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Abstract

Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include
regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper,
we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the
interval (0,1). Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach
to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an
alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta
regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly
efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible
nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and
non-binomial variance structures.
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Introduction

The analysis of percentage data is a common issue in

quantitative research. Percentage data arise in many scientific

fields, for example in ecology [1–4], in econometrics [5,6], and in

medical research [7,8]. A recent survey conducted by Warton &

Hui [2] even found that nearly one third of papers published in

Ecology in 2008/09 dealt with the analysis of percentage data.

From a statistical perspective, the analysis of percentage data is

a challenging problem. This problem primarily concerns the

development of regression models for percentage outcomes, which

may be biased and inefficient if the specific nature of percentage

outcomes is not taken into account. Although it would be

convenient to use percentage responses as outcome variables in

ordinary least squares (OLS) regression, this approach is

problematic because OLS regression does not account for the

fact that percentages are bounded by the interval c [9]. Hence, in

order to avoid biased estimators and hypothesis tests, regression

techniques that are tailored to the analysis of percentage outcomes

are needed.

In the literature, various alternative methods to model

percentage data have been proposed. A well-known strategy is

to transform the percentage outcome Y and to carry out OLS

regression using the transformed response values. Typical exam-

ples of transformations include the arcsine square root transfor-

mation (to stabilize the variance of Y , see [2]) and the logit

transformation log (Y=(1{Y )) (to map the interval (0,1) to the

real line). While transformations followed by OLS regression are

popular among analysts, their use is currently being challenged

[2]. This is because (a) the assumptions of OLS regression are

often not met despite the transformation of the data, and because

(b) a reasonable interpretation of estimation results is only possible

on the transformed scale but not on the original percentage scale

[10].

An alternative approach for the analysis of percentage outcomes

is to use regression models that are based on the binomial

distribution [2,11]. These models are suitable if the outcome is of

the form ‘‘x out of N’’ (with Y : ~x=N). Binomial models are,

however, inapplicable in situations where the raw numbers x and

N are not available. In addition, there are numerous applications

where percentage outcomes are non-binomial (e.g., in ecological

research, where fractions of communities and ecosystem measures

are often of interest).

To overcome the aforementioned problems and limitations, we

consider beta regression [6], which is an alternative to variable

transformations and binomial models. In beta regression, the

response variable is assumed to follow a beta distribution on the

interval (0,1). Because the beta distribution has a highly flexible

shape, it is suitable to represent arbitrary outcome variables

measured on the percentage scale [10]. Consequently, beta

regression is appropriate for analyzing both binomial and non-

binomial data. Moreover, the results of a beta regression model

have essentially the same interpretation as logistic regression.

Estimates of the model parameters can conveniently be obtained

using maximum likelihood estimation [6].

In the statistical literature, beta regression has been established

as a powerful technique to model percentages and proportions

[10]. Also, the method has been used in a variety of research fields

[3,8,12]. There are applications, however, where classical beta

regression methodology still has a number of limitations:

1. Scientific databases often involve large numbers of potential

predictor variables that could be included in a regression model.

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e61623

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Access LMU

https://core.ac.uk/display/12175667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Consequently, if maximum likelihood estimation is used to fit a

beta regression model, the model may become too complex and

may thus overfit the data. This usually leads to a large variance

and to a high uncertainty about the predictor-response relation-

ships. As a consequence, techniques for variable selection in beta

regression models are needed.

2. Statistical models often suffer from multicollinearity problems,

meaning that predictor variables are highly correlated. Also,

observations of the response variable may be affected by spatial

correlation, which is, for example, a common problem in ecology

[13,14]. To date, these issues have not been incorporated into beta

regression methodology.

3. In many applications, predictor-response relationships are

nonlinear in nature [15,16]. This means that the linear predictor

XT b of the classical beta regression model needs to be replaced by

a more flexible function that allows for an appropriate quantifi-

cation of nonlinear predictor effects. Although Simas et al. [17]

have recently suggested an approach to incorporate nonlinear

effects into beta regression models, this approach requires the

functional form of the predictor-response relationships (e.g.,

quadratic or exponential) to be specified in advance. In cases

where the functional forms of predictor effects are unknown, a

more flexible approach based on smooth nonlinear effects is

desirable.

4. Percentage outcomes that are based on the binomial model

Y~x=N are often overdispersed, meaning that they show a larger

variability than expected by the binomial distribution. Classical

beta regression models conveniently account for overdispersion by

including a precision parameter w to adjust the conditional

variance of the percentage outcome (see the next section for

Figure 1. Probability density functions for beta distributions. Probability density functions for beta distributions with m~0:5 (left) and
m~0:25 (right).
doi:10.1371/journal.pone.0061623.g001

Figure 2. Distribution of lakes. Distribution of lakes that were sampled for the 2007 U.S. National Lakes Assessment.
doi:10.1371/journal.pone.0061623.g002
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details). On the other hand, it is often observed that overdispersion

depends on the values of one or more predictor variables [17]. In

the context of a beta regression model, this implies that w is not

constant but needs to be regressed to the predictor variables. This

issue makes variable selection even more complicated because

analysts need to identify the predictor variables that affect w.

The aim of this paper is to extend the classical framework and to

develop a statistical methodology for beta regression that addresses

the aforementioned issues. To this purpose, we develop an

estimation technique called boosted beta regression. Following the

approach by Ferrari & Cribari-Neto [6], we use the beta

regression framework to account for the fact that responses are

bounded by (0,1). To avoid overfitting the data, however, we do

not use classical maximum likelihood estimation but focus on a

recently developed algorithm called gamboostLSS [18]. Gam-

boostLSS is a boosting method to fit generalized additive models

for Location, Scale and Shape (GAMLSS, [19]). The GAMLSS

class includes beta regression as a special case and constitutes a

flexible class of regression models that allow for modeling multiple

parameters of the response distribution (not only the conditional

mean of Y as in classical regression). The gamboostLSS technique

has a built-in mechanism for variable selection, so that the method

can be conveniently used to address the selection of predictor

variables in beta regression models. Specifically, this approach

avoids the use of heuristic variable selection techniques that are

often biased and unstable [20,21]. Because gamboostLSS is based

on the gradient boosting framework [22,23], boosted beta

regression additionally results in a prediction-optimized model

that is suitable for estimating future or unsurveyed response values.

Still, the method preserves the structure of the classical beta

regression model and thus provides a meaningful interpretation of

predictor-response relationships. Furthermore, by using spline

modeling, boosted beta regression allows for incorporating

nonlinear predictor-response relationships and spatial information

even if the functional forms of the relationships are unknown (cf.

[15,24]).

To illustrate our method, we use data collected during the 2007

U.S.A. National Lakes Assessment (NLA) Survey [25]. The 2007

U.S.A. NLA is an example of ecological research that often

involves the analysis of percentages: the assessment of aquatic

biological health. In these studies, percentages of the biological

community, often those deemed intolerant or tolerant to stressors,

are used as indicators of stream or lake biological condition [26]

and are often related to predictor variables such as water

chemistry (temperature, dissolved oxygen, pH) and geographical

information (site elevation, size of basin area, ecoregion). As

response variable for our comparative analysis of modeling

approaches we focus on the percentage of benthic macroinverte-

brate taxa collected that are in the order Ephemeroptera (mayflies,

here denoted as EPHEptax). Ephemeroptera are taxa sensitive to

anthropogenic disturbance and are therefore often used to

evaluate stream health [27,28]. As will be demonstrated in the

results section of the paper, analyzing EPHEptax suggests that

beta regression outperforms other approaches in terms of both

model fit and prediction accuracy. Hence, by applying boosted

beta regression to the 2007 NLA data, this paper builds directly on

Figure 3. Normal quantile-quantile plots. Normal quantile-quantile plots of arcsine-square-root-transformed (‘‘arcsine’’), logit-transformed
(‘‘logit’’) and untransformed (‘‘raw lm’’) EPHEptax values (panels (a) - (c)). Panel (d) shows a beta quantile-quantile plot using the untransformed
EPHEptax values. It is seen that EPHEptax is best approximated by a beta distributed random variable.
doi:10.1371/journal.pone.0061623.g003
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the modeling approaches of Warton & Hui [2], who argued that

the arcsine square root transformation should no longer be applied

to analyze percentage outcomes in ecology.

The rest of the paper is organized as follows: In the next section,

boosted beta regression is presented in detail, along with a

description of the classical beta regression and gamboostLSS

approaches. Additionally, we briefly review the arcsine square root

and logit transformation approaches and discuss their limitations

when used for modeling percentage outcomes. The characteristics

of boosted beta regression are demonstrated in the results section

of the paper, where the new method is benchmarked against a

number of alternative regression models. Using the NLA data, we

further show how to apply the new method to derive an easy-to-

interpret regression model for the EPHEptax response. A

summary and discussion of the main findings of the paper is

given in the final section of the paper. Technical details on boosted

beta regression are presented in the Supporting Information of the

paper.

Methods

Transformation Models for Percentage Outcomes
In this subsection, we briefly review transformation models for

percentage outcomes. This model class comprises both classical

OLS regression and OLS regression with arcsine-square-root-

transformed response. Transformation models are based on the

model equation

h(Y )~XT bzE, ð1Þ

where Y[½0,1� denotes the percentage outcome, X~(X1, . . . ,Xp)

is a vector of predictor variables, b is an unknown vector of

coefficients, E is a normally distributed noise variable with zero

mean and constant variance, and h is the transformation function.

Typical examples of h include the identity function h(Y )~Y

(leading to the classical OLS regression model), the arcsine square

root transformation, and the logit transformation

h(Y )~ log (Y=(1{Y )). Estimates of b are obtained by applying

OLS regression to the transformed data.

As noted in [9], two problems arise if classical OLS regression is

used to fit model (1): First, because percentages are bounded by

the interval ½0,1� while the predictor XT b is not, the expectation of

Y conditional on X must be nonlinear. This is contradictory to the

classical OLS assumption E(Y DX)~XT b with E(Y DX) being linear

in X. Second, the variance of a percentage response is not constant

but will approach zero near the boundary points 0 and 1

(‘‘heteroscedasticity’’). This is contradictory to the homoscedastic-

ity assumption made in classical OLS regression (where Var(Y DX)
is assumed to be constant for all X). Violations of the linearity and

homocedasticity assumptions result in biased OLS estimates and

hypothesis tests.

To overcome the problems with classical OLS regression, it is a

common strategy to transform Y using the arcsine square root

function and to carry out OLS regression using the transformed

data. Applying this strategy can be justified theoretically by the fact

that the arcsine square root transformation leads to asymptotic

homoscedasticity in situations where Y is binomial [2]. It has been

argued, however, that the approximation is often poor, especially

near the boundary values 0 and 1. Also, there is no specific reason

for applying the arcsine square root transformation in situations

where the response is non-binomial. In the latter cases, it has been

Figure 4. Boxplots of R2 values. Analysis of the NLA Data. The figure contains boxplots of R2 values obtained from the 100 bootstrap samples
(left panel) and from the 100 sets of out-of-bootstrap observations (right panel).
doi:10.1371/journal.pone.0061623.g004
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suggested to fit an OLS regression model with logit-transformed

response variable [2].

Regardless of the choice of the transformation function, a major

problem of transformation models remains: Unless the identity

transformation h(Y )~Y is used, transformation models cannot be

interpreted in terms of the conditional mean E(Y DX)~XT b (as we

would expect from any unbiased regression model). Instead,

interpretation is only possible in terms of the transformed mean

E(h(Y )DX)~XT b. This makes an appropriate quantification of

predictor-response relationships difficult [10].

Beta Regression for Percentage Outcomes
To overcome the problems and limitations discussed in the

previous subsection, Ferrari & Cribari-Neto [6] introduced beta

regression for proportions and percentage outcomes. In this

subsection, we outline the main characteristics of the classical beta

regression method.

In the following, we assume that Y[(0,1) follows a beta

distribution with density

Q(y,m,w)~
C(w)

C(mw)C((1{m)w)
ymw{1 (1{y)(1{m)w{1 , y[(0,1) , ð2Þ

where m[(0,1) is the mean of Y and ww0 is a precision parameter.

The variance of Y is given by m(1{m)=(1zw) (see [6]). Hence the

variance of a beta-distributed random variable is a scaled version

of the binomial variance m(1{m). The precision parameter w
generally allows for a wide range of shapes for the density (2) (see

Figure 1). Note that (2) assumes y to be strictly larger than 0 and

strictly smaller than 1. In applications where Y may assume the

boundary values 0 and 1, it is common practice to replace y by

(y:(n{1)z0:5)=n, where n is the sample size [10,29].

To relate the conditional mean mx : ~E(Y DX) to the predictor

variables, the classical beta regression model assumes a predictor-

response relationship given by

g(mx)~XT b , ð3Þ

where g is an invertible link function. Estimation of b is

accomplished using maximum likelihood (ML) estimation, which

is consistent and asymptotically efficient for b [6]. Although, in

principle, many types of link functions are possible, we focus on

the logit transformation g(mx)~ log (mx=(1{mx)) in this paper.

Apart from being a suitable link function for proportions [30], the

logit link has the nice property that it is interpretable in terms of

the odds ratio. Consider, for example, the EPHEptax response

discussed in the introduction and suppose that the i-th predictor

variable Xi of a beta regression model for EPHEptax is increased

by one unit. Then the odds of the proportion of the assemblage

richness as Ephemeroptera increases by the factor exp (bi), where

bi is the regression coefficient for Xi [6]. This interpretation is

exactly the same as the classical interpretation of a logistic

regression model.

In contrast to logistic regression, however, the conditional

variance s2
x : ~Var(Y DX) of a beta regression model is not

restricted to mx(1{mx) but is of the more flexible form

Figure 5. Number of selected predictor variables. Analysis of the NLA Data. The two panels contain the number of selected predictor variables
(averaged over 100 bootstrap samples) for various modeling approaches. Dark grey bars represent linear effects, light grey bars represent non-linear
effects. In case of beta regression with fixed precision parameter (‘‘beta fix’’), the precision model contains only one predictor (namely, the intercept).
doi:10.1371/journal.pone.0061623.g005
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mx(1{mx)=(1zw). Consequently, the model allows for variances

that are larger than those expected by the binomial model

(‘‘overdispersion’’). Also note that, in contrast to logistic regression,

beta regression does not depend on the binomial counts x and N
(as defined in the introduction). The method is therefore suitable

for both binomial and non-binomial percentage outcomes.

In cases where overdispersion depends on the values of the

predictor variables, it is further possible to extend the beta

regression model by regressing the precision parameter w:w(X) to

the predictor variables X. This is accomplished by assuming the

relationship

~gg(w(X))~XT c ð4Þ

with link function ~gg and parameter vector c (‘‘variable dispersion

beta regression’’, [17]). A common choice for ~gg is the log link

~gg(w(X))~ log (w(X)), which will also be considered in this paper.

Estimates of c are again obtained by using maximum likelihood

estimation [17]. Efficient implementations of this ‘‘classical’’ beta

regression method are provided by the R add-on packages

betareg [10] and gamlss [31].

GamboostLSS
Following its introduction by Ferrari & Cribari-Neto [6], beta

regression has been used to model percentage outcomes in various

fields of research. However, the classical version of the method still

has several shortcomings. For example, scientific databases often

contain a large number of possible predictor variables (relative to

the sample size). It is well known that classical maximum

likelihood estimators suffer from large variances in this case. This

problem leads to overfitting and therefore to a decreased

prediction accuracy of the classical beta regression model. To

avoid overfitting (and also to improve the interpretability of the

model), it is desirable to carry out variable selection, i.e., to include

only the most ‘‘important’’ predictors in the model. Although there

exist many ‘‘classical’’ techniques for variable selection (e.g.,

stepwise variable selection based on information criteria or

hypothesis tests), these methods are known to be unreliable and

require the model to be fitted multiple times [21].

To address the issue of variable selection in beta regression

models, we propose a new fitting method called boosted beta

regression. Boosted beta regression is based on the gamboostLSS

algorithm, which has been introduced in [18] as a boosting

method for generalized additive models for location, scale and

shape (GAMLSS, [19]). Because beta regression is a special case of

GAMLSS, the theory presented in [18] applies: Similar to ML

estimation, gamboostLSS uses the log-likelihood function of Y as

optimization criterion for deriving a regression model. In contrast

to the original beta regression method proposed in [6], however,

gamboostLSS is not based on (quasi-)Newton algorithms but on

the gradient boosting framework [23,32] (hence the name

‘‘boosted’’ beta regression). Broadly speaking, gamboostLSS uses

gradient descent techniques to optimize arbitrary differentiable

Figure 6. Function estimates for the proportion of developed
land in catchment. Analysis of the NLA Data. The five panels contain
the function estimates for the proportion of developed land in
catchment (computed from 100 bootstrap samples). In case of beta
regression, estimates present the effects of the proportion of developed
land in catchment on the mean parameter m. Black lines correspond to
the mean and the 0.05 and 0.95 quantiles of the function estimates. For
reasons of interpretability, the range of the x-axes was restricted to the
lower 95% of the sample values.
doi:10.1371/journal.pone.0061623.g006
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objective functions (here, the beta log-likelihood) in an iterative

fashion.

The most important feature of gamboostLSS is its ability to

carry out variable selection during the fitting process. This is

accomplished by (a) assessing the individual fits of each predictor

variable, and by (b) updating only the coefficient of the best-fitting

predictor variable in each iteration. Also, when using gam-

boostLSS to fit a beta regression model, variable selection is

carried out successively for both the mean model (3) and the

precision model (4). After a finite number of iterations, the

algorithm is stopped, so that the final model only contains the

subset of best-fit predictor variables. A schematic overview of

boosted beta regression is as follows:

1. Set the initial values for b and c to zero and start iterating.

2. In each iteration….

(a)…keep the current value of the estimate of c fixed and

consider the mean model (3) only. Select the predictor variable X�i
leading to the best improvement of the beta log-likelihood and

update the estimate of the coefficient b�i corresponding to X�i .

(b)…keep the current value of the estimate of b fixed and

consider the precision model (4) only. Select the predictor variable

X�j leading to the best improvement of the beta log-likelihood and

update the estimate of the coefficient c�j corresponding to X�j .

3. Repeat steps (a) and (b) until the stopping iteration of the

algorithm (denoted by mstop) is reached.

Analogously to the original gamboostLSS algorithm described

in [18], boosted beta regression uses the gradient of the beta log-

likelihood to compute the estimates of b�i and c�j in steps (a) and (b).

A technical description of boosted beta regression is given in the

Supporting Information.

The variable selection mechanism in (a) and (b) is fundamentally

different from the Newton-type method proposed in [6], which

updates the whole vectors b and c in each iteration. Specifically, the

initial model in step 1 (with b~c~0) does not depend on any of

the predictor variables. As a consequence, only the predictor

variables selected in (a) and (b) will contribute to the final model fit.

Because variable selection and parameter estimation are carried

out simultaneously in step 2 (cf. [18]), boosted beta regression

results in a variable selection process that is more stable than

classical methods such as stepwise selection.

An important question is how to choose the stopping iteration of

gamboostLSS. Usually, the stopping iteration of a boosting

algorithm is chosen such that prediction accuracy of the model

becomes highest [23]. For gamboostLSS, this is accomplished by

using cross-validation techniques [18]. Note that it is possible to

increase flexiblity of the algorithm by using two different stopping

iterations for the mean and the precision models (see [32] for

details). Because the benefits of a two-dimensional stopping

strategy are usually small [18], we will not consider this method

in our numerical studies.

Nonlinear Predictor-Response Relationships
An attractive feature of gradient boosting (and therefore also of

boosted beta regression) is that the linear predictors XT b and XT c

Figure 7. Function estimates for the site elevation. Analysis of
the NLA Data. The five panels contain the function estimates for the site
elevation (computed from 100 bootstrap samples). In case of beta
regression, estimates present the effects of the site elevation on the
mean parameter m. Black lines correspond to the mean and the 0.05 and
0.95 quantiles of the function estimates. For reasons of interpretability,
the range of the x-axes was restricted to the lower 95% of the sample
values.
doi:10.1371/journal.pone.0061623.g007
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can be easily replaced by more flexible predictors of the form.

g(E(Y DX))~f1(X1)z . . . zfp(Xp) ~ : gm , ð5Þ

~gg(w(X))~~ff1(X1)z . . . z~ffp(Xp) ~ : gw , ð6Þ

where fi and ~ffj , i,j~1, . . . ,p, are arbitrary differentiable nonlinear

functions. Analogously to the well-established generalized additive

modeling and GAMLSS approaches [19,33,34], equations (5) and

(6) extend classical beta regression by incorporating nonlinear

predictor-response relationships. Note that the forms of the

functions fi and ~ffj are determined automatically by gamboostLSS,

where estimation of fi and ~ffj is accomplished using penalized

regression splines (‘‘P-splines’’, [35]). This approach is a major

difference to the method by Simas et al. [17], who considered

parametric nonlinear functions with pre-specified functional

forms. P-spline estimates allow for easy inspection and easy

visualization of predictor effects. In addition, by decomposing P-

spline estimators into a linear part and a nonlinear part, it is

possible to automatically select among linear and smooth

nonlinear modeling alternatives for the same predictor variables

[24]. Consequently, if competing modeling alternatives are used as

base-learners in boosted beta regression, the model will typically

contain a subset of predictors with nonlinear predictor-response

relationships and another subset with smooth nonlinear relation-

ships. Technical details on P-spline base-learners are given in [24]

and [36].

Concerning the analysis of the NLA data, we proceed as follows:

The functions fi and ~ffj corresponding to continuous predictors are

modeled using one-dimensional P-spline estimators [35,36].

Moreover, we follow the strategy by Kneib et al. [24] and

decompose P-spline base-learners into a set of linear base-learners

and another set of smooth nonlinear base-learners. This strategy

results, for example, in linear effects of the mean site depth and in

nonlinear effects of the total nitrogen concentration on EPHEptax

(see the next section for details). Categorical predictors (such as

Köppen-Geiger climate regions) are modeled using dummy coded

binary variables. Hence the resulting estimates for categorical

predictors have the same interpretation as in classical linear

models.

To account for spatial dependency between neighboring lakes,

we specify smooth surface functions quantifying spatial predictor

effects. These functions depend on the coordinates of the site

locations and are added to the other functions specified in (5) and

(6) (cf. [15,24]). To estimate the shapes of the surface functions, we

use P-spline tensor product surfaces depending on the NAD83

coordinates of the lakes. Thus, denoting the longitude and latitude

coordinates by XLon and XLat, respectively, the spatial effects

become smooth surfaces fsp,mean(XLon,XLat) and
~ffsp,precision(XLon,XLat) depending on the bivariate ‘‘predictor’’

variable (XLon,XLat). Note that fsp,mean and ~ffsp,precision can be

conveniently interpreted as realizations of a spatially correlated

Figure 8. Function estimates for the chlorophyll- a concentra-
tion. Analysis of the NLA Data. The five panels contain the function
estimates for the chlorophyll- a concentration (computed from 100
bootstrap samples). In case of beta regression, estimates present the
effects of the chlorophyll- a concentration on the mean parameter m.
Black lines correspond to the mean and the 0.05 and 0.95 quantiles of
the function estimates. For reasons of interpretability, the range of the
x-axes was restricted to the lower 95% of the sample values.
doi:10.1371/journal.pone.0061623.g008
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stochastic process [15]. Again, we refer to Kneib et al. [24] for

technical details.

Results

In the following we will use boosted beta regression to model

biological condition in lakes in the conterminous U.S. The

outcome considered in our study is the percentage of benthic

macroinvertebrate taxa in the order Ephemeroptera (EPHEptax).

In addition to analyzing boosted beta regression, we compare the

new method to conventional approaches such as OLS regression

with transformed response. The first subsection starts with a

description of the study design and the NLA database. Statistical

analysis results are presented in the second subsection.

The NLA Database
Statistical analysis is based on data from the 2007 U.S. National

Lakes Assessment program (NLA), during which 1,157 lakes were

sampled in the summer from across the conterminous U.S. (see

Figure 2).

Littoral zone sampling consisted of ten randomly selected

quadrates around each lake littoral zone that were combined into

a single sample. In each sample, benthic macroinvertebrates were

collected and physical habitat assessed. Habitat condition was

measured by visual estimates of riparian vegetation condition,

shoreline substrate (at the water’s edge), fish cover, aquatic

macrophytes, and littoral bottom substrate in the samples. In

addition, human disturbance or presence was estimated in each

sample by identifying human activities (e.g., docks, roads,

buildings, etc.) in the water or in adjacent riparian areas. Sampling

at the deepest point of the lake (index site) included all other

biological and chemical measures. Water column profiles of

temperature, dissolved oxygen, conductivity, and pH were taken

using a multi-probe sonde.

The NLA database also contains estimates of lake drainage

conditions (e.g., land use/land cover, precipitation, elevation). To

provide estimates of lake connectivity and colonization sources, we

calculated the number and total surface areal coverage of other

lakes (from NHDplus, [37]) within a 1km and 20km radius of the

sampling location. We further calculated geographic distance to

and surface area of the nearest lake and nearest large lake (i.e.,

w1km2 surface area) within the NHDplus data set. Finally, we

classified sites into major drainage basin-climate regions by

intersecting the NHDplus HUC2 to which a site resided and the

main climates of the Köppen-Geiger Climate Classification [38].

This resulted in 37 basin-climate regions. Four regions had too few

sites (v 6 sites) and were combined into nearby regions leaving a

total of 33 drainage basin-climate regions.

Statistical analysis was based on a sample of 994 lakes that

contained no missing values in any of the predictor variables.

Altogether, 78 predictor variables were used for statistical analysis.

Predictors with a highly right-skewed distribution were log

transformed before fitting models for EPHEptax. The full list of

predictor variables is given in the Supporting Information.

Figure 9. Function estimates for the total nitrogen concentra-
tion. Analysis of the NLA Data. The five panels contain the function
estimates for the total nitrogen concentration (computed from 100
bootstrap samples). In case of beta regression, estimates present the
effects of the total nitrogen concentration on the mean parameter m.
Black lines correspond to the mean and the 0.05 and 0.95 quantiles of
the function estimates. For reasons of interpretability, the range of the
x-axes was restricted to the lower 95% of the sample values.
doi:10.1371/journal.pone.0061623.g009
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Statistical Analysis and Results
In a first step, we used graphical checks to analyze the response

transformations discussed in the methods section of the paper.

Figure 3 presents normal quantile-quantile plots for the arcsine-

transformed, the logit-transformed and for the untransformed

EPHEptax values (panels (a) to (c)). Neither transformation worked

well, as the transformed EPHEptax values clearly do not follow a

normal distribution. In addition, the inclusion of lakes with zero

percentages seemed to be problematic because their values in the

quantile-quantile plots did not match well with EPHEptax values

that were larger than zero (see the horizontal accumulation of

points in panels (a) to (c)). In contrast, EPHEptax was well

approximated by a beta distributed random variable (Figure 3(d)).

This result suggested that boosted beta regression is an adequate

method for modeling EPHEptax.

We next investigated the performance of boosted beta

regression by comparing the new method to classical response

transformation models. In a first step, we generated 100 random

samples of size n from the NLA data by drawing observations with

replacement (bootstrapping, [39]). The 100 bootstrap samples can

be interpreted as independent random samples from the empirical

distribution of (Y ,X) and can therefore be used to compute

empirical confidence intervals for effect estimates and performance

measures. Next, boosted beta regression was applied to each of the

100 bootstrap samples. This strategy resulted in 100 model fits for

EPHEptax. To compare boosted beta regression to other

modeling approaches, we additionally fitted an arcsine square

root transformed model, a logit transformed model, and an OLS

model without response transformation to the same 100 bootstrap

samples. In addition, we fitted a beta regression model with fixed

precision parameter w. To allow for a fair comparison of the

modeling approaches, we applied the same gradient boosting

strategy for the latter models as the one used for boosted beta

regression. Specifically, we allowed for the same nonlinear

predictor-response relationships as those discussed in the methods

section of the paper. The stopping iterations for the models were

determined by applying 25-fold bootstrap cross-validation [40] to

the 100 samples. All computations were carried out using the

mboost and gamboostLSS packages of the statistical software R

[41,42].

Analysis of Model Performance
To evaluate the overall performance of the modeling approach-

es, we calculated the generalized R2 criterion [43] from the 100

model fits. The R2 criterion relates the log-likelihood of a fitted

model to the corresponding log-likelihood of a ‘‘null’’ model

containing no predictor variables. It can therefore be used as a

goodness-of-fit criterion that measures the improvement of the

fitted model over the null model. Boosted beta regression

explained the data best, while the transformation models

performed worse than beta regression on average (Figure 4, left

panel). As expected, OLS regression was the worst model in terms

of goodness-of-fit. Also, beta regression with a fixed precision

Figure 10. Function estimates for mean site depth. Analysis of
the NLA Data. The five panels contain the function estimates for the
mean depth at the sites (computed from 100 bootstrap samples). In
case of beta regression, estimates present the effects of the depth on
the mean parameter m. Black lines correspond to the mean and the 0.05
and 0.95 quantiles of the function estimates. For reasons of
interpretability, the range of the x-axes was restricted to the lower
95% of the sample values.
doi:10.1371/journal.pone.0061623.g010
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Figure 11. Effects of basin-climate regions. Estimated effects of basin-climate regions on EPHEptax, as obtained from applying boosted beta
regression to 100 bootstrap samples of the NLA data. The figure presents median effect estimates for the mean parameter m computed from the 100
model fits (LM = Lower Missouri).
doi:10.1371/journal.pone.0061623.g011

Figure 12. Estimated spatial surface function. Estimated spatial surface function fsp,mean(XLon,XLat) for the mean parameter m in boosted beta
regression. The figure presents the median spatial surface obtained from the 100 bootstrap samples.
doi:10.1371/journal.pone.0061623.g012

Boosted Beta Regression

PLOS ONE | www.plosone.org 11 April 2013 | Volume 8 | Issue 4 | e61623



parameter w resulted in a worse model fit than boosted beta

regression with a flexible precision parameter.

In addition to evaluating the goodness-of-fit of the models, we

investigated the predictive performance of the modeling approaches.

This issue is of interest in many ecological applications, where

regression models are often used to obtain predictions of future or

unseen response values. In case of the NLA data, for example, a

boosted beta regression model could be used to predict the

EPHEptax values of unsurveyed lakes based on values of the

predictor variables measured at the site locations. Note that the R2

values presented in the left panel of Figure 4 cannot be used to

evaluate the predictive performance of the models, because the

same data were used to fit the models and to compute the R2

values. The latter values would therefore be too optimistic for

measuring prediction accuracy.

To obtain unbiased estimates of prediction accuracy, we used

the models obtained from the 100 bootstrap samples and

computed predictions for EPHEptax from the 100 respective sets

of out-of-bootstrap observations. In other words, predictions were

computed from those observations that were not part of the

bootstrap samples and that were therefore not involved in model

fitting (bootstrap cross-validation, [40]). The predictions and the

true EPHEptax values of the 100 out-of-bootstrap data sets were

then used to compute 100 predictive R2 values.

The cross-validated R2 values suggest that boosted beta

regression leads to the highest predictive R2 values among the

modeling approaches (Figure 4, right panel). Wilcoxon signed rank

tests on the differences in R2 values between boosted beta

regression and the other approaches resulted in highly significant

results (Bonferroni-adjusted p-values v0:001). Moreover, predic-

tive performance increased when the precision parameter w of a

beta regression model was regressed to the predictor variables.

Summarizing the results presented in Figure 4, boosted beta

regression outperformed the other modeling approaches for

EPHEptax in terms of both goodness-of-fit and prediction

accuracy.

Selection Rates of Modeling Approaches
Each modeling approach incorporated approximately 15 linear

predictor effects and approximately 10 nonlinear predictor effects

on average (Figure 5). Moreover, the percentage of non-linear

predictor effects was highest on average in the boosted beta

regression model. This result further demonstrated the flexibility of

the proposed algorithm.

Analysis of Predictor-Response Relationships
In the next step, we analyzed the estimated effects sizes and the

functional forms of the predictor-response relationships. First

consider the predictor-response relationships of the continuous

predictor variables. By way of example, we present the estimates of

the following predictors: proportion of developed land in

catchment (Figure 6), site elevation (in m, Figure 7), chlorophyll-

a concentration (in mg/L, Figure 8), total nitrogen concentration

(in mg/L, Figure 9), and mean depth at the sites (in m, Figure 10).

Figures 6, 7, 8, 9, 10 illustrate that all five modeling approaches

resulted in very similar estimates of predictor-response relation-

ships. For example, all analyses indicated a negative non-linear

relationship between EPHEptax and the proportion of developed

land in a basin (Figure 6). All models showed a rapid decrease with

EPHEptax up to about 3%, after which the decreasing trend

lessened. For example, it is seen from the upper panel of Figure 6

(boosted beta regression model), that the average effect of

EPHEptax decreased by approximately 0:05 if the proportion of

developed land in a basin increased from 0% to 3%. Consequent-

Figure 13. Effect of chlorophyll- a concentration on the precision parameter. Analysis of the NLA Data. The figure contains the estimated
effect of the chlorophyll- a concentration on the logarithm of the precision parameter w (computed from 100 bootstrap samples). Black lines
correspond to the mean and the 0.05 and 0.95 quantiles of the function estimates. For reasons of interpretability, the range of the x-axis was
restricted to the lower 95% of the sample values.
doi:10.1371/journal.pone.0061623.g013
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ly, the odds of the proportion of the assemblage as Ephemeroptera

decreased by the factor exp ({0:05) (&5%) in this range.

Although the confidence bands in Figure 6 encompass the zero

line (and can therefore not be considered ‘‘statistically significant’’),

the negative pattern associated with the amount of developed land

in a basin was observed for the majority of the 100 bootstrap

samples. Such sensitivity to developed land (i.e., urbanization) has

been shown for benthic macroinvertebrates in streams (e.g., [44])

with recent thresholds reported as low as 1.5% to 3.0% [16]. Thus,

Ephemeroptera in lakes appear to be as sensitive to urban

development as analogous taxa in streams.

The elevation of the sites had an inverted U-shaped effect on

EPHEptax (Figure 7), where, for example, low values ranging from

0m to 800m resulted in EPHEptax values that were below

average. This ‘‘humped-shaped’’ pattern between diversity and

altitude has been previously shown for littoral benthic macroin-

vertebrates (e.g., [45]) and is likely a result of numerous factors that

co-vary with altitude (e.g., temperate) or that affect dispersal

[46,47].

Figure 8 suggests that the effect of the chlorophyll- a

concentration on EPHEptax is distinctly nonlinear, with large

values leading to below-average values of EPHEptax. Chlorophyll-

a is often used to indicate impairment of aquatic systems with high

levels indicating eutrophication (e.g., [25]). As such, species

richness and diversity of littoral benthic macroinvertebrates

declines with chloropyll- a [48]. Because Ephemeroptera are

sensitive taxa, they may be disproportionately affected by higher

chlorophyll- a levels. Additionally, high levels of Chlorophyll- a

reduces mayfly secondary production [49], which would possibly

further reduce their presence.

The total nitrogen concentration had a pronounced negative

effect on EPHEptax (Figure 9). Total nitrogen is an important

environmental factor related to littoral benthic macroinvertebrate

community structure [50] and negatively relates to macroinver-

tebrate diversity [48]. Moreover, loss of Ephemeroptera has been

reported in lakes where total nitrogen surpasses a threshold [51].

Average depth at a sampling station had a negative linear effect

on EPHEptax (Figure 10). Littoral benthic macroinvertebrates

often show a marked effect of depth (e.g., [52,53]). The negative

pattern in our study suggests Ephemeroptera prefer shallower

habitats in lakes. Note that the variability of the estimates was large

for all analyzed models, implying that the uncertainty about the

association of the average depth at a sampling station with

EPHEptax was large as well.

Next consider the effects of the basin-climate regions (obtained

from intersecting the NHDplus HUC2 to which lake sites resided

with the main climates of the Köppen-Geiger Climate Classifica-

tion). Figure 11 shows that basin-climate regions have a relatively

strong effect on EPHEptax. Consider, for example, the Lower

Missouri/arid, Lower Missouri/snow and Lower Missouri/warm

temperate regions (i.e., the Lower Missouri watershed including

the Northern Plains and Temperate Plains). The average

coefficient estimates of these regions were 0.20, 0.17, and 0.18,

respectively, implying that the odds of the proportion of the

assemblage as Ephemeroptera increased by the factors

exp (0:2)&1:22, exp (0:17)&1:19 and exp (0:18)&1:20, respec-

tively. Conversely, the dark regions in Figure 11 correspond to

climate-basin regions with negative effect estimates. For example,

in the South Atlantic-Gulf Region/warm temperate region (effect

estimate = 20.20) and the Pacific Northwest Region/warm

temperate region (effect estimate = 20.23), the odds of the

proportion of the assemblage as Ephemeroptera decreased by

the factors exp ({0:2)&0:82 and exp ({0:23)&0:79, respective-

ly. Comparing the effects of the basin-climate regions (Figure 11)

to the magnitude of the predictor-response relationships shown in

Figures 6, 7, 8, 9, 10, it is seen that basin-climate regions are by far

the most important predictors for EPHEptax. Geospatial regions,

based on environmentally similar characteristics (e.g., ecoregions),

have had mixed success in accounting for variation in benthic

macroinvertebrates (see, e.g., [54,55]). Our results, even though

we defined regions more broadly than ecoregions, suggest an

importance of regional differences in the Ephemeropteran portion

of lentic benthic macroinvertebrate assemblages.

Finally consider the estimated spatial surface function

fsp,mean(XLon,XLat) for the mean parameter m of the boosted beta

regression model. Figure 12 suggests that effect estimates are below

average at the Eastern Coast and in the Pacific Northwest region

of the U.S. Conversely, they are above average in the Mid-

Western Region. Because there is little systematic variation in

Figure 12, these results can possibly be explained by boundary

effects that are often observed when using estimators based on P-

spline tensor products. Note that fsp,mean(XLon,XLat) corresponds

to the realization of a residual stochastic process that cannot be

explained by the predictor variables. Alternatively, the variations

in Figure 12 and could be due to unmeasured predictors.

By way of example, we also present the effect of the chlorophyll-

a concentration on the logarithm of the precision parameter w
(Figure 13). Because w is inversely related to the variance of

EPHEptax (which is given by m(1{m)=(1zw)), Figure 13 implies

that very low chlorophyll- a concentration levels tend to increase

the variance of EPHEptax. The variation decreases until levels of

15mg/L are reached. For chlorophyll- a concentration levels larger

than 15mg/L, the variance of EPHEptax increases again.

In summary, the results presented in Figures 6, 7, 8, 9, 10

suggest that all five modeling approaches resulted in similar

functional patterns. On the other hand, the generalized R2 values

presented in Figure 4 clearly suggest that the magnitude of the

predictor effects (and therefore the contribution of each preditor

on EPHEptax) is best captured by boosted beta regression.

Discussion

Linear regression with normally distributed errors is arguably

the most prominent analysis tool in applied statistics. The

popularity of linear regression is based on the fact that random

variations in observed data can often be approximated by a

normal distribution with constant variance. If the response

variable in a regression model is a rate or percentage, however,

the normal approximation is no longer appropriate. For this

reason, and because the analysis of percentages is an important

issue in many fields of research, developing statistically valid

analysis tools for percentage data is of high practical interest.

Several approaches to remedy the problems with linear

regression have been proposed in the literature. The first approach

is to transform the percentage response and to hope that linear

regression with the transformed response will result in (approxi-

mately) normally distributed errors with constant variance. This is,

for example, the rationale of arcsine square root transformation.

As shown in the methods section of the paper, however, response

transformation models may result in poor model fits because the

normal approximation often fails. Based on the results obtained

from the NLA data, we agree with Warton & Hui [2] cautioning

use of the arcsine square root transformation in ecological

research. The second approach to model percentage outcomes is

logistic regression [2]. As demonstrated in [9] and [11], logistic

regression models can be generalized to deal with overdispersed

data and flexible variance structures (e.g., by using beta-binomial

and quasi-likelihood models). Note, however, that logistic regres-
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sion is only appropriate if the response is based on a binomial

distribution (with the raw counts x and N being available).

In this paper, we have proposed boosted beta regression, which is a

flexible alternative to logistic regression and response transforma-

tion models. Because beta regression is a generalization of logit

regression to situations where the dependent variable is a

proportion [29], our modeling approach is appropriate in both

the binomial and the non-binomial case. Moreover, if compared to

classical estimation techniques for beta regression [17], boosted

beta regression has the advantage that nonlinear effects can be

estimated without pre-specifying the functional forms of the

predictor-response relationships. This implies that not only the

mean but also the variance of a beta distributed response variable

can be modeled in a highly flexible way. Specifically, our

numerical results suggest that regressing the precision parameter

of the model on the covariates leads to a notably better model fit

than when the precision parameter is kept constant. In addition to

incorporating nonlinear predictor-response relationships, boosted

beta regression accounts for spatial correlation in both the mean

and the variance structure of the model. Clearly, this issue is

important if observation units have a neighborhood structure and

may therefore influence each other.

A key aspect of boosted beta regression is its ability to carry out

variable selection during the fitting process. This implies that only

a small subset of the available predictor variables is included in the

final model for the percentage response. Variable selection is of

high practical interest in applications where large amounts of

potentially important predictor variables are available. Conse-

quently, one is often interested in determining the most

informative predictor variables and in discarding those predictors

that have a negligible effect on the response. In case of the NLA

data, for example, boosted beta regression selected only 15

informative predictor variables out of the total set of 78 available

predictors.

It is important to note that the variable selection mechanism in

boosted beta regression is fundamentally different from earlier

approaches to selecting predictor variables in statistical regression

models. For example, because beta regression is a member of

GAMLSS model class, one could alternatively fit the model using

maximum likelihood techniques and apply AIC-based methods for

selecting informative predictor variables (as implemented in the R

add-on package gamlss, [31]). This strategy, however, requires

the model to be fitted multiple times. In contrast, our new method

is based on boosting methodology and is therefore able to

incorporate variable selection already into the model fitting

process. Note that the sets of predictor variables selected for the

mean and precision submodels do not have to be identical. For

example, boosted beta regression allows for detecting factors that

only manifest in the variance (but not in the mean) of the response

(cf. [29]).

A challenging problem when modeling percentage outcomes is

the inclusion of the boundary values ‘‘0%’’ and ‘‘100%’’. This is

because the density of a beta distributed random variable is not

defined at the boundary values 0 and 1. In case of the NLA data

quantile-quantile plots suggested that zero percentages could be

well incorporated into boosted beta regression if a small constant

was added to these values (cf. [29]). If this strategy fails, or if the

percentage of zero values is large among the observations of a data

set, it may alternatively be worth fitting an extra model for the zero

observations (‘‘beta inflated regression’’, [56]). Similar to zero-

inflated models for count data [32], this approach could also be

incorporated into boosted beta regression. We plan to address this

issue in a future paper.

Supporting Information

Text S1 This document provides technical details on boosted

beta regression, as well as the full list of predictor variables used for

the analysis of the NLA data.

(PDF)
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