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Abstract

Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite multimodal treatments including
surgery, chemotherapy and radiotherapy the prognosis remains poor and relapse occurs regularly. The alkylating agent
temozolomide (TMZ) has been shown to improve the overall survival in patients with malignant gliomas, especially in
tumors with methylated promoter of the O6-methylguanine-DNA-methyltransferase (MGMT) gene. However, intrinsic and
acquired resistance towards TMZ makes it crucial to find new therapeutic strategies aimed at improving the prognosis of
patients suffering from malignant gliomas. Cold atmospheric plasma is a new auspicious candidate in cancer treatment. In
the present study we demonstrate the anti-cancer properties of different dosages of cold atmospheric plasma (CAP) both in
TMZ-sensitive and TMZ-resistant cells by proliferation assay, immunoblotting, cell cycle analysis, and clonogenicity assay.
Importantly, CAP treatment restored the responsiveness of resistant glioma cells towards TMZ therapy. Concomitant
treatment with CAP and TMZ led to inhibition of cell growth and cell cycle arrest, thus CAP might be a promising candidate
for combination therapy especially for patients suffering from GBMs showing an unfavorable MGMT status and TMZ
resistance.
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Introduction

Glioblastoma (GBM) is the most common and lethal primary

brain tumor in adults and is classified according to the world

health organization (WHO) as a grade IV tumor. These tumors

are a highly invasive, rapidly spreading form of central nervous

system cancer which are resistant to surgical and medical

treatment. Particular challenges of treating GBM are its distinct

tumor heterogeneity, the inability of treatments to reach all tumor

cells, the delivery of drugs across the blood-brain barrier and the

high likelihood of relapse, which is often rapid and aggressive.

Although some advances have been made in recent years,

treatment remains palliative for most patients as a cure remains

elusive. Looking at the numbers the median survival has improved

from 12.1 to 14.6 months, but still less than 16% of the patients

survive three years postdiagnosis [1].

The first-line chemotherapeutic drug is the alkylating agent

temozolomide (TMZ). Following oral absorption, TMZ is

converted to an alkylating methyldiazonium cation that is known

to damage DNA thereby leading to DNA double strand breaks

[2],[3]. The enzyme O6-methylguanine-DNA methyltransferase

(MGMT) is capable of counteracting the cytotoxicity induced by

TMZ [4],[5] - thus tumors expressing high levels of MGMT

(MGMT positive, unfavorable) are more resistant to TMZ than

those in which the enzyme has become silenced by promoter

methylation (MGMT negative, favorable). MGMT promoter

methylation is associated with a favorable outcome and predicts

a benefit from alkylating agent chemotherapy in patients with

newly diagnosed glioblastoma [6],[7],[8],[9]. In a large random-

ized multicenter trial an unmethylated MGMT promoter (protein

is expressed - unfavorable MGMT status) was observed in more

than half of the patients and those therefore did not benefit from

the TMZ treatment [10]. Thus, there is a clinical need to establish

additional novel therapy regimes to overcome TMZ resistance.

Therefore in the present study the concomitant treatment of GBM

with cold atmospheric plasma (CAP) and TMZ in overcoming

TMZ resistance was investigated.

In the past years CAP – a partially ionized gas - proved its

effectiveness for different applications in health care and medicine.

In a combined effort of physicists, engineers, chemists, biologists

and medical doctors several different CAP sources were

developed, characterized and to some extent optimized for their

respective application. All these plasma sources have in common

that they generate CAP thereby initiating reactions in the

surrounding air, which lead to the production of a reactive mix

of electrons, ions, neutrals, reactive species and UV light.

Nevertheless depending on the plasma source properties, compo-

sition and concentrations of the produced species can be varied

and therefore initiate different reactions with the respective target.
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Several developed CAP sources have proven to successfully

inactivate bacteria, fungi, virus and spores in a dose-dependent

manner [11],[12],[13],[14],[15]. Healthcare applications such as

the sterilization of surgical instruments [16],[17],[18], skin

[19],[20] and wound disinfection [21],[22] therefore paved its

way into medical care. Further generations of CAP sources

however also showed anti-cancer properties. Main targets for CAP

in cancer cell lines were growth inhibition [23], inhibition of cell

migration and invasion (in colorectal cancer cells [24]) or

induction of apoptosis (in melanoma cells [25], [26], mouse lung

carcinoma [27]). The production of reactive oxygen and nitrogen

species by CAP is thought to be a key player initiating the anti-

cancer properties of CAP. It was shown that intracellular ROS

levels increase after CAP treatment, thereby inducing DNA

damage and apoptosis in the cells [28], [25], [29], [30].

In this study we show that TMZ resistant cells with an

unfavorable MGMT status as well as TMZ sensitive cell lines are

susceptible to CAP treatment. Furthermore we are able to

demonstrate a synergistic effect of a combined treatment with

TMZ and CAP in cells with unfavorable MGMT status.

Materials and Methods

Plasma Device
The CAP device employed in this study uses the Surface Micro

Discharge (SMD) technology for plasma production as shown in

figure 1 and has been published and characterized in detail in

Morfill et al. [11] and Maisch et al. [12]. In short, the electrode for

plasma production is located at the top inside a closed box (figure 1

A). The electrode consists of a Teflon (insulator) plate sandwiched

by a planar brass plate (sheet electrode) and a stainless steel mesh

grid (figure 1 B). Applying high sinusoidal voltage of 8.5 kVpp with

a frequency of 1 kHz, micro-discharges are generated homo-

genously across the mesh grid side of the sandwich in the ambient

air. The power consumption for the plasma discharge is

,10 mW/cm2 and was measured with the Lissajous method

using a 1 mF capacitance [31]. The glioma cells were treated in 6

or 96-well plates which were placed directly beneath the electrode.

The distance between the sample and the electrode was set to

14 mm. As already mentioned in the introduction, the plasma

produces electrons, charged particles, reactive species (mainly

reactive oxygen and nitrogen species), UV light and heat. The

main constituents produced by the CAP device used in this study

were measured and have been summarized in Maisch et al. [12].

In short, for the treatment times used in this study, the

temperature increase was measured to 4 degrees above the

ambient temperature at maximum. The main UV components

emitted by the device are in the wavelength range between 280

and 400 nm. Furthermore, negligible intensities of UVC light

emission are detected. The UV power density was measured to be

25 nW/cm2. Concerning the production of reactive species of the

device mean values of approximately 500 ppm for O3, ,1 ppm

for NO and 3 ppm for NO2 were measured at the end of the

application. In our study, mainly the produced reactive species are

transported to the samples and trigger the biological reactions.

There are almost no electrons and ions due to the distance

between the electrode and samples of 14 mm.

Cell culture and cell viability
The human glioblastoma cell lines LN18, LN229 and U87MG

were purchased from American Type Culture Collection (ATCC,

Rockville, MD, USA) and routinely cultured in Dulbecco’s

modified Eagle’s serum GlutaMAXTM (DMEM GlutaMAXTM,

Invitrogen) supplemented with 10% fetal calf serum (FCS) and

100 U/ml penicillin and 100 mg/ml streptomycin (Biochrom AG,

Berlin, Germany) under standard cell culture conditions at 37uC
and 5% CO2.

For the investigation of cell proliferation after the treatment

with cold atmospheric plasma (CAP) and/or temozolomide

(TMZ), 56103 cells were seeded on a 96-well plate and grown

over night until they reached 80% confluence. Cells were treated

without medium covering them and fresh medium (DMEM) with

1% FCS was added immediately afterwards. TMZ treatment

(50 mM, 100 mM and 200 mM), if applied in a combined therapy,

was carried out immediately after a single CAP treatment.

Medium was changed every 24 h and fresh TMZ was added for

three days consecutively. Controls were kept without medium for

the same duration as CAP treatment and/or were DMSO treated

in equal concentrations as TMZ. Cells were incubated for 48 h at

37uC and 5% CO2 before analyzing the cell viability using the Cell

Proliferation Kit I (MTT assay, Roche, Basel, Switzerland). The

color change was quantitated at 595 nm using a scanning multi-

well spectrophotometer.

The above described experiments were performed in six

replicates and data were expressed as the mean of the replicate

determinations (X 6 SEM) in percent of absorbance of samples

with untreated cells (100%).

Immunoblotting
Protein lysates were taken at the indicated time points after CAP

treatment. 20 mg of protein were separated by 12% SDS-PAGE

and transferred to PVDF membranes (Millipore, Billerica, MA,

USA), which were incubated with primary antibodies (MGMT

1:2500; yH2AX 1:2500; PARP1 and cleaved PARP1 1: 2000; all

antibodies from CST, Danvers, MA, USA; GAPDH, 1:50000,

Sigma Aldrich, Hamburg, Germany) over night at 4uC followed

by horseradish peroxidase-labeled secondary antibodies (1:10000;

CST, Danvers, MA,USA) for 1 h at RT. Signals were visualized

by ECL Western Blotting Detection (Millipore, Billerica, MA,

USA).

Clonogenicity assay
Cells were seeded in 6 cm dishes and treated with CAP for 0,

30, 60 and 120 seconds without medium and/or with TMZ

(50 mM, 100 mM, and 200 mM) afterwards. As described earlier

fresh medium was added immediately after the CAP treatment.

Controls were treated equally. Cells were seeded 24 h after the

CAP treatment into 6-well plates and allowed to form colonies

over a time period of 12 days. Fixation and staining of the colonies

was performed using the DiffQuik Kit (Medion Diagnostics,

Düdingen, Switzerland). Colonies of more than 50 cells were

counted. The experiment was repeated three times for each cell

line.

Flow cytometry
Cell cycle analysis was carried out by flow cytometry. Cells were

seeded in 100 mm2 tissue culture dishes (16106 cells/dish),

allowed to attach overnight, and CAP treated and/or TMZ

treated for the indicated times and indicated concentrations.

Controls were treated equally. For FACS analysis cells were

washed twice in phosphate-buffered saline (PBS) and fixed in ice-

cold 70% methanol at 4uC for at least 2 h. Afterwards cells were

washed with PBS and then incubated with 100 mg/ml of RNase A

(Sigma-Aldrich, Hamburg, Germany) for 20 min at 37uC and

stained with Propidium iodide (PI, 50 mg/ml). Cell cycle

distribution was analyzed using the BD FACSCalibur (Becton

and Dickinson, Heidelberg, Germany) and FlowJo Software

(Flowjo, Cincinnati, OH, USA).

Effects of Cold Atmospheric Plasma on Glioma Cells
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Statistical analysis
All statistical significances were evaluated using one or two

factor analysis of variance (ANOVA). Differences were considered

significant at p,0.001.

Results

In this study the effects of cold atmospheric plasma (CAP) on

different glioma cell lines were analyzed in detail. For this purpose

U87MG, LN229 (both MGMT negative, favorable status) and

Figure 1. The CAP device based on Surface Micro Discharge technology. A Photo of the FlatPlaSter 2.0 during plasma production. B Sketch
of the plasma production on a Surface Micro-Discharge (SMD) electrode. The plasma discharge is ignited on the SMD electrode and the reactive
species are produced in the plasma by electrons from air molecules. The produced reactive species reach the sample by diffusion and induce there
biological reactions.
doi:10.1371/journal.pone.0064498.g001

Figure 2. Inhibition of proliferation by TMZ or CAP treatment. A Immunoblotting of the investigated cell lines for expression of the MGMT
protein. Lysates of U87MG, LN18 and LN229 cells were blotted against the anti-MGMT antibody, GAPDH served as a loading control. MGMT protein is
expressed in the LN18 cell line, U87MG and LN229 cells do not express the MGMT protein. B U87MG, LN229 and LN18 glioma cells were treated with
50 mM, 100 mM and 200 mM TMZ for three days consecutively. The number of viable cells was measured using the MTT assay after the treatment with
TMZ. Statistical significances are evaluated for 200 mM of TMZ in the LN229 and U87MG cell lines. P-value: 0.001 C The same cell lines were treated
with CAP in a 96-well plate without medium. Fresh medium was added to the cells immediately after the CAP treatment. Cell growth was measured
48 h after CAP treatment. Statistical significances were observed after 60 seconds of treatment in all tested cell lines. P-value *** ,0.001.
doi:10.1371/journal.pone.0064498.g002

Effects of Cold Atmospheric Plasma on Glioma Cells

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e64498



LN18 (MGMT positive, unfavorable status) cells were treated with

a CAP (produced by the Surface Micro Discharge technology).

The status of the MGMT protein was confirmed by immunoblot-

ting of cell lysates against anti-MGMT antibody. The cell lines

U87MG and LN229 do not express the MGMT protein, whereas

the cell line LN18 highly expresses the MGMT protein under

normal culturing conditions (fig. 2 A).

Dose dependent inhibition of glioma cell growth after
CAP treatment

Preliminary control experiments using the cell lines U87MG,

LN229 and LN18 showed that they are able to survive handling

with only little medium covering them for at least 5 minutes (data

not shown). This resembles the situation in the patient during

resection, at the time point when CAP could be applied as a single

treatment to the resection cavity.

In this study the cells were therefore treated once for 30, 60 and

120 seconds without medium. The medium was removed before

treatment thus remaining only a thin film of liquid covering the

cells. Immediately after the single CAP treatment fresh medium

was added to the cells.

Using the MTT assay the effect of different CAP exposures on

LN18, LN229 and U87MG glioblastoma cell proliferation was

investigated. Therefore the cells were seeded in 96-well plates for

24 h and afterwards were treated with CAP as described above

(fig. 2 C). For comparison the glioblastoma cell proliferation was

also investigated after three days of consecutive treatment with the

chemotherapeutic TMZ (fig. 2 B). A dose dependent inhibition of

cell growth after CAP treatment for 30 to 120 seconds was

observed for all treated cell lines, including the TMZ resistant cell

line. A significant inhibition of about 45 percent was observed after

60 seconds of CAP treatment and a notably reduction of about 65

percent after 120 seconds of CAP. Unlike the CAP treatment,

repeated treatment with TMZ in concentrations of up to 200 mM

for three days consecutively resulted in reduced viability of only 25

percent for the MGMT negative (favorable MGMT status) cell

lines LN229 and U87MG. Treatment of the MGMT positive

(unfavorable MGMT status) cell line LN18 led to an induction of

cell growth when treated with low concentrations of TMZ

(50 mM). Administration of higher concentrations of TMZ (up to

200 mM) showed no significant inhibition of proliferation (fig. 2 B).

Induction of DNA damage by CAP
The discovered growth inhibition after the CAP treatment was

likely conducted by DNA damage, which was observed by

immunoblotting with antibodies against cleavage of PARP1 and

yH2AX (fig. 3). Protein samples were taken 48 h and 72 h after

the respective CAP treatment (without medium). GAPDH served

as a loading control.

The results show that for CAP exposures of 60 seconds and

longer in LN229 and LN18 cells exhibit PARP1 cleavage 48 h

post treatment. However, induction of yH2AX was not detected

Figure 3. Induction of DNA damage. A Representative immunoblotting of LN229 cells (MGMT negative) and staining for cleaved PARP1, PARP1
and yH2AX as a marker for DNA damage was performed 48 h and 72 h after CAP treatment. GAPDH served as the loading control. B Similar results
were observed 48 h and 72 h after the treatment for the MGMT positive cell line LN18.
doi:10.1371/journal.pone.0064498.g003
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until 72 h after the treatment and not for exposure times less than

180 seconds. The phosphorylation of H2AX was less prominent in

the LN18 cells than in the LN229 cells, but likewise detectable

72 h after CAP exposure for 180 seconds. Cleavage of Caspase-3

and Caspase-7 was not observed for both cell lines, even not in

lysates taken 4 h and 24 h after CAP treatment (data not shown).

CAP treatment for up to three minutes did not feature cytolysis or

damage of the cell membrane measured by the release of lactate

dehydrogenase (LDH) 2 h, 24 h and 48 h after treatment in LN18

cells. An increase in released LDH was measured 48 h after CAP

treatment for 10 minutes (Figure S1). Furthermore, DNA damage

at the level of single cells was observable to a minor content by the

comet assay 1 h after CAP in LN229 cells, but was repaired 24 h

after the treatment (Figure S2).

Cytostatic effect induced by CAP treatment in glioma
cells

Based on our previous findings, we hypothesized that CAP

treatment affects cell cycle progression in glioma cells. To test this

hypothesis, we analyzed the cell cycle progression of LN18, LN229

and U87MG glioma cells 24 h, 48 h and 72 h after CAP exposure

(fig. 4, Figure S3 and Figure S4). Treatment of these glioma cells

with CAP for 120 seconds and 180 seconds led to a two to four

times higher amount of cells in the G2/M-phase of the cell cycle

compared to the untreated control. This significant arrest was

observable for at least 72 h and independent of the MGMT status

of the cells (fig. 4 B and C). As shown in figure 4 A, no sub-G1

population was observed in cells treated for up to 180 seconds,

further confirming the cytostatic effect as more prominent than the

apoptotic effect of CAP on glioma cells.

CAP treatment reduces the clonogenicity of glioma cells
Treatment with TMZ was able to reduce the clonogenicity in

LN18 (unfavorable MGMT status) cells only to a minor content,

even when treated with a concentration of 500 mM (fig. 5 B). The

MGMT negative (favorable MGMT status) cell line LN229 was

sensitive to treatment with 50 mM TMZ, resulting in a significant

reduction of clonogenicity. Concerning the effects of CAP, we

found a significantly reduced clonogenicity after treatment for

Figure 4. Cell cycle arrest in G2/M-phase. A Cell cycle analysis of U87MG cells was performed 24 h, 48 h and 72 h after CAP treatment (30 s,
60 s, 120 s and 180 s) by flow cytometry. Treatment was performed only with a thin film of liquid covering the cells. Similar results were observed for
the LN229 (MGMT negative) and LN18 (MGMT positive) cells (Figure S3 and Figure S4). B Statistical significances of the observed arrest in the G2/M-
phase in U87MG and C in LN18 cells. P-value *** ,0.001.
doi:10.1371/journal.pone.0064498.g004
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both cell lines independent of their MGMT status (fig. 5 C). CAP

treatment of 120 seconds furthermore culminated in a complete

loss of clonogenicity in the LN18 cell line.

Effects on cell proliferation by concomitant therapy
For these experiments the cells were CAP treated once (without

medium), followed by the immediate application of TMZ (50 mM,

100 mM or 200 mM) for three days consecutively. Cell viability was

measured using the MTT assay at day four (fig. 6). Combined

treatment with CAP and TMZ leads to significant stronger

inhibition of proliferation of U87MG cells (fig. 6 A), LN18 cells

(fig. 6 B) and LN229 cells (fig. 6 C) compared to separate

treatment with CAP or TMZ alone. Combined treatment with low

dose of TMZ (50 mM) and short treatment of CAP (30 s in

U87MG and LN18, 60 s in LN229 cells) caused significantly

higher suppression of cellular growth as compared with high dose

of TMZ (100 mM) alone.

CAP treatment restores the sensitivity of TMZ resistant
glioma cells

LN18 glioma cells, which are fairly resistant to repeated

treatment of 500 mM with the chemotherapeutic TMZ in vitro,

were exposed to CAP for 30 seconds up to 180 seconds. Cell

viability and cell cycle distribution were determined using the

MTT assay and FACS analysis. As shown earlier, CAP treated

LN18 cells displayed inhibition of proliferation in a dose

dependent manner (fig. 2 C), whereas treatment with TMZ even

for concentrations of up to 200 mM only resulted in inhibition of

proliferation to a minor degree (fig. 2 B). Furthermore, LN18 cells

exhibit cell cycle arrest in G2/M-phase after one single treatment

with CAP for 60 seconds or longer which was observable for at

least 72 h (Figure S3). In contrast, repeated treatments of LN18

cells with TMZ with concentrations between 100 mM and 500 mM

were not able to induce a comparable cell cycle arrest (fig. 7 A).

Therefore, combined treatment of CAP for 60 seconds (single

treatment) and TMZ (50 mM, 100 mM, 200 mM for three days

consecutively) was carried out and cell cycle distribution was

detected afterwards. The obtained data clearly showed that a

previously applied CAP treatment restores the sensitivity of TMZ

resistant glioma cells, leading to an induction of cell cycle arrest in

G2/M-phase (fig. 7 B). Combined treatment revealed strong

significance in inducing a cell cycle arrest, especially when

60 seconds of CAP were combined with 100 mM or 200 mM

TMZ compared to treatment with TMZ alone (P-value,0.001).

Discussion

Until today, despite intensive treatment of glioblastomas

including resection, radio- and chemotherapy most GBM patients

suffer from relapse. Therapy with alkylating agents like TMZ is

worthwhile in a subpopulation of patients showing methylation of

the MGMT gene in their tumor; however patients with

unfavorable MGMT status are resistant towards therapy with

TMZ [32],[33],[34],[35]. In addition, most tumors acquire

resistance towards chemotherapy during treatment, accompanied

by a change of the methylation status from methylated to

Figure 5. Clonogenic capacity of glioma cells treated with TMZ (B) or CAP (C). Glioma cells were either TMZ or CAP treated without
medium and 24 h later 150 cells/well were seeded on a 6-well plate. Colonies formed after 12 days were stained and counted. P values *** ,0.001. A
Picture of the LN18 (MGMT positive) cells treated with CAP for 30 s, 60 s and 120 s. Afterwards the formed colonies were stained. B Treatment of
glioma cells with TMZ with concentrations of up to 500 mM and colony formation assay was performed afterwards. C CAP treatment followed by the
colony formation assay in either MGMT positive or MGMT negative cells.
doi:10.1371/journal.pone.0064498.g005
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unfavorable unmethylated MGMT status. Felsberg and colleagues

speculated, that treatment with TMZ promotes survival of tumor

cells with unmethylated MGMT status which give rise to resistant

clones causing relapse [36]. Therefore in the present study we

focused on the re-establishment of sensitivity in MGMT expressing

cells towards chemotherapy by combined treatment with cold

atmospheric plasma (CAP) and TMZ. CAPs have turned out to be

a novel promising approach in treatment of glioma cells in vitro and

in vivo.

So far, the MGMT status is the only established prognostic and

predictive factor in the therapy of glioblastoma with chemother-

apeutics. The MGMT status of the used cell lines therefore

correlates with the resistance of the cells towards TMZ. CAP

showed anti-cancer properties in chemotherapy resistant and

sensitive cells, whereas TMZ was effective only in cells with

favorable MGMT status. For the evaluation of anti-cancer features

of CAP, treatment of cells that feature a favorable MGMT status

and are highly susceptible to TMZ (LN229, U87MG), and in

comparison cells that have an unfavorable MGMT status and are

resistant to TMZ (LN18) (fig. 2 C) was performed. In contrast to

the results obtained after repeated application of TMZ, a high

reduction of viable cells was detected after the CAP treatment.

Even though the observed reduction of proliferation after TMZ

treatment was less pronounced than reported elsewhere, the strong

reduction of clonogenicity and the induction of a cell cycle arrest

in the U87MG and LN229 cells illustrated the effectiveness of

TMZ in these cell lines.

We observed a dose dependent inhibition of proliferation by

CAP treatment for all three cell lines – even in the LN18 cells that

are resistant to TMZ (unfavorable MGMT status) treatment of up

to 200 mM. Noteworthy, CAP was extremely efficient in reducing

the cell viability. Induction of DNA damage after CAP treatment

was confirmed by detection of markers for DNA damage (fig. 3)

and by comet assay (supplements). Controversially, cleavage of

caspases and cytolysis could not be observed after CAP treatment

of up to 180 seconds. These results might indicate that severe

apoptosis is not an early feature of CAP treatment in glioma cells.

This observation is in line with several reports about the treatment

of glioma cells, as it seems to be difficult to induce profound

apoptosis in these cells rather than senescence [37],[38],[39]. We

therefore studied the cell cycle distribution after CAP treatment.

The observed robust cell cycle arrest in G2/M-phase (fig. 4)

revealed to be the major effect of CAP treatment in glioma cells

and was found in all treated cell lines. Noteworthy, also cells with

unfavorable MGMT status responded to CAP treatment with cell

cycle arrest. We further investigated for the effects of CAP on

glioma clonogenicity. CAP treatment resulted in a significantly

reduced clonogenicity in all treated cell lines, culminating in a

complete loss of clonogenicity in LN18 cells with unfavorable

MGMT status after 120 seconds of treatment (fig. 5). LN229 cells

with favorable MGMT status demonstrated reduced clonogenicity

after treatment with 50 mM TMZ, which was achieved to the same

value by CAP treatment of 120 seconds. TMZ treatment alone of

LN18 cells reduced the clonogenicity to a minor content

compared to CAP treatment, whereas CAP treatment of

120 seconds was able to completely suppress clonogenicity. Our

results on clonogenicity further confirm the decisive anti-cancer

effect of CAP on glioma cells in vitro.

Figure 6. Combined treatment of glioma cells with TMZ and CAP. A LN18 cells were CAP treated once without medium; afterwards TMZ was
applied consecutively for three days. B U87MG cells were CAP treated once and TMZ was applied consecutively afterwards for three days. C LN229
cells were CAP treated followed by TMZ treatment for three days. MTT assay for evaluating the cell viability was performed at day four. Controls were
kept without medium and/or DMSO treated. P-value *** ,0.001.
doi:10.1371/journal.pone.0064498.g006
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To our knowledge, this is the first report to show synergistic

effects of the combined treatment with CAP and the chemother-

apeutic TMZ on tumor cell growth and cell cycle distribution.

Treated cells showed a significant reduction of the cell viability

when treated for 30 seconds with CAP in combination with

administration of TMZ (50 mM, 100 mM or 200 mM) in compar-

ison to cells that were only treated with TMZ (fig. 6). For all tested

cell lines, combined treatment was significantly effective in

reducing cell growth. Concomitant treatment with 30 seconds of

CAP and TMZ was more effective than exclusive treatment with

TMZ or CAP. The significant dosage was 60 seconds of CAP in

combination with each TMZ concentration in the LN229 cells,

while 30 seconds combined with each TMZ concentration was

sufficient for significantly reducing cell growth in LN18 and

U87MG cells. Notably, combined treatment with 30 seconds plus

100 mM of TMZ and combination of 30 seconds of CAP plus

50 mM of TMZ, respectively, revealed stronger inhibition

compared to higher dosage of TMZ (200 mM and 100 mM,

respectively) in the LN18 and U87MG cell lines. Thus,

concomitant therapy with CAP and TMZ might significantly

increase the effectiveness of TMZ both in cells with favorable and

unfavorable MGMT status. Furthermore, cell cycle arrest after

CAP treatment was found to be prominent in glioma cells that are

unsusceptible towards treatment with TMZ for up to 200 mM in

vitro (fig. 7 A). A remarkable induction of a cell cycle arrest in the

G2/M-phase in the TMZ resistant cell line LN18 after CAP

treatment of 60 seconds and longer was noticed. A similar arrest in

this cell line was observed only after treatment with concentrations

of TMZ about 500 mM, while in contrast the clinically relevant

concentrations of TMZ in the cerebrospinal fluid of the patient

range between 3 mM and 50 mM [37],[40],[41]. A combined

treatment of 60 seconds of CAP and 50 mM TMZ led to a cell

Figure 7. TMZ resistant cells respond with cell cycle arrest to combined treatment. A LN18 glioma cells were TMZ treated for three days
consecutively with 100 mM, 200 mM and 500 mM and cell cycle analysis was performed afterwards. In comparison, CAP treatment without medium for
60 seconds was applied once to LN18 glioma cells, followed by TMZ treatment with 50 mM, 100 mM and 200 mM for three days consecutively. Cell
cycle distribution was determined afterwards. B Analysis of the percentage of cells in the G2/M-phase after treatment with TMZ and combined
treatment with CAP. P-value *** ,0.001.
doi:10.1371/journal.pone.0064498.g007
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cycle arrest, the combination of 60 seconds of CAP with 100 mM

or 200 mM achieved an even more distinct arrest (fig. 7 B).

The mechanism behind the effect of CAP on tumor cells

remains unknown. The production of ROS and the modification

of cell membranes are supposed to mediate CAP effects on cells.

Nevertheless, our results suggest CAP as a promising tool for the

treatment of glioma cells in vitro, as the exclusive treatment as well

as the combined treatment with TMZ revealed a cytostatic effect

on the treated cell lines. So far, there is no suggestion that CAP

directly affects the MGMT pathway. Therefore, CAP effectiveness

seems not necessarily to be limited to cells with unfavorable

MGMT status. It is noteworthy that CAP treatment was effective

in tumor cells showing resistance to alkylating agents. Patients

suffering from GBM with unfavorable MGMT status demonstrate

only minor effects when treated with TMZ. However, no

alternative treatment exists for this particular subgroup of patients

until today. These patients as well as patients that acquire glioma

cell resistance to alkylating chemotherapy during treatment might

benefit from the application of concomitant treatment with CAP.

To date, no resistance towards CAP treatment has been reported,

adverting CAP as a promising tool in cancer therapy.

Translation of in vitro results into clinical application is

demanding and therefore further investigations of CAP effects

on tumorigenic and non-tumorigenic brain cells as well as in vivo

studies in eligible animal models need to be carried out. Other

studies concerning CAP application in GBM reported an

induction of cell cycle arrest and DNA damage followed by a

subsequent induction of apoptosis in U87MG glioblastoma cells

treated with microsecond pulsed plasma. In a subcutaneous

xenograft animal model a stabilization of tumor volume was

achieved by treatment with plasma [28]. Further development of

custom-designed CAP sources for application of CAP during

surgery, including a new developed endoscopic device [27], will

open the way for medical applications. Certainly, our results on

CAP for combined treatment of malignant gliomas, especially in

tumors that are resistant to alkylating agents, are hopeful future

prospects.

Supporting Information

Figure S1 Detection of cytotoxicity induced by CAP
treatment. LN18 glioma cells were CAP treated and 2 h, 24 h

and 48 h later the release of LDH was measured using the Roche

Cytotoxicity Kit. Treatment with 1% Triton x-100 served as the

positive control.

(JPG)

Figure S2 Detection of DNA fragmentation after CAP
treatment in LN229 glioma cells. LN229 glioma cells were

CAP treated without medium for indicated times and after 1 h

and 24 h, respectively, the Comet assay was performed. The cell

viability was observed simultaneously by tryphan blue staining.

(JPG)

Figure S3 Cell cycle analysis of LN18 cells after CAP
treatment. Flow cytometry was performed 24 h, 48 h and 72 h

after CAP treatment for the indicated times.

(JPG)

Figure S4 Cell cycle analysis of LN229 cells after CAP
treatment. Glioma cells were CAP treated and cell cycle analysis

was performed 24 h, 48 h and 72 h afterwards.
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