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The equilibrium dynamics of a spherical particle immersed in a complex Maxwell fluid is analyzed in

terms of velocity autocorrelation function (VACF), mean-square displacement (MSD), and power

spectral density (PSD). We elucidate the role of hydrodynamic memory and its interplay with medium

viscoelasticity for a free and a harmonically confined particle. The elastic response at high frequencies

introduces oscillations in the VACF, which are found to be strongly damped by the coupling to the

fluid. We show that in all Maxwell fluids hydrodynamic memory eventually leads to a power-law decay

in the VACF as is already known for Newtonian fluids. The MSD displays asymptotically an

intermediate plateau reflecting the elastic restoring forces of the medium. In the frequency domain, the

PSD exhibits at high frequencies a step due to the trapping, whereas the low-frequency decay reflects

the viscoelastic relaxation. Our results suggest that high-frequency microrheology is well-suited to infer

the elastic modulus, which is sensitive over a wide range of Maxwell times.
1. Introduction

Soft matter, like emulsions, polymer solutions and biological

fluids, displays viscoelastic properties, characterized by

a complex frequency-dependent elastic modulus, that covers

a broad spectrum of relaxation times. Whereas the low-frequency

regime is typically studied by macrorheological methods,1 the

high-frequency regime is better accessed by microrheology.2,3

The basic principle of microrheology is to use mesoscopic

spherical particles immersed in a viscoelastic medium as local

probes, and track their Brownian trajectories with high temporal

and spatial resolution by light scattering4,5 and/or video

microscopy.6 When only a single particle is tracked, the particle is

better held by an optical trap, which provides a light source for

position tracking, and ensures that it remains within the detec-

tion range.7,8 Both, passive microrheology, where the displace-

ment of the bead is due to thermal fluctuations only, as well as

active microrheology, where external forces are exerted on the

particle, for example by an optical trap, have been successfully

applied.9–11 Any deviation from the normal diffusive behavior of

the particle is then interpreted as a response to the material

properties of its complex environment.12 In particular, the pro-

be’s Brownian motion is expected to be affected differently by
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a more or less viscous and/or elastic behavior of the surrounding

medium. Typically, a generalized Stokes–Einstein relation5,13 is

employed to convert the mean-square displacement of the bead

into the complex elastic modulus, G(u) ¼ G 0(u) � iG 0 0(u) of the

fluid. This approach has revealed power-law behavior G(u)�ua

with a z 3/4, for a variety of biological materials,14 which has

been identified as a fingerprint of the dynamics of single semi-

flexible polymers.15 However, the observation of the micro-

rheological probe at short timescales, or equivalently at high

frequencies, requires disentangling the frequency-dependent

elastic modulus or the corresponding dynamic viscosity h(u) :¼
G(u)/(�iu) from the hydrodynamic memory induced by

momentum conservation.16 Indeed, at high frequencies, the

viscous drag acting on the probe is retarded due to vortex

diffusion and inertia of the particle, resulting in additional

hydrodynamic memory. In a purely viscous fluid, this memory

effect manifests itself as a long-time tail in the velocity autocor-

relation function (VACF),17,18 which was discovered first in

computer simulations,19 but was anticipated earlier also for

colloidal single particle motion.20,21 Indirect experimental

evidence for the hydrodynamic memory was collected by

diffusing-wave spectroscopy on dense colloidal suspensions,22 yet

the first direct observation was achieved only recently with high-

precision optical trapping interferometry.23,24 Similarly, by

monitoring the correlated fluctuations of two optically trapped

particles, the characteristic spatial backflow pattern associated

with momentum conservation in the fluid16,25 was measured

directly. When considering such hydrodynamic contributions,

a direct estimation of the complex modulus by Mason’s method

of taking logarithmic derivatives13 no longer applies, and an

improved algorithm based on Pad�e approximants in the Laplace

domain was proposed recently by Felderhof.26 Nevertheless,
This journal is ª The Royal Society of Chemistry 2011
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a systematic study on the expected interplay of viscoelasticity and

hydrodynamic memory is still lacking.

In this paper, we investigate the dynamics of a Brownian

particle immersed in a simple viscoelastic fluid, and held by

a weak harmonic potential as present in optical trapping exper-

iments (Fig. 1). The simplest case for a viscoelastic fluid is

provided by the Maxwell model,27,28 which allows for a complete

analytical description of the Brownian probe’s dynamics in the

case of instantaneous hydrodynamic friction. A Maxwell fluid

displays a characteristic timescale sM that marks the transition

from a high-frequency elastic regime to a purely viscous fluid at

low frequencies. As Maxwell fluids already encode many of the

generic aspects relevant to the description of fluids displaying

frequency-dependent moduli, we expect our results to represent

a reference case for more complex colloidal, polymeric or bio-

logical solutions. Rheological measurements of microemulsions,

transient polymer networks, worm-like and giant micelle solu-

tions29–34 suggest Maxwell’s model as a valid description of such

fluids.

In the following, we first briefly recall how hydrodynamic

memory is incorporated into the theory of Brownian motion

(Sec. 2). Then the viscoelastic properties of a Maxwell fluid are

discussed in Sec. 3. The main results for the VACF of the bead,

the mean-square displacement (MSD) and the power spectral

densities (PSD) of the displacements are presented for free

Brownian motion in Sec. 4, and in the presence of harmonic

restoring forces in Sec. 5. Finally, we summarize our results and

discuss implications on microrheological studies in the high-

frequency regime.

2. Brownian motion in a Newtonian fluid

Since the individual trajectory of a particle performing Brownian

motion is unpredictable, a theoretical description of the

dynamics aims at statistical properties such as correlation
Fig. 1 Illustration of the investigated system. The viscoelastic fluid is

typically represented by a dashpot and a spring connected in series to the

Brownian particle. The dashpot mimics the viscous forces, whereas the

spring stands for the elastic forces of the fluid acting on the Brownian

sphere. The optical trap is also symbolized by a harmonic spring. The

hydrodynamic backflow is shown as field lines developing around the

bead.

This journal is ª The Royal Society of Chemistry 2011
functions. Of particular interest is the velocity autocorrelation

function (VACF), C(t) :¼ hv(t)v(0)i, which encodes also the

mean-square displacement (MSD), dx2(t) :¼ h[x(t) � x(0)]2i of

one cartesian component through27

dx2ðtÞ ¼ 2

ðt

0

ðt� t0ÞC
�
t0
�
dt0: (1)

In equilibrium, correlation functions are related to the deter-

ministic linear response via the well-known fluctuation-dissipa-

tion theorem (FDT).35 The macroscopic transport coefficient is

the complex admittance Y(u), which relates the particle’s

velocity v(u) ¼Y(u)f(u) to a force f(u) in the frequency domain.

Hence the admittance is the frequency-dependent generalization

of the Stokes’ mobility in the steady case. Application of the

FDT yields

C(u) ¼ kBTY(u), (2)

where C(u) is the one-sided Fourier transform of C(t):

CðuÞ ¼
ðN

0

eiutCðtÞdt: (3)

For an incompressible fluid and no-slip boundary conditions

at the surface of the Brownian particle, the force in response to

unsteady motion is known as Boussinesq–Basset force36–38 and

the admittance follows as

YðuÞ ¼ 1

�ium* þ zðuÞ: (4)

The effective mass m* ¼ mp + mf /2 accounts for the inertial

force due to acceleration of the particle’s mass mp and of the

displaced fluid mass mf ¼ 4prf a3/3. The frequency-dependent

friction coefficient z(u) includes the hydrodynamic backflow

effects

zðuÞ ¼ 6pha
h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iurf a2=h

p i
(5)

¼ m*

s*
p

h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�iusf

p i
; (6)

where a denotes the radius of the spherical particle, rp its density,

h the viscosity of the surrounding fluid and rf the fluid’s density.

The timescale sf ¼ rf a2/h estimates the time needed by the fluid

vortex to propagate over the distance of one bead radius.

The characteristic time s*
p ¼ m*/6pha corresponds to the

momentum relaxation time by comparing the inertial forces with

the stationary viscous drag. Ignoring the added mass due to the

entrained fluid yields a time scale sp ¼ mp /6pha, and one readily

calculates s*
p ¼ sp + sf /9. In a gas the distinction between sp and

s*
p is unnecessary since the density of the gas is much smaller than

the one of the particle. However, in a fluid the fluid and particle

densities are often chosen to be comparable in order to prevent

sedimentation. For the case of steady motion the well-known

Stokes friction is recovered z(u ¼ 0) ¼ 6pha. The square root

singularity in eqn (5) has to be evaluated with a positive real part,

and introduces an algebraic long-time decay in C(t). Conse-

quently, a low-frequency series expansion of Y(u) and a subse-

quent analytic back transform into the temporal domain reveals
Soft Matter, 2011, 7, 2076–2084 | 2077
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Fig. 2 Complex shear modulus G(u)¼ G 0(u)� iG 0 0(u) as a function of

angular frequency u for a generalized Maxwell fluid. Parameters are

chosen such that the stationary viscosity exceeds the background

viscosity by a factor of h0/hN ¼ 10. Inset: corresponding dynamic

viscosity h(u) ¼ h0(u) + ih0 0(u).
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the well-known t�3/2 long-time tail in the VACF of a free particle.

Its initial value is given by C(t ¼ 0) ¼ kBT/m* rather than

C(t ¼ 0) ¼ kBT/mp, which would follow from the equipartition

theorem. The discrepancy can be traced back to the assumption

of incompressibility of the fluid that ignores the rapid equili-

bration through sound modes.39

It is convenient to normalize the VACF to its initial value

CðtÞ
Cð0Þ ¼

ðN

�N

du

p
Re½YnðuÞ�cosðutÞ; (7)

introducing the normalized admittance Yn(u) :¼ m*Y(u). In

order to observe Brownian motion experimentally over an

extended period of time, the particle is typically held in an optical

trap. Such confinement acts as an additional harmonic restoring

force Ftr(t)¼�kx(t) on the bead, which can be readily accounted

for in the admittance18

YnðuÞ ¼
m*

�ium* þ zðuÞ þ k=ð�iuÞ: (8)

Introducing the relaxation timescale of the harmonic potential

sk ¼ 6pha/k, the admittance can be expressed solely in terms of

characteristic timescales

YnðuÞ ¼
"
� iuþ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�iusf

p

s*
p

þ 1

�iusks*
p

#�1

: (9)

A low-frequency expansion of the preceding equation reveals

that the leading non-analytic term is of order u5/2, which corre-

sponds to a t�7/2 long-time tail in the VACF.40

An alternative but equivalent characterization of Brownian

motion in optical trapping is achieved in terms of the power

spectral density (PSD)41

SðuÞ :¼ lim
T/N

1

T

D��xTðuÞ
��2E; (10)

of the positional displacements with respect to the center of the

trap. Here xT(u) represents the Fourier amplitudes of the

displacement x(t) from the center of the trap for a finite time

window, xTðuÞ ¼
ðT=2

�T=2

eiutxðtÞdt. As velocity is the time deriv-

ative of the positional displacement, the Wiener–Khinchin

theorem provides the connection of the PSD to the VACF by

u2SðuÞ ¼
ðN

�N

eiut CðtÞdt: Employing again the FDT of eqn (2),

one finds for the PSD

SðuÞ ¼ 2kBT

u2
Re½YðuÞ�: (11)

The MSD of an optically trapped particle connects then to the

PSD by

dx2ðtÞ ¼ 2kBT

k
� 2

p

ðN

0

duSðuÞcosðutÞ: (12)

For long times, the particle equilibrates in the trap and by

equipartition follows dx2(t/N) ¼ 2kBT/k.
2078 | Soft Matter, 2011, 7, 2076–2084
3. Maxwell model

Complex solutions, like polymers or biological fluids, are usually

composed of many different structures with sizes spanning

several length scales. Therefore, their viscoelastic behavior

displays significant deviations from a Newtonian fluid.42,43 The

simplest approach to describe viscoelasticity, already proposed

by Maxwell in 1867, assumes that the material consists of

a viscous element h0 _g and an elastic component GNg, with the

zero-frequency viscosity h0 and the elastic modulus GN, such that

the shear rates add. Thus, the constitutive equation reads

1

GN

_s ðtÞ þ 1

h0

sðtÞ ¼ g_ðtÞ: (13)

A temporal Fourier transform, convention f(u) :¼
Ð

f(t)eiutdt,

readily relates the dynamic stress s(u) ¼ G(u)g(u) linearly to the

dynamic strain g(u), where G(u) is known as the complex elastic

modulus. In the decomposition G(u) ¼ G 0(u) � iG 0 0(u), the real

part G 0(u) refers to the storage modulus and the imaginary part

G 00(u) to the loss modulus.42,43 Since in equilibrium all systems

are dissipative, the inequality G 00(u) $ 0 holds. Explicitly, for

a Maxwell fluid one finds

GðuÞ ¼ �iusMGN

1� iusM

¼ u2s2
MGN

1þ u2s2
M

� i
usMGN

1þ u2s2
M

; (14)

where the Maxwell time sM characterizes the crossover from

elastic to viscous behavior. Microscopically the dynamic

viscosity is connected to the autocorrelation function of the

fluctuating stress tensor by a Green–Kubo relation,27 hence sM is

the time scale where the structural relaxation of the solvent

occurs. The spectral form of G(u) corresponds to a simple Lor-

entzian. Equivalently, the dynamic stress s(u)¼ h(u) _g(u) relates

to the dynamic strain rate _g(u) ¼ �iug(u) with a complex

frequency-dependent viscosity h(u) ¼ G(u)/(�iu). Its real part is

connected to the loss modulus via h0(u) ¼ G 0 0(u)/u and its

imaginary part to the storage modulus h0 0(u) ¼ G 0(u)/u.

The simplest version of the Maxwell model incorporates only

the zero-frequency viscosity h0 as dissipation mechanism. Yet,
This journal is ª The Royal Society of Chemistry 2011
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typically the constituent mesoscopic particles in a viscoelastic

material are immersed in a solvent giving rise to a background

viscosity h(u/N)¼ hN. Hence to account for the dissipation in

the solvent, we consider a generalized Maxwell model

hðuÞ ¼ hN þ
GNsM

1� iusM

; (15)

which is also known as Jeffreys’ model.44 In the following, the

stationary shear viscosity will be denoted as h0¼ h(u¼ 0). Fig. 2

shows the complex shear modulus and the corresponding

frequency-dependent viscosity (inset) for a such a generalized

Maxwell fluid. For frequencies usM� 1, the loss modulus G 0 0(u)

dominates over the storage modulus indicative of viscous

behavior. Similarly, at frequencies u [ GN/hN the fluid

response is mainly viscous, here due to the background viscosity.

In between, a window of frequencies opens, where the storage

modulus G 0(u) dominates with the characteristic plateau GN,

indicative of elastic behavior. The corresponding dynamic

viscosity changes near usM z 1 from h0 for small frequencies to

the background viscosity hN.

When a microparticle is immersed in a viscoelastic fluid

characterized by a dynamic, frequency-dependent viscosity

h(u), one readily calculates the dynamic Stokes drag on the

immersed particle by solving the Navier–Stokes equations in

the frequency domain with no-slip boundary condition and

integrating over the stress tensor on the surface of the bead. All

formulae introduced in Sec. 2, except eqn (9), remain valid

provided the viscosity h is replaced by its frequency-dependent

counterpart h(u). The underlying assumption is that the

frequency-dependent viscoelastic response entirely characterizes

the motion of the bead. Yet, since the medium often displays

structural heterogeneities at the mesoscale, boundary condi-

tions are also crucial. In the context of polymeric networks,

Maxwell’s model has been generalized to a two-component

fluid model, which allows the incorporation of different

boundary conditions for the bead to the viscous and the elastic

components.45,46
4. Free Brownian motion in a Maxwell fluid

In this section, we first recall briefly the effects of a Maxwell fluid

on Brownian motion ignoring hydrodynamic memory. Next, we

incorporate explicitly vortex diffusion and discuss the influence

of the viscoelastic fluid on the VACF and the MSD of a Brow-

nian particle in the absence of an external potential.
Fig. 3 Normalized VACF of a free particle in different Maxwell fluids.

Maxwell times sM increase from left to right beginning with a simple fluid

(sM ¼ 0). The dashed line represents the VACF for sM ¼ 10sf ignoring

hydrodynamic interactions.
4.1. Instantaneous friction

The case of Brownian motion in a Maxwell fluid ignoring

retardation effects and the background viscosity has already

been discussed by van Zanten and Rufener.29 We provide

a generalization of their main results applying the theoretical

framework introduced above on a Jeffreys’ fluid. Here the

frequency-dependent friction reduces to z(u) ¼ 6ph(u)a, i.e. the

frequency dependence is only inherited from the material prop-

erties of the fluid. This approximation is implicitly assumed in

most experimental approaches to determine the complex elastic

modulus.5,13 Then the normalized admittance, eqn (4), reduces to
This journal is ª The Royal Society of Chemistry 2011
YnðuÞ ¼
m*

�ium* þ 6phðuÞa : (16)

Note that we keep the renormalization of the mass m* ¼ mp +

mf/2 due to the entrained fluid. In the limit of a short Maxwell

time, sM/0 with GN fixed, the fluid becomes purely viscous,

h(u) ¼ hN, and the admittance exhibits a single pole on the

negative imaginary axis. The corresponding VACF of the bead

follows an exponential decay, C(t)/C(0) ¼ exp(�t/s*
p), which is

just Langevin’s description of viscously damped Brownian

motion. Here and in the following s*
p ¼ m*/6phNa is defined with

respect to the background viscosity.

In the general case 0 < sM < N, the admittance exhibits two

poles at complex frequencies u ¼ �U � ig with an oscillation

frequency U2¼ u2
e � (1/sM� 1/s*

p)
2/4 and a damping constant g¼

1/2sM + 1/2s*
p. The medium’s elastic response to the bead is

described by the characteristic frequency u2
e ¼ 6pGNa/m*. For

weak damping the frequency U is real and results in a damped

harmonic oscillator behavior of the VACF (Fig. 3, dashed line),

CðtÞ
Cð0Þ ¼

"
cosðUtÞ þ 1

2U

 
1

sM

� 1

s*
p

!
sinðUtÞ

#
e�gt: (17)

In the limit of vanishing background viscosity 1/s*
p/0, this

reduces to the solution of van Zanten and Rufener.29

An imaginary U leads to an overdamped oscillator behavior in

the VACF:

CðtÞ
Cð0Þ ¼

1

2jUj

 
gþ �

1

s*
p

!
e�g�t � 1

2jUj

 
g� �

1

s*
p

!
e�gþt; (18)

with decay rates g� ¼ g� |U|. Overdamped behavior arises from

either small Maxwell times sM < 1/(1/s*
p + 2ue) or large ones sM >

1/(1/s*
p� 2ue). If sM�s*

p, the fast decay rate g+ z1/sM reflects the

mediums’s structural relaxation, whereas the long time decay

rate g�zu2
esM + 1/s*

p ¼ 6ph0 a/m* corresponds to viscous

damping with the stationary viscosity h0. In the opposite case

sM [ s*
p, the fast process transfers momentum to the fluid g+ z

1/s*
p, whereas inertia does not play a role in the slow decay any

more. The rate g�z u2
es*

p + 1/sM ¼ h0 /hNsM is only determined
Soft Matter, 2011, 7, 2076–2084 | 2079
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by the structural relaxation and the ratio of the low- and high-

frequency viscosities.
Fig. 4 Double logarithmic plot of three normalized VACFs of Fig. 3.

This representation highlights the pairwise emergence of zero-crossings

and the universal t�3/2 long-time tail. The dashed line corresponds to

a damped harmonic oscillator behavior.
4.2. Hydrodynamic memory

When vortex diffusion is taken into account, an analytic inverse

Fourier transform of the admittance Yn(u) is difficult to achieve

due to the square root singularity in the friction

zðuÞ ¼ 6phðuÞa
h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iurf a

2=hðuÞ
p i

: (19)

Nevertheless, the limiting case of a purely viscous medium can

be discussed analytically by performing a partial fraction

decomposition in terms of the variable
ffiffi
s
p

:¼
ffiffiffiffiffiffiffiffiffi
�iu
p

. The corre-

sponding VACF can then be represented by a superposition of

error functions, as already discussed earlier.21 The second

limiting case that can be handled analytically is the purely elastic

medium h(u) ¼ GN/(�iu). There, the frequency-dependent

friction becomes zðuÞ=m* ¼ u2
e=ð�iuÞ þ ue

ffiffiffiffiffiffiffiffiffiffiffi
sf=s*

p

q
and acquires

a real part, which implies dissipation (we define the vortex

diffusion time with respect to the high-frequency viscosity,

sf ¼ rfa
2/hN). This dissipation is due to the radiation of elastic

shear waves that are generated by the oscillating spherical

particle. Thus, for predominantly elastic materials radiation

damping constitutes the principal mechanism of the VACF

decay. The functional form of the time-dependent VACF

corresponds then to a simple damped or even overdamped

harmonic oscillator.

It is instructive to derive analytically the long-time behavior

and the associated algebraic decay. As follows from the Tauber

theorems,47 a power-law long-time tail in the time domain is

reflected in a corresponding low-frequency singularity in the

Fourier transform. Assuming an asymptotic decay C(t)/C(0) ¼
axt�x for t/N with some non-integer exponent x for the VACF,

the admittance displays a leading low-frequency singularity

Y(u) ¼ axG(1 � x)(�iu)x�1 + O(ux) + smooth, (20)

superimposed on a smooth analytic background. The series

expansion of Y(u) given by eqn (4), using the frequency-depen-

dent friction z(u) of eqn (19) for the Maxwell model, reveals

a leading non-analytic behavior of u1/2. Comparison with eqn

(20) yields a leading long-time anomaly in the VACF

CðtÞ ¼
kBT

ffiffiffiffi
rf

p

12p3=2h
3=2
0

t�3=2; t/N; (21)

which is identical to the one of a free particle in a simple fluid as

discussed in Sec. 2. Note that only the stationary shear viscosity

h0 enters the expression. An elastic response of a Maxwell fluid is

only expected for fast processes on timescales smaller than sM.

In the following, we discuss the experimentally relevant case of

a polystyrene sphere in an aqueous viscoelastic medium with

sp/sf ¼ 0.3 (s*
p /sf ¼ 0.411) and a background viscosity corre-

sponding to water, hN ¼ 10�3 Pa$s. However, it is then not

obvious how analytic progress can be achieved. Therefore, we

employ a numerical inverse Fourier transform based on a modi-

fied Filon algorithm,48 which gives reliable results over many

decades in time even in the presence of low-frequency
2080 | Soft Matter, 2011, 7, 2076–2084
singularities.18 Furthermore, we use the generalized Maxwell

model of eqn (15) and implicitly assume that the density of the

fluid remains approximately constant as the viscoelasticity

creating components are added to the aqueous solution. Such

components can be for example worm-like micelles.

Usually the stationary viscosity h0 can be obtained by mac-

rorheological measurements and the high-frequency viscosity hN

corresponds to the one of the solvent. The experimental chal-

lenge is to infer the elastic modulus GN, respectively sM, from the

data. Fig. 3 shows the normalized VACF for a free particle in

Maxwell fluids for increasing sM as a function of t/sf assuming

a fixed ratio h0/hN ¼ 10, hence a fixed value for GNsM. For

comparison, we also included the normalized VACF with the

same parameters but for a Newtonian fluid where sM ¼ 0. The

VACFs display, upon increase of sM, the appearance of anti-

correlations, which are also detected in the VACF of an optically

trapped particle in a simple viscous fluid.17 Here, such anti-

correlations originate from the restoring force of the elastic

medium. As sM increases for a fixed hN, the fluid reacts more and

more elastically, leading to pronounced minima in the VACF,

which are most prominent for sM z sf. Since GNsM is fixed,

a further growing sM implies a decreasing value of the elastic

modulus GN. Therefore, the minima in the VACF become

shallower for higher sM scaling with 1/sM. When sM becomes

much larger than sf,s*
p, while keeping the stationary viscosity h0

fixed, the curves become insensitive to the detailed value of the

Maxwell time. For comparison, we have included the VACF

where vortex diffusion is ignored (dotted line in Fig. 3). The most

striking difference is that then the VACF remains close to unity

for times up to s*
p, whereas the coupling to hydrodynamics shows

a significant decay already at much earlier times. Second, this

curve oscillates much stronger with an infinite number of zeros.

Thus the retarded friction renders the decay much more gradual

and thereby strongly suppresses oscillations.

Fig. 4 displays five VACFs of Fig. 3 in a double logarithmic

plot highlighting the zero-crossings. Indeed, the VACF in

a generalized Maxwell fluid displays oscillations before reaching

its long-time tail in contrast to a Newtonian fluid. Since all curves

are for the same stationary viscosity h0, all tails have the same
This journal is ª The Royal Society of Chemistry 2011
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Fig. 5 Log–log plot of the mean-square displacements (MSD) corre-

sponding to the VACF of Fig. 3. The Maxwell time sM increases from the

lower right to the upper left. The dashed line corresponds to a MSD with

sM ¼ 10sf, where the influence of hydrodynamic backflow is ignored.

Inset: zoom into the plateau region for sM ¼ sf, highlighting the contri-

bution of hydrodynamics.

Fig. 6 Double logarithmic plot of the normalized VACFs of an optically

trapped particle in different Maxwell fluids. The parameter sk ¼ 1000sf

represents weak optical trapping. Maxwell times sM increase from left to

right beginning with a simple fluid (sM ¼ 0). The dashed line corresponds

to sM ¼ 10sf ignoring hydrodynamic backflow.

Pu
bl

is
he

d 
on

 1
4 

Ja
nu

ar
y 

20
11

. D
ow

nl
oa

de
d 

by
 L

ud
w

ig
 M

ax
im

ili
an

s 
U

ni
ve

rs
ita

et
 M

ue
nc

he
n 

on
 1

1/
07

/2
01

3 
15

:0
2:

00
. 

View Article Online
amplitude, but the asymptote t�3/2 is reached later for longer sM.

Furthermore, zero-crossings shift to later times upon increase of

sM. The effect of vortex diffusion is to constrain the number of

nodes to a finite value. As the amplitude of the tail is positive, eqn

(21), this number of zero-crossings has to be even. We observe

only two zero-crossings in the experimentally relevant cases

discussed here.

Most experiments in microrheology analyze the MSD of the

bead, a quantity much less susceptible to noise than the VACF.

To illustrate the role of the viscoelastic behavior, we have

calculated the MSDs by integrating our numerical VACF,

according to eqn (1). Since all Maxwell fluids are viscous at long

times, the long-time behavior of the MSD is diffusive in all cases,

and dx2(t) ¼ 2Dt (Fig. 5) with the diffusion coefficient D ¼
kBT/6ph0a. For very short times t ( 0.1sf, the bead undergoes

ballistic motion and the MSD grows quadratically dx2(t) ¼ v2t2,

where v2 ¼ kBT/m* corresponds to the thermal velocity. For

Maxwell times sM large with respect to s*
p an additional diffusive

regime emerges right after the ballistic growth. There, the par-

ticle’s MSD increases linearly with dx2(t) ¼ 2Dst, where Ds ¼
kBT/6phNa is the short-time diffusion coefficient determined by

the viscosity of the solvent. Both diffusive asymptotes are con-

nected by a crossover regime where the MSD grows sub-

diffusively due to the interplay with the structural relaxation of

the fluid. This intermediate window terminates roughly at the

Maxwell relaxation time sM. Similarly, the short-time diffusive

behavior ends at an estimated time scale sMhN/h0. For larger

ratios h0/hN this crossover regime flattens and becomes a plateau

at a value of the MSD at 2DsM or kBTsM/3ph0a. Hence, in

principle, one can directly extract the Maxwell time from the

plateau of the MSD and GN from the value of the long-time

diffusion coefficient. For comparison, we have included the

MSD ignoring the influence of hydrodynamic backflow in Fig. 5.

Then, the crossover connecting the short and long-time diffusive

regimes displays a more pronounced plateau (inset of Fig. 5).

Thus, slow vortex diffusion smears out the transition giving rise

to a more gradual increase of the MSD.
This journal is ª The Royal Society of Chemistry 2011
5. Trapped Brownian motion in a Maxwell fluid

Experiments monitoring the Brownian motion of a bead

immersed in a complex fluid often rely on optical tweezers. The

optical trap allows the observation of the particle over a long

time interval, which greatly improves the statistical quality of

collected data. The additional force acting on the Brownian

particle can be approximated as a harmonic restoring force

Ftr(t) ¼ �kx(t). Since even weak trapping modifies the long-time

behavior of the correlation functions,18 we include the effects of

trapping in the following theoretical discussion.

As discussed in Sec. 2, the trap can be accounted for by using

the admittance

YnðuÞ ¼
m*

�ium* þ zðuÞ þ k=ð�iuÞ; (22)

where z(u) is given by eqn (19), and encodes the viscoelasticity

via the frequency-dependent viscosity h(u). For a Newtonian

fluid, h(u)¼ h0¼ hN, an analytic back transform in the temporal

domain can be achieved40 employing a partial fraction decom-

position in the variable
ffiffi
s
p
¼

ffiffiffiffiffiffiffiffiffi
�iu
p

, yet the complete expression

requires the solution of a fourth order polynomial. In the limit of

a purely elastic medium, h(u) ¼ GN/(�iu), the normalized

admittance simplifies to

YnðuÞ ¼
1

�iuþ
�
u2

e þ u2
k

��
ð�iuÞ þ ue

ffiffiffiffiffiffiffiffiffiffiffi
sf=s*

p

q ; (23)

where u2
k ¼ k/m* is the characteristic harmonic oscillator

frequency. Obviously, the elastic restoring force and the

harmonic restoring force simply add, and the radiation of shear

waves gives rise to new friction terms. The corresponding VACF

exhibits again damped harmonic oscillations. Note that ignoring

damping, the trapping and the elastic forces cannot be disen-

tangled.

The general case of a viscoelastic medium has to rely again on

a numerical Fourier back transform. Here, we choose a moderate

trap with sk ¼ 103sf, where sk :¼ 6ph0 a/k denotes the trap
Soft Matter, 2011, 7, 2076–2084 | 2081
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Fig. 8 Normalized PSDs of optically trapped particles in different

Maxwell fluids. The Maxwell times rise from zero to sM ¼ 105sf from top

to bottom. The dashed line corresponds to a PSD where hydrodynamic

memory is ignored.
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relaxation time. This definition of sk assumes that the relaxation

in the trap occurs at times larger than sM such that the stationary

viscosity h0 determines the friction. For large Maxwell times, the

dynamics induced by the trap precedes the structural relaxation

and sk,s :¼ 6phNa/k becomes the effective trapping time. For the

chosen separation of time scales, sk [ sf, the VACF on a linear

y-axis is barely distinguishable from the free case (not shown).

Nevetheless, it is instructive to display the VACFs on a log–log

scale (Fig. 6) for the Maxwell fluids discussed in Fig. 3. Provided

the timescale sk is well separated from sf and s*
p two regimes are

clearly visble. When sM ( sk the motion is first dominated by the

elastic restoring force of the fluid before the confinement of

the trap sets in. When sM T sk,s the trapping dominates over the

viscoelastic relaxation and the curves become insensitive to sM

(not shown). For comparison, we have included in Fig. 6 the

VACF of a particle immersed in a simple fluid showing the effect

exclusively arising from the optical confinement at long times.

The manifestations of the trapping force become also clearly

visible in the MSD. The most prominent feature is a saturation

dx2(t/N) ¼ 2kBT/k determined by the trapping force at long

times. The MSDs normalized by their respective long-time limits

are displayed in Fig. 7. After a diffusive increase of the MSD with

the diffusion coefficient Ds, a similar intermediate plateau arises

as already observed in Fig. 5. Before the MSD saturates due to

trapping, a second diffusive regime with D is observed. Longer

Maxwell times shift the intermediate plateau to higher values,

eventually overlapping with the trap confinement at earlier times.

The time interval for the beginning of the saturation is therefore

comprised between sk,s and sk. Provided sM ( sk, viscoelasticity

does not interfere with trapping.

A complementary method to discuss Brownian motion is to

consider the power spectrum of the particle’s displacements in

the trap. As mentioned in Sec. 2, the power spectral density S(u)

can be directly obtained from the admittance in eqn (11). The

corresponding numerical results for S(u) are displayed in Fig. 8

for increasing Maxwell times. For low frequencies the power

spectrum saturates due to trapping at a value of S(0) ¼ 2kBTsk /

k, and the normalized power spectral density can be expressed as
Fig. 7 MSD of an optically trapped Brownian particle. The MSDs are

normalized to their long-time limit, dx2(t/N) ¼ 2kBT/k, resulting from

optical trapping. Maxwell times rise from bottom to top beginning with

a particle in a simple fluid (sM ¼ 0). The dashed line shows the MSD for

sM ¼ sf calculated without hydrodynamic memory.

2082 | Soft Matter, 2011, 7, 2076–2084
SðuÞ
Sð0Þ ¼

k2

6ph0au2

z0ðuÞ�
m*u� k=u� z00ðuÞ

�2þ
�
z0ðuÞ

�2
; (24)

where the frequency-dependent friction z(u) ¼ z0(u) + iz0 0(u) is

decomposed into its real and imaginary part. For reference, we

have included in Fig. 8 the case of a Newtonian fluid, sM ¼ 0,

where the most prominent feature is a decrease from the

low-frequency plateau at the characteristic corner frequency

uc ¼ 1/sk. The power spectral densities for the Maxwell fluids

differ drastically from this simple behavior in particular for large

Maxwell times, i.e. the regime where the VACF and MSD are

rather insensitive to the value of sM. The observed first decay

from the low-frequency plateau is described by a Lorentzian

S(u)/S(0) ¼ (1 � hN/h0)/[1 + (usM)2] + hN/h0. This follows from

eqn (24) by neglecting all terms, except the trap restoring force in

the denominator, S(u)/S(0)zz0(u)/6ph0a, and ignoring the

effects of the vortices in z0(u) z 6ph0(u)a. The decay from

the secondary plateau hN/h0 reflects the trap relaxation and is

well represented by another Lorentzian S(u)/S(0) z (hN/h0)/

[1 + (usk,s)
2] with a corresponding short-time corner frequency

uc,N¼ (sk,s)
�1. For shorter Maxwell times sM ( sk the structural

relaxation is superimposed on the trap relaxation process. Here,

the decay of the PSD starts at the corner frequency uc. The

intermediate plateaus already observed in the MSD (Fig. 7) are

directly mirrored in the frequency domain. For the parameters

studied here the effects of hydrodynamic backflow are negligible

in the PSD (dashed blue line). However, for a significantly larger

ratio h0 /hN they give rise to new damping mechanisms such as

radiation of shear waves.
6. Summary and conclusions

A bead performing Brownian motion in a viscoelastic medium

can be employed to probe the material properties of the medium.

This idea of a local reporter constitutes the basis of micro-

rheology and has allowed the extraction of complex frequency-

dependent elastic moduli by observing the thermally agitated

motion of the bead in the sample. The approach is based on the
This journal is ª The Royal Society of Chemistry 2011
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assumption that the solvent can be treated as a structureless

homogenous continuum. Then, the coupling of the solvent’s

degrees of freedom to the bead is described by adopting suitable

boundary conditions at the surface of the sphere. Such

a description is certainly valid for large probe particles, but

becomes questionable once the bead radius becomes comparable

to the solvent’s structural constituents.34,49 Typically, complex

materials are comprised of mesosized objects such as vesicles,

micelles, transient or permanent polymer networks, and it

remains an open question how the bead couples to this medium.

Within the two-component fluid model, a generalization of

Maxwell’s model, different boundary conditions for the back-

ground solvent and the elastic network have been implemented

and demonstrated to lead to sizable effects in the apparent

complex elastic moduli.45,46

Most analysis of experimental data rely on the generalized

Stokes–Einstein relation (GSE),5,13 which translates in our

notation to

GSE : YðuÞ ¼ 1

6phðuÞa ; (25)

i.e. the frequency-dependent mobility is essentially the inverse

dynamic viscosity. In optical trapping measurements, which

typically reach frequencies up to 1/s*
p, this expression has to be

revised on several accounts. First, at low frequencies, trapping

forces introduce an additional term, k/(�iu), in the denominator.

Second, at high frequencies, the inertia of the particle and the

dragged fluid become important. These effects of hydrodynamic

memory imply that dynamic friction is not simply proportional

to the dynamic viscosity. The additional contribution arises from

the slow diffusion of vortices excited by the thermal motion of

the bead. Since this process is scale-free for a Newtonian fluid, its

consequences are visible in the VACF over several decades in

time.

Here, we exemplified the consequences of the interplay

between hydrodynamic memory and viscoelastic properties of

the medium for the case of a Maxwell fluid including the back-

ground viscosity of the solvent. First, we observed that the same

long-time anomaly as in a Newtonian fluid is present in the

Maxwell fluid, but becomes visible only at times larger than the

Maxwell relaxation time. Second, when ignoring hydrody-

namics, we showed that the effects of a purely elastic contribu-

tion in the dynamic viscosity cannot be distinguished from the

harmonic restoring force of the optical trap. Furthermore, the

coupling to degrees of freedom in the medium results in damping,

even for a purely elastic medium, which arises from the excitation

of shear waves by the particle. Depending on the values of the

background viscosity, this mechanism may constitute the main

source of friction.

The velocity autocorrelation function was identified as

a sensitive quantity encoding the interplay of hydrodynamics and

viscoelasticity. Its characteristic feature is a damped oscillatory

behavior in response to medium elasticity. However, much fewer

zero crossings than expected using the GSE appear. Further-

more, its decay is less steep and extends over several decades in

time. Although analytic progress is possible, an accurate

description was achieved only upon relying on a numerical

Fourier transform.
This journal is ª The Royal Society of Chemistry 2011
The MSD is easier to obtain experimentally, since it is much

less affected by noise. It is sensitive to the Maxwell relaxation

time as an intermediate regime bridging the short-time to the

long-time diffusion. The situation may be different for elastic

moduli displaying essentially local power-law behavior, in which

case the MSD of the bead also is governed by local power laws.13

In the general viscoelastic case, it has been suggested recently to

employ Pad�e approximants in the square-root of the frequency to

extract the complex moduli.26

In the frequency domain, the power spectral density also

encodes information on the viscoelastic behavior of the medium.

Since the PSD involves the real and imaginary part of the

dynamic viscosity, a direct separation of elastic and viscous

contributions is not easily achievable. Yet, for well separated

processes, it appears that the PSD is the quantity that is least

sensitive to the effects of hydrodynamics. For example, the low-

frequency singularity that leads to the long-time anomaly in the

VACF is buried under a smooth background.

In this study, we focused on a scenario where the background

viscosity and the stationary viscosity are known, and the high-

frequency modulus GN and the Maxwell time sM are the quan-

tities to be determined experimentally. We demonstrated that the

resulting curves display a series of features, which allow the

measurement of these parameters accurately. As a consequence,

high-frequency measurements in optical trapping constitute

a sensitive tool to investigate structural relaxation processes in

viscoelastic fluids with relaxation times from microseconds to

hundreds of milliseconds.
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