
n−1 variables), a system that is overconstrained. (This system still has solutions
— these are the observed data points.)

4.3 Markov Condition

It turns out that in deterministic models, Markov condition can be derived
rather than assumed and the following theorem can be proven.
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Theorem 4 (Markov condition) Let S be a simultaneous equation model
with n variables V and n independent error variables. Let G be a directed
acyclic graph with vertex set V reflecting causal ordering over variables V in S.
For every w ∈ V, w is independent of Z ≡ V\(Descendants(w) ∪ Parents(w))
given Parents(w).

The theorem shows that the Markov condition is a simple consequence of the
fact that the system is modeled by a set of simultaneous structural equations.

Theorem 2 shows that under the assumption of acyclicity, each of the equa-
tions determines one variable. Let equation ei determine the variable xi and
precede (in the causal ordering over the model) all equations ej , such that i < j.
Because none of the equations ek, such that k < i, contained xi, each remains
unchanged when we condition on xi. Each of those equations ek such that i < k
that contained xi will now contain one fewer variable. This will lead to making
the causal path from the predecessors of xi to its causal successors inactive: note
that as xi becomes constant, none of the equations for the causal successors of
xi will depend on causal predecessors of xi through xi (they may, of course,
depend through other paths).

4.4 The Faithfulness Assumption

I propose the following deterministic definition of faithfulness.

Definition 2 (faithfulness) A structural equation model S is faithful with re-
spect to its structure if and only if every independence between sets of variables
in S is entailed by the structure of S (i.e., by the presence and the absence of
variables in individual equations in S).

What this definition requires practically is that the model not contain equations
that structurally look as if they were putting a constraint on a variable or a set
of variables, but where in reality, the actual functional form and the actual
values of the coefficients imply no constraint. Unfaithfulness may happen when
a variable is present in an equation, but the coefficient of that variable is zero
or becomes zero when influence through different paths is being computed (i.e.,
when the total effect of a variable on another variable through different paths
“cancels out”).

There are dependencies that do not result in loss of dimensionality, such as
Peano or Sierpiński curves, or even the simple absolute value function. How-
ever, one has to remember that there are dependences that do not result in
probabilistic dependence, for example deterministic dependences, excluded by
the faithfulness axiom in the ISC approach.

4.5 Useful Properties of Causal Graphs

I report three properties of the relation between causal ordering and indepen-
dence. Proofs are quite straightforward and omitted due to space constraints.
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Theorem 5 (causal dependence) If y precedes x in causal ordering, then y
and x are dependent.

Theorem 6 (spurious dependence) If z precedes both x and y in the causal
ordering, then x and y are dependent.

One of most useful conclusions that can be drawn from conditioning is con-
ditional dependence. Conditioning on a variable in a simultaneous equation
model yields a data set in which all variables that are causal predecessors of that
variable are dependent, contrary to the situation before conditioning, where ex-
ogenous variables in the system under study were independent by assumption.
This observation shows that conditioning on a set of variables allows one to draw
inferences about the causal ordering of variables, namely to discriminate, under
certain circumstances, between causal predecessors and causal successors of the
variables that were conditioned on. This property is captured by the following
theorem.

Theorem 7 (conditional dependence) Let S be a self-contained simultane-
ous equation model. Let Ψ be the set of causal predecessors of a variable x.
Given the faithfulness assumption, any two subsets of variables Y,Z ∈ Ψ, are
dependent conditional on x.

The above three theorems show that causal ordering and interdependence are
related. Causal ordering of the variables in a system of equations will result in
a pattern of interdependencies in the observed data. This pattern, in turn, will
give clues to the causal ordering or, more exactly, to the structural equations of
the system.

5 Assumptions in Causal Discovery

Using elementary algebraic considerations, Simon [8] demonstrated that the
problem of determining a causal structure, either from experimental or obser-
vational data, is severely underconstrained. The way one perceives the causal
structure of a system is strongly dependent on the assumptions that one is will-
ing to make. In particular, one might assume that a causes b only from an
observed correlation between a and b, if one is willing to make the assumptions
of time precedence and causal sufficiency (the latter excludes the possibility of
a common cause) [8]. Similarly, one may be reluctant to accept even an experi-
mental demonstration of causation, if one rejects critical assumptions about the
experimental setup. It is, therefore, essential to state explicitly the assumptions
made and provide the motivation for their validity.

In this section, I will outline the identifying information supplied by each
of the assumptions made in causal discovery and the exact gains for discov-
ering causality. I will use the structure matrix notation introduced in [2] and
reproduced below to show the gains from each of the assumptions in terms of
the number of coefficients of structural equations that are determined by the
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assumption. Some of the assumptions work in combination, and it is, therefore,
difficult to assess the net gain obtained by each separately.

5.1 Initial Observations

The following definition, reproduced from [2], introduces a convenient notation
for the structure of equations in simultaneous equation models.

Definition 3 (structure matrix) The structure matrix A of a system S of n
simultaneous structural equations e1, e2, . . . , en with n variables x1, x2, . . . ,
xn is a square n× n matrix in which element aij (row i, column j) is non-zero
if and only if variable xj participates in equation ei. Non-zero elements of A
will be denoted by X and zero elements by 0.

Our starting point is the observation that any system can be modeled by n
measured variables (x1, x2, . . . , xn) and n unmeasured latent variables (E1, E2,
. . . , En), called error terms (note that I am not making any assumptions about
their interdependence). If we denote the ith measured variable by xi and the
ith error term by Ei, we can write the following structure matrix A for the set
of 2n simultaneous structural equations with 2n variables. A solution of this set
for any given set of values of the exogenous variables E1, E2, . . . , En describes a
single observed data point.

x1 . . . xn E1 . . . En

(e1) a11 . . . a1n a1n+1 . . . a12n

(e2) a21 . . . a2n a2n+1 . . . a22n

. . . . . . . . . . . . . . . . . . . . .
(en) an1 . . . ann ann+1 . . . an2n

(en+1) an+11 . . . an+1n an+1n+1 . . . an+12n

(en+2) an+21 . . . an+2n an+2n+1 . . . an+22n

. . . . . . . . . . . . . . . . . . . . .
(e2n) a2n1 . . . a2nn a2nn+1 . . . a2n2n


(2)

5.2 Acyclicity of the Causal Structure

The acyclicity assumption is probably the strongest assumption made in ISC
causal discovery. It technically amounts to assuming that there are no feedback
loops in the causal graph of the system. The implication of this assumption
for a simultaneous structural equation model has been captured by Theorem 2.
Every equation in such a model determines the value of exactly one endogenous
variable.

Before showing the implications of the acyclicity assumption for causal dis-
covery, I will rearrange the coefficients of the structure matrix to a form conve-
nient in causal discovery. Without loss of generality we are free to assume that
row i (i = 1, . . . , n) in (2) represents equation ei that determines the value of
variable xi, and row n + j (j = 1, . . . , n) represents equation en+j that deter-
mines the value of the error variable Ej . Also, column i (i = 1, . . . , n) of the
matrix will contain coefficients for the variable xi and column n+j (j = 1, . . . , n)
will contain coefficients of the error variable Ej . Mathematically this assump-
tion amounts to rearranging the structure matrix by row and column exchanges
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(renaming the variables and the equations), which, as shown in [7], preserves
the causal structure of the system.

The following three properties hold in this rearranged matrix A:

Property 1 (diagonal elements) ∀1≤i≤2n aii 6= 0

Because I assumed that equation ei determines variable xi, and, therefore,
xi must be present in ei, each diagonal element of A must be non-zero (i.e.,
∀1≤i≤n aii 6= 0). The same holds for the error variables Ei.

Property 2 (off-diagonal elements) There are at least 2n(2n − 1)/2 zeros
among off-diagonal elements of A. All non-zero off-diagonal elements in A
represent direct causal predecessors of the diagonal element of the same row.

In the proof of Theorem 2 [2], I demonstrate that another implication of the
acyclicity assumption is that the structure matrix is triangular and, therefore,
contains at least 2n(2n− 1)/2 zeros. The location of these zeros is only partly
disclosed and can be retrieved only in combination with the properties of the
observed data and other assumptions during the discovery process.

By Theorem 2, all variables that participate in an equation, except the
one that is determined by the equation, are direct causal predecessors of that
variable. By Property 1, the diagonal elements denote the variables that are
being determined, therefore, it follows that all non-zero off-diagonal elements
represent direct causal predecessors of the diagonal elements. Note that no
assumptions have been made so far about interdependence of error variables
and each of the equations en+i (i = 1, . . . , n) can model dependencies among
these.

Property 3 (acyclicity) ∀i 6=j aij 6= 0 =⇒ aji = 0

aij 6= 0 implies that xj is a direct predecessor of xi and aji 6= 0 would imply
that xi is a direct predecessor of xj , which then implies a cycle in the causal
graph. Note that Property 3 captures only cycles of degree two. It is possible
to capture cycles of higher degrees, although the conditions for these become
increasingly complex.

5.3 Causal Sufficiency

The assumption of causal sufficiency3 is equivalent to the assumption of indepen-
dence of exogenous variables Ei. Independence of exogenous variables amounts
to assuming that half of the 2n equations contain just one variable, namely one
of the n error terms. As the remaining n equations each involves exactly one

3This assumption can be relaxed in ISC causal discovery — some search algorithms pro-
posed by Spirtes et al. allow for discovery of models that are not causally sufficient. In this
case, the algorithm suggests possible common causal predecessors of any pair of the measured
variables [9, Chapter 6,].
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distinct variable of the n error variables, we get 3n2 − 2n structural zeros.

x1 x2 . . . xn E1 E2 . . . En

(e1) X 0 . . . 0 X 0 . . . 0
(e2) a21 X . . . 0 0 X . . . 0
(e3) a31 a32 . . . 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

(en) an1 an2 . . . X 0 0 . . . X

(en+1) 0 0 . . . 0 X 0 . . . 0
(en+2) 0 0 . . . 0 0 X . . . 0
(en+3) 0 0 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
(e2n) 0 0 . . . 0 0 0 . . . X


For the sake of simplicity of the subsequent discussion, we can remove the error

term parts of the above structure matrix (note that the removed parts contain
no unknown values of parameters), obtaining:

x1 x2 x3 . . . xn

(e1) X 0 0 . . . 0
(e2) a21 X 0 . . . 0
(e3) a31 a32 X . . . 0
. . . . . . . . . . . . . . . . . .

(en) an1 an2 an3 . . . X

 (3)

In the structure matrix above, I have assumed that all zeros are located above
the diagonal to show graphically the number of structural zeros obtained by
the acyclicity assumption. In fact, the location of zeros is not disclosed a-
priori and is only constrained by Property 3. The actual inference from the
observed pattern of interdependencies concentrates on determining for each of
the remaining n(n− 1)/2 coefficients in (3) whether it is zero or non-zero.

6 Conclusion

Because the problem of causal inference from observations is severely undercon-
strained, the perceived causal structure depends on the a priori assumptions
that one is willing to make. This paper has explicated the assumptions made in
the causal discovery work (ISC view) and expressed them in terms of the earlier
work in econometrics on structural equation models (mechanism-based view).
I discussed the identifying strength of each of the assumptions in terms of the
number of structural zeros and non-zeros that can be implied in the structure
matrix.

The power of the ISC methods seems to rest on additional assumptions about
causal relations that had not been made in econometrics. The two new powerful
identifying assumptions are acyclicity of the causal structure and the assump-
tion that each observed independence and dependence is a reflection of the
causal structure of the system and is not merely coincidental (the latter called
by Spirtes et al. “faithfulness assumption”). With respect to the faithfulness
assumption, the new, previously unexplored, element is dependence of causes
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conditional on a common effect: a conditional dependence observed in this case
is assumed to be structural and allows for distinguishing between predecessors
and successors of the node conditioned on.
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