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Abstract

Recruitment of 53BP1 to chromatin flanking double strand breaks (DSBs) requires yH2AX/MDC1/RNF8-dependent
ubiquitination of chromatin and interaction of 53BP1 with histone H4 methylated on lysine 20 (H4K20me). Several histone
methyltransferases have been implicated in 53BP1 recruitment, but their quantitative contributions to the 53BP1 response
are unclear. We have developed a multi-photon laser (MPL) system to target DSBs to subfemtoliter nuclear volumes and
used this to mathematically model DSB response kinetics of MDC1 and of 53BP1. In contrast to MDC1, which revealed first
order kinetics, the 53BP1 MPL-DSB response is best fitted by a Gompertz growth function. The 53BP1 MPL response shows
the expected dependency on MDC1 and RNF8. We determined the impact of altered H4K20 methylation on 53BP1 MPL
response kinetics in mouse embryonic fibroblasts (MEFs) lacking key H4K20 histone methyltransferases. This revealed no
major requirement for the known H4K20 dimethylases Suv4-20h1 and Suv4-20h2 in 53BP1 recruitment or DSB repair
function, but a key role for the H4K20 monomethylase, PR-SET7. The histone methyltransferase MMSET/WHSC1 has recently
been implicated in 53BP1 DSB recruitment. We found that WHSCT homozygous mutant MEFs reveal an alteration in balance
of H4K20 methylation patterns; however, 53BP1 DSB responses in these cells appear normal.
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Introduction context, YH2AX/MDCI1 regulates homologous recombination
(HR) between sister chromatids [19,20], whereas 53BP1 contrib-
utes primarily to NHE], revealed by a “hyperrecombination”

responses, the concerted action of which ensures appropriate  pepotvpe when 53BP1 is inhibited [19,21]. 53BP1 DSB repair
repair and suppresses genomic instability [1,2]. Defective DSB

Double-strand breaks (DSBs) trigger a complex set of cellular

functions are at least in part independent of H2AX, as revealed by

responses can cause immune deficiency, increased cancer predis- the more severe CSR defect in 53BP1"~ compared to H2AX '~
position and premature aging in mammals [3’4’?]" Phosphoryla- mice, the persistence of 53BP1-mediated inhibition of “hyperre-
tion of the variant histone H2AX to form yYH2AX" is an early DSB combination” in H24X '~ cells, and the transient accumulation

response that marks megabases of chromatin flanking a mamma- of 53BP1 at DSBs in H24X '~ cells [19,22,23]
lian DSB [6,7]. YH2AX recruits MDCI by directly binding its Recruitment of 53BP1 to YH2AX ch’r0n713tin is mediated by

tandem BRCT repeat and MDCI1, in turn, recruits Mrell/ . . .
Rad30/NBS1/Atm and the E3 ubiquitin licase. RNF8 to direct interaction between the 53BP1 tandem Tudor repeat and
: o b £ase, histone H4 methylated on lysine 20 (H4K20me) [24]. An earlier

chromatin [8,9,10,11,12,13]. RNF8 activates the downstream E3 . .
ubiquitin ligase RNF168 and mediates ubiquitination of chroma- study reported that 53BP1 can also be recruited to sites of DSBs by
mteraction with dimethylated lysine 79 of histone H3 [25].

tin components [14,15]. This ubiquitination cascade is required

for the recruitment of BRCA1/BARDI1/Abraxas/Rap80 and of Eowe}\:ef, Vanot;er reportﬁshoxg/;(]ig}tllqat loss of hlstonIeRH3dK73
53BP1 to YH2AX chromatin [16]. imethylation does not affect recruitment to IR-induce

H2AX, MDCI1 and 33BP1 contribute to IgH class-switch foci (Botuyan, 2006).The 53BP1 tandem Tudor repeat exhibits
recombin;ltion (CSR) [17] and the fusion of dysfunctional similar binding affinities for H4K20me2 and mel in vitro but no

telomeres [18] — both specialized examples of non-homologous SPCCiﬁC binding to H4K20me0, H4K20me3 or H3K79me2
end-joining (NHE]J). For DSBs encountered in a non-specialized [24,26].
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Methylation of histone H4K20 requires PR-Set7/SETS8, which
monomethylates H4K20 and is dynamically regulated during the
cell cycle [27,28,29]. Histone H4K20mel is a substrate of Suv4-
20h1 and Suv4-20h2, which convert H4K20mel primarily to
H4K20me?2 (and to H4K20me3 in heterochromatin) [30,31]. PR-
Set7~’~ mice reveal early embryonic lethality accompanied by
defective chromatin condensation and chromosome fragility [28].
Suvd-2011 """/ Suvd-20h2~" " (here termed “Sup4-20h1/2 null?)
mice are live-born but die perinatally, exhibiting mild chromo-
some fragility and impaired CSR [30]. In Suv4-20h1/2 null MEFs,
H4K20me2 and H4K20me3 marks are erased and H4K20mel is
the predominant H4K20me species [30]. In these cells, loss of the
H4K20me2 mark was found to slightly delay 53BP1 focus
formation [30].

In wild type primary mouse embryonic fibroblasts (MELFs),
~90% of all histone H4 molecules are dimethylated at K20 [30].
Despite this, 53BPl chromatin accumulation near DSBs is
restricted to YH2AX -marked chromatin. This led to the proposal
that the H4K20me2 mark may be buried in the context of higher
order chromatin structure and be exposed by localized chromatin
decondensation triggered, in mammals, by YH2AX/MDC1/
RNF8 (reviewed in [16]). Alternative models posit more specific
alterations in chromatin at the DSB. In this regard, PR-Set7 is
detectable at DSBs in the G2 phase of the cell cycle [32] and the
histone methyltransterase MMSET/WHSC1 was proposed to
contribute to 53BP1 chromatin recruitment at DSBs by catalyzing
the local deposition of H4K20me2 near the DSB [33]. These
recent reports raise questions regarding the quantitative contribu-
tion of distinct histone methyltransferases to the 53BP1 DSB
response. We approached this by studying 53BP1 DSB repair
function and DSB recruitment in MEFs lacking specific histone
methyltransferases. To quantify 53BP1 DSB response kinetics, we
developed a multi-photon laser (MPL) system to target DSBs to
subfemtoliter volumes of the nucleus, accompanied by real time
imaging of 53BP1 DSB recruitment.

Results

53BP1 DSB repair function in Suv4-20h1/2 null MEFs

To study the impact of altered chromatin-wide H4K20
methylation on 53BP1 DSB repair functions, we introduced I-
Scel-inducible HR reporters [34] into Suv4-20h1/2 null MEFs
and, in parallel, MEFs from wild type littermates. We generated
clones that carry only one randomly integrated, intact copy of the
HR reporter (see Materials and Methods) and studied two
independent clones of each genotype. The background level of
GFP" products in the absence of I-Scel was <0.01% for all clones.
As reported previously [30], Suv4-20hr1/2 null MEFs revealed no
H4K20me?2 signal and a compensatory increase in H4K20mel
(Figure 1A). Exposure of these cells to 10 Gy ionizing radiation
(IR) did not alter the abundance of these marks in either cell type,
but both wild type and Suv4-20k1/2 null MEFs revealed robust
recruitment of 53BP1 to YH2AX chromatin in response to IR
(5 Gy; Figure 1B).

To inhibit 53BP1, we used a previously characterized fragment
of 53BP1 (“F53BP1”, corresponding to residues 1221-1714,
comprising key chromatin localization domains of 53BP1 includ-
ing the tandem Tudor repeat and an oligomerization domain)
that, when overexpressed, interferes with endogenous 53BP1 DSB
repair functions [19]. As described previously, transient overex-
pression of F53BP1 stimulates I-Scel-mediated HR, in comparison
with a functionally null mutant F53BP1 D1521R, which lacks the
ability to interact with H4K20me species and fails to localize IR-
induced nuclear foci [19]. As described previously, expression of
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F53BP1 DI1521R has no impact on I-Scel-induced HR in
comparison with transfected empty vector, and F53BP1 fails to
stimulate HR in 53BPI~" cells, indicating a specific interference
with 53BP1 DSB repair function [19]. Transfection of Suv4-20h1/
2 null or wild type HR reporter MEF clones with F53BP1
stimulated HR to a similar extent, in comparison to F53BPI
DI1521R (Figure 1C). As expected, wild type F53BP1 was more
strongly associated with the chromatin fraction than the F53BP1
DI1521R fragment (Figure 1D). These results show that
chromatin-wide loss of the H4K20me2 mark does not abolish
the recombination-suppression function of 53BP1.

Altered 53BP1 localization following depletion of
H4K20me1

To determine whether the H4K20mel mark is necessary for
53BP1 function, we used HA-tagged PR-Set7 overexpression to
inhibit the endogenous PR-Set7 enzyme [26]. Following retroviral
transduction of wild type or Suv4-20k1/2 null MEFs with wild type
or catalytically inactive PR-Set7, with selection of transduced
pools of cells in puromycin, we observed high levels of ectopic PR-
Set7 in Suv4-20h1/2 null MEFs expressing wild type PR-Set7 and
cells overexpressing the wild type enzyme revealed significant
depletion of the H4K20mel mark (Figure 2A). We do not
understand why wild type but not mutant PR-Set7 had this effect;
this could be a reflection of the greater abundance of the wild type
protein, the reasons for which are not clear. (Each PR-Set7 cDNA
construct was resequenced and confirmed to be correct) As
described previously, depletion of the H4K20mel mark caused
progressive growth impairment, leading ultimately to cell cycle
arrest and limiting the viability of the culture to approximately one
week [26]. This progressive cell cycle arrest made measurement of
HR functions in these cultures impractical. IR-induced 53BP1
focus formation appeared to be altered in HA-PR-Set7-expressing
cells (Figures 2B). However, a large variety of different IR-
induced 53BP1 nuclear patterns was noted, consistent with reports
of DNA damage caused by depletion of PR-Set7 [26,35]. This
made accurate quantitation of 53BP1 focus formation problem-
atic.

A multi-photon laser system for kinetic analysis of 53BP1

chromatin responses to chromosomal DSBs

To quantify 53BP1 DSB response kinetics more directly, we
adapted a multi-photon laser (MPL) system [36,37,38,39] for
targeting DSBs to defined, subfemtoliter volumes of the nucleus
and combined this with real-time imaging of the 53BP1 response.
As a marker of 53BP1, we fused mCherry to the minimal 53BP1
localization domain, F53BP1, and expressed this stably at low
levels in wild type MEFs following retroviral transduction and
subsequent puromycin selection. Consistent with previous studies,
mCherry-F53BP1 colocalized perfectly with endogenous 53BP1 in
response to IR [18] (Figure 3A). In contrast, the F53BP1 D1521R
mutant fails to accumulate at DSBs. MPL-mediated damage was
achieved by focusing the collimated light of a near infrared
femtosecond laser source, tuned to 780 nm, through a high
numerical aperture objective. The femtosecond source results in
high peak intensities in the diffraction-limited focus and subse-
quent multi-photon absorption in the local environment. The
mechanism of DSB-induction by MPL is not known; however, the
generation of reactive oxygen species is thought to be a major
contributor to DNA damage at the site of laser damage, one
product of which will be the generation of chromosomal DSBs

[40].
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Figure 1. Histone H4K20me2 mark is dispensable for 53BP1-mediated DSB repair. A) Immunoblotting for H4K20me2, H4K20me1, and H4
(loading control) in individually derived wild type (WT) and Suv4-20h1/2 null (h1/2 null) cell lines that received no treatment or 10 Gy of IR. B) 53BP1
and yH2AX focus formation 10 minutes after 5 Gy IR treatment of wild type and Suv4-20h1/2 null cells. C) I-Scel-induced HR frequencies (indicated by
GFP* products) in two independent wild type and Suv4-20h1/2 null HR reporter cell lines transiently transfected with HA-F53BP1 WT or the HA-
F53BP1 D1521R mutant expression plasmids. Bars represent mean of triplicate samples. Error bars indicate s.e.m.. t test of F-53BP1 WT vs. D1521R:
Clone 1 WT: not significant (NS); Clone 1 h1/2 null: NS;Clone 2 WT p =0.025; Clone 2 h1/2 null: p=0.027. D) Levels of transiently expressed HA-tagged
F53BP1 proteins and B-actin loading control corresponding to the experiment in C in both the soluble and chromatin fractions. Note tight chromatin
association of wt F53BP1 fragment and abundant soluble fraction of F53BP1 D1521R protein. *: background band.
doi:10.1371/journal.pone.0049211.g001
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Figure 2. Perturbed 53BP1 focus formation in cells depleted of H4K20me1. A) Top: Immunoblot for HA-PR-Set7 proteins (WT = wild type,
CD = catalytically dead) and B-actin loading control in wild type and Suv4-20h1/2 null cells. Bottom: Immunoblot for H4K20me1 and H4 loading
control in Suv4-20h1/2 null cells infected with empty, PR-Set7 WT and PR-Set7 CD retrovirus. B) 53BP1 focus formation and HA immunofluorescence
staining in Suv4-20h1/2 null cells expressing empty or HA-PR-Set7 WT retrovirus, 30 minutes after 3 Gy IR treatment.
doi:10.1371/journal.pone.0049211.g002
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Figure 3. Recruitment of mCherry-F53BP1 to sites of damage
induced by multi-photon laser. A) Endogenous 53BP1 and
mCherry-F53BP1 focus formation in wild type MEFs 30 minutes after
3Gy IR treatment. B) Representative images of mCherry-F53BP1
accumulation over time at site of MPL-induced DNA damage. C) Plot
of accumulation kinetics of mCherry-F53BP1 to MPL-induced damage
demonstrates the lag in 53BP1 recruitment. Blue diamonds represent
raw data, red line represents mathematical (Gompertz) model fit to raw
data. The mathematical model allows the parameterization of different
kinetic behaviors. The “lag-time” is the time it takes for protein
recruitment to reach the inflection point of the curve, where the rate of
change of the slope is equal to 0. The “slope” of the curve is measured
at the inflection point. D) Plot of the accumulation of GFP-MDC1 to
MPL-induced damage over time is well fitted by first order kinetics (red
line).

doi:10.1371/journal.pone.0049211.g003

In response to MPL-induced damage, we observed robust
recruitment of mCherry-F53BP1 to MPL lesions (Figures 3B
and 3QC). By titrating the average power of the laser, we identified
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a threshold below which 53BP1 focus formation became
unreliable (Table S1). Pre-incubation of cells with the sensitizing
agents BrdU (Table S1) and/or Hoechst dye reduced this
threshold. We selected an average laser power of 25 mW for all
subsequent experiments and elected to avoid pre-incubation with
DNA sensitizing agents. At this dose, >90% of MPL lesions
triggered a 53BP1 response in wild type MEFs. We quantified the
kinetics of 53BPl recruitment to MPL-induced damage as
described in Materials and Methods. Consistent with a previous
study using a different laser method for the induction of DSBs, we
noted that 53BP1 recruitment did not fit first-order kinetics [41].
Indeed, there was a consistent time lag in 53BP1 accumulation
with respect to the laser pulse, indicated by an inflection point in
the F-33BP1 time-course at ~2—4 minutes
(Figure 3C). Symmetrical sigmoid functions, or two-step first-
order kinetic models were unable to model F53BP1 recruitment
kinetics. In contrast, a double exponential Gompertz function [42]
gave a reliable fit to the observed kinetics; we used an iterative
non-linear curve fitting algorithm (MATLAB) to obtain Gompertz
parameters that best fit the observed 53BP1 recruitment time-
course for each individual cell imaged (for example, Figure 3C),
according to the Gompertz growth equation:

accumulation

1()=Tpe= """

where (1) is the intensity at time ¢, I, the final focus intensity, a
(here termed “lag-time”) is the time taken to reach the inflection
point and b (here termed “slope”) is proportional to the gradient of
the curve at the inflection point, corrected for final focus intensity.
Final focus intensity was influenced, in part, by the abundance of
the mCherry-F53BP1 protein in an individual cell. To control for
this source of variation, we calculated the “intensity ratio” as the
fractional increase of intensity of the focus, compared to the
background nuclear fluorescence:

Liocus — Duicleus
Intensity Ratio= Lfocus — Tnucleus

Inucleus

where I, is the peak focus intensity and s is the background
nuclear fluorescence intensity at the same time point (see Materials
and Methods). For example, if the focus fluorescence intensity
were twice that of background, the intensity ratio would be 1. If
there were no focus formation, the intensity ratio would be zero.

53BP1 can accumulate transiently at DSBs in the absence of
H2A4X or MD(C1 [23,41]. Indeed, we noted 53BP1 recruitment to
MPL-induced DSBs in a fraction of MDCI~’~ MEFs (data not
shown); however, the peak intensity observed in MDCI~ "~ MEFs
was much lower than that noted in wild type cells. This shows that
the major 53BP1 signal observed in cells with intact H2AX and
MDC1 corresponds to the H24X/MDCI-dependent 53BPI1
chromatin response.

RNF8 controls a slow step in 53BP1 chromatin
recruitment

The Gompertz-type recruitment kinetics noted in 53BP1
accumulation following MPL-induced damage could reflect
cooperative binding interactions between 53BP1 molecules. We
cannot rule out such cooperative interactions, given that F53BP1
contains a dimerization/oligomerization domain, which is re-
quired for its chromatin localization [43]. However, we noted
recruitment kinetics of mCherry-F53BP1 in 53BP1~/~ MEFs that
were quantitatively similar to wild type MEFs (data not shown),
suggesting that only sequences contained within F53BP1 are
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required to reproduce the Gompertz-type pattern of recruitment.
A second possible explanation for the complex early time course of
53BP1 recruitment could be that the formation of DSBs following
MPL exposure is itself delayed. We therefore studied MPL
response kinetics of MDC1, and observed robust accumulation of
GFP-tagged MDCI1 at sites of MPL-induced damage. Strikingly,
GIFP-MDCI1 recruitment revealed rapid first-order kinetics
(Figure 3D; Movie S1). This suggests that the steps of the
DSB response leading up to MDCI1 recruitment are rapid,
whereas a slower process is interposed between MDC1 and 53BP1
recruitment. This step entails a ubiquitination cascade controlled
by RNF8 [11,12,13]. To determine the impact of RNI8
dysfunction on 53BP1 recruitment kinetics, we used siRNAs to
deplete RNF8 (“siRNF8”), wversus control siRNA that targets
luciferase (“siLuc”). Consistent with previous work, siRNF8
strongly suppressed IR-induced 53BP1 focus formation but left
YH2AX focus formation intact [11,12,13] (Figures 4A and 4B).
Similarly, siRNF8 perturbed mCherry-F53BP1 accumulation at
MPL-induced lesions in comparison with siLuc, as revealed by
altered distributions of each Gompertz kinetic parameter (Movies
$2 and S3). The mean intensity ratio of the MPL-induced 53BP1
focus was reduced (Figure 4C), the mean lag time was increased
and the mean slope decreased (Figures 4D-4F). Thus, as with
the 53BP1 response to IR-induced DSBs, efficient recruitment of
53BP1 to MPL-induced DSBs requires an intact MDC1/RNF8
pathway. The persistence of a 53BP1 MPL response in RNF8-
depleted cells might appear to be inconsistent with the loss of IR-
induced 53BP1 foci in the same setting. However, this is likely the
result of differences in the detection threshold of the 53BP1 signal;
for IR-induced DSBs, each focus corresponds to one DSB,
whereas MPL-induced foci represent the response to multiple
clustered DSBs. This clustering is likely to increase the sensitivity
of detection, hence resulting in the ability to detect residual 53BP1
signals of diminished intensity that would be undetectable in the
response to IR.

We analyzed the relationship between each pair of kinetic
parameters in the Gompertz model. This revealed no correlation
between peak intensity and slope and a weak negative correlation
between peak intensity and lag-time (Figures 4G and 4H). In
contrast, lag-time and slope were strongly negatively correlated
(Figure 4I). Consistent with this, a plot of lag-time vs. 1/slope
revealed a strong linear relationship (Figure S1).

Impact of H4K20 methylation status on 53BP1
recruitment to MPL-induced DSBs

To examine the impact of genome-wide conversion of
H4K20me?2 to mel on 53BP1 DSB response kinetics, we studied
mCherry-F53BP1 responses to MPL-induced breaks in Suv4-
20h1/2 null MEFs vs. isogenic wild type control MEFs. 53BP1
responses were virtually indistinguishable between the two groups
(Figure 5A-D; Movie $4). Interestingly, the plot of lag-time vs.
1/slope (Figure S1) revealed a greater scatter in Suv4-20h1/2 null
MEFs, perhaps suggesting that the early recruitment of 53BP1 is
somewhat disorganized in these cells, as was suggested previously
[30]. To determine the impact of genome-wide depletion of the
H4K20mel mark on 53BP1 recruitment kinetics, we studied
53BPI1 responses to MPL damage in Suv#-20k1/2 null MEFs
stably expressing PR-Set7 (Figure 2) vs. control cultures that
received empty retrovirus. Strikingly, in PR-Set7-expressing
cultures, 9720 (45%) cells examined revealed no response to
MPL-induced breaks (example shown in Movie S5), whereas only
3/28 (10.7%) cells in control cultures failed to respond. When only
the responder cells from each group were analyzed, cultures
transduced with PR-Set7 revealed reduced intensity ratio and
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delayed 53BP1 kinetics, as revealed by increased lag-time and
reduced slope values (Figure 5E-H; Movie S6). Note that
Figure 5 underestimates the impact of PR-SET7 on 53BP1 DSB
responses, since the ~45% of PR-SET7-expressing cells that were
non-responsive to MPL were excluded from kinetic analysis. In
contrast, PR-SET7 expression did not suppress the accumulation
of GFP-MDC1 at MPL lesions (Figure S2). These experiments
show that overexpression of PR-SET7 and the accompanying
depletion of the H4K20mel mark profoundly and specifically
impairs 53BP1 recruitment to YH2AX chromatin.

Recent work has identified a role for the histone H3 lysine 36
methyltransferase, MMSET/WHSCI, in promoting 53BP1 re-
cruitment to nuclear foci in the DNA damage response [33,44].
Pei et al. reported that MMSET/WHSC1 supports 53BP1 to IR-
induced DSBs in human osteosarcoma cells [33]. We studied the
role of WHSC1 in the 53BP1 DSB response by examining the
MPL response kinetics of mCherry-F53BP1 in WHSCI™’~ (here
termed WHSCI™Y™) fibroblasts vs. wild type controls [45].
Surprisingly, 53BP1 response kinetics were identical in the two
cultures (Figure 6A; Figure S$3; Movie S7). Similarly, endog-
enous 53BP1 IR-induced focus formation was unperturbed in
WHSCI™™ MEFs, even at early time points (Figure 6B;
Figure $4). Western blotting for WHSCI in WHSC[™/™*
MEFs revealed an off-size band, likely corresponding to an N-
terminal (catalytically dead) fragment of the WHSCI1 protein
(Figure 6C). Interestingly, we noted a bias in favor of the
H4K20mel mark in WHSCI™"™" MEFs, in comparison to
control MEFs. To exclude a possible scaffolding function for the
catalytically dead N-terminal WHSC1 fragment, we used siRNA
to deplete WHSC1 (“siWHSC1”) and determined the impact on
53BP1 recruitment kinetics to MPL-induced DSBs. WHSC1-
depleted wild type MEFs revealed no alteration in F-53BP1
response kinetics in comparison with parallel cultures that received
control siLuc (Figure 6D), but revealed an increase in the
intensity ratio (Figure 85; Movies S8 and 89). The reasons for
this effect are unclear. Endogenous 53BP1 IR-induced focus
formation was not suppressed by siWHSC1 (Figure 6E), despite
evidence of efficient siRNA-mediated depletion of WHSC1 in
extracts from siWHSC1-treated MEFs (Figure 6F). In Suv4-20h1/
h2 null MEFs, siWHSC1 had no impact on either mCherry-
F53BP1 MPL responses or endogenous 53BP1 IR-induced focus
formation (Figure 85; Movie S10 and data not shown). These
results indicate that WHSC1 is not required for 53BP1 recruit-
ment to DSBs in primary MEFs, in which either the H4K20me2
or H4K20mel marks are densely represented in chromatin.

Discussion

We report here a quantitative analysis of 53BP1 DSB responses,
using a new MPL system that allows real time kinetic analysis. Use
of MPL to study DSB responses in mammalian cells is at present
limited to a small number of studies [36,39,46,47]. A major benefit
of MPL is the ability to focus laser energy into a tiny volume (<1
femtoliter) within the cell, generating sublethal levels of DNA
damage [36,39,48]. In the experiments described here, the MPL
was tuned to 780 nm, generating a two-photon activation
wavelength equivalent of approximately 390 nm. Although the
mechanism of DSB formation by MPL is not clear, 390 nm
absorption by adenine nucleotide derivatives such as nictotinamide
(NADH) or flavin (FAD, FMN) could lead to the secondary
generation of reactive oxygen species (ROS) intermediates [49,50].
If so, the chemistry of MPL-induced DSB formation may
resembles that of IR, which is also thought to be mediated by
ROS intermediates [51]. Use of MPL in this work enabled a
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Figure 4. Quantitative impairment in F53BP1 MPL responses in cells depleted of RNF8. A) Endogenous 53BP1 and yH2AX focus formation
in wild type MEFs transfected with control siRNA or siRNA directed against RNF8 1 hour after 3 Gy IR treatment. Quantification of the proportion of
cells containing endogenous 53BP1 foci in control siRNA and siRNF8 treated cells. B) Quantification by RT-qPCR of the relative RNF8 mRNA level in
cells transfected with control siRNA or siRNF8. C) Plot of peak fluorescence intensity for each responding cell. Bar represents the mean peak
fluorescence intensity for each data set and error bars indicate SEM (p<<0.004). Black circles: siLuc; Red squares: siRNF8. D) Plot of averaged mCherry-
F53BP1 fluorescence accumulation over time normalized to a peak fluorescence intensity of 1.0 for each responding cell. E) Plot of slope of
fluorescence accumulation at the inflection point for each responding cell. Bar represents the mean slope in fluorescence accumulation at the
inflection point for each data set and error bars indicate SEM (p<<0.013). F) Plot of lag-time in fluorescence accumulation for each responding cell. Bar
represents the mean lag-time in fluorescence accumulation for each data set and error bars indicate SEM (p<<0.0004). G) Plot of slope vs. peak
fluorescence intensity for each responding cell. H) Plot of lag-time vs.peak fluorescence intensity for each responding cell. I) Plot of slope vs. lag-time
for each responding cell.

doi:10.1371/journal.pone.0049211.9g004

quantitative analysis of 53BP1 responses in cells lacking distinct H4K20mel mark profoundly impaired 53BP1 recruitment to

histone methyltransferases. The Gompertz growth pattern man- MPL-induced DSBs, as revealed by a high proportion of non-
ifested by 53BP1 is of particular interest. Gompertzian growth is responder cells, reduced intensities of 53BP1 foci and delayed
frequently observed in solid tumors and in other biological settings kinetics of 53BP1 recruitment. Although it seems reasonable to
where potentially exponential growth is tempered by limited attribute the defective 53BP1 chromatin recruitment in cells
resources to support that growth [52]. It will be interesting to study depleted of H4K20mel to loss of this mark, it is possible that PR-
MPL response kinetics of other DSB response factors, many of SET7 overexpression in these experiments causes additional
which, we anticipate, may reveal specific kinetic behaviors cellular dysfunctions that contribute to the impaired 53BPI
different to either MDC1 or 53BP1. response.

We report here that 53BP1 DSB response kinetics is largely Recent work has implicated MMSET/WHSCI in the 53BP1

unaltered by deletion of Suv4-20 hi1/h2 and the accompanying response to DSBs [33] and to replication stress [44]. To further
chromatin-wide conversion from H4K20me2 to H4K20mel. investigate the role of WHSC1 in the 53BP1 DSB response, we
These results are consistent with the in vitro binding properties examined 53BP1 responses in WHSCI™/™" MEFs. Surprisingly,
of the 53BPIl tandem Tudor repeat, which reveals equivalent although we did note perturbations in the balance of H4K20
affinities for H4K20me2 and mel, but no appreciable binding to methylation states in these cells,endogenous 53BP1 formed normal
H4K20me0 or me3 [24,26]. In contrast, depletion of the IR-induced foci in WHSCI™™" MEFs and the kinetics of the
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Figure 5. Impact of altered H4K20 methylation on recruitment kinetics of F53BP1 to MPL-induced DSBs. A)-D) Comparison of wild

type (WT) vs. Suv4-20h1/2 null (h1/2 null) MEFs.

E)-H) Comparison of Suv4-20h1/2 null MEFs expressing empty retrovirus vs. PR-SET7 retrovirus. A) and

E) Plot of peak fluorescence intensity for each responding cell. Note that the high proportion of non-responsive cells in PR-SET7 cultures are not
represented in this analysis. Bar represents the mean peak fluorescence intensity for each data set and error bars indicate s.e.m. (A: p<<0.45; E:
p<0.09). B) and F) Plot of averaged mCherry-F53BP1 fluorescence accumulation over time, normalized to a peak fluorescence intensity of 1.0 for each
responding cell. C) and G) Plot of slope in fluorescence accumulation at the inflection point for each cell imaged. Bar represents the mean slope and

error bars indicate s.e.m. (C: p<<0.18; G: p<<0.0026).
mean lag-time and error bars indicate s.e.m. (D: p<<0.4; H: p<<0.0001).
doi:10.1371/journal.pone.0049211.g005

F53BP1 response to MPL-induced DSBs was unaltered. Similarly,
acute siRNA-mediated depletion of WHSC1 in either wild type or
Suv4-20h1/2 null MEFs had no impact on endogenous 53BP1 IR-
induced focus formation or on F53BP1 response kinetics to MPL-
induced damage. Taken together, our results do not support a
general requirement for WHSCI in 53BP1 DSB responses and
suggest that H4K20 dimethylation is not required for the 53BP1
DSB response, provided an abundant chromatin-wide H4K20mel
or H4K20me2 mark is present. The differences between our
results and those of Pei et al [33], who analyzed human cell lines,
might reflect species differences. Alternatively, cell types at
different stages of differentiation might exhibit different levels of
dependency on specific histone methyltransferases in the regula-
tion of 53BP1 chromatin recruitment to DSBs.

Materials and Methods

Plasmids

The sister chromatid recombination reporter used was de-
scribed previously [34], as were expression plasmids for F53BP1
and I-Scel [19]. Retroviral vectors for PR-Set7 expression were
also described previously [26]. New constructs described here were
generated by standard cloning procedures.

Cell Lines and Cell Culture

Wild type and Swuv4-20kh1/2 null immortalized MEFs were
described previously [30]. Cells were maintained on gelatinized
plates in DMEM supplemented with 10% fetal bovin serum

(Adanta Biologicals, Lawrenceville, GA, USA), 0.1 mM f-
Mercaptoethanol (Sigma, St. Louis, MO, USA), 2 mM L-
PLOS ONE | www.plosone.org

D) and H) Plot of lag-time in fluorescence accumulation for each cell imaged. Bar represents the

Glutamine (Mediatech, Manassas, VA, USA), 100 U penicillin/
100 ug streptomycin (Gibco, Grand Island, NY, USA) and 1x
MEM nonessential amino acids (Mediatech) at 37°C and 6%
COy. To generate HR reporter stable lines, 9 pg of Kpnl-
linearized HR reporter plasmid was electroporated into 9x10°
wild type or Suv4-20k1/2 null cells in a 0.4 cm-electrode gap
cuvette (BioRad Gene Pulser, Hercules, CA, USA, 960 mF/
250V,). 0.8 mg/mL G418 (Sigma) was added to the medium 1 day
after electroporation. Beginning 1 week after continuous selection,
G418-resistant colonies were isolated and screened by Southern
blotting for single-copy HR reporter integration.

RNAi

Control RNAi duplex against luciferase (5'-CGUACGCG-
GAAUACUUCGAJTAT-3") and RNAi SMARTpool against
mouse RNF8 and mouse WHSC!I were purchased from Dharma-
con (Lafayette, CO, USA). For siRNA knockdown 0.6x10°
trypsinized cells were transfected with 40 pmol siRNA using
1.92 uL. LipofectamineTM 2000 (Invitrogen, Grand Island, NY,
USA) in a 24-well plate. Cells were imaged for MPL-induced
recruitment of F53BP1 48 hours post-transfection, when siRNA
knockdown should be near its peak.

Antibodies and Immunoblotting

Cells were lysed in RIPA buffer (50 mM Tris-HCI [pH 8.0],
1.0% NP-40, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1%
SDS) supplemented with protease inhibitor cocktail (Roche,
Indianapolis, IN, USA). Protein concentration was calculated
using Bradford Reagent (Sigma). Histones were prepared by lysis
of cells in modified nuclear extraction buffer (50 mM Tris-HCI

November 2012 | Volume 7 | Issue 11 | e49211
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doi:10.1371/journal.pone.0049211.g006

[pH 8.0], 150 mM NaCl, I mM EDTA, 1.0% NP-40) supple-
mented with protease inhibitor cocktail (Roche) followed by
extraction of histones in acid (0.5 M HCI, 10% glycerol). Cell
lysates and histones were resolved by SDS-PAGE on NuPAGE®
Novex Bis-Tris Gels (Invitrogen), transferred to nitrocellulose (Bio-
Rad semi-dry transfer system, 250 mA 1 hr or 40 mA overnight),
and blocked in 5% nonfat milk in 0.05% PBST (0.05% Tween 20,
in PBS). Membranes were incubated with rabbit polyclonal anti-
H4K20mel 1:2000 (Cell Signaling Technology, Danvers, MA,
USA), anti-H4K20me2 1:1000 (Millipore, Billerica, MA, USA),
anti-H4 pan 1:10000 (Millipore), mouse monoclonal anti-WHSC1
antibody 29D1 1:10,000 (AbCam, Cambridge, UK), anti-HA
(12CA5) 1:50 (Scully Lab) or mouse monoclonal anti-B actin
1:10000 (AbCam, Cambridge, UK) overnight at 4°C. Membranes
were washed in 0.05% PBST, incubated with peroxidase-
conjugated goat anti-mouse (Jackson ImmunoResearch, West
Grove, PA, USA) or Protein A (GE Healthcare, Waukesha, WI,
USA) antibody, and exposed using high-sensitivity ECL (Perki-
nElmer, Waltham, MA, USA).

Immunofluorescence Staining

Cells were plated at a density of 0.2x10° cells/well on square
glass coverslips in 6-well plates overnight prior to assay. Cells were
treated with 3 or 5 Gy of y-IR and allowed to recover for the

PLOS ONE | www.plosone.org

desired length of time (0-60 min). For some stainings cells were
fixed in 3% paraformaldehyde/2% sucrose (10 min), washed,
permeabilized in Triton X-100 solution (0.5% Triton X-100,
20 mM HEPES [pH 7.4], 50 mM NaCl, 3 mM MgCl,, 300 mM
sucrose) on ice, and washed. For other stainings cells were fixed in
a 70:30 methanol:acetone solution at —20°C (20 min), dried at
room temperature, and rehydrated with PBS (20 min). Cells from
either fixation method were then incubated in primary antibody
(anti-53BP1 1:200 (Novus Biologicals, Littleton, CO, USA); anti-
YH2AX 1:500 (Millipore); anti-HA [12CA5] 1:10) diluted in 5%
goat serum, 0.5% sodium azide in PBS for 20 min at 37°C. Cells
were washed and incubated in goat anti-mouse or rabbit
conjugated FITC or Rhodamine secondary antibody (1:200,
Jackson ImmunoResearch) diluted in 5% goat serum, 0.5%
sodium azide in PBS for 20 min at 37°C. Cells were washed,
mounted on glass slides using ProLong® Gold antifade reagent
with DAPI (Invitrogen), and imaged on a Zeiss microscope (Maple
Grove, MN, USA).

Recombination Assays

0.6x10° trypsinized cells were transfected with 0.8 ug plasmid
DNA using 1.92 uL Lipofectamine ™ 2000 (Invitrogen) in a 24-
well plate. For cotransfection 60% of the total DNA transfected
was expression plasmid and 40% was I-Scel expression plasmid.
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Transfection efficiency was measured by parallel transfection of
wtGFP expression vector at one-tenth of the total amount of
plasmid DNA transfected. GFP" frequencies were measured 72 hr
post-treatment by flow cytometry using an FC500 (Beckman
Cloulter, Brea, CA, USA). Statistical analysis was performed using
a two-tailed Student’s t-test (unknown variance).

Retroviral transduction of MEFs

8x10° HEK293T cells were plated overnight on 10 cm dishes.
The following day cells were cotransfected with 5 ug replication-
incompetent helper vector pCL-Eco and 7.5 ug retroviral vector
using 50 uL Lipofectamine™ 2000 (Invitrogen). Viral superna-
tant was collected 48 hours post-transfection, treated with 8 ug/
mL polybrene, and used to infect 0.4 x10® MEF cells. Selection for
retroviral transduction in 4 pug/mlL puromycin began 24 hours
after infection and continued for at least 3 days before cells were
analyzed.

MPL-induced DNA Damage and Fluorescence Data
Collection

A Mai Tai® Ultrafast Ti:Sapphire Laser (Spectra-Physics, Santa
Clara, CA, USA, 100 fs pulse, 80 MHz repetition rate) was
introduced into a Nikon Ti microscope (Nikon, Melville, NY,
USA) via a custom-built open beam optical path. The laser was
spatially filtered to remove the non-transverse electromagnetic
modes (non-TEMOO0) in order to generate a Gaussian excitation
shape and then expanded to overfill the back aperture of a 60x1.4
numerical aperture objective (Nikon). A 675 nm low pass dichroic
mirror (Chroma Technology Corp., Bellows Falls, V'I', USA) was
mounted in the microscope to reflect the laser into the objective.
An average power level of 25 mW at 780 nm was used for all
DNA damage experiments. The power was measured in the
optical path outside of the microscope and is approximately three
times higher than the power at the sample. Focus formation was
monitored by accumulation of a mCherry-tagged F53BP1 via
epifluorescence excitation. Cells were incubated in a HEPES-
Leibovitz-15 based live cell media to permit a pH buftered
environment for imaging. Each set of data collection began with
the capture of two fluorescence images prior to DNA damage
followed by exposure to the laser for five seconds. A time-lapse
movie was collected for 30 min after DNA damage induction with
a frame interval of 10 or 30 seconds. Data movies were analyzed
in MATLAB® (The MathWorks, Natick, MA, USA) with a
custom algorithm to follow focus movement, quantify intensity and
generate a plot of fluorescence accumulation over time. Fitting of
the fluorescence time courses to the Gompertz function were
carried out using a non-linear least squares method in MATLAB
to yield “intensity ratio”, “lag-time” and ‘“‘slope” parameters.
Intensity ratios were calculated from the raw data (without fitting)
by averaging the final focus intensity (over five frames) and
subtracting the background fluorescence and then dividing by pre-
laser pulse intensity after background correction. The p-values
quoted in the figure legends are calculated from two-tailed
unpaired t-tests, unless otherwise stated. Linear fit analysis was
carried out using MATLAB to calculate the Pearson correlation
coefficient. For each fit, the r-squared (square of the Pearson
coeflicient) value is stated.

Supporting Information

Figure S1 Reciprocal relationship between slope and
lag-time in 53BP1 response to MPL-induced DSBs. I'igure
summarizes correlation analysis of lag-time vs. 1/slope for all cell
types used in the MPL experiments. Note reduced correlation
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between lag-time and 1/slope in Suv4-20r1/2 null MEFs
(including those overexpressing PR-SET7) and in wild type MEFs
lacking RNF8. The loss of correlation can be seen both in the
graphs and the reduced r-squared (Pearson) coefficient.

(TIF)

Figure S2 Impact of PR-Set7 expression on recruitment
kinetics of MDC1 to MPL induced DSBs. A)-C) Compar-
1son of Suv4-20h1/2 null (h1/2 null) MEFs expressing control vs.
PR-SET7 retrovirus. A) Plot of intensity ratio for each responding
cell. Bar represents the mean for each data set and error bars
indicate SEM (p>0.3). B) Plot of averaged MDC1 fluorescence
accumulation over time, normalized to a peak fluorescence
intensity of 1.0 for each responding cell. Error bars indicate
STD. C) Plot of MDC1 fluorescence accumulation rate for each
cell imaged, with fitting by single exponential function y=a-
b*exp(t/7). T=time taken for signal to decay by 1/¢ (related to
half-life of exponential function). Bar represents the mean rate and
error bars indicate SEM (p>0.4).

(TTF)

Figure 83 Kinetic parameters of F-53BP1 MPL respons-
es in WHSC1 mutant MEFs. A) Plot of intensity ratio for each
responding wild type (WT; black circles) and WHSCI™/™"
(Whscl mut; red squares) cell. Bar represents the mean peak
fluorescence intensity for each data set and error bars indicate
SEM (p = 0.7). B) Plot of slope in fluorescence accumulation at the
inflection point for each responding cell. Bar represents the mean
slope in fluorescence accumulation at the inflection point for each
data set and error bars indicate SEM (p = 0.44). C) Plot of lag-time
in fluorescence accumulation for each MPL-induced DNA lesion.
Bar represents the mean lag-time in fluorescence accumulation for
each data set and error bars indicate SEM (p =0.84). D) Plot of
slope vs. intensity ratio for each responding cell. E) Plot of lag-time
vs. intensity ratio for each responding cell. F) Plot of slope vs. lag-
time in each responding cell.

(TIF)

Figure S4 Quantitation of IR-induced focus formation
in WT vs. WHSCI™*/™ MEFs. Cells reccived 5 Gy of IR or
were mock treated, then were immunostained or y-H2AX and
53BP1 5 (panel A) or 10 (panel B) minutes later. Total number of
cells scored per sample ranged from 138 to 207.

(TIF)

Figure S5 Impact of siRNA-mediated WHSC1 depletion
on 53BP1 response kinetics in Suv4-20h1/2 null MEFs. A)
Plot of averaged mCherry-F53BP1 fluorescence accumulation
over time normalized to a peak fluorescence intensity of 1.0 for
Suv4-20h1/2 null MEFs transfected with siLuc or ssWHSC1. Error
bars indicate SD. B) Plot of maximum fluorescence intensity for
each responding cell in this experiment and in siWHSC1-depleted
wild type MEFs (data from experiment shown in Figure 6). Bar
represents the mean intensity ratio for each data set and error bars
indicate SEM (t-test of siLuc vs. siWHSC1: WT p<<0.06; h1/2
null p=0.62). C) Plot of slope in fluorescence accumulation at the
inflection point for each responding cell. Bar represents the mean
and error bars indicate SEM (t-test of siLuc vs. sitWHSC1: WT
p=0.33; h1/2 null p=0.37). D) Plot of lag-time for each
responding cell. Bar represents the mean and error bars indicate
SEM (t-test of siLuc vs. siWHSC1: WT p=0.65; h1/2 null
p=0.65). E) Plot of slope vs. intensity ratio for each responding
cell. F) Plot of the lag-time vs. intensity ratio for each responding
cell. F) Plot of slope vs. lag-time for each responding cell.

(TIF)
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Table S1 Responses of RFP-F53BP1 to different levels of
multiphoton laser power in wild type MEFs. Mean laser
power was titrated as shown and response rates were determined
in cells in the absence or presence of BrdU.

(PDF)

Movie S1 Typical time course of GFP-MDCI1 accumu-
lation at sites of MPL damage: wild type MEFs.
(AVI)

Movie S$2 Typical time course of mCherry-F53BP1
accumulation at sites of MPL damage: siLuc-treated
wild type MEFs.

(AVI)

Movie 83 Typical time course of mCherry-F53BP1
accumulation at sites of MPL damage: siRNF8-treated
wild type MEFs. Note delayed and diminished accumulation of
MPL-induced focal accumulation of mCherry signal.

(AVT)

Movie S84 Typical time course of mCherry-F53BP1
accumulation at sites of MPL damage: Suv4-20h1/h2 /"~
MEFs.

(AVI)

Movie 85 Typical non-responder cell in Suzv4-20h1/h2™ /'~
MEFs expressing PR-Set7. Note mCherry signal but absence of
MPL-induced focal accumulation.

(AVI)

Movie S6 Typical responder cell in Suv4-20h1/h2™’~
MEFs expressing PR-Set7. Note delayed and diminished
accumulation of MPL-induced focal accumulation of mCherry signal.
(AVI)
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Movie 87 Typical time course of mCherry-F53BP1
accumulation at sites of MPL damage: WHSC1™u/ ™t
MEFs.

(AVT)

Movie S8 Typical time course of mCherry-F53BP1
accumulation at sites of MPL damage: siWHSC1-treated
wild type MEFs.

(AVI)

Movie 89 Typical time course of mCherry-F53BP1
accumulation at sites of MPL damage: siLuc-treated
control wild type MEFs in same experiment as shown in
Movie S8.

(AVI)

Movie S10 Typical time course of mCherry-F53BP1
accumulation at sites of MPL damage: siWHSC1-treated
Suw4-20n1/h2~’~ MEFs.

(AVI])
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