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The hyperlipidemia observed in familial hypercholesterolemia can be reduced by portacaval anastomosis, 
We report the effects of a portacaval shunt on hepatic morphology and biosynthetic pathways crucial to 
hepatic cholesterol homeostasis in homozygous receptor-negative familial hypercholesterolemia, Portacaval 
anastomosis was associated with a dramatic change in hepatocyte morphology, 28% reduction in plasma' 
low-density lipoprotein concentration, and a decrease in hepatic total and free cholesterol content by 27 
and 75%, respectively. Furthermore, the rate-limiting enzyme in cholesterol biosynthesis, 3-hydroxy-3-
methylgIutaryl coenzyme A reductase was decreased by 56%, Finally, the reduced binding oflow-density 
lipoproteins to hepatic membranes preoperatively was increased following the portacaval shunt. These 
com bined results indicate that the changes in circulating lipoprotein concentrations observed after por
tacaval shunt are due to alterations in the metabolic consequences of the defective recognition of low
density lipoproteins by the liver of familIal hypercholesterolemic subjects, \0 1985 Academic Press, Inc, 
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INTRODUCTION 
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The mammalian liver plays a central role 
in lipid and lipoprotein metabolism. It is the 
primary site for endogenous cholesterol and 
lipoprotein biosynthesis as well as the principal 
organ for cholesterol excretion through bile 
and bile acid formation [11, 18,48]. Studies 
in rats [9,19,54], swine [33], and rabbits [27, 
34] indicate that a significant portion of an 
injected dose of radiolabeled low-density li
poproteins3 is removed by the mammalian 
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liver. The initial step in the cellular uptake of 
circulating LDL is the binding of the lipopro
tein to a receptor in the plasma membrane [8, 
15], Isolated hepatic membranes from a num
ber of animal species have been shown to con
tain a receptor which [1, 23, 26, 28, 55] spe
cifically binds LDL. Recently, hepatic mem
branes from normal adult humans have also 
been demonstrated to bind LDL [16, 22]. 
Thus, coordinate control of lipoprotein up
take, catabolism, and synthesis may occur in 
normolipidemic man. 

Familial hypercholesterolemia is an auto
somal dominant disorder characterized clini
cally by hypercholesterolemia, xanthomas, 
and premature atherosclerosis [24]. By analysis 
of skin fibroblasts from patients homozygous 
for FH, Brown and Goldstein determined that 
FH was due to one of several mutations in the 
gene coding for the cellular receptor for LDL 
[7, 51]. The most frequent allelic mutation re
sulting in FH is the loss of the functional high
affinity receptor for LDL and is referred to as 
receptor-negative FH [51]. We have recently 
demonstrated that the loss of the fibroblast 
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LDL receptor in FH homozygotes is paralleled 
by a defect in the hepatic membrane recog
nition of LDL [22]. Therefore, the profound 
hypercholesterolemia and accelerated athero
sclerosis observed in FH may occur as a result 
of the loss of the hepatic LDL receptor and 
the resulting changes in hepatic lipid and li
poprotein metabolism. 

Patients with FH frequently are refractory 
to all lipid lowering drug regimens. However, 
the use of a portacaval anastomosis to shunt 
blood flow from the liver has been shown to 
be effective in lowering the plasma lipids in 
these patients [42]. The present studies were 
performed on hepatic tissue in a receptor-neg
ative FH subject to evaluate the effect of the 
portacaval shunt on both the binding ofLDL 
to hepatic membranes as well as to assess the 
impact of the portacaval shunt on hepatic 
cholesterol metabolism. 

METHODS 

Patient history. The patient studied was first 
noted to be hypercholesterolemic at the age 
of 13. Despite therapeutic trials of cho
lestyramine, niacin, hydroxymethylglutamic 
acid, and neomycin, the plasma cholesterol 
ranged from 915 to 1210 mg/dl and she de
veloped symptomatic coronary artery disease. 
The patient's mother (age 40) had a plasma 
cholesterol of 462 mg/dl and an LDL choles
terol of 359 mg/dl. The patient's father was 
not available for study. Analysis ofLDL bind
ing in skin fibroblasts ofTH demonstrated no 
detectable receptor for LDL [22]. Therefore, 
the patient's genetic, clinical, and biochemical 
profiles were consistent with the diagnosis of 
receptor-negative FH. 

At age 21, after suffering two myocardial 
infarctions and receiving a double coronary 
artery bypass graft, the patient received a ther
apeutic portacaval anastomosis at the U ni
versity of Pittsburgh in an effort to lower the 
plasma lipid concentrations. A liver biopsy 
taken at the time of the anastomosis provided 
the basis for the biomedical and histopatho
logic studies referred to as "preshunt" values. 
Three months after the initial surgery, hepatic 

tissue was obtained; informed consent had 
been given. Biochemical and morpholOgic 
studies performed on this tissue are referred 
to as "postshunt" values. 

The hepatic tissues from normolipidemic 
control subjects were obtained at the time of 
laparotomy for kidney donation for renal 
transplantation. All hepatic biopsies were per
formed after informed consent had been given 
and the protocol used for hepatic biopsy and 
portacaval anastomosis was approved by the 
human experimentations committee at the 
U ni versity of Pittsburgh School of Medicine. 

Lipoprotein preparation. Preparation of 
human LDL Cd 1.030-1.050) was from 500 
ml plasma collected in 0.01% EDT A by plas
mapheresis from fasting, healthy volunteers. 
Lipoproteins were separated by preparative 
ultracentrifugation at 4 DC for 16-24 ill [17] 
using KBr for density gradient adjustment 
[36]. These subfractions were then dialyzed 
34 hr at 4 DC against 150 vol of phosphate
buffered saline (pH 7.0) (GIBCO, Grand Is
land, N. Y.). Each isolated lipoprotein fraction 
was sterilized by 0.45-j.Lm Millipore filtration 
(Millipore Corp., Bedford, Mass.) and used 
within 1 month of preparation. 125I_LDL was 
prepared by the iodine monochloride method 
[31] as modified for lipoproteins [4]. A 25-
30% efficiency of iodination was obtained and 
less than 6% of the radioactivity was soluble 
in the organic phase following a chlorofonn
methanol extraction. After dialysis over 24 hr 
at 4 DC against 500-600 vol PBS, specific ac
tivities ranged from 2.7 to 4.6 X 109 Bq/ml 
LDL protein. The LDL protein concentration 
was determined by the method of Lowry et at 
[30] using bovine serum albumin standard. 
After Millipore filtration, 1251_LDL was stored 
at 4°C and used within 2-3 weeks of prepa
ration. 

Liver membrane preparation. Biopsy spec· 
imens were immediately placed in a beaker 
and all processing occurred at 4°C similar to 
that described by others [1. 2]. A.fter mincing 
the tissue with a razor blade. it was washed 
with an ice-cold buffer containing 0.9% (w/v) 
NaC!. 1 rru'-1 EDT A. and 10 mM TrisCl (pH 
8.0). Homogenization was performed by six 
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strokes of a motor-driven Teflon pestle in a 
buffer containing 0.25 M sucrose, 1 mM 
EDTA, and 10 mM TlisCl (pH 8.0). The ho-

, rnogenized preparations (10 mg/ml) were 
c:ntrifuged for 10 min at 1000g. The super
natant solution was recentrifuged for 25 min 
at IO,OOOg, followed by ultracentrifugation at 
100,OOOg for 60 min. The pellet from this ul
tracentrifugation was resuspended in a buffer 
containing 150 mM NaCl, 10 mM TrisCl (pH 
8.0), and flushed through a 22-gauge needle 

, iO times. These membranes were recentri
\ fuged for 15 min at 100,OOOg and the mem-

i brane pellets were then frozen in dry ice and 
. stored in liquid nitrogen until used for binding 
. assays and quantitation ofHMG-CoA reduc-

( lase activity. The 10,000g supernatant was 
used for cholesteryl esterase assays . 

\ Lipoprotein quantitation. Blood was ob
I tained in 0.01% EDT A from patient TH after 
\ a 12- to 14-hr overnight fast, and the plasma 
( was separated at 4 DC in a refrigerated centri
{ fuge. Plasma cholesterol and triglycerides were 
~ quantitated on a Gilford 3500 using previously 

[
described enzymatic methods [32, 52]. HDL 
cholesterol was determined following dextran

( sulfate precipitation of plasma. Plasma was 
I ultracentrifuged (1.006 g/ml) for 18 hr at 
( 39,000 rpm (4°C) in Beckman 40.3 rotors 

I (Beckman, Fullerton, Calif.) and the VLDL 
was separated from the other plasma lipopro

( teins by tube slicing [17]. The cholesterol con
. centration in the 1.006 gJml infranate was 
l measured, and the VLDL and LDL cholesterol 

were calculated. 
Hepatic cholesterol and cholesteryl ester de

. termination. Liver biopsy samples from nor
i mal and familial hypercholesterolemic sub
( jeets were weighed, extracted three times with 

chloroform-methanol (2/1 v/v) at 41 0e. The 
I samples were then extracted overnight with 

I Chloroform-methanol (2/1 v/v) at 30°e. The 
. chloroform-methanol extracts were blown to 
, dryness and the liquid was resuspended in 2-
I Propanol (J. T. Baker Chemical Co., Phillips-

burg, N. J.). Free and total cholesterol were 
i then measured by the enzymatic, fluorimetric I method of Heider and Boyette [20J. Esterified 
, cholesterol was determined as the difference 

between tU!J.] and ,ree cholesterol. The nano
moles of cholesterol extracted from the biopsy 
samples were normalized to initial sample 
weight. 

Hepatic en::yme activities. The activity of 
HMG-CoA Reductase (EC 1.1.1.34) was 
quantitated in the 100,000g pellet, as previ
ously described [3]. The cholesteryl ester hy
drolase activity (EC 3.1.1.13) was determined 
in the cytosolic fraction at both pH 4.0 and 
pH 7.0 [21]. 

Binding of 125J_LDL to liver membranes. 
Hepatic membrane binding of 125I_LDL was 
assessed using previously described methods 
[1, 22, 28]. Briefly, frozen liver membrane 
preparation was thawed and resuspended in 
50 rnM NaCl, 30 rnM Tris-HCl (pH 7.5) 
buffer (10-12 mg/ml) and passed through a 
22-gauge needle. Membranes were then son
icated by five 4-sec pulses at the 55-W setting 
using an ultrasonics microtip (Heat Systems 
Ultrasonics, Inc., Plainview, N. Y.). From 100 
to 200 p.g membrane protein was then added 
to a 50 mM NaCl, 20 mM Tris-Cl (pH 7.5) 
buffer containing 1 mM CaCl2 . 125I_LDL was 
added at the indicated concentrations with or 
without unlabeled LDL with a total assay 
mixture volume of 0.1 ml. Incubations were 
carried out at 37°C for 30 min at which time 
preliminary studies had demonstrated that 
equilibrium had been reached. Bound 1251_ 
LDL was separated from free ligand by a 3 
min, 100,000g centrifugation of 50 p.l of the 
assay mixture through 125 p.l PBS in a 30De 
angle rotor in an air-driven ultracentrifuge 
(Beckman, Palo Alto, Calif.). The supernatant 
was removed from the pellet by vacuum as
piration, and the pellet was washed once with 
125 ill of PBS. The cellulose nitrate tube tips 
containing the membrane pellet were sliced 
and the radioactivity in the pellet quantitated 
in a Biogamma II scintillation counter (Beck
man). Specifically bound 125I_LDL was defined 
as the difference in 125I_LDL quantitated in 
samples which were incubated with and with
out 390 p.g of unlabeled LDL. 

Histopathologic studies. One sample of each 
liver specimen was fixed in 10% neutral for
malin and was then processed for examination 
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by light microscopy. A second piece of the bi
opsy tissue was fixed in buffered glutaralde
hyde, postfixed in osmium tetroxide, and then 
embedded in epoxy resin (Epon 812). Some 
of the liver postshunt tissue was also postfixed 
in osmium and processed for electron mi
croscopy. Ultrathin sections were stained with 
lead citrate and examined in a Phillips 300 
electron microscope. The sizes of the mid
zonal hepatocytes before and after portal di
version were determined on hematoxylin and 
eosin-stained sections by a method previously 
described [43]. Mid-zonal hepatocytes iden
tified in 1.0-,um-thick epoxy resin sections were 
also used for measuring the length of rough 
endoplasmic reticulum per area of cytoplasm 
by a morphometric method [29]. 

Statistical methods. Statistical comparisons 
of paired and unpaired lipoprotein determi
nations and biochemical assays were made 
using two-tailed t tests assuming the samples 
were independent [39]. 

RESULTS 

The effects of portacaval shunt on the lipid 
and lipoprotein concentrations in the plasma 
in FH are summarized in Table 1. All of the 
lipid and lipoprotein concentrations decreased 
following the portacaval shunt. The decline of 
291 mg/dl in total cholesterol and 266 mg/dl 

in the LDL cholesterol represented a 28% 
change (P < 0.01). Although the concentra
tions of VLDL, HDL, and total triglycerides 
also declined, these changes were not statisti
cally significant. 

These changes in lipoprotein concentration 
were paralleled by striking alterations in he
patocyte morphology (Fig. 1). Before porta
caval diversion the hepatocytes were enlarged 
and their cytoplasm was vacuolated. Lipid de
posits were demonstrated by staining frozen 
sections with Sudan IV. Ultrastructurally, the 
cytoplasmic droplets possessed a double 
membrane. The amounts of rough and 
smooth endoplasmic reticulum were normal. 
Free polyribosomes were also present in the. 
cytoplasm. Glycogen was abundant. 

After portacaval shunt, the size of the he
patocytes was nearly halved and the amount 
of fat in the cytoplasm of the liver cells de
creased. Ultrastructurally, the lipid droplets 
remained enclosed in a double membrane. 
Morphologic analysis showed that the area of 
rough endoplasmic reticulum was reduced to 
47% of the quantity found in the preoperative 
biopsy. The amount of smooth endoplasmic 
reticulum was reduced to 55% compared to 
the first biopsy. Free ribosomes were abun
dant. Glycogen particles were rare. Therefore, 
marked alterations in hepatocyte morphology, 
independent of any autolytic artifact, were 
observed both before and after surgery. 

TABLE I 

THE EFFECT OF PORTACAVAL SHUNT ON PLASMA LIpID AND LIPOPROTEIN CONCENTRATIONS 

IN FAMILIAL HYPERCHOLESTEROLEMIA 

Cholesterol (mg/dl) Triglycerides (mgjdl) 

Normal a range 
Preshunt 
Postshunt 
% Change 

Total 

126-190 
1034 ± 156 
743 ± 37* 

28* 

VLDL 

5-25 
47 ± 17 
24 ± 6 

49 

LDL HDL (mgfdl) 

60-135 35-71 44-107 

957 ± 157 27 ± 9 200 ± 57 

691 ± 43* 23 ± 3 156 ± 43 

28* 15 22 

Note. Plasma lipid and lipoproteins were measured five times preshunt and four times postshunt. The values 
represent the mean ± SE. 

a "Ionnal values are those reported for the I 0-90 percentile for females ages 14-19 from The Lipid Research 
Clinics Prevalence Study [49]. 

• These values represent a SIgnificant difference from preshunt values (P < 0.05). 
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PRESHUNT POSTSHUNT 
FIG. I. Electron microscopy of hepatic biopsy specimens taken before portacaval shunt (left panel) and 

.\ after portacaval shunt (right panel). The increased cytoplasmic hepatocyte lipid accumulation preshunt 
decreased after portacaval shunt. Magnification in both specimens is X II ,400. 

( The POrtacaval shunt was al", associated 
\ with major changes in hepatic cholesterol 
\ content (Table 2). Before the portacaval shunt, 
, the total cholesterol content in the FH liver I' was 1.7 times that of normal liver. Although 

the portacaval shunt reduced total hepatic 
cholesterol by 27%, the postshunt cholesterol 
content was still 21 % higher than normal. The 
most striking change included the 75% decline 
in free cholesterol that was observed after the 
operation. As the free cholesterol declined, the 
amount of cholesterol in the esterified form 
mcreased by 79%. The normal livers had 24% 
of the cholesterol esterified while the FH liver 
preshunt had 32% of the cholesterol esterified. 
By performing the portacaval anastomosis, the 
fraction of hepatic esterified cholesterol in FH 
mcreased to 77%. Thus, the portacaval shunt 

\ bad a profound effect not only on the absolute 

I 

cholesterol content in the liver ofTH, but also 
on the cholesterol distribution between free 
and esterified forms. 

TABLE 2 

EFFECT OF PORTACAVAL SHUNT ON HEPATIC 

CHOLESTEROL CONTENT IN FAMILIAL 

HYPERCHOLESTEROLEMIA 

Hepatic cholesterol (nmole/mg wet tissue) 

Total Free Esterified 

Normal 5.80 ± 0.46 4.99 ± 0.24 0.81 ± 0.52 

Familial hypercho-
lesterolemia 

Preshunt 9.61 ± 0.21 6.58 ± 0.24 3.03 ± 0.32 
Postshunt 7.04 ± 0.19 1.62 ± 0.34 5.42 ± 0.29 

Note. Three replicate samples of hepatic biopsies were measured 
and the values represent the mean ± SE. 
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Enzymes central to hepatic cholesterol me
tabolism were quantitated in liver biopsy 
specimens taken before and after surgery (Ta
ble 3). The activities of the enzymes HMG
CoA reductase, acid cholesteryl ester hydro
lase, and neutral cholesteryl ester hydrolase in 
the preshunt liver biopsy were comparable to 
the activities observed in normal liver. Al
though the portacaval shunt had no apparent 
effect on neutral esterase activity, changes in 
both HMG-CoA reductase and acid esterase 
activities were observed (Table 3). A 56% de
cline in HMG-CoA reductase activity was 
paralleled by a 220% increase in acid esterase 
activity. Thus, portacaval shunt of blood flow 
from the liver appreciably altered the enzyme 
activities relevant to hepatic cholesterol ho
meostasis. 

The ability of hepatic membranes to spe
cifically bind LDL was directly determined in 
membranes isolated from the FH liver before 
and following portacaval anastomosis (Fig. 2). 
There was a significant reduction in LDL 
binding to the FH hepatic membranes com
pared to binding to hepatic membranes from 
normolipidemic subjects. After the portacaval 
shunt, however, the specific binding of 1251_ 
LDL to the hepatic membranes was signifi
cantly increased compared to preshunt values. 
Thus, portacaval shunt enhanced the hepatic 
membrane binding of 125I_LDL. 

TABLE 3 

THE EFFECT OF PORTACAVAL SHUNT ON HEPATIC 

ENZYMA TIC ACTIVITIES IN F AMILlAL 

HYPERCHOLESTEROLEMIA 

Preshunt 
Postshunt 

HMG
CoA 

129 :!: 26 
57 ± 4 

Enzymatic activity (% control) 

Acid esterase 

110 ± 3 
249:!: 19 

Neutral esterase 

92 ± 22 
102 ± 5 

Note. The enzymatic actIvity in the FH hepatic tissue was 
compared to that from liver taken from three norrnolipidemic 
subjects. The control speCIfic activnies expressed as pmole/min/ 
mg protein were HMG-CoA reductase 3.24 ± 0.75. acid esterase 
71.5:!: 8.34. and neutral esterase 11.4 ± 2.1. Values represent 
the mean ± SE of three or four replicate samples. 
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FIG. 2. Specifically bound 12sI_LDL to hepatic memo 
branes from normal subjects and a familial hypercholes
terolemia before and after portacaval shunt. Membranes 
were prepared from hepatic biopsy specimens from three 
normal subjects (0, N = 3), and familial hypercholester_ 
olemic hepatic tissue preshunt (b.), and postshunt (.). 
From 100 to 200 ILg of membrane protein was added to 
a 75 mM NaO, 150 mM TrisO, I mM CaCl2 (pH 7.5) 
buffer with the indicated concentrations of 12sI_LDL in 
the presence and absence of excess unlabeled LDL. Spe
cifically bound I2sI_LDL, defined as the difference in 1251_ 
LDL bound in the presence and absence of excess unla
beled LDL, was normalized to the amount of membrane 
protein in the sample. Values represent the mean ± SE of 
triplicate determinations. 

DISCUSSION 

The extreme hypercholesterolemia and 
rapidly progressive premature cardiovascular 
disease observed in familial hypercholesterol
emia have prompted the search for an effec
tive, definitive treatment. After observing a 
marked decline in serum lipid concentrations 
with a portacaval shunt for Type I glycogen 
storage disease [47], Starzl and co-workers 
successfully employed this procedure to lower 
the plasma cholesterol levels in a patient with 
familial hypercholesterolemia [42]. Subse
quent observations oflowered LDL cholesterol 
levels, xanthoma regression, and safety of the 
procedure have been reported by StarzI as well 
as several other investigators [6, 10, 12, 13, 
25,40,41,44,54]. Thus, the use of portacaval 
anastomosis appeared to be one of the few 
successful hypocholesterolemic maneuvers 10 

patients homozygous for FH. 
The 28% reduction in total cholesterol and 

LDL observed in TH after portal diversion was 
typical of the 20-55% decline in these values 
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previously reported [6, 10, 12, 13.25,40-42, 
44,54]. This decline could occur because ofa 
fall in the synthesis of cholesterol containing 
lipoproteins, an enhanced clearance of the li
poproteins from the plasma, or a combination 
of these two possibilities. Metabolic turnover 
studies of radiolabeled lipoproteins indicated 
that the fractional catabolic rate of FH ho
mozygotes was significantly less than in nor
mal individuals [5, 37, 38, 50] and that the 
synthesis rate of apoB into LDL was two- to 
fourfold normal [5, 37, 38]. Bilheimer et al. 
reported that portacaval shunt in a patient ho
mozygous for FH enhanced the clearance of 
LDL from the circulation by 17% and a 48% 
decline was measured in the rate of LDL syn
thesis in a patient homozygous for FH [5]. A 
similar response has been reported in a patient 
heterozygous for FH [14]. Thus, the fall in 
LDL observed after portacaval shunt appeared 
to result from changes in both LDL synthesis 
and removal. 

I , , 
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I 
Since the mammalian liver may be impor

tant for both cholesterol and lipoprotein syn
thesis as well as degradation, a disruption in 
the blood supply rich in hepatotrophic factors 

• I, would be anticipated to alter these biochemical 
1 pathways. As in the present case, the cellular 

structures involved with lipid and lipoprotein 
metabolism have consistently been shown to 
undergo profound morphologic changes [35, 
43, 45, 46]. The reduction in hepatocyte size 

\ 
and the development of cytoplasmic lipid 

. droplets in the FH liver after portacaval shunt 
! were similar to the changes induced by por-

I· tacaval shunt in the dog [45]. These anatomic 
alterations are paralleled by biochemical 

I changes observed in the liver of TH after porI tacaval shunt. First, quantitative as well as 
. qUalitative changes in hepatic cholesterol con-I tent were observed. Total hepatic cholesterol 

COntent decreased; however, the fraction of 
cholesterol in the free form decreased from 68 

l to 23%. Second, the activity of the rate-limiting 
\ enzYme for cholesterol synthesis, HMG-CoA 

I reductase, was reduced by more than half foI
l . 
OWIng the portacaval shunt. Thus, the bio-
synthetic. pathway of cholesterol synthesis in I the FH liver was shown for the first time to 

I 

decline in parallel with the fall in hepatic con
tent of total and free cholesterol following 
portacaval shunt. 

The distribution and hydrolysis of choles
teryl ester within the FH hepatocyte may re
flect aberrant metabolism of cholesteryl ester
containing lipoproteins. The LDL receptor
mediated uptake mechanism leads to lyso
somal localization and degradation of LDL 
[8, 15 J. Since TH had no high-affinity LDL 
receptor, delivery of LDL to cells could only 
occur through a pinocytotic or an alternate 
pathway for LDL uptake. Such an alternate 
pathway may lead to ineffective delivery of 
cholesteryl ester-rich lipoproteins to appro
priate subcellular compartments. The exis
tence of such an alternate pathway has recently 
been shown to be the major source of LDL 
delivery to the liver of the Watanabe heritable 
hyperlipidemic (WHHL) rabbit, the only ex
isting animal model for FH [34]. In TH, the 
portacaval shunt was associated with an in
crease in the "receptor-independent" binding 
ofLDL tei the hepatic membranes (Fig. 2). An 
enhancement ofLDL transport, though a less 
efficient alternate pathway, could account for 
the striking modifications observed in hepatic 
cholesterol metabolism. 

In summary, portacaval shunt in FH has 
been shown to increase hepatic LDL recog
nition, markedly alter the intracellular en
zymes central to cholesterol metabolism, and 
modify hepatic cholesterol concentration and 
distribution. These changes parallel the in
creased clearance of plasma LDL and reduced 
LDL synthesis observed in FH patients after 
portacaval shunt. By manipulating the meta
bolic consequences of the hepatic LDL recep
tor loss in FH, more effective therapeutic ap
proaches to the hypercholesterolemia and ac
celerated atherosclerosis present in FH can be 
developed. 
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