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Novel rigid 8-biaryl-20-deoxyadenosines with tuneable fluorescent

properties can be accessed by an efficient sequential catalytic

Pd0-coupling approach.

Fluorescent nucleosides are used widely as probes of enzy-

matic turnover and biomolecular structure, and as labels in

high-throughput biotechnologies.1 Common organic, e.g. pyrenyl

or fluorescein, and inorganic metal-containing extrinsic fluoro-

phores can be attached to either sugar2 or nucleobase.3 Direct

coupling of a conjugated aromatic group yields a more com-

pact fluorescent analogue. Examples include aryl,4 heteroaryl5

or arylalkynyl6 nucleosides, but also modified nucleobase

mimetics exhibiting unique fluorescent properties (Fig. 1).7

This communication describes the synthesis of novel 8-biaryl-

20-deoxyadenosines (e.g. II, Scheme 1) which function as Rigid

Organo-fluorescent Nucleosides (RONs). These p-conjugated

systems are accessible using our recently developed direct

arylation methodology for unprotected adenine nucleosides,

which facilitates the chemoselective installation of an aryl

group at the 8-position.8 The use of a dihaloaromatic coupling

partner would provide a secondary handle for further chemical

manipulation, allowing addition of aryl groups via a classical

cross-coupling (hereafter ‘coupling’) approach. Suzuki–

Miyaura coupling has been used effectively with unprotected

nucleosides9 and nucleotides,10 therefore it should be applicable

to these substrates. This sequential coupling approach would

provide a divergent synthetic route to differently substituted

8-biaryl-20-deoxyadenosines (via I).

For the synthesis of target I, the use of diiodobenzene was

dismissed as our prior findings indicated that double C–H

arylation occurs.8a However, we rationalised that an aromatic

coupling partner possessing two sites with different chemical

reactivity towards Pd0 might provide an elegant solution.

Therefore, as a first step towards the selective synthesis of

the intermediate compounds, we evaluated iodobromo-

benzenes and iodochlorobenzenes as direct arylation substrates

(Scheme 2). Using our established direct arylation conditions,8b

both 4-bromo and 4-chloro-iodobenzene reacted with 20-deoxy-

adenosine to give compounds 1 and 2 in 54% and 97% yields,

respectively.
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Fig. 1 Fluorescent nucleosides.

Scheme 1 Proposed targets and sequential direct arylation/Suzuki–

Miyaura approach (R = 20-deoxyribose).

Scheme 2 Direct arylation of 20-deoxyadenosine. Reagents and

conditions: (i) ArI (2.0 eq.), Pd(OAc)2 (5.0 mol%), CuI (3.0 eq.),

piperidine (0.4 eq.), Cs2CO3 (2.5 eq.), DMF, 80 1C, 15 h (R =

20-deoxyribose; Z = H or F).
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3-Fluoro-4-bromoiodobenzene was a robust substrate

giving 3 in 53% yield, whilst 3-chloro-iodobenzene provided

4 in 87% yield.

With the 8-haloaryl-20-deoxyadenosines (1–4) in hand we

focussed on the Suzuki–Miyaura coupling methodology. We

employed a Pd : TPPTS (tris-(3-sulfophenyl)phosphine tri-

sodium salt = TPPTS) water soluble catalyst system. A slightly

modified version of Shaughnessy’s protocol was employed, speci-

fically Pd(OAc)2 (1.25 mol%), TPPTS (2.5 mol%), Na2CO3

(2.0 eq.), MeCN : H2O (2 : 1), 80 1C, 1.5 h (hereafter

Conditions A).9a,b Interestingly, the employment of a catalyst

preformation/preactivation step {Pd(OAc)2, ligand, solvent

and heating} led to a poor catalyst system resulting in

incomplete reaction (Table 1; numbers in parentheses). This

has implications for product isolation as it has a similar

polarity to the starting material. The addition of the pre-

catalyst and ligand with the solid reagents to a dry vessel

(under an argon atmosphere) prior to addition of the solvent

mixture worked most effectively (Table 1, all other yields).

The coupling of arylboronic acids with bromo analogue 1

using Conditions A proceeded well. Both electron-rich and

electron-deficient arylboronic acids were efficient coupling

partners (entries 1, 3, 5–7 and 9, Table 1). It is not surprising

that chloro analogue 2 failed to serve as a substrate using

Conditions A. Indeed, the difference in reactivity of C–Cl

and C–Br bonds is apparent in the high yield observed for 5e

(81%, entry 5). We identified Buchwald’s bulky electron-

rich phosphine Xphos (2-dicyclohexylphosphino-20,40,60-

triisopropylbiphenyl = Xphos) as an enhancing ligand.

Reactions were conducted using standard ‘in-house’ condi-

tions, namely Pd(OAc)2 (5 mol%), XPhos (10 mol%), aq.

Na2CO3 (2 M), 80 1C, 3.5 h (hereafter Conditions B). Nine

substituted biphen-4-yl-2 0-deoxyadenosines were generated in

good yields (entries 1–4, 6–10, Table 1) and three heteroaro-

matics were also coupled successfully (entries 11–13, Table 1).

Using PhBF3K as a substitute for PhB(OH)2, a slightly lower

yield of 5c (entry 3, Table 1) was obtained with Conditions B.

The structures of compounds 5d and 5i were determined by

single crystal X-ray diffraction; 5d is shown as a representative

example in Fig. 2.

The crystal structure of 5d shows that this nucleoside adopts

a syn-C20-endo conformation and exhibits an intramolecular

H-bond, consistent with related 8-aryl-20-deoxyadenosines.8b

The Suzuki–Miyaura couplings using 3 (Conditions A)

provided the 8-(2-fluoro-biphen-4-yl)-20-deoxyadenosines 6a

and 6b in good yields (Table 2, entries 1 and 2). 8-(Biphen-3-yl)-

20-deoxyadenosines 7a–c were accessible from 4 and ArB(OH)2
using Conditions B (Table 2, entries 3–5). Finally, the chloro-

substituted analogue 5e was subjected to Conditions B to give

terphenyl analogue 8 in 76% yield (Scheme 3).
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Table 1 Suzuki–Miyaura couplings of 1 and 2 with arylboronic acids
(R = 20-deoxyribose)

Entry Ar Cpd

Yield/%

Conditions
A (from 1)

Conditions
B (from 2)

1 4-MeOC6H4 5a 71 (38)a 88
2 4-MeC6H4 5b — 72
3 C6H5 5c 89 (74)a 91 [81]b

4 4-FC6H4 5d — 92
5 4-ClC6H4 5e 81c,d —
6 3,5-F2C6H3 5f 82 94e

7 4-CF3C6H4 5g 77 88
8 3-CF3C6H4 5h — 79
9 4-AcC6H4 5i 89c 76
10 4-CHOC6H4 5j — 84
11 2-Furyl 5k — 71
12 2-Thienyl 5l — 52f

13 3-Thienyl 5m — 63

a Using a preformed catalyst (see main text for details). b Using

PhBF3K as a substitute for PhB(OH)2.
c 3 h reaction time. d Residual

boronic acid starting material remaining. e 2 h reaction time. f 18 h

reaction time.

Fig. 2 Crystal structure of compound 5d (using arbitrary

numbering).

Table 2 Suzuki–Miyaura couplings of 3 and 4 with arylboronic acids

Entry Substrate Conditions R0 Cpd Yield/%

1 3 A 40-MeO 6a 65
2 3 A H 6b 93
3 4 B 40-MeO 7a 88
4 4 B H 7b 87
5 4 B 30,50-F 7c 87
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The photophysical properties of all RONs (5a–j, 6a, 6b,

7a–c, 8 and 9) were determined (lmax, e, lem and F are listed in

Table 3). A sequential increase in the UV lmax and decrease in

fluorescence lifetime is observed as the p-system is extended:

phenyl (289 nm, 2.6 ns, 9), biphen-4-yl (304 nm, 1.9 ns, 5c) and

terphenyl (315 nm, 1.7 ns, 8). The biphen-3-yl derivatives

(7a–c) possess unfavourable lmax values which overlap with

biomolecular absorption bands.11 In the 5a–m series the lmax

values are either similar to 5c or shifted to longer wavelengths.

The 8-aryl-20-deoxyadenosines (5a–h, 5k–m, 6a, b, 8 and 9)

have excellent fluorescence quantum yields (0.59–0.81).

In summary, a library of novel RONs has been synthesised

using an efficient sequential direct arylation/Suzuki–Miyaura

coupling approach. The spectroscopic properties of RONs can

be tuned by changing the terminal aryl group, in most cases

without adversely affecting the quantum yield. Once incorpo-

rated into oligonucleotides using solid-phase synthesis, the RONs

could be exploited as thymine specific base-discriminating

fluorescent probes.10a
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Scheme 3 Synthesis of terphenyl derivative 8.

Table 3 Photophysical properties of 8-substituted-20-deoxyadenosines
in DMSO at 25 1C

Cpd lmax/nm
e "
104/M#1 cm#1

lem/nm
Stokes
shift/cm#1

F

5a 309 3.13 400 7362 0.65
5b 305 2.26 409 8337 0.68
5c 304 2.07 414 8740 0.69
5d 304 2.30 412 8623 0.69
5f 307 1.71 434 9532 0.72
5g 307 1.75 440 9846 0.75
5h 304 1.76 427 9475 0.77
5i 314 2.02 491 11 481 0.27
5j 318 2.53 399 6384 0.10
5k 320 2.71 407 6680 0.70
5l 322 2.25 419 7190 0.59
5m 307 2.14 403 7759 0.64
6a 310 2.21 408 7748 0.60
6b 304 1.89 420 9085 0.69
7aa 275 3.30 393 10 918 —
7ba 261 1.93 380 11 278 —
7ca 260 1.98 383 12 352 —
8 315 3.14 424 8161 0.77
9b 289 1.29 384 8560 0.81

a Measurements determined using methanol solutions. b Compound 9

is 8-phenyl-20-deoxyadenosine.8b
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