
PLoS Biology  |  www.plosbiology.org 1111

Primer

July 2006  |  Volume 4  |  Issue 7  |  e239

The interaction between plant roots and 
Glomeromycota fungi [1]—arbuscular mycorrhiza 
(AM)—is probably the most important symbiotic 

association in nature. More than 80% of all higher land 
plant species are able to benefi t from the fungus’ ability 
to extract nutrients, mostly phosphorus, from the soil. 
In exchange, it has been estimated that worldwide up 
to 20% of all photosynthetically fi xed carbon might be 
delivered to the fungal partner. This makes it the most 
widespread symbiosis on earth [2–4]. Yet, despite its 
ecological importance, astonishingly little is known about 
the molecular mechanisms involved in this contact. In this 
issue of PLoS Biology, Besserer et al. [5] study how plant roots 
are recognized by their fungal partner and demonstrate that 
these events generalize across species.

Fossil evidence shows AM symbiosis to be at least as old 
as the earliest land plants [6,7]. It has been suggested that 
colonization of the land surface was dependent on the 
fungal symbiont’s ability to forage into the soil for inorganic 
nutrients and water. This interaction apparently proved to 
be so successful that even after development of functional 
plant root structures, it was still retained in most plant 
families. However, a surprising promiscuity is observed in this 
symbiosis since, at least under laboratory conditions, many 
plant–fungus combinations lead to symbiotic structures. This 
lack of specifi city is rather puzzling, considering the very 
long period of coevolution and the complete lack of sexual 
reproduction within the fungal partner, and points to a 
common mechanism of recognition.

Two important discoveries demonstrated that the early 
interaction between plant root and fungus involves mutual 
release of diffusible signaling molecules. Plant roots release 
“branching factors” (BFs) that induce morphological and 
cytological responses in the approaching fungal hyphae 
[8]. Among these, hyphal branching is the most prominent 
morphological change that can be attributed to fungus–plant 
recognition. In turn, fungal hyphae produce “myc factors” 
that lead to the transcriptional induction of symbiosis-
related genes in the host root [9]. These pre-symbiotic 
recognition events are pre-requisite for formation of fungal 
appressoria structures on the root surface, invasion and 
colonization of fungal hyphae inside the root cortex, and, 
fi nally, the formation of highly branched, tree-like fungal 
structures (arbuscules) inside plant cells. The surface increase 
associated with arbuscule formation is believed to aid nutrient 
exchange between the partners.

Recently, Akiyama et al. [10] provided a major 
breakthrough in our understanding of the very early 
recognition events in this process. They identifi ed 
strigolactones as the BFs released by the AM plant Lotus 
japonicus that trigger hyphal branching in the AM fungus 

Gigaspora margarita. Strigolactones belong to the sesquiterpene 
lactones, which are believed to have a wide distribution 
in the plant kingdom [11]. Curiously, the same class of 
molecules was described exactly 40 years ago as a germination 
stimulant for seeds of the parasitic weeds Striga (witchweed) 
and Orobranche that attack plant roots and deprive them of 
water and nutrients [12]. Strigolactones occur with different 
substitutions, yet very little specifi city was observed when 
different structures of natural and synthetic origin were tested 
for their activity on Gi. margarita. The widespread occurrence 
of strigolactones and this low structural specifi city may 
underlie the promiscuity of AM fungi.

Still, open questions remained. The Glomeromycota are 
considered the fi fth fungal phylum [1] and their common 
ancestor dates back 600 million years [7], yet all of these 
fungi exist in symbiosis with phototrophic organisms. 
Members of this phylum are more diverged from each other 
than the evolutionary younger basidiomycetes or ascomycetes, 
which have conquered very different niches during their 
evolution. Is responsiveness to strigolactones a general 
phenomenon within this phylum despite its old age? Besserer 
et al. [5] could show responses to strigolactones and synthetic 
derivatives, but not other sesquiterpene lactones, in three 
representatives of phylogenetically diverged groups of AM 
fungi: Gi. rosea, Glomus intraradices, and Gl. claroideum, thus 
providing important confi rmation of a general recognition 
mechanism. This widespread strigolactone perception system 
suggests that already the earliest land plants used this class of 
molecules to communicate with their symbiotic partners.

Interestingly, the induced morphological changes seem 
to be dependent on the fungal species. Whereas in both Gi. 
margarita and Gi. rosea spore germination occurs by itself and 
strigolactones produce an increase in hyphal branching, the 
main strigolactone effect on Gl. intraradices and Gl. claroideum 
is an elevated germination rate. 

Moreover, Besserer et al. [5] were able to demonstrate 
that application of strigolactone to these fungi led to not 
only morphological changes but also a rapid increase in 
mitochondrial density and respiration, both hallmarks of pre-
symbiotic reprogramming of the fungus [8,13]. Perception 
of the plant signal seems to activate the breakdown of storage 
lipids, which enables the fungus to forage and ramify in order 
to enhance the chance of an encounter with plant roots. The 
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high instability of strigolactones fi ts well with this role as a 
short-range signaling factor. 

The fi nding that plant secondary compounds can 
modulate fungal development invites speculations about 
possible additional roles for strigolactones during symbiosis. 
For example, it is completely unclear what signal triggers 
the profuse hyphal branching observed during arbuscule 
development. Strigolactones are obvious candidates to 
induce such developmental changes in the fungus. What is 
still missing is a quantitative assessment of the importance 
of strigolactones for symbiosis. An important tool would 
be plants unable to produce strigolactones. Such genetic 
strategies have been very successful in eliminating a major 
role for fl avonoids during AM development [11]. 

The ability to activate the pre-symbiotic stage of the fungus 
in a synchronized fashion will certainly help to unravel 
associated molecular events. Production and secretion of 
fungal symbiotic signaling factor(s) appears to be dependent 
on perception of the plant host [9] and may be induced after 
application of strigolactones. Thus, molecular identifi cation 
of the BF and demonstration of biological activity of synthetic 
derivatives opens up interesting possibilities for future 
research on the AM fungus. �
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