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Abstract

Pur-a is a nucleic acid-binding protein involved in cell cycle control, transcription, and neuronal function. Initially no
prediction of the three-dimensional structure of Pur-a was possible. However, recently we solved the X-ray structure of Pur-
a from the fruitfly Drosophila melanogaster and showed that it contains a so-called PUR domain. Here we explain how we
exploited bioinformatics tools in combination with X-ray structure determination of a bacterial homolog to obtain
diffracting crystals and the high-resolution structure of Drosophila Pur-a. First, we used sensitive methods for remote-
homology detection to find three repetitive regions in Pur-a. We realized that our lack of understanding how these repeats
interact to form a globular domain was a major problem for crystallization and structure determination. With our
information on the repeat motifs we then identified a distant bacterial homolog that contains only one repeat. We
determined the bacterial crystal structure and found that two of the repeats interact to form a globular domain. Based on
this bacterial structure, we calculated a computational model of the eukaryotic protein. The model allowed us to design a
crystallizable fragment and to determine the structure of Drosophila Pur-a. Key for success was the fact that single repeats of
the bacterial protein self-assembled into a globular domain, instructing us on the number and boundaries of repeats to be
included for crystallization trials with the eukaryotic protein. This study demonstrates that the simpler structural domain
arrangement of a distant prokaryotic protein can guide the design of eukaryotic crystallization constructs. Since many
eukaryotic proteins contain multiple repeats or repeating domains, this approach might be instructive for structural studies
of a range of proteins.
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Introduction

Structure determination by X-ray crystallography has tremen-

dously contributed to increase our understanding of biological

processes. A prerequisite for the determination of three-dimen-

sional, atomic resolution protein structures is the production of

diffraction-quality crystals, which is frequently the limiting step in

X-ray crystallography [1].

Prior to screening of a vast variety of crystallization conditions, a

favourable protein fragment should be identified. It should

constitute a stably folded, compact domain and possess a well-

ordered surface, as unfolded and flexible parts prevent crystalli-

zation for entropic reasons [2].

A classical method to define stably folded fragments is limited

proteolysis. The protein of interest is freed from flexible regions

by enzymatic digestion. Folded domains, which are not

accessible to the proteases, are subsequently identified by mass

spectrometry [3]. The definition of domain boundaries can also

be guided by solution-structure information obtained by nuclear

magnetic resonance (NMR) or small angle X-ray scattering

(SAXS) [4,5].

Another standard approach to increase the probability of

obtaining diffracting crystals is to screen homologous proteins

from different organisms [6]. Although sometimes successful, it

constitutes a trial-and-error game, as crystallizability is very hard

to predict. In general, proteins from prokaryotes are considered to

crystallize more willingly than eukaryotic proteins. Possible reasons

are the lower extent of intrinsically disordered regions, the smaller

average size, and the simpler domain architecture of prokaryotic

proteins [7].

Recent advances in bioinformatics greatly improved success

rates of structural studies. Highly sensitive sequence search tools

allow for the detection of distant homologs and thus increase the

number of candidates for crystallization trials [6]. Structure

prediction programs can help to delimit folded domains and to

model unknown structures based on reference structures [8].

When no homologs with known folds are available, the

identification of conserved regions can guide construct design as

conserved regions are more likely to be structured.

We recently reported the crystal structure of Pur-a from the

fruit fly Drosophila melanogaster [9]. Pur-a is a ubiquitous, highly

conserved protein involved in a variety of cellular processes such as
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transcription, cell cycle control, mRNA transport, and neuronal

development [10,11,12]. This sequence repeat-containing protein

binds specifically to RNA as well as to DNA and prefers the

consensus sequence (GGN)n, where N is not guanine [12,13].

Despite extensive efforts and exhaustive screening, our previous

attempts to obtain adequately diffracting crystals of eukaryotic

Pur-a failed. Here, we show how the iterative use of sensitive

bioinformatics tools in combination with structure determination

of a bacterial homolog provided the necessary information to

overcome this hurdle. Since many eukaryotic proteins with

repetitive sequence elements resist structure determination by X-

ray crystallography, our study might offer a useful approach to

advance such difficult cases.

Results

Summary of Workflow
Consistent failure of crystallization efforts with eukaryotic Pur-a

prompted us to perform bioinformatics assessment of the protein

sequence. Using the web server HHrepID [14], we detected three

divergent repeats in the amino-acid sequence of metazoan Pur-a.

The identification of these so-called PUR repeats enabled us to

detect and validate a distant bacterial homolog with only a single

PUR repeat. We solved the crystal structure of the bacterial

protein and found that two PUR repeats form a homo dimer. The

structure was then employed by the web server HHpred [15] to

build a homology model of the eukaryotic protein. The model

successfully predicted domain boundaries. This information in

combination with the understanding of the role of PUR repeats in

domain folding allowed us to generate crystallizable constructs of

D. melanogaster Pur-a and solve its crystal structure [9]. An overview

of the workflow is provided in Figure 1.

Metazoan Pur-a contains three PUR repeats
For the design of expression constructs of human and D.

melanogaster Pur-a, we initially concentrated on the previously

described central region of the protein, which is highly conserved

and required for nucleic-acid binding [16]. Previous work mapped

the central region of human Pur-a (GeneID 443797) to amino

acids 66–245. It was further described that this region contains a

total of five repeats [12,13,16]. Three of them were categorized as

class I (66–88, 148–170, 224–245) and two as class II repeats (107–

131, 195–220) (Figure 2A). Expression of protein fragments based

on this assignment failed to yield diffraction-quality crystals or

even resulted in unstable, i.e. degrading or precipitating proteins.

This observation suggested that the previously described class I

and class II repeats do either not represent independent structural

entities, or that the definition of these repeats is inaccurate. We

therefore performed sequence alignments between respective

members of the class I and class II repeats, using the BLAST

search algorithm [17]. Because these attempts failed to yield

trustworthy alignments (not shown), we concluded that the

reported repeat assignments are likely to be incorrect.

Since in recent years bioinformatics tools have improved

considerably, we reassessed the central core region for predicted

domains and functional motifs using the webservers InterPro [18],

Pfam [19], and the Conserved Domain Database (CDD) [20].

Unfortunately, these analyses did not yield significant new insights.

We also reassessed the central core region for potential repetitive

elements. For this, we used the web server HHrepID, which is

publicly available through the MPI Bioinformatics Toolkit (http://

toolkit.tuebingen.mpg.de) [21]. HHrepID looks for internal

sequence similarities by aligning the query protein sequence to

itself. By utilizing evolutionary information in the form of profile

hidden Markov models (HMM) derived from multiple sequence

alignments, it is highly sensitive in identifying even very divergent

repeat elements in the query sequence [14].

HHrepID found that the central region of human Pur-a is

composed of only three repetitive elements, consisting of residues

60 to 125, 142 to 213, and 215 to 281 (Figure 2B). We termed

these sequence elements PUR repeats. PUR repeats overlap only

partially with the previously suggested class I and class II repeats

Figure 1. Workflow for computational construct design and X-ray structure determination of eukaryotic Pur-a. Computer programs
are indicated in bold type and are publicly available through the MPI Bioinformatics Toolkit [21]. Bioinformatics assessment of the protein sequence
together with crystal structure determination of a prokaryotic homolog led to crystallizable fragments of the eukaryotic homolog.
doi:10.1371/journal.pone.0013402.g001
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(Figure 2A). The sequence identity (similarity) between the PUR

repeats of human Pur-a ranges between 16% (39%) and 28%

(49%) (Figures 2C, D).

D. melanogaster Pur-a (GeneID 43797) shares a total sequence

identity of 49% with the human ortholog. The PUR repeats in D.

melanogaster locate to residues 40 to 107, 117 to 185, and 193 to

256. They share sequence identities (similarities) between 19%

(41%) and 29% (55%) among each other (Figure 2D).

Borrelia burgdorferi Pur-a is a functional Pur-protein
When searching databases for proteins with PUR repeats in

lower species, we found that a bacterial hypothetical protein

(Borrelia burgdorferi B31 gene bank entry BB0047) contains a single

PUR repeat. The core region (amino acids 8 to 81) of the 127-

amino acid gene product shares between 16% (34%) and 23%

(42%) sequence identity (similarity) with the PUR repeats in

human or D. melanogaster Pur-a (Figures 2C, D). Besides its

annotation as a Pur-protein, no further functional information was

available. We therefore assessed if the bacterial homolog

represents indeed a functional Pur-protein. We cloned the gene

from B. burgdorferi genomic DNA and expressed the protein in E.

coli. All expressed protein fragments were soluble and could be

readily purified, suggesting that this hypothetical protein is

produced also in vivo. In order to test whether the bacterial Pur-

protein binds nucleic acids like its eukaryotic counterpart, we

performed filter binding assays with ssDNA oligomers containing

the PUR consensus sequence (Table 1). We found that the B.

burgdorferi Pur-a and the nucleic acid-binding region of human Pur-

a bound with comparable affinities to DNA oligomers with

(GGN)n sequences (Table 1). For both homologs, no binding was

observed to ssDNA lacking the consensus sequence, suggesting

similar specificities.

The functional conservation is consistent with the sequence

homology and hinted at a structural conservation between both

homologs. It further suggested that one PUR repeat constitutes a

functional and structural entity. Therefore we intended to exploit

the simpler architecture of bacterial Pur-a for solving its crystal

structure and to understand PUR-sequence repeats on a structural

level.

Crystal structure of B. burgdorferi Pur-a
The bacterial protein crystallized readily. Native crystals of a

fragment comprised of amino acids 8 to 105 (Pur-a 8–105)

belonged to space group P212121 and diffracted up to 2.2 Å

Figure 2. Repeating sequence elements in Pur-a. (A) Schematic drawing of human Pur-a. Numbers above the schemes indicate amino acid
positions with respect to the start codon. A previous study described three class I and two class II sequence repeats in the central nucleic-acid binding
region of human Pur-a [12,13,16]. (B) Using HHrepID, we instead identified three so-called PUR repeats, which overlap only partially with the
previously assigned repeats. (C) Amino acid sequence alignment of the PUR repeats in human (h), D. melanogaster (Dm), and B. burgdorferi (Bb) Pur-a.
Zappo color code as follows: pink: aliphatic/hydrophobic, orange: aromatic, blue: positive, red: negative, green: hydrophilic, yellow: cysteine. (D)
Amino acid-sequence identity/similarity of PUR repeats in Pur-a from D. melanogaster (Dm), human (h), and B. burgdorferi (Bb).
doi:10.1371/journal.pone.0013402.g002
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resolution (Table 2). Given that no methionines are present in this

fragment, three methionines were introduced by site-directed

mutagenesis [22]. In order to choose amino-acid positions for this

triple mutation that are likely to result in well-ordered selenome-

thionines and that would not interfere with protein folding, we

aligned several prokaryotic homologs with B. burgdorferi Pur-a.

Residues that have methionines in several other species and are

predicted to be part of secondary-structure elements (not shown)

were chosen as sites for mutations. Those were leucine in position

17, phenylalanine in position 27, and isoleucine in position 64.

Crystals of selenomethione-substituted B. burgdorferi Pur-a 8–105

(L17M, F27M, I64M) belonged to space group I212121 and

diffracted up to 1.9 Å resolution (Table 2).

Phases were determined by single wavelength anomalous

dispersion (SAD) and the model was built from the selenomethi-

onine-derivatized dataset at 1.9 Å resolution (Table 3; Rwork =

18.5%, Rfree = 23.0%; PDB-ID: 3N8B). The PUR repeat of B.

burgdorferi Pur-a crystallized as a strongly intertwined dimer

(Figures 3A,B). Each PUR repeat is comprised of a four-stranded

anti-parallel b-sheet followed by an a-helix (Figures 3A,B, and S1).

The interaction of two monomers results in a globular domain

that we refer to as PUR domain. It exposes both a-helices on one

side (Figure 3A) and both b-sheets (Figure 3B) on the opposing

side. The buried surface interface reveals a large number of

aliphatic and aromatic residues. Hydrophobic amino acids on the

inward-oriented side of the a–helices include F67, L71, A74, I75,

I78, and V77. They are complemented by hydrophobic residues

on the inner side of the contacting b-sheets, including V12, V29,

V59, Y13, Y25. F27, L39, I41, and I58. This observation indicates

that dimerization of B. burgdorferi Pur-a is mostly stabilized by

hydrophobic interactions.

The interface between the two chains is typical for a specific

interaction, as it is formed by one large surface patch without

cavities or enclosed water molecules [23]. Typical is also the high

number of aromatic and aliphatic residues on the buried surface as

well as the exclusion of charged residues, with a clear separation of

hydrophobic core residues and polar rim residues. The buried

surface interface of 2058 Å2 significantly exceeds those observed

for average crystal packing and strongly suggests the dimer is also

stable in solution [23].

The part of the crystallized protein that is visible in the

experimental electron density (amino acids 8 to 84) matches the

homology region that was identified as PUR repeat (amino acids 8

to 81). Thus, the structure confirms that a PUR repeat identified

on the sequence level indeed corresponds to a structural entity.

In order to exclude that the three methionine mutations for

phasing induced folding artefacts, the crystal structure of the native

protein was solved by molecular replacement at 2.2 Å resolution

Table 1. Filter binding assays with human and B. burgdorferi Pur-a.

Protein ssDNA 12mer Sequence 59 – 39 KDs [nM] Avg. KDs [nM]

Human Pur-a 56–287 (C272S) hTel12 (AGG GTT)2 491, 438, 306 411695

B. burgdorferi Pur-a 6–127 hTel12 (AGG GTT)2 435, 445, 413, 413 426616

Human Pur-a 56–287 (C272S) JCVupTAR GGA GGG GGA GGC 207, 258 233636

B. burgdorferi Pur-a 6–127 JCVupTAR GGA GGG GGA GGC 395, 428, 521, 533 469668

Human Pur-a 56–287 (C272S) Control CCT CCG CCT CCG No binding No binding

B. burgdorferi Pur-a 6–127 Control CCT CCG CCT CCG No binding No binding

Equilibrium dissociation constants (KD) from filter binding experiments. C272S in protein name indicates that the cysteine in amino acid position 272 was mutated to
serine.
doi:10.1371/journal.pone.0013402.t001

Table 2. Data collection for the crystal structure of B.
burgdorferi Pur-a.

Dataset Native SeMet Peak

X-ray source ID23-1 (ESRF) X06SA/PXI (SLS)

Wavelength in Å 0.9724 0.9792

Space group P212121 I212121

Cell dimensions
a, b, c in Å
a, b, c

47.8, 57.8, 142.3
90.0u, 90.0u, 90.0u

48.7, 58.3,141.8
90.0u, 90.0u, 90.0u

Data range in Å 50.0-2.2 70.9-1.9

I/sI 15.0 (2.5) 12.2 (5.3)

Observations 78,627 105,665

Unique observations 20,282 30,605

Redundancy 3.9 3.5

Completeness in % 99.0 (97.6) 98.7 (95.5)

Rsym in % 7.4 (52.2) 8.2 (35.6)

SeMet refers to the selenomethionine-derivatized crystal, Rsym refers to the
unweighted R-value on I between symmetry mates. Numbers in parentheses
indicate values for the highest resolution shell (Native: 2.200–2.256 Å; SeMet
Peak: 1.900–1.950 Å).
doi:10.1371/journal.pone.0013402.t002

Table 3. Refinement statistics for the crystal structure of B.
burgdorferi Pur-a.

Dataset SeMet Peak

Data range in Å 70.9-1.9

Reflections 21,157

Rwork in % 18.5 (22.6)

Rfree in % 23.0 (31.9)

RMSD bond length in Å 0.010

RMSD bond angles in deg 1.169

Ramachandran plot in %
Favored/Allowed/Outlier

98/2/0

Average B-factor in Å2 23.5

RMSD, root mean square deviation of Ca-carbon atoms of the main chain. Rwork,
ghkl II Fobs (hkl)I -IFcalc II/ghkl I Fobs (hkl)I for reflections in the working dataset.
Rfree, cross validation R-factor for 5% of reflections against which the model was
not refined. The highest resolution shell is 1.90–1.95 Å (in parentheses).
doi:10.1371/journal.pone.0013402.t003
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(Rwork = 21.7%, Rfree = 26.1%; PDB-ID: 3NM7). Both structures

superpose well (not shown) and have a root mean square deviation

(RMSD) for the backbone Ca atoms of only 0.26 Å. This confirms

that the introduced methionines do not interfere with folding of B.

burgdorferi Pur-a.

Model of D. melanogaster Pur-a
The X-ray structure of the bacterial protein yielded two pieces

of information indispensable for the crystallization of eukaryotic

Pur-a: the requirement of two PUR repeats interacting with each

other to form a globular domain and a better delimitation of

domain boundaries of the PUR repeats.

We used the protein structure prediction server HHpred

(available at http://toolkit.tuebingen.mpg.de/HHpred) to build

a homology model of the structure of D. melanogaster Pur-a [15]. To

do this, we used the B. burgdorferi structure as template, after

uploading it in a secure personal workspace [15,24].

As expected, HHpred predicted homologous folds for the three

PUR repeats (Figure 3C). Even though the tertiary structure could

not be derived from the model, the resulting refined domain

Figure 3. Ribbon backbone models for Pur-a proteins. (A) Crystal structure of B. burgdorferi Pur-a with one monomer shown in red, the other
in cyan. N- and C-termini are indicated with ‘‘N’’ and ‘‘C’’ respectively, followed by corresponding amino-acid positions in parentheses. (B) Identical to
(A), with the structural model rotated 180u around the vertical axis. (C) Computational model for D. melanogaster Pur-a calculated with the program
HHpred. Rainbow-color coding follows the peptide chain from N-terminus (blue) to C-terminus (red). It shows the secondary structure of the PUR
repeats, but lacks information about the correct tertiary structure. (D) Superposition of the crystal structures of B. burgdorferi Pur-a (red, PDB-ID 3N8B)
and D. melanogaster Pur-a repeats I-II (blue, PDB-ID 3K44) [9]. RMSD for Ca-carbon atoms is 2.1 Å. B. burgdorferi Pur-a forms an inter-molecular dimer,
whereas PUR repeat I and PUR repeat II in D. melanogaster Pur-a form an intra-molecular dimer.
doi:10.1371/journal.pone.0013402.g003
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boundaries were the basis for further construct designs. From the

bacterial structure we would expect that two PUR repeats interact

with each other to form a globular PUR domain. For PUR-

domain formation of each of the three repeats, dimerization of

Pur-a would be required and many possible combinations of

PUR-repeat pairs can be envisioned.

Crystal structure of D. melanogaster Pur-a
An obvious next step was to assess expression fragments

consisting of combinations of two PUR repeats from D. melanogaster

Pur-a that could potentially interact to form a PUR domain. A

fragment of D. melanogaster Pur-a comprising PUR repeat I and II

(amino acids 40 to 185) yielded diffraction-quality crystals. We

recently reported the crystal structure of this protein fragment [9],

which was solved by single wavelength anomalous dispersion

(SAD). This eukaryotic Pur-a structure revealed that PUR repeat I

intertwines with PUR repeat II to form an intra-molecular PUR

domain [9]. We could further show that a fragment of Pur-a
containing all three PUR repeats is dimeric in solution. These

intermolecular dimers are likely to be formed by the interaction of

free PUR repeats III from two Pur-a molecules, assembling into

another PUR domain [9].

Superposition of the structural models of B. burgdorferi and D.

melanogaster Pur-a reveals a highly conserved fold (Figure 3D). Both

structures share the overall bbbba-topology, as well as the

intertwined interaction surface resulting in a globular PUR

domain. In the B. burgdorferi case, the interaction relies on a dimer

built by two identical monomers, whereas in D. melanogaster Pur-a,

an intra-molecular dimer is formed by its PUR repeats I and II. In

addition to the different oligomeric states, the main differences are

longer b-strands (strand 3 and 4) and a slightly longer a-helix in

the B. burgdorferi structure. The observed RMSD value between

both protein backbones is 2.1 Å and thus in the range expected for

evolutionary related proteins with a sequence identity of about

20% [25,26].

Discussion

We present a case study on how X-ray crystallography and

bioinformatics can work hand in hand to allow for structure

determination of a repeat protein that resists standard experimen-

tal approaches.

Firstly, this example demonstrates the efficiency of improved

algorithms for sequence alignment that can be used to identify

homologous templates even at very low sequence similarity.

Structural similarity correlates reliably with sequence homology if

the sequence identity is high (.40%), but if identity enters the so-

called twilight-zone (20-35%), the number of false-positives

increases dramatically [27]. The availability of more reliable

sequence search tools therefore helps to increase the success rates

of the widely used approach to model proteins of unknown

structures from homologous template structures [8].

In recent years, profile-profile alignment tools such as HHpred,

COMPASS [28], and various protein structure prediction servers

[8,29] have been developed. These tools are sensitive enough to

detect even very remote homologous templates for structure

modeling. In our case, the correct assignment of the PUR repeats

was a prerequisite for the detection of a bacterial homolog with

only one PUR repeat. After structure determination of the PUR-

domain [9] and its deposition in databases, PUR repeats are now

reliably detected by these tools in a range of orthologs.

The homology of the bacterial protein was confirmed functionally

by DNA-binding assays. In agreement with the concept that structure

follows function, this finding suggested also structural conservation.

For template-based modelling of unknown structures, several

structure prediction server are available [29]. We used HHpred,

which provides results much faster than most other tools [15].

Secondly, we demonstrate that a distant bacterial homolog with

significantly lower complexity can be used to obtain information

on the general domain organization. This knowledge was

successfully applied to overcome hurdles in structure determina-

tion of the eukaryotic protein. The main advantage of the simpler

bacterial protein was that only a single conserved sequence

element is present in the peptide chain, whereas eukaryotic Pur-a
contains three of them. Two of these PUR repeat elements interact

to form a globular domain. For structure determination of the

eukaryotic protein the correct number and combination of PUR

repeats had to be used. In contrast, the bacterial counterpart with

only one repeat folded into a globular domain by simply self

assembling the right number of molecules. Thus, no prior

knowledge was required in bacteria and structure determination

could be broken down to feasible parts.

We suggest that this workflow (Figure 1) could also be helpful for

other cases where structural information is scarce and repetitive

elements are present. The publicly available Bioinformatics

Toolkit (http://toolkit.tuebingen.mpg.de) provides the programs

needed to achieve this goal also for distant homologs with low

sequence identities [21].

Repeat proteins are abundant in nature, and their number

increases with the complexity of the organism. It is estimated that

25% of all eukaryotic proteins contain repeat units [30]. It is

further assumed that repeat proteins have evolved from gene

duplication events and provide a source of variability for

interactions with binding partners [31]. For example, most

RNA-binding proteins in eukaryotes contain more than one

RNA-binding motif [32]. According to the prevailing view, the

combination of RNA-binding domains allows for versatility in

sequence-specific nucleic-acid binding.

It is a common feature of these repetitive elements that domains

in the same position in homologous proteins share a higher level of

sequence conservation than corresponding domains within the

same protein [32]. This is also true for the PUR repeats of D.

melanogaster and human Pur-a (Figure 2D). This observation hints

at a functional divergence of the different repeats, but also reflects

the importance of the domain arrangement relative to each other.

In the few structures known with multiple RNA-binding domains,

versatile combinations of domain arrangements have been

observed [32]. A better insight into the interactions of such

domains in the context of the full-length proteins is required to

understand their cooperation in nucleic-acid binding. It might well

be that careful bioinformatics analyses yields homologs from lower

species that can be exploited to understand the domain

arrangement and structural organization of those repeat-contain-

ing classes of proteins. As our case study shows, such information

can be essential for overcoming crystallization hurdles.

Materials and Methods

Protein Expression and Purification
Fragments of B. burgdorferi BB0047 were inserted into pGEX6p1

vector via BamHI/XhoI digestion and expressed in E coli BL21

(Novagen). Cells were lysed by sonication and all purification steps

were carried out at 4uC. Protein was purified on a glutathione-

column with buffer containing 500 mM NaCl, 50 mM HEPES

(pH 8.0). After elution with 25 mM glutathione, protease cleavage

and dialysis against buffer containing 20 mM HEPES (pH 8.0)

and 250 mM NaCl was carried out over night. GST was

subtracted using a glutathione-column and contaminating nucleic
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acids were removed by a Q-column. Pur-a was further purified by

Heparin column and size-exclusion chromatography with a

Superose 12 10/300 GL column (GE-Healthcare) in buffer

containing 250 mM NaCl and 20 mM HEPES (pH 8.0).

Seleno-L-Met-substituted protein was expressed as described

[33] and purified analogous to native protein with the addition

of 1–5 mM DTT in all buffers. D. melanogaster Pur-a was purified

as described previously [9].

Human Pur-a 56–287 (C272S) was purified in a similar

manner. Protein was purified on a glutathione-column in buffer

containing 500 mM KCl, 100 mM TRIS (pH 8.4). After elution

with 25 mM glutathione, protease cleavage and dialysis against

buffer containing 500 mM KCl and 100 mM TRIS pH (8.4) was

carried out over night. GST was subtracted using a glutathione-

column and contaminating nucleic acids were removed by a Q-

column. Pur-a was further purified by Heparin column and size-

exclusion chromatography with a Superdex S200 16/60 column

(GE-Healthcare) in buffer containing 500 mM KCl and 100 mM

TRIS pH (8.4).

Crystallization and structure determination
For crystallization, B. burgdorferi Pur-a was concentrated in

250 mM NaCl, 20 mM HEPES (pH 8.0), with the addition of

1 mM DTT and 1 mM TCEP for the seleno-L-Met-substituted

protein. Initial crystallization conditions were screened with a

Phoenix nano-dispensing robot and Xtal-focus visualization system.

After optimization, crystals were grown at 21uC using the hanging-

drop vapor-diffusion technique with an 1:1 mixture of protein

(2.2 mg/ml) and crystallization solutions containing 100 mM

HEPES (pH 7.2) and 20% PEG 3350 for the native crystals.

Methionines were introduced by site-directed mutagenesis [22] at

positions L17, F27, and I64. These amino acids were chosen because

the corresponding positions contain methionines in other Borrelia

species. The protein sequences of highly conserved gene products

(.95% identity) of B. burgdorferi, B. garnii, B. afzelii, B. valisiana, and B.

spielmanii were aligned with ClustalW [34] (not shown).

The selenomethione-substituted crystals were grown at 4uC in

2.8 M sodium formate with a protein concentration of 1.2 mg/mL

and the stoichiometric addition of a short DNA oligomer (hTel12),

albeit the latter was not visible in the structural model. Crystals

were cryo-protected in mother liquor plus ethylene glycol. Each

crystal was first transferred to a drop (1 mL) of mother liquor plus

10% ethylene glycol. After short incubation (2–5 seconds), it was

transferred to a drop of mother liquor plus 15% ethylene glycol,

and finally to mother liqour plus 20% ethylene glycol. The crystal

was flash-frozen in liquid nitrogen.

Crystals of about (2006100630) mm size for the native protein

and (100650650) mm size for the selenomethionine-substituted

protein appeared within 2–5 days. SAD experiments were

recorded at beamline X06SA/PXI (SLS, Villingen) and native

datasets at beamline ID23-1 (ESRF, Grenoble). Data were

integrated and scaled with the XDS program package [35].

Phases were obtained by SAD using SHELX [36]. The model was

built manually from the selenomethionine-dataset using COOT

[37]. The native protein structure was solved by molecular

replacement using PHASER [38] and the selenomethionine-

derivatized protein structure as search model. Refinement was

performed with REFMAC [39,40]. Final models were analyzed

using SFCHECK [41].

Structure visualization and analysis
Images of the crystal structures and their superposition were

prepared with PyMol (DELano, Palo Alto, USA). Buried surface

areas of the molecules were calculated with Areaimol [42].

Repeat detection in Pur proteins
The sequence of Pur-a from D. melanogaster was submitted to the

HHrepID web server with default parameters and diverged

sequence repeats were predicted. The secondary structure

prediction by PSIPRED [43] resulted in a bbbba-secondary

structure topology for the repeats.

We searched for potential homologs of the PUR domains,

which were at that time not yet contained in the CDD database of

the national centre for biotechnology information (NCBI). Using

PSI-BLAST, we found a bacterial sequence from B. burgdorferi,

which was annotated as PUR protein. In order to confirm the

homology of B. burgdorferi Pur-a to the three PUR repeats found in

Pur-a of D. melanogaster and Homo sapiens, we built multiple

alignments for the B. burgdorferi protein and the PUR repeats from

D. melanogaster and human using the buildali.pl script from the

HHsearch package. The two resulting multiple alignments were

aligned with each other using HHalign from the HHsearch

package, which is based on pair-wise comparison HMMs [44].

The resulting P-value of 3E-5 clearly validated the homology even

in the absence of a significant pair-wise sequence similarity

(Figure 2D).

Computational Model of D. melanogaster Pur-a
To facilitate the design of crystallizable constructs, we built a

homology model of D. melanogaster Pur-a with the Bioinformatics

Toolkit (HHpred), using the PUR protein from B. burgdorferi as

template for each repeat unit. Models were generated with the

MODELLER software [45] and assessed with Verify3D [46] and

ANOLEA [47]. The gap placement was optimized iteratively.

Multiple Sequence Alignment
The multiple alignment of the PUR repeats of Pur-a from

human, D. melanogaster, and B. burgdorferi was obtained in the

following way: we first aligned full-length human Pur-a with D.

melanogaster Pur-a using ClustalW [34]. Then we submitted the

pair-wise alignment to the HHrepID server to obtain an accurate

alignment of the three PUR repeats, from which the multiple

alignment of the six repeats from human and D. melanogaster Pur-a
was manually reconstructed. To add the PUR protein from B.

burgdorferi to this repeat alignment, we constructed a multiple

alignment of homologs of B. burgdorferi PUR by searching with

BLAST through the spirochete genomes on the Bioinformatics

Toolkit. The resulting alignment was aligned to the six PUR

repeats by submitting both multiple alignments to HHalign on the

Bioinformatics toolkit. The graphical representation of the

alignment was done with Jalview (Figure 2C) [48].

Radioactive Labelling of Oligonucleotides
DNA oligonucleotides were radioactively labeled at their 59-

ends using c-32P-ATP and T4 Polynucleotide Kinase (PNK)

following the manufacturer’s protocol (Fermentas, St. Leon-Rot,

Germany). 5 pmol of the oligonucleotide were incubated with

30 mCi c-32P-ATP, 10 units PNK and the supplied buffer A for

45 min at 37uC. The reaction was stopped by incubation at 70uC
for 10 min. DNA oligonucleotides were purified with the Qiaquick

Nucleotide Removal Kit (Qiagen, Hilden, Germany).

Filter binding assays
Nitrocellulose filter binding assays were performed essentially as

described [49]. The protein was transferred into binding buffer

(100 mM NaCl, 10 mM HEPES pH 8.0, 2.5 mM MgCl2, 1 mM

DTT) and serial protein dilutions (0–10 mM) were incubated with

a constant amount of radioactively labeled oligonucleotide
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(0.5 nM) for 20 min at room temperature. A nitrocellulose filter

(Optitran BA-S85 reinforced NC, Whatman/GE Healthcare,

Munich, Germany) was activated by incubating in 0.4 M KOH

for 10 min followed by washing 8 times with 200 mL water. The

nitrocellulose filter and a nylon membrane (Roti-Nylon Plus, Roth,

Karlsruhe, Germany) were equilibrated in binding buffer for 1 h.

A Bio-Dot microfiltration apparatus (BioRad, Munich, Germany)

was equipped with both membranes and each well was washed

with 50 mL binding buffer. 75 mL of each binding reaction were

applied on the membranes, followed by washing with 75 mL

binding buffer. A phosphor imager system was used to measure

the retained radioactively labeled oligonucleotides on the nictro-

cellulose filter. The storage phosphor screen (GE Healthcare,

Munich, Germany) was exposed to the filter for 1–1.5 h before it

was read out on a Storm Scanner (Molecular Dynamics,

Sunnyvale, USA). KaleidaGraph (Synergy software, Reading,

USA) was used to plot the fraction of bound oligonucleotide versus

the protein concentration. The equilibrium-dissociation constant

KD was derived by applying the Langmuir isotherm [50].

Supporting Information

Figure S1 Stereoview of the crystal structure of B. burgdorferi Pur-

a. (A) Ribbon backbone model with one monomer shown in red,

the other in cyan. Every 10th residue is highlighted in grey

(starting from residue 10). (B) Stereoview of (A), rotated 180u
around the vertical axis.

Found at: doi:10.1371/journal.pone.0013402.s001 (0.97 MB

PDF)
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and crystal quality of bacterially expressed prokaryotic and eukaryotic proteins

in a structural genomics pipeline. Proc Natl Acad Sci U S A 102: 1901–1905.

5. Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL, 2nd, et al. (2009)

Robust, high-throughput solution structural analyses by small angle X-ray

scattering (SAXS). Nat Methods 6: 606–612.

6. Savchenko A, Yee A, Khachatryan A, Skarina T, Evdokimova E, et al. (2003)

Strategies for structural proteomics of prokaryotes: Quantifying the advantages

of studying orthologous proteins and of using both NMR and X-ray

crystallography approaches. Proteins 50: 392–399.

7. Oldfield CJ, Ulrich EL, Cheng Y, Dunker AK, Markley JL (2005) Addressing

the intrinsic disorder bottleneck in structural proteomics. Proteins 59: 444–453.

8. Fischer D (2006) Servers for protein structure prediction. Curr Opin Struct Biol

16: 178–182.

9. Graebsch A, Roche S, Niessing D (2009) X-ray structure of Pur-alpha reveals a

Whirly-like fold and an unusual nucleic-acid binding surface. Proc Natl Acad

Sci U S A 106: 18521–18526.

10. Khalili K, Del Valle L, Muralidharan V, Gault WJ, Darbinian N, et al. (2003)

Pur-alpha is essential for postnatal brain development and developmentally

coupled cellular proliferation as revealed by genetic inactivation in the mouse.

Mol Cell Biol 23: 6857–6875.

11. Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and

characterization of an RNA-transporting granule. Neuron 43: 513–525.

12. White MK, Johnson EM, Khalili K (2009) Multiple roles for Puralpha in cellular

and viral regulation. Cell Cycle 8: 1–7.

13. Bergemann AD, Ma ZW, Johnson EM (1992) Sequence of cDNA comprising

the human pur gene and sequence-specific single-stranded-DNA-binding

properties of the encoded protein. Mol Cell Biol 12: 5673–5682.
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44. Söding J (2005) Protein homology detection by HMM-HMM comparison.

Bioinformatics 21: 951–960.

45. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of

spatial restraints. J Mol Biol 234: 779–815.

46. Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with

three-dimensional profiles. Nature 356: 83–85.

47. Melo F, Feytmans E (1998) Assessing protein structures with a non-local atomic

interaction energy. J Mol Biol 277: 1141–1152.
48. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview

Version 2—a multiple sequence alignment editor and analysis workbench.

Bioinformatics 25: 1189–1191.
49. Wong I, Lohman TM (1993) A double-filter method for nitrocellulose-filter

binding: application to protein-nucleic acid interactions. Proc Natl Acad Sci U S A
90: 5428–5432.

50. Müller M, Richter K, Heuck A, Kremmer E, Buchner J, et al. (2009) Formation

of She2p tetramers is required for mRNA binding, mRNP assembly, and
localization 15: 2002–2012.

Of Bits and Bugs

PLoS ONE | www.plosone.org 9 October 2010 | Volume 5 | Issue 10 | e13402



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


