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Abstract If a decision maker prefers x to y to z, would he choose orderd set [x, z] or

[y, x]? This article studies extension of preferences over individual alternatives to an or-

dered set which is prevalent in closed ballot elections with proportional representation

and other real life problems where the decision maker is to choose from groups with

an associated hierarchy inside. I introduce five ordinal decision rules: highest-position,

top-q, lexicographic order, max-best, highest-of-best rules and provide axiomatic char-

acterization of them. I also investigate the relationship between ordinal decision rules

and the expected utility rule. In particular, whether some ordinal rules induce the same

(weak) ranking of ordered sets as the expected utility rule.

Keywords Extension of preferences · Ordered Set · List · Expected utility

1 Introduction

Decision makers often need to choose among different sets of alternatives. In some

circumstances, there is an order inside each set and the decision maker has to form

a preference over sets of ordered alternatives based on his preference over individual

alternatives. Thus the problem is extension of preference on a set to its ordered power

set. I restrict attention to situations where all sets to be compared are finite and have

the same cardinality. Then the analysis becomes extension of preference over individ-

ual alternatives to their finite permutations of the same size. A prominent example is

voter choice in closed ballot elections with proportional representation. In this system,

utilized in many European democracies, every constituency has a prespecified num-

ber of congressmen to represent itself in the parliament. Each political party proposes

its ordered list of candidates. The number of votes to parties and the election rule
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determine how many seats each party obtains from that constituency. Then elected

candidates corresponding to those seats of a party are picked from its list starting from

the highest position. Therefore candidates at the higher order of a list have higher

chance of becoming a congressman. Note that since voters are voting for political par-

ties, they are essentially voting for list of candidates. Therefore a voter must establish

a preference over lists of candidates. As the order of candidates in the list is critical,

voter must extend his preference over individual candidates to ordered lists of candi-

dates.1 Instances of preference extension to ordered sets exist in other contexts as well.

Consider for instance a principal deciding which consultant firm to hire. Consultant

firms typically have many experts arranged according to an organizational structure.

Suppose the principal knows qualification of all experts in all consultant firms. His

problem is then choice among groups of experts with an order in each group. In this

case the order reflects rank of experts. Using similar logic, every problem where the

principal must choose among groups of people with an associated hierarchy, is basically

extension of preferences to ordered sets.

As another example consider a committee evaluating applicants for a fellowship

grant. The sole criterion is educational background. The committee must take into

account applicant’s success in all educational levels like baccalaureate, high school,

secondary school; however the committee will give more emphasis to the recent educa-

tional institutions. Thus an applicant is a set of ordered scholastic records.

In this setting, which decision rules can a decision maker use to choose among

sets of ordered alternatives, and how are these decision rules rationalized based on

behavioral choice axioms? Assuming ordinal preferences, I present some decision rules

and provide axiomatic characterization of them. They are as I name, highest-position,

lexicographic-order, max-best and highest-of-best. In the highest-position rule, the de-

cision maker considers the alternative at the top of each set and prefers the set with

the best alternative. He is indifferent among sets that have equivalent alternatives at

their highest position. In the lexicographic-order rule, the decision maker first looks at

the alternatives at the highest position of each set and prefers the set with a better

alternative. If he is indifferent among highest position alternatives of some sets, he

compares alternatives at the second highest position and prefers the set with a better

one. If tie is still not broken, he compares alternatives at the third highest position

and so on. In the max-best rule, the decision maker identifies the best alternative(s)

of each set. Inside a set, the best alternative at the highest position is its max-best

and the decision maker chooses the set whose max-best is superior to max-best of oth-

ers, regardless of location. If he is indifferent among max-best of some sets, he prefers

the one with max-best at higher position. The last rule, highest-of-best, considers the

max-best of each set with its position. The decision maker prefers a set if its max-best

is both more qualified and at a higher position than max-best of other sets. In the case

of quality-order tradeoff among two sets, if one set weakly Pareto dominates the other

set in those two positions, the decision maker chooses this set. Otherwise he prefers

the set whose max-best is inferior but at a higher order.

These decision rules are practical in situations where the decision maker has only

ordinal preference ranking over individual alternatives but cannot attribute numerical

values to them; or the decision maker attributes numerical values to alternatives but

he cannot specify numerical values to measure importance of different positions in the

1 Whether a voter votes sincerely or strategically, he must first identify his true preference
over lists.
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hierarchy. Even when the decision maker quantifies all aspects of the problem, he may

still follow one of the above rules if he is boundedly rational. That is he is not capable of

going through complex operations to calculate the expected utility but rather employs

simpler methods and concentrates on focal points like highest position or most qualified

alternative in a set.

Still, one may investigate the expected utility approach and its relationship to the

ordinal approach in this setup. Suppose the decision maker has cardinal utility over in-

dividual elements and also attributes numerical weight to each position in the list. This

way he can compute expected utility of an ordered set and rank the sets. Now is the ex-

pected utility rule, under some conditions, equivalent to an ordinal decision rule? That

is, do they generate the same ranking over sets for any preference over alternatives?

First note that there are infinitely many cardinal utility functions that represent the

same ordinal preference over individual alternatives. Yet these various cardinal utility

functions may result different rankings over sets although ordinal ranking over alterna-

tives remains the same. Then the question is whether there are ordinal decision rules

for which expected utility counterpart yields the same ranking over sets independent of

variation of cardinal utility. I find such ordinal rules to be the degenerate ones: Rules

that solely consider the element at a single and specific position in the list. Among

degenerate rules, the decision maker would sensibly consider the highest position in

the list as it is the most important one. Thus the only rational cardinal-proof ordinal

rule is the highest-position rule. This somewhat comes as an impossibility result so

I relax equality condition between ranking under ordinal and cardinal rule. I just re-

quire the equality between weak ranking over sets under two rules. Then the group of

admissible ordinal rules expands. In addition to degenerate rules, pairwise dominance

(top-q) rules also satisfy weakened cardinality proofness. Inside this group, the Pareto

dominance rule is the rule whose induced weak ranking is the same as expected utility

rule even when we vary numerical values of weights. Thus Pareto-dominance rule is

the only ordinal rule which is weakly consistent with the expected utility rule under

both cardinal proofness and weight proofness.

The article is organized as follows: Section 2 reviews the literature, Section 3

presents the basic setup and notation. Section 4 explains the main axioms used to

characterize various extension rules. Section 5 demonstrates ordinal extension rules

and provides their axiomatic characterization. Section 6 examines the connection be-

tween ordinal decision rules and the expected utility approach. Section 7 concludes.

2 Related Literature

Previous literature has studied extension of preferences to the power set and choice

under complete uncertainty. In these models, the decision maker is to form preference

over sets of alternatives but he treats all the alternatives in a set equally. Hence there

is no order or hierarchy among the elements of a set. In the analogous problem choice

under complete uncertainty with the set based approach, the decision maker needs to

choose among actions where each action generates a stochastic outcome. The decision

maker knows the set of possible outcomes for each action but he doesn’t know the

probabilities or even likelihood comparison of the outcomes. Therefore each action is

equivalent to a set of outcomes and the decision maker has to choose among sets of

outcomes based on his preference over individual outcomes. Then the problem becomes

extension of preferences over a set to its power set. The literature has established
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impossibility and possibility results regarding extension rules. See Arrow and Hurwicz

(1972), Kannai and Peleg (1984), Pattanaik and Peleg (1984), Bossert, Pattanaik and

Xu (2000) and others for these contributions and axiomatic characterization of decision

rules.

Another subfield of research, choice under complete uncertainty with the vector

approach, is also related to my research. In the vector approach, the decision maker

knows the possible states of the nature and the outcome that an action yields in each

state. So each action can be interpreted as a vector of outcomes where a specific position

in vectors of different actions corresponds to the same state. This model has been

first introduced by Pattanaik and Peleg (1984) and the decision rules investigated by .

Although there exists some sort of order inside the outcome set of an action, the order is

up to the reordering of states. Since the decision maker does not know the probabilities

of states, all states are equally treated. Being located at a particular position in the

outcome vector does not offer any information about likelihood or importance of that

alternative. This is the difference from choice over ordered sets. Yet when the decision

maker can differentiate likelihood of possible states, choice among alternative actions

with the vector method becomes equivalent to choice over ordered sets.

3 The Model

Let X be the finite and nonempty set of all alternatives. I define an ordered subset A of

X, or equivalently a list in X, as a finite vector of elements in X: A = [a1, ..., an] where

ai ∈ X, ∀i = 1, ..., n and n = |A| is the length or size of ordered set A. i denotes the

position or index of ai in A. Elements with smaller indicies are said to be at relatively

higher positions in the list and elements with greater indicies are said to be at relatively

lower positions in the list. Therefore a1 is at the top of A and an is at the bottom of A.

Higher positions in a list are more probable or more important depending on context.

If A is an ordered subset of X of size n, then B = [A|xn+1] is the (n+1) size ordered

subset of X constructed by augmenting xn+1 ∈ X to the end (bottom) of A; likewise

C = [x0|A] is the (n+1) size ordered subset of X constructed by augmenting x0 ∈ X
to the beginning (top) of A.

XnXn denotes the set of all n-size ordered subsets of X. Xn = {A : |A| = n, ai ∈ X}.
X is the set of all nonempty and finite ordered subsets of X, i.e. X =n+

⋃
Xn. I name

Xn as the n-ordered power set of X and X as the ordered power set of X.

Let Rbe a complete, linear preference order2 over X. I write Rfor the set of all

linear preference orders on X. xRy means x is at least as good as y. Let Pand I stand for

antisymmetric and symmetric parts of Rrespectively. Namely, xPy ⇔ xRy∧¬yRx and

xIy ⇔ xRy∧yRx. Observe that some elements in X can be indifferent to each other and

I don’t impose strict order among elements in an ordered set A and allow indifferences.

UR denotes the set of real-valued utility functions u : < → < that represent R ∈ R

i.e. ∀x, y ∈ X,xPy ⇔ u(x) > u(y) ∧ xIy ⇔ u(x) = u(y) and Udenotes the set of all

real-valued utility functions (cardinal preferences) on X .

An extension of R ∈ R to Xn is a linear order�n
R on elements of set Xn that satisfies

the Fundamental axiom below. �n
R and ∼n

R stand for asymmetric and symmetric parts

of �n
R respectively.

2 A linear preference order is a reflexive,transitive and antisymmetric binary relation
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Definition 1 �n
R satisfies Fundamental axiom if ∀A,B ∈ Xn, A = [a1, ..., an], B =

[b1, ..., bn]

1. If xiPyi∀i = 1, ..., n⇒ A �n
R B

2. If xiIyi∀i = 1, ..., n⇒ A ∼n
R B

An extension of R ∈ R to X is a collection of linear orders �R≡
{
�1

R,�
2
R, ...

}
={

�i
R

}
i
. Therefore if A,B ∈ Xm, A �R B is equivalent to A �m

R B, where �m
R is

the restriction of �R to Xn. Similarly A �R B (or A ∼R B) means A �m
R B (or

A ∼m
R B) where �R (∼R) is the asymmetric (symmetric) part of �R. Observe that �

is a complete order over each Xn, n ∈ N , but not a complete order over X . So I call �
a lateral preference order.

Let Σ be the set of all � induced by all R ∈ R. An extension rule π is a mapping

from R to X . Namely an extension rule maps a preference order R on X to a lateral

preference order π(R) ≡�R on X .

4 Ordinal Decision Rules

The decision maker has a known linear preference R ∈ R over individual alternatives

in X and he needs to form a lateral preference over ordered subsets of X. I restrict

attention to the cases where the decision maker is to choose from ordered sets of equal

size, as in the examples of introduction.3 The elements at higher positions in an ordered

set have greater likelihood (as in political party list in closed ballot elections) or more

importance (as in selection of applicant for fellowship grant).

An ordinal decision rule specifies a lateral preference order �R over X for an ordinal

preference R over X. In this sense, an ordinal decision rule induces an extension rule

π� from X to X .

I will present and characterize five different ordinal decision rules in the paper. They

are highest-position, lexicographic-order, Pareto dominance, max-best and highest-of-

best rules.

Definition 2 Let A,B ∈ X, A = [a1, ..., an] , B = [b1, ..., bn]. Then,

1. �h is defined as A �n
h B ⇔ a1Pb1 and A ∼n

h B ⇔ a1Ib1
2. �tq is defined as

(
A ∼n

tq B ⇔ aiIbi, ∀i = 1, ..., q
)

and
(
A �n

tq B ⇔
(
aiRbi, ∀i = 1, ..., q; ajPbj , ∃j ∈ [1, q]

))
3. �lx is defined as (A ∼n

lx B ⇔ aiIbi,∀i = 1, ..., n) and (A �n
lx B ⇔ (a1Pb1 ∨ ∃k ∈ [1, n] akPbk, aiIbi∀i < k))

Under the highest position rule, when comparing two lists A and B, the decision

maker looks at the elements at the highest position of these two sets. If the element

at the highest position of one list is better than the element at the highest position of

the other, he prefers the former list. If the elements at the highest order of A and B

are indifferent, then the decision maker is indifferent between the two lists. Thus the

highest position rule is a degenerate decision rule that considers merely one position in

the list. The top-q rule widens the scope of the decision maker and considers positions

1 through q in the list: In order for the decision maker to weakly prefer list A to B,

it must be that the first element in list A is at least as good as the first element in

list B, the second element in A is at least as good as the second element in B, and so

3 Ranking among lists of different size would also involve size and reference effect in addition
to preference. I do not study this problem in the paper.
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on until position q. And at least one relation among these q must be strict for strict

preference of A to B. The special top-q rule with q = N is the Pareto dominance rule.

The decision maker strictly prefers list A over list B under the Pareto dominance rule

if and only if every element in list A is at least as good as element at corresponding

position in B, with at least one relation strict. Next, I introduce the lexicographic

order rule. To rank two lists A and B, a decison maker with the lexicographic order

decision rule first compares the elements at the highest position of A and B and prefers

the list with with the better element. Only if the elements at the highest position are

indifferent, he then compares elements at the second highest position of A and B and

prefers the list with a better element in its second position. If tie is still not broken,

he compares elements at the third highest position and so on. The decision maker is

indifferent between A and B if he is indifferent between elements at the same locations

across the two lists.

The decision rules so far share a common feature: They rank the lists by specifying

some position(s) in the list and assessing elements pairwise in those position(s) across

lists. They don’t consider an element independent of its position in the list. The fol-

lowing two ordinal decision rules focus on a special element within the list: The best

one(s)

Definition 3 The set of best elements in a list A is B (A) = {x : xRa, ∀a ∈ A}. The

max-best element A◦ of list A is the one among best elements that is located at the

highest position Am =
{
aj ∈ A : j ≤ i, ∀i ai ∈ B (A)

}
and⊥A is the index of max-best

element in the list.

When there are more than one best elements in different positions within a list,

the decision maker is likely to concentrate on the max-best element, the one among

best elements located at the highest. Then, depending on the priority of the decision

maker between quality and position of the max-best across lists, there are two types

of max-best element based decision rule:

Definition 4 Let A,B ∈ X. Then,

1. �mb is defined as A �n
mb B ⇒ [A◦PB◦] or

[
A◦IB◦, ⊥A < ⊥B

]
2. �hb is defined asA �n

hb B ⇒
[
A◦PB◦,⊥A ≤ ⊥B

]
or
[
A◦PB◦, ⊥A > ⊥B , a⊥B

Rb⊥B

]
or
[
B◦PA◦, ⊥A < ⊥B , a⊥A

Pb⊥A

]
Definition 5 Let A,B ∈ X. Then,

1. �mb is defined as A �n
mb B ⇒ [A◦PB◦] or

[
A◦IB◦, ⊥A < ⊥B

]
2. �hb is defined asA �n

hb B ⇒
[
A◦PB◦,⊥A ≤ ⊥B

]
or
[
A◦PB◦, ⊥A > ⊥B , a⊥B

RB◦
]

or
[
B◦PA◦, ⊥A < ⊥B , A

◦Pb⊥A

]
Among two lists A and B, if there is a list whose max-best is superior and at a higher

(or same) position compared to the max-best of the other list, both the max-best and

the highest-of-best rules choose the former list. Besides, if the max-best elements of A

and B are indifferent to each other, both rules choose the list whose max-best element

is located at a higher position. In case positions of max-best elements are also identical,

then the decision maker is indifferent between A and B. A harder decision problem,

where these two rules may differ, is for instance max-best element of A is better than



7

max-best element of B but located at a higher position i.e. A◦PB◦, ⊥A > ⊥B . Here

the max-best rule ranks list A over list B, while the highest-of-best rule ranks list B

over list A as long as max-best of B is better than corresponding element in A at

⊥B position of B’s max-best. Otherwise, if B has an element in ⊥A the position of

A’s max-best which is at least as good as A’s max-best, that means list B weakly

dominates list A in these two positions ⊥A, ⊥B . Thus the decision maker with the

highest-of-best rule would now strictly prefer list B.

As the next proposition shows, all these rules generate a linear preference ordering

on sets of equal size in X. In other words, for every R ∈ R each of the above rules

yield a reflexive, transitive and antisymmetric binary relation over Xn for all n ∈ N.

Hence the rules qualify for an ordinal decision rule and preference extension rule from

X to X defined for the setup.

Proposition 1 Let R ∈ R. The preference relation over Xn induced by �n
R,h, �n

R,tq,

�n
R,lx, �n

R,mb, �n
R,hb is complete, reflexive, transitive and antisymmetric for ∀n ∈ N .

Ordinal decision rules illustrated in this section are convenient options for the

decision maker to utilize when he cannot form expected utility of ordered sets. Even

when the decision maker can form an expected utility, he may still utilize an ordinal

decision rule rather than expected utility if he is boundedly rational. The decision

environment might require too many or complex computations to figure out expected

utility of each set. A completely rational decision maker may also utilize an ordinal

decision rule just because he is in short of time and expected utility calculation takes

long time. For example, in a large constituency like Istanbul where party lists include

35 candidates or in graduate applications with more than 1000 candidates, the decision

maker can employ simple and time saving methods to choose from lists.

A particular ordinal rule(s) may be more intuitive to employ in some circumstances

depending on the characteristics of the decision problem. In closed ballot elections, vot-

ers tend to apply max-best, highest-of-best or highest-position rule. are Lexicographic

decision rule would fit to recruitment of academic job market candidates, hiring a con-

sultant firm, choice among alternative products with multiple criteria. Medical organ

transplants, blood transfers, tree inoculation and manure selection require a decision

consistent with the top-q or Pareto dominance rule.

5 Main Axioms

In this section I introduce the main choice axioms that are frequently refered through-

out the paper. These axioms, together with other choice axioms will be used to char-

acterize the ordinal decision rules presented in the last section. The first axiom is

Independence (from lower Augmentation). It states that the preference relation be-

tween two lists A and B will remain the same after augmenting any alternative x to

the bottom of list A and any alternative y to the bottom of list B.

(IND B) � satisfies Independence From Bottom Augmentation if for A,B ∈ Xn

and x, y ∈ X;

1. A �n B ⇒ [A|x] �n+1 [B|y]

2. A ∼n B ⇒ [A|x] ∼n+1 [B|y]

At first sight, this independence axiom seems natural. Since lower positions are

less important, the preference order among two lists, strict or indifference, should be
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independent from appending one more element to the bottom of each list. However

if this condition is applied for higher and higher positions in the list, the inductive

process reveals that it is solely the highest element that determines the preference

ordering of lists. A list is preferred to another as long as its top element is better.

Inserting another element to 2nd, 3rd, ... positions never changes the preference ordering

between the two lists, regardless of the quality of the appended elements. Thus 2nd, 3rd

and lower positions have no effect on preference formation. In fact, this INDB axiom

characterizes the highest-position rule.

Theorem 1 A lateral preference order � satisfies INDB if and only if �=�h

So the highest-position rule is the only rule that satisfies Independence From Lower

Augmentation axiom. This somehow comes as an impossibility result as the INDB

axiom does not allow any other nondegenerate decision rule. Then to be able to char-

acterize other decision rules, I relax the INDB axiom and obtain weaker forms of it.

One imminent way is requiring independence from lower augmentation only for strict

preference between lists.

(WIND B) � satisfies Weak Independence From Bottom Augmentation if for

A,B ∈ Xn and x, y ∈ X;

A �n B ⇒ [A|x] �n+1 [B|y]

WIND B states that if the decision maker strictly prefers list A over B, then

appending elements x and y to the bottom of A and B respectively will not change the

strict preference. But the axiom does not state anything about ranking of augmented

lists [A|x], [B|y] when the decision maker is indifferent between A and B. Thus WIND

B weakens IND B axiom by removing its second part.

The IND B and WIND B axioms can be further relaxed. One can require strict pref-

erence between lists to remain after augmenting under certain properties of appended

elements.

(WIND BI) � satisfies Weak Independence From Bottom Augmentation of In-

different Elements if for A,B ∈ Xn and x, y ∈ X;

A �n B and xIy ⇒ [A|x] �n+1 [B|y]

(IMM B) � satisfies Immunity to Bottom Augmentation if for A,B ∈ Xn and

x, y ∈ X;

A �n B and ∃s ∈ A,∃t ∈ B such that sRx, tRy implies [A|x] �n+1 [B|y]

(IMM I)�∈ Σ satisfies Immunity to Interim Augmentation if forA,B ∈ Xm,W , V ∈
Xk and x, y ∈ X;

[A|W ] � [B|V ] and ∃s ∈ [A|W ] , ∃t ∈ [B|V ] such that sRx, tRy implies [A|x|W ] �
[B|y|V ]

WIND IB argues that when there is a strict preference between list A and list B,

augmenting indifferent elements, x to the bottom of A and y to the bottom of B will

keep the strict preference between the two list. IMM B states that if a list A is strictly

preferred to list B and if x is added to the bottom of A and element y is added to the

bottom of B, strict preference relation will continue to hold between augmented lists

[A|x] and [y|B], provided that x is not better than A’s best element(s) and y is not

better than B’s best element(s). Therefore IMM B is a weaker version of WIND B in

the sense that strict preference order between two lists remains the same under IMM

B if, for each list, an inferior or indifferent element (with respect to the best element(s)

of that list) is added to the bottom of it.

IMM I applies similar notion for intermediate augmentation. To explain Immunity

to Interim Augmentation, consider two composite lists [A|W ] and [B|V ] with the former
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strictly preferred. Suppose x is not better than the best element(s) of [A|W ] and y is

not better than the best element(s) of [B|V ]. If x is added in between A and W and y

is added in between B and V , then the decision maker will still strictly prefer [A|x|W ]

over [B|y|V ] in augmented form. Namely, strict preference between two lists is immune

from adding element to an intermediate position of each list provided that the element

is not better than the best element(s) of the augmented list.

Note that IND B and WIND B imply both IMM B and IMM I but not the other

direction. Another axiom that will be used in characterization of decision rules is Immu-

nity from Top Augmentation. It is somehow dual of IMM B in terms of augmentation

direction, yet it is independent of IND B and WIND B.

(IMM T) � satisfies Immunity to Top Augmentation if for A,B ∈ Xn and x, y ∈
X;

A �n B and ∃s ∈ A,∃t ∈ B such that sPx, tPy implies [x|A] �n+1 [y|B]

IMM T argues that if a list A is strictly preferred to list B, then affixing an element

x, worse than A’s best element(s), to the top of A and affixing an element y, worse

than B’s best element(s), to the top of B will not change the preference ranking among

the two lists. According to IMM T, adding poor elements to the top of lists will not

affect the strict preference relation among them. This choice axiom makes sense when

the decision maker directs attention to best elements in the list as we shall see later in

characterization theorems.

Until now, I have examined conditions on strict preference relation among lists by

working on the first part of IND B axiom. One can also deal with the indifference

situation among lists as mentioned by the second part of IND B. Defining it as an

axiom,

(I IND B) � satisfies Independence of Indifference From Bottom Augmentation

if for A,B ∈ Xn and x, y ∈ X;

A ∼n B ⇒ [A|x] ∼n+1 [B|y]

However one may normally call for strict preference after appending different ele-

ments to two indifferent lists.

(LMON) � satisfies Lower Monotonicity if for A,B ∈ Xn and x, y ∈ X;

A ∼n B and xPy implies ⇒ [A|x] �n+1 [B|y]

(W LMON) � satisfies Weak Lower Monotonicity if for A,B ∈ Xn and x, y ∈ X;

A ∼n B and xRy implies ⇒ [A|x] �n+1 [B|y]

LMON stipulates that if a list A is strictly preferred to another list B and element

x is better than y, then the augmented list [A|x] is strictly preferred to augmented

list [B|y]. W LMON weakens LMON by requiring only that [B|y] will not be strictly

preferred to augmented list [A|x] when x is at least as good as y.

Before proceeding to axiomatic characterizations, I summarize the relationship be-

tween the axioms in this section.

Remark 1 1. IND B ⇒ WIND B ⇒ WIND BI, IMM B, IMM I, IMM T

2. IND B ⇒ I IND B ⇒ W LMON

3. LMON ⇒ W LMON; I IND B and LMON are independent.

4. WIND B, WIND BI and I IND B are an independent set of axioms.

5. WIND BI, IMM B, IMM I and IMM T are an independent set of axioms.
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6 Axiomatic Characterization of Ordinal Decision Rules

6.1 Lexicographic Rule

I first provide axiomatic characterization of lexicographic rule. It turns out that LMON

with WIND B fully characterize the lexicographic ordinal decision rule. To see this,

first observe that these two axioms imply a third axiom Neutrality:

(NEUTR) � satisfies Neutrality if for A,B ∈ Xn and x, y ∈ X;

A ∼n B and xIy implies ⇒ [A|x] ∼n+1 [B|y]

Under WIND B and LMON, the only situation list A is indifferent to list B is when

each element of A is indifferent to the corresponding element of list B at the same

position. This propoerty will continue to hold when indifferent elements x and y are

appended to A and B, respectively. Then, in accordance with the FUND axiom,4 the

decision maker must be indifferent between [A|x] and [B|y]. Now it is straightforward

to see that the three axioms WIND B, LMON, NEUTR are necessary and sufficient

for the lexicographic rule:

Theorem 2 A lateral preference order � satisfies WIND B, LMON and NEUTR if

and only if �=�lx

To understand the proof, if the highest element of one list is better than that of the

other, then FUND and WIND B axioms assign a strict preference relation. If highest

elements of the two lists are indifferent or the indifference persists in the 2nd, 3rd ...

positions, then NEUTR implies continued indifference among lists. In case the tie is

broken at a position, LMON identifies the ranking among the lists and after that lower

elements are not considered due to WIND B. Note that I have used WIND B axiom

but dropped the second part of IND B. Instead, I used LMON and NEUTR axioms

that restrict the prevalence of indifference in IND B. With LMON and NEUTR, the

indifference among original lists A and B will carry on to augmented lists [A|x] and

[B|y] only when x and y are indifferent. This manner we could escape from the highest-

position rule and achieved the lexicographic rule.

As I require independent axioms for characterization, I drop the NEUTR axiom

and get the main theorem of this section:

Theorem 3 A lateral preference order � satisfies WIND B and LMON if and only if

�=�lx. Moreover the axioms are independent from each other.

6.2 Max-Best Rule

To characterize the max-best rule, I define four new axioms as below:

(I-IMM B) � satisfies Indifference Immunity to Bottom Augmentation if for

A,B ∈ Xn and x, y ∈ X;

A ∼n B and ∃s ∈ A,∃t ∈ B such that sRx, tRy implies [A|x] ∼n+1 [B|y]

(I-IMM T) � satisfies Indifference Immunity to Top Augmentation if for A,B ∈
Xn and x, y ∈ X;

A ∼n B and ∃s ∈ A,∃t ∈ B such that sPx, tPy implies [x|A] ∼n+1 [y|B]

4 Recall that ordinal decision rules, by definition, satisfy FUND
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(ORD MON) � satisfies Order Monotonicity if for x,m, n ∈ X, xPm and xPn

implies [x,m] � [n, x]

(BF) � satisfies Best Focal Choice if for x, y,m, n ∈ X, xPy, xPm and yPn

implies [m,x] � [y, n]

Order Monotonicity requires that if the decision maker strictly prefers individual

alternative x to m and n, then he strictly prefers ordered pair [m,x] over [y, n]. That is

he distinguishes x as the best element and strictly prefers the pair in which x is in the

first position rather than the second position. The next axiom Best Focal Choice states

that when x and y are the better element inside their own pair [m,x] and [y, n] and

x is better than y, then the decision maker strictly prefers [m,x] over [y, n]. Though

y is better than m and y is in the first position, he strictly prefers ordered pair [m,x]

possibly because it has element x which is superior to y. So under BF, the decision

maker gives priority to quality of the best element in the pair rather than its position,

which is related to the max-best rule.

Theorem 4 shows that the three axioms IMM B, IMM S, IMM T together with I-

IMM B, I-IMM T, ORD MON, BF characterize the max-best rule. Besides the axioms

are independent.

Theorem 4 A lateral preference order �∈ Σ satisfies IMM B, I-IMM B, IMM T, I-

IMM T, IMM S, ORD MON, BF if and only if �=�mb. The axioms are independent

from each other.

The following lemma will be helpful to understand this characterization. It states

that when the first five axioms in Theorem 4, IMM B, I-IMM B, IMM T, I-IMM T and

IMM I are imposed, the ranking of two lists (of any size) basically reduces to either

ranking of two sublists of size two or ranking of two singleton sublists. The elements of

sublists are those elements of the original lists at the two position index of the max-best

elements of the lists. If the max-best elements of the two lists happen to be at identical

position, the sublists will contain single element, the element of the original list in this

position index. Note that in case a list has best elements in more than one position,

in accordance with I-IMM B, the decision maker takes into account the max-best and

disregards other best elements at lower positions.

Lemma 1 Suppose �∈ Σ satisfies IMM B, I-IMM B, IMM T, I-IMM T, IMM I.

Then for A,B ∈ X,

1. If ⊥A < ⊥B, A � B ⇔
[
A◦, a⊥B

]
�
[
b⊥A

, B◦
]

2. If ⊥A > ⊥B, A � B ⇔
[
a⊥B

, A◦
]
�
[
B◦, b⊥A

]
3. If ⊥A = ⊥B, A � B ⇔ A◦PB◦

To see this lemma, assume without loss of generality that the max-best element

of list A is at an identical or higher position than the max-best element of B, i.e.

⊥A ≤ ⊥B . Under IMM B, I-IMM B, IMM T, I-IMM T, elements located above index

⊥A and below index ⊥B in both lists do not affect the preference ranking of the lists.

The comparison then becomes among sublist of A between indices ⊥A, ⊥B and sublist

of B between indices ⊥A, ⊥B . (If ⊥A = ⊥B , the comparison is simply among max-best

elements of A and B, A◦ and B◦). If, in addition, IMM I is imposed, the intermediate

elements 5 located between ⊥A and ⊥B do not have impact on the ranking between two

5 By construction of sublists, the intermediate elements of the sublists are not better than
best element(s) of their own list
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sublists either, and thus are eliminated. Thereafter the problem reduces to ranking two

ordered pairs (or two singletons), as illustrated in the lemma, and one can use axioms

ORD MON and BF to identify the preference.

6.3 Highest-of-Best Rule

I continue with the characterization of the highest-of-best decision rule. This entails

two additional axioms:

(H FOC) � satisfies High Focal Choice if for x, y, z ∈ X, xPy and yPz implies

[y, z] � [z, x]

(W PAR) � satisfies Weak Pairwise Pareto Dominance if for x, y, z,m ∈ X, xPy,

yPz and mIy implies [m,x] � [y, z]

High Focal Choice states that if x is better than y and y is better than z, then the

decision maker strictly prefers ordered pair [y, z] over ordered pair [z, x]. Here in the

first position, [y, z] includes a better element y compared to [z, x]. Though [z, x] has a

better element x than y, it is in the secondary position.

Weak Pairwise Pareto Dominance axiom complements High Focal Choice axiom by

arguing that in a similar situation, if there were an ordered pair [y, x] (or [m,x], mIy)

instead of [z, x], then the decision maker would reverse his pereference and now strictly

prefer [y, x] over [y, z]. The insight is both lists have the same or equivalent element in

their first position however the second element of [y, x] exceeds its first element while

the second element of [y, z] falls below its first element.

These two axioms H FOC, W PAR with IMM B, I-IMM B, IMM T, I-IMM T,

IMM I defined before characterize the highest-of-best decision rule:

Theorem 5 A lateral preference order �∈ Σ satisfies IMM B, I-IMM B, IMM T,

I-IMM T, IMM I, H FOC, W PAR if and only if �=�hb. The axioms are independent

from each other.

Lemma 1 already instituted that when IMM B, I-IMM B, IMM T, I-IMM T, IMM

I axioms are imposed on �, ranking of two lists A and B becomes equivalent to ranking

of two orderd pairs or ranking of two singletons (if max-best elements are at the same

position). Thereafter one can use axioms IMM B, H FOC, W PAR to find the preference

relation between the ordered pairs and thus the preference relation between the original

lists.

7 Expected Utility

As an alternative to ordinal approach, the decision maker can also use expected utility

to form his preference over ordered sets. To do so, he needs to have a cardinal preference

over X, i.e. a cardinal utility function over X and attribute a numerical weight to each

position in the ordered set. As the decision maker chooses among sets of equal size,

I study the lateral preference order induced by the expected utility. With cardinal

utility and position weight vector, the decision maker can compute the expected utility

or weighted aggregate utility of each ordered set in Xn and choose the set(s) that yield

highest expected utility.
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Definition 6 A cardinal utility function u : X → < maps a real-valued utility u(x) ∈
< to every x ∈ X. A weight vector for the ordered set is w = [w1, ..., wn] , 0 ≤ wn ≤
wn−1 ≤ ... ≤ w1 < ∞ where wi represents the weight of position i in the set. Then,

the expected utility decision rule �EU〈u,w〉∈ Σ is defined, for any A,B ∈ Xn, A =

[a1, ..., an] , B = [b1, ..., bn],

A �n
EU〈u,w〉 B if and only if

∑i=0
n wiu (ai) >

∑i=0
n wiu (bi) and A ∼n

EU〈u,w〉 B ⇒∑i=0
n wiu (ai) =

∑i=0
n wiu (bi)

The weights wi are positive, finite and weakly decreasing downwards in the list.

I also assume wi, weight of a particular position in the list, is the same across all

lists of the same size. Thus an expected utility rule has a unique weight vector w over

Xn, n ∈ N. Depending on the context, the weight of a position may have different

meaning. In the consultant firm, fellowship grant and academic recruitment examples,

the weight reflects importance of an item being at that position. In the case of closed

ballot elections the weight of a position denotes the ex-ante probability of a candidate

in this position being elected.

Next I invesigate the relationship between ordinal and cardinal decision rules: Is the

expected utility decision rule equivalent to an ordinal decision rule in terms of ranking

of ordered sets? And if so, under what conditions? I note that there are infinitely many

cardinal utility functions u ∈ UR that represent the same ordinal preference R over

X. However these cardinal utility functions may generate, for a fixed weight vector w,

different ranking of ordered sets in Xn, while ordinal preference R and thus ranking

of ordered sets under a particular ordinal decision rule stays the same. Therefore for

potential equivalence between some ordinal and cardinal decision rules, first there must

exist a specific expected utility decision rule, identified by its weight vector w, which

yields the same ranking of ordered sets in Xn, n ∈ N for all cardinal preference that

represent the same ordinal preference. I name these rules as cardinal-proof decision

rules. If a cardinal-proof expected utility rule exists, there must be an ordinal decision

rule that yields the same ranking of ordered sets with the expected utility rule for all

ordinal preference R ∈ R. Such an ordinal decision rule(s), if exists, is characterized

solely by the weight vector w of its equivalent expected utility counterpart since the

ranking of ordered sets under expected utility rule is cardinal-proof. I find the class of

cardinal-proof expected utility decision rules are those that consider only the highest

position in the list and their equivalent ordinal decision rule is the highest position

rule. (As they have a degenerate weight vector that support the highest position)

Definition 7 An expected utility decision rule�n
EU〈u,w〉 is cardinal-proof if for A,B ∈

Xn; A �n
EU〈u1,w〉 B ⇔ A �n

EU〈u2,w〉 B, ∀R ∈ R and ∀u1, u2 ∈ UR

Definition 8 An ordinal decision rule �∈ Σ is cardinal-proof if there exists w such

that �n
EU〈u,w〉≡�

n
R for ∀R ∈ R and �n

EU〈u,w〉 is cardinal-proof.

Theorem 6 If �∈ Σ is cardinal proof, then �=�h and its corresponding expected

utility rule has a degenerate weight vector w i.e. w1 > 0, w2 = ... = wn = 0 for

j ∈ [2, n]

Definition 9 An ordinal decision rule �∈ Σ is cardinal-proof if there exists w such

that �n
EU〈u,w〉=�

n
R for ∀R ∈ R and for ∀u ∈ UR.



14

Therefore the only cardinal-proof ordinal decision rule is the highest-position rule.

This is somehow an impossibility result regarding the equivalence between ordinal and

cardinal decision rules. So I relax my cardinal-proofness condition as follows: Instead

of requiring eqality in both symmetric and asymmetric part between ranking of sets

under ordinal and cardinal rules, now I just require equality in weak ranking of sets

under two types of rules. If the weak ranking of an ordinal rule �∈ Σ is the same

of weak ranking of an expected utility rule �n
EU〈u,w〉 for all preferences then � and

�n
EU〈u,w〉 are partially equal and in this case I name � as weakly cardinal-proof.

Definition 10 �∈ Σ and �n
EU〈u,w〉 are partially equal if for all A,B ∈ Xn, A �n

R

B ⇔ A �n
EU〈u,w〉 B, ∀R ∈ R and ∀u ∈ UR

Definition 11 An ordinal decision rule �∈ Σ is weakly cardinal-proof if there exists

w such that � and �n
EU〈u,w〉 are partially equal.

Thus weak cardinality-proofness entails equivalence in only weak ranking of ordinal

and cardinal rules. If � is cardinal-proof then it is weakly cardinal-proof, but the other

direction is not necessarily true. The reason is if � and �n
EU〈u,w〉 are partially equal,

their strict ranking may be different and �n
EU〈u,w〉 need not be cardinal-proof and

strict ranking may be different. Theorem 7 shows that the class of ordinal rules that

are partially equivalent to the expected utility rule are the top-q rules defined in Section

3.

Theorem 7 Suppose �∈ Σ is weakly cardinal-proof. Then �=�tq

Highest-position rule and Pareto dominance rule are special instances of top-q rule

with q = 1 and q = N respectively. Top-q rules, by Theorem 7, are weakly cardinal-

proof but except the highest-position rule, they are not cardinal-proof. So with the

weakened cardinality-proofness principle, the set of admissible ordinal decision rules

expands.

For weak cardinal-proofness, it suffices that the ordinal decision rule is partially

equal to someexpected utility rule. But among those weakly cardinal-proof ordinal

rules, is there one that is partially equal to allexpected utility rules? That is for which

ordinal rules, the induced weak ranking is independent from variation of weight vectors?

I define this concept as weak weight and cardinal-proofness (WWCP). An ordinal

decision rule is WWCP if it yields the same weak ranking of ordered sets as the expected

utility rule for all cardinal utility and weight vector combination.

Definition 12 �∈ Σ is weakly weight and cardinal-proof (WWCP) if for all A,B ∈
Xn, A �n

R B ⇔ A �n
EU〈u,w〉 B, for all w, for all R ∈ R and for all u ∈ UR

Thus WWCP refines the set of weakly cardinal-proof ordinal decision rules. Ac-

tually, the only ordinal rule that respects WWCP criterion is the Pareto dominance

rule.

Theorem 8 A lateral preference order �∈ Σ is weakly weight and cardinal-proof

(WWCP) if and only if it is the Pareto dominance rule i.e. �=�tq with q = N .

As Theorem 8 proves, Pareto dominance rule is the only ordinal decision rule

which is partially equal to the expected utility rule under variation of both cardinal
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utility and numerical values of weights.6 Recall that Pareto dominance rule yields

strict preference between two lists only when every element in one list is at least as

good as the corresponding element in the identical position in the other list, with at

least one element strictly better. Otherwise the two lists are indifferent. Therefore the

strict preference ranking by the Pareto dominance rule can never be overturned by an

expected utility rule with any weight vector or any cardinal preference (representing

the same ordinal preference). This is the basis of Pareto dominance rule being WWCP.

Exhibiting a special feature, I attempt to characterize the Pareto dominance rule.

For this I will utilize three additional axioms:

(PD) � satisfies Perfectness for Dominance if for x, y ∈ X and for A,B ∈ Xn with

A �n B;

[A|x] ∼n+1 [B|y]⇔ yPx

(I IMM H) � satisfies Immunity of Indifference to Higher Augmentation if for

A,B ∈ Xn and for x, y ∈ X ;

xPy and [A|x] ∼n+1 [B|y]⇒ [x|A] ∼n+1 [y|B]

(I IMM L) � satisfies Immunity of Indifference to Further Lower Augmentation

if for A,B ∈ Xn and for x, y ∈ X ;

xPy and [A|x] ∼n+1 [B|y]⇒ [A|x|W ] ∼ [B|y|V ] for all W,V ∈ Xk, k ∈ N

According to PD, when list A is strictly preferred to list B but x is worse than y,

appending the worse element x to A makes this list indifferent to [B|y]. PD also states

that this is the only case where [A|x] is indifferent to [B|y]. Namely, if A �n B yet in

augmented form [A|x] ∼n+1 [B|y], then x must be worse than y.

I IMM H contemplates that if individual element x is better than y and augmented

list [A|x] is indifferent to [B|y], then appending x and y to top of their list instead of

bottom cannot break the indifference between lists possibly in favor of A. I IMM L

fortifies I IMM H by stating that indifference will persist among these two lists upon

further appending any lists W and V to the bottom of [A|x] and [B|y], respectively.

The rationale is if [A|x] is indifferent to [B|y] even with an appended better element

x, then appending additional lists to the bottom of them will not be able to break the

tie.

Finally, I obtain

Theorem 9 A lateral preference order �∈ Σ satisfies WIND BI, W LMON, PD, I

IMM H, I IMM L if and only if � is the Pareto dominance rule. Moreover the axioms

are independent from each other.

PD and I IMM L together imply that if a list A, compared to another list B,

has better element(s) in some position(s) but at the same time has worse element(s)

in other position(s), then the two lists are indifferent to each other. Thus in order

for A to be strictly preffered to B, it is necessary that A must possess better or

indifferent element in all positions. From WIND BI and first part of FUND, only the

highest position element being better and elements in all other locations indifferent

is sufficient for strict preference. The two axioms also imply that elements at top-q

positions q ∈ [2, N ] being better and lower elements being indifferent is sufficient for

strict preference.

What if the highest position element of A is indifferent to highest position element

of B, or top-q position elements of A are indifferent to top-q elements in B? In other

6 Note here that by the definition of weight vector, there are restrictions on values of weights.
In particular weights must be decreasing toward the bottom of the list.
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words how to find the preference relation between [A|x] and [B|y], when A ∼ B and

xPy? Here note that A can indifferent to B for two reasons and one needs to identify

the two to conclude the preference. A can indifferent to B because of the symmetry:

When elements in identical positions are indifferent across A and B. In this case [A|x]

should be strictly preferred to [B|y]. However A can indifferent to B because of the

asymmetry illustrated in PD axiom as well. In this case indifference between A and

B should remain. The I IMM H axiom differentiates the two reasons for A ∼ B. If A

and B were to be indifferent due to the first reason, then [A|x] cannot be indifferent

to [B|y]; otherwise I IMM H would imply indifference between [x|A] and ∼n+1 [y|B]

violating FUND and WIND BI axioms. So if [A|x] is not be indifferent to [B|y], then

it must be strictly preferred to [B|y] in accordance with WIND BI.

8 Conclusion
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