1291

Effect of FK 506 on FK-Binding Protein and Transforming Growth Factor Beta Gene Expression

P. Rao, H. Sun, J. Snyder, J.J. Fung, and T.E. Starzl

F^K 506 is a recently discovered immunosuppressive macrolide¹ that has been shown to be significantly more potent than cyclosporine A (CyA) in a variety of in vitro and in vivo assays.²⁻⁵ Like CyA, FK 506 inhibits the transcription of early T-cell activation genes⁶ following binding to a cytoplasmic receptor FK-binding protein (FKBP).⁷⁻⁹

It has recently been demonstrated that transforming growth factor beta (TGF- β) has the ability to regulate immune functions in vitro,^{10,11} and has therefore been used as an immunosuppressant in cardiac and islet allo-transplantation.¹²⁻¹⁴ It is interesting to speculate that one of the pathways by which immunosuppressants like FK 506 may act is by inducing endogenous TGF- β expression.

MATERIALS AND METHODS

A rat liver transplant model was used to study the effect of FK 506 administration on FKBP and TGF- β gene expression. Livers harvested from ACI donors were orthotopically transplanted in Lewis recipients.¹⁵ Following orthotopic liver transplantation (OLTX), recipients were either treated with 1.28 mg/kg body weight of intramuscular FK 506 for 4 days (n = 15) or left untreated (control, n = 12). Three animals each were killed on postoperative days 3, 6, and 9 in the control group and on days 3, 6, 9, and 12 in the FK 506-treated group. Total cellular RNA was extracted and purified by the method of Chomczynski and Sacchi.¹⁶ For Northern analysis, RNA samples were fractionated on 0.7% agarose, 18% formaldehyde gels and transferred to nitrocellulose paper. Hybridization was carried out at 60°C overnight in Church buffer¹⁷ and a ³²P-labeled complementary DNA probe. The filters were washed twice for 20 minutes at room temperature in $1 \times SSC$ (SSC = 150 mmol/L sodium chloride, 15 mmol/L sodium citrate, pH 7), 0.1% sodium dodecyl sulfate and 0.1 SSC, 0.1% sodium dodecyl sulfate at 65°C. The filter was exposed to Kodak X-omat film for 4 days with an intensifying screen at -70° C.

RESULTS

Fig 1 depicts the autoradiographs for FKBP expression. FKBP gene expression was observed in both untreated control, and FK 506-treated recipients on all the days studied.

Fig 2 is the autoradiographs for TGF- β expression. No evidence of TGF- β gene expression was observed in untreated control livers. On the other hand, FK 506-treated livers showed an induction of TGF- β gene expression on days 3 and 6, which tapered off on days 9 and 12 following orthotopic transplantation.

DISCUSSION

Our results demonstrated no association between treatment with FK 506 and FKBP gene expression. Both FKBP

Fig 1. Autoradiograph for FKBP expression. FKBP gene expression was observed in both control (lanes 2–4) and FK 506-treated recipients (lanes 5–8) on all the days studied.

and its cyclosporine binding counterpart cyclophilin are ubiquitous immunophilins with rotamase activity.^{18,19} It has recently been reported that inhibition of the rotamase activity of FKB following FK 506 binding cannot explain the biologic effects of FK 506 administration.¹⁸ This would appear to confirm the lack of correlation between FK 506 treatment and FKBP expression observed in our study.

TGF- β gene expression was observed as early as the third postoperative day and persisted on the sixth postoperative day, tapering off on days 9 and 12. No evidence of

© 1991 by Appleton & Lange 0041-1345/91/\$3.00/+0

From the Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.

Address reprint requests to Prakash N. Rao, PhD, Department of Surgery, University of Pittsburgh, Falk Clinic 6E, Pittsburgh, PA 15213.

Fig 2. Autoradiograph for TGF- β expression. No evidence of TGF- β gene expression was observed in control livers (lanes 1–3). On the other hand, FK 506-treated livers showed an induction of TGF- β gene expression on days 3 and 6 (lanes 4 and 5), which tapered off on days 9 and 12 (lanes 6 and 7) following OLTx.

TGF- β gene expression was noted in untreated control livers. The immunoregulatory properties of TGF- β include inhibition of cytokine production,²⁰ cytotoxic T-cell generation,²¹ thymocyte proliferation,²² and T cell/B cell generation.²³ It has been successfully used to prevent allorejection in murine cardiac and islet transplantation¹²⁻¹⁵ and in murine models of autoimmune disease.^{24,25} It is therefore interesting to speculate that FK 506 may be exerting its immunosuppressant action through the induction of TGF- β .

ACKNOWLEDGMENTS

The authors wish to thank Thomas Cunningham for his expert technical experience and Mary Ellen Keener for secretarial serv ices.

REFERENCES

1. Thomson AW: Immunology Today 10:6, 1989

2. Shevach EM: Annu Rev Immunol 3:397, 1985

3. Starzi T, Fung J, Venkataramman R, et al: Lancet 1:1000, 1989

4. Handschumacher RE, Harding MW, Rice J, et al: Science 226:544, 1984

5. Takahashi N, Hayano T, Suzuki M: Nature 337:473, 1989

6. Tocci MJ, Matkovich DA, Collier KA, et al: J Immunol 143:718, 1989

7. Harding MW, Galata, Uehling DE, et al: Nature 341:758, 1989

8. Siekierka JJ, Hung SHY, Poe M, et al: Nature 341:755, 1989

9. Standaert RF, Galat A, Verdine GL, et al: Nature 346:671. 1990

10. Wallick SC, Figari IS, Morris RE, et al: J Exp Med 172:1777, 1990

11. Palladino MA, Morris RE, Starnes HF, et al: Ann NY Acad Sci 593:181, 1990

12. Morris R, Meiser B, Figari I, et al: Recombinant human transforming growth factor-beta 1 is a potent immunosuppressant in vivo. 7th International Congress of Immunology, Berlin, 1989

13. Wu J, Palladino MA, Figari IS, et al: Transplant Proc 23:238, 1991

1

لمالك للمعلم المحمطان الملاق المعاد المحمل

14. Gill RG: Transplant Proc 23:747, 1991

15. Rao PN, Walsh TR, Makowka L, et al: Transplantation 49:1055, 1990

16. Chomczynski P, Sacchi N: Anal Biochem 162:156, 1987

17. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory NY, 1987

18. Bierer BE, Mattila PS, Standaert RF, et al: Proc Natl Acad Sci USA 87:9231, 1990

19. Fischer G, Liebold BW, Lang K, et al: Nature 337:476, 1989

20. Espevik T, Figari IS, Shalaby MR, et al: J Exp Med 166:571, 1987

21. Ranges GE, Figari IS, Espevik T, et al: J Exp Med 166:991, 1987

22. Ellingsworth LR, Nakayama D, Segarini P, et al: Cell Immunol 114:41, 1988

23. Kehrl JH, Wakefield LM, Roberts AB, et al: J Exp Med 163:1037, 1986

24. Racke MK, Dhib-Jalbut S, Cannella B, et al: J Immunol 146:3012, 1991

25. Kuruvilla AP, Shah R, Hochwald GM, et al: Proc Natl Acad Sci USA 88:2918, 1991