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cross-coupling with aryl and heteroaryl iodidesw
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The metalation of various SEM-protected functionalized indazoles

with TMP2Zn provides 3-zincated indazoles which undergo

palladium-catalyzed Negishi cross-couplings in good yields.

Indazoles are an important class of N-heterocycles which have

found numerous pharmaceutical applications.1 The direct

lithiation or magnesiation of indazoles at position 3 is difficult

due to a facile fragmentation of these heterocycles leading to

aminonitriles (Scheme 1).2

Alternatively, 3-iodoindazoles undergo a selective I/Cu-exchange

with (PhMe2CCH2)2CuLi
3 leading to stable 3-cuprated indazoles

which can be readily acylated.4 The lithiation,5 magnesiation,6

and zincation7 of isoindazoles (2H-indazoles) have been reported.

Also the direct arylation8 of 2H-indazoles as well as the use of

3-iodoindazoles in Suzuki-9 or Stille10 cross-couplings is known.

However, the direct metalation and transition metal catalyzed

arylation of 1H-indazoles has not been reported. This reaction is

especially interesting due to the potential pharmaceutical activity of

3-arylated indazoles.1,11 Recently, we have described the synthesis

of a kinetically highly active zinc base TMP2Zn�2MgCl2�2LiCl
(1; abbreviated TMP2Zn; TMP= 2,2,6,6-tetramethylpiperidyl)

which combines a high metalation activity with an excellent

functional group tolerance.12,13

Herein, we wish to report that TMP2Zn (1) allows for the first

time a direct metalation of a range of N-protected indazoles of

type 2 under mild conditions (without concomitant ring opening)

leading to bis-indazolylzincs of type 3. Their reaction with

electrophiles (E) has been successfully accomplished, leading

to products of type 4 (Scheme 2).

Zinc reagents (3) react well with various electrophiles like

allylic bromides and acid chlorides, but we have also found

reaction conditions to perform direct arylations via Negishi

cross-couplings14 with various aryl iodides.

Thus, preliminary experiments performed in order to find

the optimal protecting group (PG) of indazole (2) showed that

both a tert-butoxycarbonyl- (Boc; 2a) and a methoxymethyl

protected indazole (MOM; 2b) readily react with TMP2Zn

(1; THF, 25 1C, 2 h) to produce the expected bis(3-indazolyl)zinc

reagents (3a–b). Copper-catalyzed trapping with various electro-

philes such as ethyl 2-(bromomethyl)acrylate15 or acid chlorides

provides the desired 3-functionalized indazoles (4a–c) in 72–89%

yield (entries 1–3 of Table 1). A 3-arylation could be realized for

the first time with the MOM-protected bis-indazolylzinc reagent

(3b). Its reaction with 4-iodobenzonitrile (1.2 equiv) in the

presence of 2% Pd(dba)2 (dba = dibenzylideneacetone) and 4%

tfp (tfp = tri-(2-furyl)phosphine)16 at 50 1C for 8 h leads to the

desired 3-arylated indazole (4d) in 76% yield. Attempts to couple

bromoarenes with other catalytic systems17 were not successful.

Furthermore these Negishi cross-couplings had to be performed

at 50 1C. This elevated temperature proved to be a problem for

the cross-coupling of further functionalized indazoles leading to

partial ring opening byproducts. By switching to SEM-protected

indazoles (SEM= 2-(trimethylsilyl)ethoxymethyl)18 the corres-

ponding zinc reagents undergo Pd-catalyzed cross-couplings in

high yields. Thus, the arylation of SEM-protected indazole (2c)

with 4-iodobenzonitrile gives the cross-coupling product (4e)

in 76% yield (entry 5). Less reactive aryl iodides, such as

4-iodoanisole (50 1C, 12 h), react now very well leading to the

3-arylated indazole (4f) in 81% yield (entry 6). A heterocyclic

iodide, such as 2-iodoisoquinoline, undergoes the cross-coupling

smoothly, affording the desired product (4g) in 62% yield

(entry 7). This cross-coupling reaction could be extended to

functionalized indazoles bearing a chlorine substituent (2d,

entries 8 and 9), a bromine substituent (2e, entries 10 and 11),

a methoxy group (2f, entry 12), as well as sensitive functions

Scheme 1
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Table 1 Direct zincations of protected indazoles and subsequent
reactions with various electrophiles

Entry Indazole Electrophile/conditions Product/Yielda (%)

1

2 PhCOCl

2a -40 to 25 1C, 2 h

3

4

2b

5

6

2c

7

2c

8

Table 1 (continued )

Entry Indazole Electrophile/conditions Product/Yielda (%)

9

2d

10

11

2e

12

13

14

15 PhCOCl

2h -40 to 25 1C, 2 h

16

a Yield of isolated analytically pure product. bA transmetalation with

CuCN�2LiCl (1.1 equiv) was performed. cObtained by a palladium-

catalyzed cross-coupling (2% Pd(dba)2; 4% tfp; 50 1C, 6–24 h).
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like a nitrile (2g, entry 13) and an ester group (2h, entry 14).

The desired 3-arylated indazoles (4h–n) are produced in

45–86% yield. We verified also that these SEM-protected

indazoles undergo acylation reactions. Thus, the ester substituted

indazole (2h) after zincation with TMP2Zn (1) and transmetalation

with CuCN�2LiCl19 reacts with benzoyl chloride leading to the

3-benzoylated indazole (4o) in 77% yield (entry 15).

We have also found that the SEM protected 2H-indazole

(2i) was metalated with TMP2Zn (1) under similar conditions

(25 1C, 2 h) leading after copper-catalyzed acylation with

thiophene-2-carbonyl chloride to the desired ketoindazole

(4p) in 81% yield (entry 16).20

In summary we have reported a simple, mild and efficient

method for the metalation of 1H-indazoles at position 3 with

TMP2Zn (1). The resulting indazolylzincs could be arylated via

Negishi cross-couplings with various aryl iodides. Applications

towards the synthesis of biologically active molecules are

currently being investigated in our laboratories.
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