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Abstract

Fluorescent fusion proteins are widely used to study protein localization and interaction dynamics in living cells. However,
to fully characterize proteins and to understand their function it is crucial to determine biochemical characteristics such as
enzymatic activity and binding specificity. Here we demonstrate an easy, reliable and versatile medium/high-throughput
method to study biochemical and functional characteristics of fluorescent fusion proteins. Using a new system based on 96-
well micro plates comprising an immobilized GFP-binding protein (GFP-mulitTrap), we performed fast and efficient one-step
purification of different GFP- and YFP-fusion proteins from crude cell lysate. After immobilization we determined highly
reproducible binding ratios of cellular expressed GFP-fusion proteins to histone-tail peptides, DNA or selected RFP-fusion
proteins. In particular, we found Cbx1 preferentially binding to di-and trimethylated H3K9 that is abolished by
phosphorylation of the adjacent serine. DNA binding assays showed, that the MBD domain of MeCP2 discriminates between
fully methylated over unmethylated DNA and protein-protein interactions studies demonstrate, that the PBD domain of
Dnmt1 is essential for binding to PCNA. Moreover, using an ELISA-based approach, we detected endogenous PCNA and
histone H3 bound at GFP-fusions. In addition, we quantified the level of H3K4me2 on nucleosomes containing different
histone variants. In summary, we present an innovative medium/high-throughput approach to analyse binding specificities
of fluroescently labeled fusion proteins and to detect endogenous interacting factors in a fast and reliable manner in vitro.
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Introduction

Over the past decade a variety of proteomic approaches have

been used to identify cellular components in order to understand

the mechanism and inner workings of cells [1]. For example, mass

spectrometry-based proteomics uncovered the proteome of many

different organisms as well as cell-type specific differences in

protein expression. However, to understand and characterize the

function of single proteins, as well as the interplay between

different factors, it is essential to gain further insights into their

abundance, localization, dynamic interactions and substrate

specificities.

Fluorescent proteins like the green fluorescent proteins (GFP)

[2] and spectral variants have become popular tools to study the

localization and dynamic interactions of proteins in vivo. Despite,

the availability of a variety of commercial mono- and polyclonal

antibodies against GFP and other fluorescent proteins [3,4] (e.g.

Abcam, UK; Sigma, USA; Roche, Germany, ChromoTek,

Germany), proteins are mostly fused to a small epitope tag such

as FLAG or c-Myc to analyze biochemical characteristics like

enzymatic activities and/or binding specificities. Thus, integration

of such in vitro data with in vivo data obtained with fluorescently

labeled proteins has, in part, been impeded by the simple fact that

different protein tags are used for different applications. The gold

standard to examine binding affinities is surface plasmon

resonance (SPR) [5]. One drawback of this method is the need

of large amount of proteins. Such proteins have to be expressed

and purified from bacterial systems (e.g. E.coli) or lower eukaryotes

such as yeast (e.g. S. cerevisiae). Thus, the recombinant proteins lack

essential post-translational modifications or are not folded properly

possibly leading to different binding properties and inaccurate

results. In addition with SPR measurements one can only

determine the binding affinity to one substrate. This does not

reflect the in vivo situation where most proteins have the choice

between many different binding substrates in parallel.

Protein microarrays are an alternative to study protein-protein

interactions in high-throughput manner [6]. Once more the

drawback of this in vitro method is the laborative and time-

consuming preparation of recombinant proteins or protein

domains. Therefore protein microarrays are limited to domains

that can be produced as soluble, well-folded proteins [6].

Recently, specific GFP binding proteins based on single domain

antibodies derived from Lama alpaca have been described [7]

(GFP-Trap ChromoTek, Germany). The GFP-Trap exclusively

binds to wtGFP, eGFP and GFPS65T as well as to YFP and eYFP.

Coupling to matrices including agarose beads or magnetic
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particles the GFP-Trap allows for one-step purification of GFP-

fusion proteins. Previous studies made use of the GFP-Trap to

perform a broad range of different methods including mass

spectrometry analysis [8], DNA binding, DNA methyltransferase

activity assays [9], as-well-as histone-tail peptide binding assays

[10]. One mayor disadvantage of the GFP-Trap is, that batch

purification of GFP-fusions is very laborious and time-consuming

and one cannot test different GFP-fusion and/or assay conditions

in parallel. Here, we present an innovative and versatile high-

throughput method to quantitatively measure binding specificities

and to detect endogenous interacting factors in a fast and reliable

manner in vitro: 96-well micro plates coated with immobilized

GFP-Trap (GFP-multiTrap). To demonstrate the general suitabil-

ity of our assays, we choose already known binding partners and

compared our results with previous publications. Using this

method, we could confirm that Cbx1 preferentially binds to di-

and trimethylated histone H3 lysine 9 and that this binding is

abolished by phosphorylation of the adjacent serine 10 [11–13]. In

addition, we determined a 4-fold preference of the MBD domain

of MeCP2 for fully over unmethylated DNA in accordance to [14–

16]. Furthermore, we performed protein-protein interaction assays

and found that the Dnmt1 binds to PCNA in a PBD domain-

dependent manner consistent to [17,18]. In contrast, LigaseIII

binds Xrcc1 but does not interact with PCNA [19,20]. Using an

ELISA-based assay, we were able to detect endogenous PCNA

bound to immunoprecipiated Dnmt1, Fen1 and PCNA itself. In

accordance with our protein-protein interaction data, Dnmt1

lacking the PBD domain (Dnmt1DPBD) could not co-immuno-

precipate with PCNA. Consistent with our histone-tail peptide

binding data, we could detect endogenous histone H3 bound to

Cbx1. Finally, we quantified specific histone modifcations on

nucleosomes comprising different histone variants. All of these

data clearly demonstrate the versatility and easy handling of this

high-troughput approach and its immense benefit to many

researchers.

Results

One-step Purification of GFP-fusion Proteins
In a first step, we tested the efficiency of the GFP-multiTrap to

purify GFP-fusion proteins from cellular extracts. First, we

examined the pull-down efficiency of a GFP-tagged protein and

chose GFP-Cbx1 as a model protein. Cbx1 is a chromodomain-

containing protein related to the Drosophila HP1b, a well-studied

heterochromatin-associated protein [11]. We used cell extracts

from HEK293T cells transiently expressing GFP-Cbx1 or GFP,

purified the GFP-fusions using the GFP-multiTrap, eluted the

bound fractions, separated them by SDS-PAGE and visualized the

bound proteins by coomassie staining. The bound fractions

displayed mainly GFP as well as GFP-Cbx1 with only minor

impurities (Figure 1A), providing therefore a reliable tool for

downstream biochemical analyses. Notably, the washing condi-

tions can be varied according to the downstream applications. In

addition to these qualitative results, we performed experiments to

quantify the pull-down efficiency. For this purpose we quantified

the amount of bound GFP with varying concentrations of input

GFP from cellular extracts. After binding, the single wells were

subjected to several washing steps and bound GFP was analyzed

by fluorescent read-out using a micro plate reader. Notably, the

input amount of protein/substrate was measured in solution,

whereas the bound fraction represents one value on the 96-well

surface. We measured the fluorescence intensities of bound GFP

and plotted the amount of bound GFP as a function of total GFP

(Figure 1B). The amount of bound GFP increased linearly from 10

to 130 nM of total input and saturated between 130 and 400 nM.

Next, we quantified the amount of bound GFP by immunoblot-

ting. Therefore, we eluted the bound GFP fractions, separated

them by SDS-PAGE, visualized the bound proteins by immuno-

blot analysis (Figure 1C) and quantified the GFP signal by

measuring the mean intensity via Image J (Figure 1D). Similar to

the quantifcation by fluorescent read out using a micro plate

reader, the amount of bound GFP increases linearly from 10 to

130 nM of total input and saturates between 130 and 400 nM.

In summary, we demonstrated that the GFP-multiTrap allows

for fast and efficient one-step purification of GFP-fusion proteins

directly from crude cell lysates in a high-throughput manner. The

method works well for both qualitative and quantitative measure-

ments and the immunoprecipitated GFP-fusions can then be

further tested in biochemical assays.

In vitro Histone-tail Peptide and DNA Binding Assay
In the next assay we determined whether this approach is also

feasible to quantify binding affinities between GFP-proteins and

peptides or DNA. First, we analyzed histone-tail peptide binding

specificities of the chromobox homolog 1, Cbx1, fused with a N-

terminal GFP-tag using the GFP-multiTrap. GFP-Cbx1 was

purified from mammalian cell lysate, as described above, and the

bound protein was incubated with TAMRA-labeled histone-tail

peptides. A set of 20 different histone-tail peptides (Table 1) was

used in technical triplicates in parallel and GFP served as negative

control (GFP data is not shown). After removal of unbound

substrate the amounts of protein and histone-tail peptide were

determined by fluorescence intensity measurements using a micro

plate reader. Binding ratios were calculated by dividing the

concentration of bound histone-tail peptide by the concentration

of GFP fusion (Figure 2A). GFP-Cbx1 preferentially binds

H3K9me3 and H3K9me2 histone-tail peptides consistent with

previous studies [11,12]. As expected, the phosphorylation of

serine 10 (S10p) next to the trimethylated lysine 9 leads prevents

binding of Cbx1, which is in accordance with previous reports

[13]. In addition to fluorescent quantification via a micro plate

reader, we scanned the TAMRA signals using a Typhoon scanner

(Figure 2B). Here, we detected TAMRA signals in the wells

corresponding to di- and trimethylated H3K9. Notably, we did

not detect differences in binding towards di-and trimethylated

H3K9 using a micro plate reader. However, we could detect

a preference for tri- over dimethylated H3K9 using a fluorescence

scanner. These differences could result from different sensitivities

of both methods. Furthermore, we performed a competition assay

to demonstrate the specificity of the histone-tail peptide-binding

assay. We incubated GFP-Cbx1 with TAMRA-labeled H3K9me3

in parallel with either biotinylated H3K9me3 or H3K9ac histone-

tail peptides. As expected, the addition of biotinylated H3K9me3

histone-tail peptide significantly decreased the binding of Cbx1 to

TAMRA-labeled H3K9me3, whereas the addition of biotinylated

H3K9ac did not alter the binding ratios (Figure 2C). In previous

studies [11,12], the binding affinities of the HP1b chromo domain,

the Drosophila homolog of mammalian Cbx1, for both di- and

trimethylated H3K9 peptides have been found to be 7 and

2.5 mM, respectively. In contrast, we could not detect a significant

difference in binding ratios between di- and trimethylated H3K9

histone tail peptides using a micro plate reader (Figure 2A). One

explanation could be the use of different expression systems. While

the binding ratios for the HP1b chromo domain were determined

using bacterially expressed protein we used a fluorescent fusion

protein derived from mammalian cells. In this context a recent

study revealed that recombinant HP1a prepared from mammalian

cultured cells exhibited a stronger binding affinity for K9-
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methylated histone H3 (H3K9me) in comparison to protein

produced in Escherichia coli [21]. Biochemical analyses revealed that

HP1a was multiply phosphorylated at N-terminal serine residues

(S11–14) in human and mouse cells and that this phosphorylation

enhanced the affinity of HP1a for H3K9me, displaying the

importance of post-translational modifications for binding affinities

[21]. To determine the binding affinity of GFP-Cbx1 to

H3K9me3, we varied the input amount of histone-tail peptide.

We plotted the amount of bound histone-tail peptide as a function

of total peptide and fitted the values using GraphPad Prism and

nonlinear regression (Figure 2D). The amount of bound

H3K9me3 histone-tail peptide increases linearly and saturates at

approximately 500 nM of input peptide. In contrast to H3K9me3,

we could not detect any binding of Cbx1 to H3 histone-tail

peptides. Notably, the exact determination of binding affinities was

not possible due to differences in the technical measurement of

input versus bound fractions. Here, the input amount of protein/

substrate was measured in solution, whereas the bound fraction

represents one value on the 96-well surface.

In addition to histone-tail peptide binding assays, we performed

DNA-binding assays. We purified the methyl-binding domain

(MBD) of MeCP2, fused with a C-terminal YFP tag, from cell

extracts as described and performed competition binding analysis

by incubating immobilized MBD-YFP with fluorescently labeled

un- and fully methylated DNA (Table 1). As a result we observed

a five-fold preference of MBD for fully methylated DNA over

unmethylated DNA (Figure 2E). In addition, we measured the

amount of bound DNA to MBD-YFP by varying the input amount

of DNA. We plotted the amount of bound un- and fully

methylated DNA as a function of total un-and fully methylated

DNA and fitted the values using GraphPad Prism and nonlinear

regression (Figure 2F). Similar to the relative binding ratios, MBD

binds preferentially to fully methylated DNA. These results are in

accordance with previous studies describing that MeCP2 interacts

specifically with methylated DNA mediated by the MBD domain.

In these studies, electrophoretic mobility shift assays (EMSA) using

the isolated MBD domain expressed in E. coli were performed and

dissociation constants of 14,7 and 1000 nM were calculated for

symmetrically methylated and unmethylated DNA, respectively

[14–16].

To assess the suitability of the in vitro histone-tail peptide and

DNA binding assay for high-throughput applications, the Z-factor

was calculated. For histone-tail peptide binding assays, we

calculated the Z-factor using the relative binding ratios of

H3K9me3 to GFP-Cbx1 as positive state and of H3K9me0 to

GFP-Cbx1 as negative state. For the DNA binding assay, we

calculated the Z-factor using the relative binding ratios of fully

methylated DNA to MBD-YFP as positive state and of
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Figure 1. One-step purification of GFP and GFP-fusion proteins. Purification of GFP and GFP-Cbx1 expressed in HEK293T cells. All GFP
concentrations were quantified via plate reader. (A) Purification of GFP and GFP-Cbx1 from HEK293T cell extracts, transciently transfected with the
GFP-fusions. Input (I), flow-through (FT) and bound (B) fractions were separated by SDS-PAGE and visualized by coomassie staining. (B) Different
amounts of GFP cell lysate were added into wells of a 96-well plate immobilized with the GFP-Trap (GFP-multiTrap).Shown are means6 SD from two
independent experiments. (C) Bound GFP fractions from both independent experiments (B) were eluted, seperated by SDS-PAGE and visualized by
immunoblot analysis using an anti-GFP mouse antibody (Roche, Germany). (D) Quantification of bound GFP fractions by immunoblotting. The mean
intensities of the GFP signals were measured using Image J.
doi:10.1371/journal.pone.0036967.g001
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unmethylated DNA to MBD-YFP as negative state (Table 2). The

Z-factors of 0.766 for the histone-tail peptide binding assay and

0.756 for the DNA binding assay strongly indicate that both assays

are robust, reproducible and suitable for high-throughput applica-

tions.

In vitro Protein-protein Binding Assay
In addition to the detection of substrate specificity (e.g. histone-

tail peptide) and DNA binding, analysis of the interaction with

other cellular components and factors is essential to understand

the function of proteins.

The use of fluorescence intensity read-out systems for the

quantification of protein-protein interactions in vitro provides a new

Table 1. Sequences of DNA oligonucleotides and histone-tail peptides.

DNA oligos

DNA substrate DNA sequence DNA labeling

CG-up 59- CTCAACAACTAACTACCATCCGGACCAGAAGAGTCATCATGG -39 No

MG-up 59- CTCAACAACTAACTACCATCMGGACCAGAAGAGTCATCATGG -39 No

um550 59- CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG -39 ATTO550 at 59end

um700 59- CCATGATGACTCTTCTGGTCCGGATGGTAGTTAGTTGTTGAG -39 ATTO700 at 59end

mC700 59- CCATGATGACTCTTCTGGTCMGGATGGTAGTTAGTTGTTGAG -39 ATTO700 at 59end

DNA substrates

DNA substrate CpG site Label Oligo I Oligo II

UMB-550 unmethylated 550 CG-up um550

UMB-700 unmethylated 700 CG-up um700

FMB-700 Fully methylated 700 MG-up mC700

DNA sets

Binding set Control set

UMB-550 UMB-550

FMB-700 UMB-700

Histone-tail peptides

H3 (1–20) ART K QTARKSTGGKAPRKQLK TAMRA at C-terminus

H3K4me1 ART X1 QTARKSTGGKAPRKQLK

H3K4me2 ART X2 QTARKSTGGKAPRKQLK

H3K4me3 ART X3 QTARKSTGGKAPRKQLK

H3K4ac ART Z QTARKSTGGKAPRKQLK

H3K9me1 ARTKQTAR X1 S TGGKAPRKQLK

H3K9me2 ARTKQTAR X2 S TGGKAPRKQLK

H3K9me3 ARTKQTAR X3 S TGGKAPRKQLK

H3K9me3S10p ARTKQTAR X3 Z2 TGGKAPRKQLK

H3K9ac ARTKQTAR Z S TGGKAPRKQLK

H3 (17–36) RKQLATKAAR K SAPATGGVK TAMRA at N-terminus

H3K27me1 RKQLATKAAR X1 SAPATGGVK

H3K27me2 RKQLATKAAR X2 SAPATGGVK

H3K27me3 RKQLATKAAR X3 SAPATGGVK

H3K27ac RKQLATKAAR Z SAPATGGVK

H4 (10–29) LGKGGAKRHR K VLRDNIQGI

H4K20me1 LGKGGAKRHR X1 VLRDNIQGI

H4K20me2 LGKGGAKRHR X2 VLRDNIQGI

H4K20me3 LGKGGAKRHR X3 VLRDNIQGI

H4K20ac LGKGGAKRHR Z VLRDNIQGI

X1: monomethylated Lysine; X2: dimethylated Lysine; X3: trimethylated Lysine; Z: acetylated Lysine; Z2: phosphorylated Serine.
doi:10.1371/journal.pone.0036967.t001
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and simple method avoiding laborious and inaccurate protein

detection using conventional immunoblotting systems.

To address the question if such interaction analysis can be

performed in a multi-well format we analyzed the interaction of

single GFP-fusions with RFP-fusion proteins expressed in mam-

malian cells. More precisely, we determined quantitative binding

ratios between nuclear located proteins involved in DNA-

replication (PCNA) [17,18], DNA-methylation (Dnmt1) [22] as

well as in DNA-repair (Xrcc1) [23]. As described, we immobilized

GFP-fusions on the GFP-multiTrap and incubated them with cell

lysate containing RFP-fusion proteins. After binding, we removed

unbound material, measured the concentrations of RFP and GFP

and calculated the molar binding ratios. Firstly, we determined the

binding ratios of the green fluorescent PCNA-binding domain of

Dnmt1 (GFP-PBD) to RFP-PCNA and used Dnmt1DPBD as

a negative control. By measuring the fluorescent signal intensities

we detected that RFP-PCNA binds to GFP-PBD in a molar ratio

of 1.4260.31 but not to Dnmt1DPBD (Figure 3A).

For a direct comparison we eluted the bound fractions,

separated them by SDS-PAGE and visualized the proteins by

immunoblotting (Figure 3B). Both, GFP-PBD and RFP-PCNA are

detected in the input and bound fractions whereas RFP is not

visible in the bound fraction of GFP-PBD (Figure 3B).

In addition, we measured the amount of bound RFP-fusion to

GFP-PBD with varying the input amount of RFP-fusion. We

plotted the amount of bound RFP-fusion as a function of total

RFP-fusion and fitted the values using GraphPad Prism and

nonlinear regression (Figure 3C). Similar to the relative binding

ratios, GFP-PBD binds to RFP-PCNA but not to RFP.

These results are in accordance with previous findings that

Dnmt1 associates with the replication machinery by directly

binding to PCNA, a homotrimeric ring which serves as loading

platform for replication factors, and that this binding depends on

the PCNA-binding domain in the very N-terminus of Dnmt1

[17,18]. In addition by determining the quantitative binding ratio

between both partner proteins our approach provides a more

detailed insight in the binding events occurring at the central

loading platform of the DNA replication.

Secondly, we determined the molar binding ratio of GFP-Ligase

III to RFP-Xrcc1. Xrcc1 binds in a molar ratio of 0.6160.14 to

Ligase III but did not bind to other proteins such as GFP-PBD,

GFP-Dnmt1DPBD or GFP. Previous studies demonstrated that

DNA Ligase III was recruited to DNA repair sites via its BRCT

domain mediated interaction with Xrcc1 [19,20].

For the protein-protein binding assays, we calculated the Z-

factor using the molar binding ratios of RFP-PCNA to GFP-PBD

as positive state and RFP to GFP-PBD as negative state (Table 2).

The Z-factor of 0.56 indicated that the protein-protein binding

assay is robust and reproducible.

In summary, we demonstrate a new quantitative and reliable

high-throughput method to analyze protein-protein interactions

using GFP- and RFP-fusion proteins.

Enzyme-linked Immunosorbent Assay (ELISA)
Next we examined endogenous protein-protein interactions

using an ELISA assay. For this purpose, we precipitated GFP-

fusion proteins in the 96 well format on the GFP-multiTrap and

cross-linked bound fractions with formaldehyde (CH2O) and/or

treated the bound fractions with methanol (MeOH). Using specific

antibodies against PCNA, we determined the binding of endog-

enous PCNA to GFP fusions of Dnmt1, Dnmt1DPBD, PCNA,

Fen1, which is a flap endonuclease and an essential DNA

replication protein [24]. We could detect endogenous PCNA

binding to Dnmt1 but not to Dnmt1DPBD similar to the results

obtained with the protein-protein interaction assay using RFP-

PCNA (Figure 4A). In addition, we detected binding of

endogenous PCNA to Fen1 but also to PCNA itself. These results

fit well to former studies showing that Fen1 or maturation factor 1

associates with PCNA in a stoichiometric complex of three Fen1

molecules per PCNA trimer [25,26]. In addition to 100 described

interacting partners, it is known that PCNA also interacts with

itself and forms a trimeric ring, which is confirmed by our ELISA

assay by giving a signal for endogenous PCNA binding to GFP-

PCNA (Figure 4A).

Next, we determined the binding of Cbx1 to endogenous

histone H3. Similar to PCNA, we precipitated GFP-Cbx1 and

GFP and detected endogenous H3 via an H3-antibody coupled to

HRP. In accordance with the experiments using TAMRA labeled

histone 3 peptides, we observed an H3 ELISA signal for binding to

Cbx1 but not to GFP. Using an H3K9me3-specific antibody, we

could not detect an ELISA signal (data not shown), due to the fact

that the tight binding of Cbx1 (Figure 2) to H3K9me3 most likely

nonlinear regression. All input and bound fractions were quantified via a plate reader. (E) DNA binding specificities of the MBD domain of MeCP2 to
un- and fully methylated DNA in direct competition. Shown are means 6 SD from three independent experiments. (F) Different amounts of Atto550-
labeled unmethylated and Atto700-labeled fully methylated DNA in direct competition were added to purified MBD-YFP. Shown are means 6 SD
from three independent experiments. The amount of bound DNA peptide was plotted as a function of total DNA. The curve was fitted using
GraphPad Prism and nonlinear regression. All input and bound fractions were quantified via a plate reader.
doi:10.1371/journal.pone.0036967.g002

Table 2. Overview of relative binding ratios and Z-factor values.

Relative binding ratios of Substrate/GFP- or YFP-fusion

Histone-tail peptide binding DNA binding Protein-protein binding

Fusion protein GFP-Cbx1 MBD-YFP GFP-PBD

Substrate H3K9me3 H3K9un Fully methylated DNA Unmethylated DNA RFP-PCNA RFP

Average ratio 0,5715 0,0772 0,0912 0,0223 1,487 0,005

Standard deviation 0,0150 0,0236 0.0037 0.0019 0,2111 0,006

Z-factor 0,766 0.756 0.560

Based on the average relative binding ratios and the standard deviations we calculated the Z-factor.
doi:10.1371/journal.pone.0036967.t002
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occludes the antibody epitope, as has been proposed for HP1

binding to H3K9me3. In this study, the histone H3 trimethyl-

lysine epitope is embedded in an aromatic cage blocking thereby

most likely the binding of any antibodies [27]. To further analyze

the bound fractions, we eluted GFP-Cbx1 and GFP, separated

them on an SDS-PAGE gel and visualized GFP and H3 by
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immunoblotting. Histone H3 was detectable in the input fractions

of both GFP and GFP-Cbx1 but as expected, only in the bound

fraction of GFP-Cbx1.

Comparative Analysis of Posttranslational Histone
Modifications
Histone posttranslational modifications play an important role

in the structural organization of chromatin and often correlate to

transcriptional activation or repression depending on their type

and location. Recently, it has been shown that nucleosomal

incorporation of histone variants can lead to alterations in

modification patterning and that such changes may complement

the properties brought by the variant itself [28].

In order to investigate the suitability of the GFP-multiTrap in

comparing such histone posttranslational modifications, we

isolated nucleosomes from HeLa cells expressing either GFP-

H2A or GFP-H2A.Z and precipitated them with the 96 well micro

plate. GFP levels were then recorded (data not shown) to ensure

equal loading of substrate per well. In addition, as a negative

control, the cytoplasmic supernatant fraction was also incubated

with the GFP-multiTrap. An ELISA approach was then used to

quantify differences in histone H3K4me2 levels between the two

different nucleosome compositions. Following cross-linking and

permeablization, bound nucleosomes were incubated with either

anti-H3, directly conjugated to HRP or anti-H3K4me2 (both

antibodies Abcam, UK). Histone H3K4me2 levels were then

normalized to the histone H3 signal. In accordance with published

data, H2A containing nucleosomes were depleted in H3K4me2

where as those containing H2A.Z showed a large enrichment for

this modification (Figure 5) [28].

Discussion

One challenge of the proteomic era is the effective integration of

proteomic, cell biological and biochemical data. Ideally, proteomic

data on tissue and cell cycle-specific expression of specific proteins

should be combined with subcellular localization and binding

dynamics of fluorescent proteins. Additionally, it is crucial to

determine cell biological and biochemical characteristics such as

interacting factors, enzymatic activity and substrate binding

specificities. The integration of all these different data has, in

part, been impeded by the simple fact that different protein tags
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are used for different applications. Here, we present a new

versatile, high-throughput method to determine in vitro binding

specificities and to detect endogenous interacting factors of GFP-

fusion proteins. We use 96-well micro plates with immobilized

GFP-Trap (GFP-multiTrap) for fast and efficient purification of

GFP-fusion proteins. We demonstrate the efficiency and purity of

the GFP immunoprecipitation (Figure 1), a prerequisite to obtain

reliable biochemical data on e.g. binding specificities. Moreover,

we measured histone-tail binding, DNA and protein-protein

binding ratios underlying the versatility of our approach (Figure 2

and 3 and Table 2). The suitability of the demonstrated assays for

high-throughput biochemical and functional studies was assessed

by calculating the Z-factors (Table 2). Therefore, our assay is

suitable to examine an initial high-throughput screening for

potential binding partners. Moreover, the assay can be used for

compound screening. Additionally, our method allows for de-

tection of endogenous interaction factors based on an ELISA assay

(Figure 4 and 5).

In contrast to other high-throughput techniques like conven-

tional microarrays, it does not require time-consuming recombi-

nant protein expression and purification but allows for the direct

biochemical analyses of GFP-fusion proteins expressed in mam-

malian cells. The versatile GFP-multiTrap combined with the

widespread use of fluorescent fusion proteins now enables a fast

and direct quantitative correlation of microscopic data concerning

the subcellular localization and mobility of fluorescent fusion

proteins with their enzymatic activity, interacting factors, and

DNA binding properties combining cell biology and biochemistry

with mutual benefits.

Materials and Methods

Expression Constructs, Cell Culture and Transfection
Mammalian expression constructs encoding GFP-Dnmt1, GFP-

Dnmt1DPBD, GFP-PBD, GFP-PCNA, RFP-PCNA, GFP-Ligase

III, mRFP, GFP, MBD-YFP, GFP-Fen1 and RFP-Xrcc1 were

described previously [7,20,29–37]. Note that all constructs encode

fusion proteins of GFP, RFP or yellow fluorescent protein (YFP).

The Cbx1 expression construct was derived by PCR from mouse

cDNA, cloned into pEGFP-C1 (Clontech, USA) and verified by

DNA sequencing. Throughout this study enhanced GFP (eGFP)

constructs were used and for simplicity referred to as GFP-fusions.

HEK293T cells [30] and HeLa Kyoto [29] were cultured in

DMEM supplemented with either 50 mg/ml gentamicin

(HEK293T) or 1% penicillin/streptomycin (HeLa Kyoto) and

10% fetal calf serum. For expression of GFP/RFP/YFP fusion

proteins, HEK293T cells were transfected with the corresponding

expression constructs using polyethylenimine (Sigma, USA). 2.

HeLa Kyoto cells were transfected using FuGene HD (Roche,

Germany) according to the manufacturer’s instructions. The

plasmid coding for GFP-H2A (H2A type 1, NP_003501.1) was

kindly provided by Emily Bernstein (Mount Sinai Hospital) and

the plasmid coding for GFP-Z-1 was a gift from Sachihiro

Matsunaga (University of Tokyo). Stable cell lines were selected

with 600 mg/ml G418 (PAA, Austria) and individual cell clones

sorted by using a FACSAria machine (Becton Dickinson,

Germany).

Histone-tail Peptides and DNA Substrate Preparation
Fluorescently labeled DNA substrates were prepared by mixing

two HPLC-purified DNA oligonucleotides (IBA GmbH, Germany

Table 1) in equimolar amounts, denaturation for 30 sec at 92uC
and slow cool-down to 25uC allowing hybridization. Histone-tail

peptides were purchased as TAMRA conjugates and/or biotiny-

lated (PSL, Germany) and are listed in Table 1.

Preparation of Protein Extracts
HEK293T cells were cultured and transfected as described [38].

For extract preparation 1 mg/ml DNaseI, 1 mM PMSF and

Protease Inhibitor cocktail (Roche, Germany) were included in the

lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 mM

MgCl2, 0.5% NP40) or nuclear extract buffer (10 mM HEPES

pH 7.9, 10 mM KCl, 1.5 mMMgCl2, 0.34 M Sucrose, 10%Glyc-

erol, 1 mM b-mercapto-ethanol). Cells were lysed for 30 minutes

on ice followed by a centrifugation step (15̀/12000 rpm/4uC).
Extracts from transfected 10 cm plates were diluted to 500 mL
with immunoprecipitation buffer (IP buffer; 20 mM Tris-HCl

pH 7.5, 150 mM NaCl, 0.5 mM EDTA) or dilution buffer

(20 mM HEPES pH 7.9, 150 mM KCl). An aliquot of 10 mL
(2%) were added to SDS-containing sample buffer (referred to as

Input (I)).

Purification and Elution of GFP/YFP/RFP- Fusions
For purification, 100 mL or 50 mL precleared cellular lysate

for full-area plates or half-area plates, respectively, was added

per well and incubated for 2 hours at 4uC on a GFP-multiTrap

plate by continuous shaking. After removing the supernatant,

wells were washed twice with 100 mL of washing buffer (WB;

20 mM Tris-HCl pH 7.5, 100–300 mM NaCl, 0.5 mM EDTA)

and 100 mL of IP or dilution buffer was added for measure-

ment. The amounts of bound protein were determined by

fluorescence intensity measurements with a Tecan Infinite

M1000 plate reader (Tecan, Austria). Wavelengths for excitation

and emission of GFP are 490610 nm and 511610 nm, for

RFP are 58665 nm and 608610 nm and for YFP 52565 nm

and 53865 nm, respectively. The concentration of proteins was

calculated using calibration curves that were determined by

measuring the fluorescence signal of known concentrations of

purified GFP, RFP and YFP. Notably, factors interfering with
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Figure 5. Comparative analysis of posttranslational histone
modifications. Cytoplasmic supernatant (SN) or mononucleosome
(MN) fractions prepared from HeLa cells expressing GFP-H2A or GFP-
H2A.Z were precipitated and the levels of H3 and H3K4me2 were
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fluorescence intensity measurements such as absorption of

excitation light by cell lysates, auto fluorescence of the samples

and/or scattering of the excitation/emission light by cell debris

are negligible (Figure S1). Bound proteins were eluted with

300 mM Glycin pH 2.5 and subsequently buffered with 1 M

Tris pH 7.5. Elution fractions were added to SDS-containing

sample buffer (referred to as Bound (B)). Bound proteins were

visualized by immunoblotting using the anti-GFP mouse mono-

clonal antibody (Roche, Germany).

In vitro Histone-tail Peptide Binding Assay
The in vitro histone-tail binding assay was performed as

described previously [10]. After one-step purification of GFP

fusion proteins the wells were blocked with 100 mL 3% milk

solved in TBS-T (0.075% Tween) for 30 minutes at 4uC on

a plate vortex, shaking gently. After blocking, the wells were

equilibrated in 50 mL IP buffer supplemented with 0.05%

Tween. TAMRA-labeled histone-tail peptides were added either

to a final concentration of 0.15 mM or of the indicated

concentrations and the binding reaction was performed at RT

for 20 min on a plate vortex, shaking gently. After removal of

unbound substrate the amounts of protein and histone-tail

peptide were determined by fluorescence intensity measurements.

The concentrations of bound TAMRA-labeled histone-tail

peptides were calculated using calibration curves that were

determined by measuring a serial dilution of TAMRA-labeled

peptides with known concentrations.

Binding ratios were calculated dividing the concentration of

bound histone-tail peptide by the concentration of GFP fusion.

Wavelengths for excitation and emission of TAMRA were

56065 nm and 58665 nm, respectively.

In vitro DNA Binding Assay
In vitro DNA binding assay was performed as described

previously [9,10] with the following modifications. GFP/YFP

fusions were purified from HEK293T extracts using the 96-well

GFP-binder plates and incubated with two differentially labeled

DNA substrates at a final concentration of either 100 nM or of the

indicated concentration for 60 min at RT in IP buffer supple-

mented with 2 mM DTT and 100 ng/mL BSA. After removal of

unbound substrate the amounts of protein and DNA were

determined by fluorescence intensity measurements. The concen-

tration of bound ATTO-labeled DNA substrates was calculated

using calibration curves that were determined by measuring a serial

dilution of DNA-coupled fluorophores with known concentrations.

Binding ratios were calculated dividing the concentration of bound

DNA substrate by the concentration of GFP/YFP fusion,

corrected by values from a control experiment using DNA

substrates of the same sequence but with different fluorescent

label, and normalized by the total amount of bound DNA.

Wavelengths for excitation and emission of ATTO550 were

54565 nm and 57565 nm and for ATTO700 700610 nm and

720610, respectively.

Protein-Protein Interaction
GFP fusions were purified from HEK293T extracts using the

96-well GFP multiTrap plates, blocked with 3% milk and

incubated with cellular extracts comprising the RFP fusions with

the indicated concentrations for 30 min at RT. After removal of

unbound RFP fusion (washing buffer) the amounts of proteins

were determined by fluorescence intensity measurements. Binding

ratios were calculated dividing the concentration of bound RFP

fusion by the concentration of GFP fusion. Wavelengths for

excitation and emission of RFP were 58665 nm and 608610 nm,

respectively. Bound proteins were eluted and separated by SDS-

PAGE and visualized by immunoblotting using the anti-GFP rat

monoclonal antibody; 3H9, and the anti-red rat monoclonal

antibody, 5F8 (both ChromoTek, Germany).

Enzyme-linked Immunosorbent Assay (ELISA)
GFP fusions were purified (from HEK293T extracts) using the

96-well GFP-multiTrap plates and were washed twice with

dilution buffer (for nucleosome experiments salt concentration

was adjusted to 300 mM). After washing bound fractions were

either cross-linked with 2% formaldehyde and/or additionally

permeabilized with 100% MeOH. After blocking with 3% milk

solved in TBS-T (0.075% Tween) the wells were incubated with

primary antibody (monoclonal rat anti-H3-HRP (Abcam, UK),

polyclonal rabbit anti-H3K4me2 (Abcam, UK) or monoclonal rat

anti-PCNA, 16D10 (ChromoTek, Germany) overnight at 4uC on

a plate vortex, shaking gently. The wells were washed three times

with 200 mL TBS-T and horseradish peroxidase-conjugated

secondary antibody (Sigma, USA) was incubated for 1 h at RT

for the detection of PCNA or H3K4me2. The wells were washed

again as described above. For PCNA experiments detection was

carried out by incubating each well with 100 mL TMB (3,39,5,59-

tetramethylbenzidine) for 10 minutes at RT. The reactions were

stopped with the addition of 100 mL 1 M H2SO4. For nucleosome

experiments, detection was carried out using OPD (Sigma, USA)

according to the manufacturers instructions. Bound histone H3,

PCNA or H3K4me2 levels were quantified by determination of

the absorbance at 450 nm using a Tecan Infinite M1000 plate

reader (Tecan, Austria).

Preparation of Mononucleosomes
261072106107HeLa cells, expressing eitherGFP-H2A orGFP-

H2A.Z, were incubated in PBS, 0.3% Triton X-100 and Protease

InhibitorCocktail (Roche,Germany) for 10 min at 4uC.Nuclei were

pelleted and supernatant (SN) transferred and retained. The pellet

was washed once in PBS, resuspended in EX100 buffer (10 mM

Hepes pH 7.6, 100 mM NaCl, 1.5 mM MgCl2, 0.5 mM EGTA,

10% (v/v) glycerol, 10 mM b-glycerol phosphate 1 mM DTT,

Protease Inhibitor Cocktail (Roche, Germany)) and CaCl2 concen-

tration adjusted to 2 mM. Resuspended nuclei were digested with

1.5 U MNase (Sigma, USA) for 20 min at 26uC. The reaction was

stopped by addition of EGTA to a final concentration of 10 mM

followed by centrifugation for 10 min at 1000 rcf, 4uC. Mono-

nucleosome containing supernatant (MN) was retained.

Calculation of the Z-factors
To assess the suitability of the assay for high-throughput

biochemical and functional studies, the Z-factor was calculated

using the equation Z~1{
3| sp zsnð Þ

Dmp {mn D
[39]. In this equation, s is

the standard deviation of the positive (p) and the negative (n)

control; m is the mean value for the molar binding ratio (for

positive (mp) and negative (mn) controls). The values of three

independent experiments were used to calculate the Z-factor and

all values are listed in Table 2.

Supporting Information

Figure S1 Factors interfering the measured fluores-
cence intensities. (A) The concentrations of GFP and RFP

expressed in HEK293T cells were measured in serial dilutions of

crude cell extracts. Shown are means 6 SD from two independent

experiments. Fluorescence intensities were measured via a plate

reader and the GFP and RFP concentrations were determined as

described in the Material and Methods part. (B) Background GFP
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and RFP signals in cell lysates of untransfected HEK293T cells.

The fluorescence intensities (FI) were measured via a plate reader

and the concentrations were determined as described in the

Material and Methods part.
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