
Complex Actions for Event Processing

Steffen Hausmann
Institute for Informatics,

University of Munich
http://www.pms.ifi.lmu.de/

hausmann@pms.ifi.lmu.de

Maximilian Scherr
Institute for Informatics,

University of Munich
http://www.pms.ifi.lmu.de/
scherr@cip.ifi.lmu.de

François Bry
Institute for Informatics,

University of Munich
http://www.pms.ifi.lmu.de/

bry@pms.ifi.lmu.de

ABSTRACT
Automatic reactions triggered by complex events have been
deployed with great success in particular domains, among
others, in algorithmic trading, the automatic reaction to real-
time analysis of marked data. However, to date, reactions
in complex event processing systems are often still limited
to mere modifications of internal databases or are realized
by means similar to remote procedure calls.

In this paper, we argue that expressive complex actions
with support for composite workflows and integration of
so called external actions are desirable for a wide range
of real-world applications among other emergency manage-
ment. This article investigates the particularities of external
actions needed in emergency management, which are initi-
ated inside the event processing system but which are actu-
ally executed by external actuators, and discuss the impli-
cations of these particularities on composite actions. Based
on these observations, we propose versatile complex actions
with temporal dependencies and a seamless integration of
complex events and external actions. This article also in-
vestigates how the proposed integrated approach towards
complex events and complex actions can be evaluated based
on simple reactive rules. Finally, it is shown how complex ac-
tions can be deployed for a complex event processing system
devoted to emergency management.

Keywords
Complex Actions, Reactive Rules, Workflows, Complex Event
Processing

1. INTRODUCTION
The research reported about in this article has been mo-

tivated by new approaches for innovative technologies that
improve emergency management in critical infrastructures
as it is today.

In emergency management it is crucial to quickly deter-
mine the cause and effects of a yet or possibly emerging
emergency in a reliable fashion. Therefore, complex event

.

processing is perfectly suited to these kind of applications, as
it provides means to quickly analyze the high loads of data
which are caused by various sensors of highly technically
equipped infrastructures in a timely and continuous fashion.
The abstraction provided by complex events is especially de-
sirable during emergency situations, as the number of sensor
readings and alarms drastically increases and the large quan-
tity of usually highly redundant information makes it barely
possible for humans to grasp the important messages from
the avalanche of alarms or to retain a concise overview of
the situation. However, complex event processing still lacks
expressive capabilities for complex actions which enable so-
phisticated reactions to the detected situations beyond basic
actions that are triggered by reactive rules. But especially
during emergency situation it is crucial to support operators
by automatically executing suited reactions, so that they
have the room needed to consider decisions that cannot be
taken by computers. This article aims at filling this gap.

The contributions of this paper are the following: We pro-
pose versatile complex actions for event processing that are
designed to deal with the particularities of emergency man-
agement application, in particular external actions, a rich
notion of success and failure of actions, homogeneous inte-
gration of queries for events, static and dynamic data, and
support of rich conditional actions that enable the specifica-
tion of versatile workflows as they are needed in emergency
management. Moreover we demonstrate how the proposed
concepts can be realized on top of a common event process-
ing system.

2. ILLUSTRATING USE CASE
The following example introduces a challenging and vision-

ary scenario for emergency management which is based on
the description of a use case scenario proposed in [24].

A metro train is just leaving a station when a fire sensor
issues a pre-alarm that indicates the presence of fire in the
rear part of the train. The alarm message is immediately
sent to the control center of the metro network where it is
presented to the operator in charge. By means of the surveil-
lance cameras in the train, the operator can verify that there
is indeed a fire in the train and hence enters a confirmation
into the emergency management system which leads to a
series of automatic reactions. The operation modes of the
platform the train on fire is heading to and the tunnels that
are leading to the platform are set to “critical” and trains
are redirected away from the threatened station.

Meanwhile, the system aggregates alarms from adjacent
sensors which, bit by bit, also confirm the presence of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12175114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

fire from independent measurement methods. The charac-
teristics of the aggregated values are eventually used to de-
termine the location and the size of the fire, which turns out
to be rather small in this case. The collected information is
then fed into a simulator in order to determine how the toxic
smoke that is caused by the fire, the major threat to passen-
gers in this scenario, will propagate in the station once the
train has arrived there. Concurrently, the operation mode of
the platform is propagated within the station and to affected
tracks leading to this station. Moreover, the evacuation of
the station’s intermediate exchange level is initiated.

When the simulation data is available, the system deter-
mines an evacuation strategy for the threatened platform
that provides safe escape routes and guides passengers to
these routes. Hence, the system proposes to the operator to
use the escalator in the front and the stairs in the middle of
the platform for the evacuation of passengers. However, the
system recommends to avoid the stairs in the rear part of the
station for the evacuation, as, according to the simulation,
smoke will quickly spread from the rear part of the burning
train to the rear part of the platform and eventually to the
corresponding evacuation route. Within 1.5 minutes, the op-
erator accepts the proposal of the system and confirms the
announcement of the evacuation routes in the station and
the adaptation of the ventilation regime to keep the selected
evacuation routes free of smoke as long as possible.

Accordingly, the system activates the emergency lightning
and uses the public address system to direct passengers to
the safe evacuation routes in the front and the middle of the
platform. However, when the system tries to put the esca-
lator in the front in an upward running direction it receives
events indicating a malfunctioning of the escalator which is
interpreted as failure of the inversion of the escalator’s run-
ning direction. Therefore, the system asks the operator to
check whether the escalator can be used for the evacuation
anyhow, as the escalator may now be actually standing still,
but because the operator is currently busy coordinating the
arrival of the fire fighters, the request is neither confirmed
nor rejected. Eventually, the system autonomously adapts
the evacuation routes based on the results of the simulation,
so that passengers are directed away from the possibly faulty
escalator towards a safe evacuation route.

When the train on fire finally enters the station 2.2 min-
utes after the fire detection, the emergency lighting and effec-
tive ventilation are already activated. Passengers from the
train are directed to the remaining safe evacuation route and
can quickly leave the platform, so that within 3 minutes the
train is evacuated and 8 minutes later the entire platform
is evacuated as well. The system also provides the arriv-
ing fire fighters with aggregated information of the current
conditions of the infrastructure and the simulated future de-
velopment of the scenario.

This simplified and idealized scenario demonstrates how
intelligent systems can substantially support operators dur-
ing emergency situations and give them the needed room to
consider complex decisions that, at least for legal reasons,
cannot be left to fully automatized systems. It is worth
stressing, that so far, emergency management in such a situ-
ation is based on predefined and static and therefore barely
adaptable emergency scenarios that, in some cases like in
that of a fire in the Düsseldorf airport in 1996 [1], might
result in casualties that even a relatively simple system as
sketched above would suffice to avoid. However, in order to

Listing 1: Schema for temp-pre-alarm Events
temp -pre - alarm {

id{ identifier },
reception -time{time - interval }
area{ long },
sensor -id{ long }

}

Listing 2: A Complex Event Query
and{

event e: temp -pre - alarm { area{var A} },
event f: smoke -pre - alarm { area{var A} }

} where { {e,f} within 2 min }

provide the desired support, the envisioned system needs to
satisfy several requirements that are rarely fully addressed,
if addressed at all, by todays event processing systems:

• prevention of so called avalanches of alarms [27] by
aggregating alarms referring to the same incident to
fewer and more abstract events

• fast and reliable situation assessment by means of com-
plex events

• integration of simulations to enable reactions based on
a likely development of the scenario

• support of static data and states to keep track of the
dynamic properties of the infrastructure

• integration of external actuators, such as escalators
and displays, with support for indirect feedback

• reactive rules integrating queries for events and state-
ful objects and the execution of actions

• versatile complex actions with temporal dependencies
and support of compensating and fallback actions

3. PRELIMINARIES

3.1 Streams of Structured Data
In our system, the content of a stream is represented by

means of structured data that is similar to structs known
from C and C#. For emergency management applications,
structs are a desirable compromise between the expressive-
ness of semistructured data and the efficiency of flat tuples:
they represent data in a way that is convenient for humans,
but at the same time they can be efficiently mapped to flat
tuples in a database.

Listing 1 contains a sample schema for temp-pre-alarm
events. In general, each event is associated with a unique
id and a time interval referring to the reception time of the
event. In this example, the actual payload of the event is
represented by the attributes area and sensor-id.

For querying data, we have adapted the pattern based
querying approach from Xcerpt [8], where queries resemble
the data that is queried: a potentially incompletely specified
query pattern is matched with the data and variables in the
pattern are used to extract relevant portions of the data.

Consider, for instance, the following event query pattern:
temp-pre-alarm{ area{var A} }. It matches the previously
described temp-pre-alarm events and simultaneously binds
the corresponding area id to the variable var A. The same
pattern is subsequently used in the complex event query

from listing 2 to match the stream whenever smoke and tem-
perature pre-alarms occur in the same area within a time
window of two minutes. Note that the variable var A ap-
pears in both query patterns and therefore only temp-pre
-alarm and smoke-pre-alarm events that occurred in the
same area are joined. Moreover, the so called event identi-
fiers e and f are used in the where part of the query to con-
cisely constrain the reception times of the according events.

As it is common for event query languages, further tempo-
ral relationships between events can be specified by means
of Allen’s temporal relations [2], such as, e before f, etc.
They are used in logical formulas along with conjunctions,
disjunctions and negation to obtain expressive relationships
that support arbitrary combinations of all relations. A de-
tailed description of the employed query language called
Dura, which is inspired by the reactive language XChange
[7] and the rule based complex event processing language
XChangeEQ [6] but has been simplified so as to better meet
the emergency management needs, can be found in [14].

3.2 Event Driven Feedback Loop
The architecture of our system relies on an alternating pat-

tern of event detection and action execution: Events are de-
tected by sensors of the infrastructure and are subsequently
forwarded to the event processing system by means of an en-
terprise service bus. The system derives higher level events
in a continuous fashion which finally triggers reactive rules
and initiates external actions, respectively. The initiated
actions are then distributed from the event processing sys-
tem to the corresponding actuators which actually execute
them. Eventually, the effect of the actions modifies the phys-
ical state of the infrastructure which is detected by sensors
and hence according events are sent to the event processing
system.

It is worth stressing that all information is exclusively
communicated by means of events. When an action is ini-
tiated inside the event processing system, a corresponding
action$initiated event is derived by the system which ac-
tually represents the action.1 Likewise, the success and fail-
ure of an action entails corresponding action$succeeded and
action$failed events. This holds also for states and stateful
objects, which are introduced in section 4: updates of states
entails object$updated events, which can be used in event
queries to indirectly react to the state change.

4. STATEFUL OBJECTS FOR NON-
VOLATILE DATA

As it is motivated in the introduction, having some no-
tion of state or stateful object is desirable for emergency
management, as well as for other application which need
to keep track of properties that are subject to change in a
non-volatile way.

At first glance one might consider using either plain event
queries or queries to a database to obtain the desired means
to model dynamic data. However, both approaches reveal
some limitations which makes them inappropriate for our
desired purposes. Events are inherently volatile and they
are usually detected when they end whereas states should
be detected when they begin.2 Moreover, emulating states

1action and object are just wildcards for the actual names.
2Consider, for instance, a state representing an emergency
which can only be “detected” when the emergency is over.

by means of event queries is cumbersome and requires joins
over unbounded time window, as all events from the past
that characterize the current state need to be taken into ac-
count to reconstruct its current values. Entries in a database
are also rather unsuitable to model states, as they only rep-
resent a snapshot of the current state without any history of
past or even future states. Moreover, updates of database
tables are highly non-declarative which raises issues for the
semantic of queries: the execution order of updates influ-
ences their result and in addition the overwritten data may
still be needed for further processing. Furthermore, consid-
ering states that are valid over a certain time period are
natural and desirable, as it makes for instance a difference
whether the state of an area has just been updated to “ex-
ceptional” or whether the area has been in an exceptional
operation mode within the last couple of minutes.

To obtain a declarative approach towards states and non-
volatile dynamic data, we decided to adopt an idea that is
similar to fluents proposed by Kowalski et. al. [15]. Accord-
ingly, stateful objects are data terms that carry a payload
of structured data which is only valid over a right open time
interval, the so called valid time, that is determined by the
time point of the creation and the termination of the state-
ful object, respectively. The values of stateful objects can
be updated by means of internal actions, which actually ter-
minates the currently valid stateful object and creates a new
one with the updated values. In this way, the old values of
the updated object are not lost, they are just not currently
valid anymore. However, they remain valid for the time be-
fore the update.

In our use case scenario, the entire metro station is split
into a variety of areas which are represented by stateful ob-
jects with a unique area id and properties for operation mode
(normal, exceptional or emergency), the current smoke con-
centration in that area, etc. Initially the operation mode
for all areas is normal and the smoke concentration is set
to 0 percent. When fire is detected, for instance at time t1,
the operation mode of the according area is updated from
normal to exceptional. Hence, after the update, there are
two stateful objects that are associated with the regarded
area. The one stateful object is valid from time t0 to t1 ex-
clusively and has its operation mode attribute set to normal,
whereas the other stateful object is valid from time t1 until
it is changed and has its operation mode attribute set to
exceptional.

Stateful objects are queried in a way that resembles event
queries, though the keyword in front of queries is substituted
by state: a query pattern is used to select relevant portions
of the data and the according stateful object identifier is
used to relate the valid time of the matched stateful objects
to, for instance, the reception time of an event. Besides
the temporal relations that also can be used in combina-
tion with event identifier, two additional relations, which are
solely dedicated for stateful objects, are available, namely
valid-at which tests whether the stateful object is valid at
a certain time point and valid-during which tests whether
the stateful object is valid sometime in a given time interval.

The query from listing 3 matches whenever an alarm event
occurs in an area which is currently, more precisely, when the
alarm is actually detected, in normal operation mode. This
query can be easily extended to implement a simple filter
that sorts out alarms from areas that are already known to
be in a critical condition.

Listing 3: Unified Event and Stateful Object Query
and{

event e: alarm { area{var A} },
state s: area{ aid{var A}, op -mode {" normal "} }

} where { s valid -at end(e) }

It is worth to stress that, in contrast to other approaches,
like common ECA rules [21], queries for stateful objects are
homogeneously integrated into event queries making queries
easier to express and to understand. This is desirable, as
queries of both kinds can be arbitrarily combined and the
valid time of queried stateful objects can be freely restricted,
whereas it is always fixed to the time the event query matches
in case of ECA rules. Accordingly, reactive rules in Dura
have consists only of two parts, namely a body that con-
tains a combined query for events and stageful objects and
a head that contains a complex action. Thus, they resemble
EA rules from [13].

5. ACTIONS IN EVENT PROCESSING

5.1 Properties of External Actions
External actions, as they need to be considered for emer-

gency management, have quite different properties than func-
tions from common programming languages that are just ex-
ecuted to accomplish arbitrary computations and, more or
less, immediately return their result.

By contrast, external actions are just initiated in the event
processing system, they are then sent to and eventually exe-
cuted by the corresponding actuators. Therefore, the event
processing system has at first no knowledge about how long
the execution will take, if it was successful or failed, etc.
Instead, the system needs to rely on events that are either
sent directly by the actuator or that are sent by independent
sensors whose events allow to indirectly draw conclusions on
the execution result, to determine the actual execution re-
sult and the duration of an action. Moreover, the duration
of external actions cannot be described by a single point
in time, as the equipment needs to actually make a physi-
cal reaction which inherently takes a certain amount of time.
Therefore, the execution time of an action is indeed a proper
time interval.

Another important characteristic of external actions that
needs to be accounted for is that they often have no, or
no obvious, compensating actions. Think, for instance, of a
sprinkler system that has been activated. The water that has
been released cannot be simply pushed back into the tube by
means of an inverse action. Accordingly, transactions and
backtracking cannot be used in conjunction with actions as
they are required in our use case.

5.2 Rich Specifications for Success and Fail-
ure of Actions

When actions are just initiated in the system but are ac-
tually executed by some external actuator, the system needs
to rely on some kind of feedback to determine whether the
actions have been executed successfully or not. In common
approaches, the feedback is directly provided by the actuator
in form of positive or negative confirmation messages. How-
ever, in our case a more expressive approach is desirable, as
some actuators cannot provide the desired feedback directly,
the success of an action needs to be interpreted differently in

Listing 4: Specifying Success with Temp. Relations
concurrent {

action a: smoke - extraction { platform {var P} },
action b: air - supply { airflow -to{var P} }

} succeeds on { {a,b} within 20 sec }

Listing 5: Specifying Success with Event Queries
concurrent {

action a: smoke - extraction { platform {var P} },
action b: air - supply { airflow -to{var P} }

} fails on and{
event e: a$initiated { platform {var P} },
not event f: airflow { pf{var P}, vel{var V} }

} where {var V>3, f during extend (e, 1 min) } }

different situations, and as the success of composite actions
depends on more than the success of its sub-actions.

To illustrate the importance of this issue, consider the fol-
lowing scenario. When fire is detected on a platform of a
station the ventilation regime of the entire station is imme-
diately adapted to keep the propagation of smoke limited
to the platform where the fire is actually located. Therefore,
the fresh air supply of all platforms, except for the one being
on fire, is increased to its maximum and ventilators on the
platform on fire are activated to extract the released smoke.

Even in this relatively simple scenario it is unclear when
the described complex action should be considered as hav-
ing been executed successfully: should it be successful when
all of its sub-actions have succeeded or when the desired air-
flow is detected that leads to the extraction of smoke? The
first interpretation of success is more technical as it checks
whether the equipment is working properly whereas the sec-
ond interpretation is more abstract as it checks whether the
action has the desired effect, namely that smoke is extracted
from the platform in the intended way. Both interpretations
are sound, it just depends on the context of the action to
decide which of them is the right one.

To deal with the varying degree of freedom and complexity
that is required to specify the success and failure of actions,
there are two different ways available, each of them suited
to a certain situation. First of all, the temporal relations
known from queries for events and stateful actions can be
used in the according specifications. In this case, the accord-
ing action identifier refers to the time interval determined
by the initiation and the detection of the success of the ref-
erenced action. Therefore, only temporal relation between
successful sub-actions can be specified. Alternatively, a com-
mon event query can be used to specify the execution result
of actions which enables the specification of arbitrary com-
plex conditions for the success and failure of actions which
can even incorporate queries of stateful objects. But as it is
still desirable to incorporate at least the result of some sub-
actions in this case, special event queries, such as, queries for
a$succeeded and a$failed with a being an action identifier,
are used to establish relationships to the duration and exe-
cution result of the composite action. Moreover, the query
action$initiated can be use refer to the initiation of the
entire complex action.

Listings 4 and 5 exemplary demonstrate by means of the
given example both forms of execution result specifications.
Note that for the sake of readability in both listings only
one of succeeds on and fails on is given. Just interpret
the missing fails on as fails when it does not succeed and

Listing 6: Composition with Temporal Constraints
concurrent {

action a: . . .
action b: . . .
action c: . . .
action d: . . .

} where { b before c, a before d }

likewise interpret the missing succeeds on as succeeds when
it does not fail. In listing 4, temporal relations are used to
specify that the complex action is successful when both sub-
actions are successfully executed within 20 seconds. This
can be regarded as a temporally restricted conjunction of
both actions. By contrast, listing 5 defines failure of the
same action by an event query that matches when up un-
til one minute after the initiation of the air-supply action
no airflow with a velocity of more than 3 m/s could be de-
tected on the platform. Note that by querying a$initiated
instead of smoke-extraction$initiated it is ensured that
only smoke-extraction actions are matching the query that
have actually been caused by the execution of this complex
action. Thus, events that are referring to smoke-extraction
actions which been initialized by unrelated reactive rules are
ignored. Moreover, note that the payload of a$initiated
contains the values of the parameters that have been passed
to the according action at its execution.

5.3 Action Composition with Temporal Depen-
dencies

Composition of actions with temporal dependencies be-
tween them is arguably the most common and important
requirement for complex actions. Many approaches rely
on some kind of composition based operators, such as, se-
quences of actions and concurrent execution of actions, de-
noted ; and ‖, to realize composite actions as they have been
described, for instance, in [3].

Eckert et. al. [6] argue that a clear separation of different
query dimensions, such as, event composition and temporal
conditions, is desirable for event queries to obtain a highly
expressive query language. Likewise, we argue that different
aspects of action execution should be kept separate as well.
However, composition based operators for composite actions
combine several dimensions and hence should be avoided, as
it reduces the expressiveness of the language.

Consider, for example, the following complex action: four
actions, namely a, b, c, and d, should be executed such that
d is be executed after a succeeded and c is executed after
b succeeded. This can be easily realized with composition
operators as well as with complex actions as we envision
them. Listing 6 illustrates our approach: the execution of
the four actions is specified inside the concurrent statement
whereas the temporal dependencies that impose constraints
on the execution order of actions are given in an independent
where part. In comparison, the same action specified by
means of composition operators seems to be more concisely
and straightforward:

(
(a; d) ‖ (b; c)

)
.

However, if the temporal constraints are slightly modified,
for instance, by adding an additional constraint so that c
is only executed after a succeeded, the drawbacks of the
concise representation of composition operators become ap-
parent. As the execution of actions and the specification of
temporal constraints are clearly separated in our approach,
one just needs to add the constraints a before c to the

Listing 7: Complex Action Rules
FOR

adapt - ventilation { platform {var P} }
DO

concurrent {
action a: air - supply { airflow -to{var P} },
action b: smoke - extraction { platform {var P} }

} succeeds on { {a,b} within 20 sec }
END

where part in listing 6 to achieve the desired effect. However,
the same effect cannot be achieved with composition oper-
ators due to their syntactical limitations which are caused
by the combined specification of the actual actions and their
temporal dependencies.

Beyond this kind of separation of concerns, it is also im-
portant to separate specifications that affect the execution
order of actions, and can actually be guaranteed by the sys-
tem, from tests that just determine whether an action was
successful. Constraints such as a before b can be easily
satisfied by the system, as the execution of b just needs to
be delayed until a has been actually successfully executed.
By contrast, without additional knowledge on the duration
of actions, the constraint {a,b} within 20 sec can only be
tested after both actions have finished, as the system has no
mean to influence the duration of external actions.

Although both kind of constraints could be specified in a
common place of the query, we argue that they should be
strictly separated as well, in order to achieve clear and un-
ambiguous semantics for complex actions. If specifications
for the execution order of actions are mixed with test that
just determine the execution result of an action, program-
mers might easily confuse them and assume that conditions
which can only be tested are actually guaranteed by the
system. For instance, conditions like {a,b} within 20 sec
may lead to the conclusion that the according actions are
always executed within 20 seconds. Misinterpretations like
this can easily cause serious implementation flaws, although
they could have been easily avoided by clearly separating
specifications from tests.

Accordingly, the where part of an action may only contain
specifications that influence the execution order of actions
which can actually be guaranteed to hold for every arbitrary
actions. Moreover, specifications are always conjunctions of
formulas in order to obtain clear and deterministic semantics
for the execution of composite complex actions. By contrast,
the succeeds on and fails on part may contain arbitrary
test, either in the form of formulas or in form of generic event
queries, that are used to determine the execution result of
the action.

5.4 Complex Action Rules
Complex action rules are similar to declarative rules, which

derive new events based on a complex event query. Complex
action rules are a mean to give names to complex actions so
that the same action can be used in multiple reactive rules
or different complex actions by just referring to its name.
The advantages of having a notion of complex action rules
are similar to those of function, procedure, or method defini-
tions in common programming languages: the development
and reuse of code is simplified and thus programs become
more robust and easier to maintain.

Listing 7 contains a complex action rule that defines the

action adapt-ventilation which is derived from the previ-
ous example in listing 4. In order to refer to the initiation
and the parameters of the defined action, the special event
action$initiated and the special action identifier action
can be used. Accordingly, in the context of the complex
action rule from listing 7, init(action) refers to the initia-
tion time of the complex action adapt-ventilation and the
event query action$initiated{ platform{var P} } can be
used, for instance in the succeeds on part of the action, to
get information on the parameters that have been passed to
the action.

5.5 Conditional Actions with Integration of Ar-
bitrary Queries

Although temporal dependencies between action are highly
desirable for complex actions, they can only relate actions
according to their execution results. However, as already
mentioned, the interpretation of the success of an action
varies depending on its purpose and context. Moreover, it
is also desirable to relate actions that are going to affect the
infrastructure, to the current state of the infrastructure or
the surrounding area which they are about to affect. To
this end, further means are required which allow for more
versatile and expressive relations between actions and the
information that is available in the event processing system.

Many approached, among others ECA rules [21] and more
sophisticated ones like [20], allow the specification of some
kind of preconditions for actions. However, these approaches
are limited, as the conditions need to be specified in a reac-
tive rule and are hence not part of the action itself. Although
this does not seem to make a difference at first sight, it limits
the capability of nesting complex actions, which is further
discussed in section 5.6. Moreover, it seems to be desirable
to integrate not only queries for static data, but also for
stateful objects and complex events.

Accordingly, a coherent integration of actions with queries
for events and stateful objects is desirable, as it not only
enables test of static and dynamic conditions before the
execution of an action, but as it is also a natural exten-
sions of common preconditions that enables very expressive
yet concise complex action specifications. To this end, we
introduce so called conditional actions which are denoted
IF query THEN action ELSE action END. The event query
delays the execution of the subsequently given actions un-
til it matches the stream of events and stateful objects. To
be well defined, the query needs to be timely bounded with
respect to other actions, as otherwise the optional else part
could would never be executed. As conditional action are
considered to be action as well, a concise specification of
nested actions that integrate queries for events and stateful
action are feasible.

Note that conditional actions are also suited to realize com-
pensating actions and the abortion of composite workflows.
In the first case, a conditional action is used that queries
the failure of an action and executes the corresponding com-
pensating action if the query matches. In the second case,
conditional actions are used to query if the current workflow
has been aborted and only execute the next action if the
query does not match the event stream.

Listings 8 and 9 demonstrate how the statement is applied
by means of examples from our use case scenario. In listing
8, a conditional action is used to check whether the smoke
concentration in a certain area is below a certain threshold,

Listing 8: Using Stateful Objects as Precondition
IF state s: area{ aid{var Id}, smoke {var C} }

where {var C < 0.3 , s valid - during . . . }
THEN

action : . . .
END

Listing 9: Using Events as Precondition
concurrent {

action a: adapt - ventilation { platform {var P} },
IF not {

event e: airflow { pf{var P}, vel{var V} }
} where {var V>3, e during extend (a, 1 min) }

THEN
action : . . .

END
}

before an action is executed. This is valuable, for instance,
to check whether there will be smoke in a certain area within
the next several minutes before an evacuation route is an-
nounced that crosses the area.

Listing 9 is dedicated to the different interpretations of
success for the adapt-ventilation action. It refers to the
complex action rule from listing 7 which defines the suc-
cess of the action by means of the execution result of its
sub-actions. However, in this context, we would like to con-
sider the actual effect of the adapt-ventilation instead,
and thus the success as it has been defined in listing 7 is
only of limited suitability, as it is only indirectly related to
the effect of the action. Therefore, instead of relying on the
predefined success of the action, a conditional action is used
that determines whether the effect of the action has been
achieved, that is, whether the airflow has developed as ex-
pected, and triggers some kind of compensating action when
necessary. Note that, adapting the complex action rule for
adapt-ventilation actions may be undesirable or even im-
possible, as it may break other rules or as the rule may be
located in a module of the program that is not accessible for
the programmer.

5.6 Specifying Composite Workflows
The strength of our approach lies in the integration of

events, stateful objects and actions which enables natural
and concise specifications of sophisticated workflows. In the
following, a more extensive and challenging example from
our use case is described, that combines the different con-
structs that have been discussed so far.

Listing 10 specifies an action that is responsible for the
announcement of a given evacuation path. In doing so, the
action should first check if the path is actually safe, that
is, whether it is free of smoke, before it announces it to the
passengers. However, when the system distinguishes that
there is or will be smoke, it should request a decision from
the operator that determines whether the path should be
used anyway.

To this end, the stateful object ev-path is queried to ob-
tain the areas that are traversed by the evacuation path
with the id var Path. Moreover, the stateful object area
is queried to determine whether there will be smoke within
the next three minutes. Note that area contains not only
data that is currently valid, but moreover data that will be
valid according to the simulation. Accordingly, the semantic
time, which determines when the stateful object is deemed

Listing 10: Specification of Nested Workflows

FOR
evacuate -area{ path -id{var Path} }

DO
IF and{

state s: ev -path{ id{var Path}, successor {var AreaOnPath } },
state t: area{ aid{var AreaOnPath }, smoke{var Conc}, semantic -time{var SemTime } }

} where {
s valid -at init(action),
var SemTime valid - during extend (init(action), 3 min), var Conc >= 0.3

}
THEN

action a: request -route - confirmation { path{var Path}, hazardous -area{var AreaOnPath } },
IF event e: route - confirmation { request -id{ action a} }

where { {e,a} within 1 min }
THEN

action : announce -ev -path{ id{var Path} }
END

ELSE
action : announce -ev -path{ id{var Path} }

END
END

to be valid according to the simulation, is considered for
this purpose. If there seems to be no smoke on the evacua-
tion route in the near future, it is subsequently announced
to the passengers. Otherwise, a decision is requested from
the operator by means of the request-route-confirmation
action and if the operator nevertheless acknowledges the an-
nouncement of the route within one minute, it is eventually
announced.

6. IMPLEMENTING COMPLEX ACTIONS

6.1 Assumptions on the Underlying System
The properties of the event processing system that is used

under the hood to implement complex actions are substan-
tially influencing the properties and boundaries of complex
actions.

Recall from section 3.2 that by design, all information is
communicated by means of events. So when an action is
executed by a reactive rule, internally an action$initiated
event is derived instead which actually represents the action.
This event carries a unique id for the action, the payload of
the action, that is, the parameters that have been passed to
it, and the initiation time which corresponds to the reception
time of the event. Likewise, the success and failure of an
action is represented by corresponding events as well.

An influential property of the system is that there cannot
be made any assumptions about when a certain query will
be evaluated. Note that this limitation also hold for most,
if not all, event processing system, as sophisticated methods
known from real time systems are required to obtain accu-
rate guarantees for the latency of single event types. As
a consequence, upper bounds for the time when a certain
event will be derived, and hence when a certain action is ini-
tiated, cannot be made, as the required latency estimation
is inherently unavailable in the underlying event processing
system. Accordingly, only lower bounds for the initiation
time of actions can be guaranteed, such as, action a is not
initiated before a certain time point has passed.

A remarkable difference from other approaches is the way

in which non-monotonic operators, such as negation, can be
used in queries. As usual in the area of complex event pro-
cessing and relational databases, negation is implemented by
negation as failure. However, in contrast to many other ap-
proaches [10, 16, 11], negation does not need to be restricted
to time windows of a predefined width. It is indeed sufficient
to specify just an upper time bound to enable the evaluation
of the negation. The companion paper [5] addresses the de-
tail of the system-level implementation.

6.2 Temporal Dependency Analysis
In the where part of a query versatile constraints for the

execution order of events can be specified by the program-
mer. However, at compile time we need to examine whether
the specified constraints can be actually guaranteed by the
runtime system.

To this end, we distinguish time points that refer to the
occurrence of events and are merely observable from time
points of action initiations which can be influenced by the
system within the boundaries that are tolerated by the con-
straints on the action. Accordingly, for any action identifier
a, init(a) refers to the initiation time of the action which
can be influenced by the system, succ(a) and fail(a) re-
fer to the time when the success and failure of the action is
detected which can therefore just be observed, and for any
event or stateful objects identifier i, begin(i) and end(i)
refers to the begin and end of the event or stateful object
which can just be observed either. Note that values of time
points that can just be observed are determined by the oc-
currence of events and therefore their exact value cannot be
known in advance.

Based on these notions we can elaborate a simple yet ef-
fective syntactical criteria that determines whether the con-
ditions of a where part can actually be guaranteed by the
system. In the following, we will consider formulas which
are build from atoms that have the form tp1 + d ≤ tp2
whereby tp1 and tp2 denote time points that are specified
by the means described above and d is a positive dura-
tion. Note that Allen’s relations can be transformed into

conjunctive formulas that comply with this form of atoms.3

For instance, a before b can be represented by succ(a) <
init(b), a during b by init(b) < init(a) ∧ succ(a) <
succ(b), etc. Accordingly, specifications from the where
part of an action can be represented by a conjunction of
such formulas. Naturally, not every formula represents a
valid condition that can be guaranteed by the system.

Now, consider the following formulas that describe certain
characteristics of actions and their relations:

init(a) ≤ succ(a) (1)

init(a) ≤ fail(a) (2)

tp1 + d ≤ init(a) (3)

Equations 1 and 2 specify that actions may only succeed or
fail after they have been initialized and equation 3 specifies
that the initiation of an action may be an upper bound of an
arbitrary time point tp. This seems to characterize the prop-
erties of the underlying event processing system pretty well,
as only the initiation of an action may be a (positive) upper
bound, except for the success and failure of actions which
inherently occur after the initialization of the corresponding
action and can therefore be guaranteed as well.

One could further relax the conditions and allow negative
durations for d. However, this does not have any implica-
tions for practical purposes, as one cannot know the value
of tp1 before the corresponding event actually occurs and
hence one cannot initiate the action in advance, although
the constraint would allow it.

One could furthermore argue that succ(a) ≤ succ(b) can
be guaranteed although it does not correspond to the given
formulas, as one just needs to wait for the success of a before
b is initialized. However, this implicitly changes the condi-
tion to succ(b) ≤ init(b)∧init(b) ≤ succ(b) which indeed
conforms to the form of the given formulas but additionally
constraints the initiation of action b. However, as this im-
plicitly modifies the semantics of the complex actions and
furthermore can be indeed explicitly specified if desired we
do not consider such kind of constraints.

Thus, the three equations actually precisely describe the
conditions that can be guaranteed by the event processing
system. Therefore, each atom of the according conjunctive
formula needs to resemble one of the equations to be a valid
constraint for the where part of an action.

A similar problem known as simple temporal problem with
uncertainty [25, 19] also investigates under which conditions
plans for the execution of actions with unknown duration
can be guaranteed. However, approaches from this area fo-
cuses on the dynamic execution and adaption of execution
plans during runtime and often require upper bounds for the
duration of actions. Nevertheless, it seems to be desirable
to investigate how result from their work can be applied to
our issues. For instance, if the duration of actions can be
determined by the form of the success and failure specifica-
tions, it seem feasible to transfer some result. However, this
is subject to future investigations.

6.3 Rewriting Complex Actions to Reactive Rules
By design, our system only supports reactive rules that

concurrently initiate several actions when the queries in their

3In addition, formulas like tp1+d < tp2 are also allowed and
actually required, but for the sake of simplicity, this further
kind of formulas is not explicitly described in this article.

Listing 11: An Abstract Complex Action Rule
FOR

ca{ x{var X}, y{var Y} }
DO

concurrent {
action a: a{ param {var X} },
action b: b{ param {var Y} }

} where { succ(a)+30 sec <= init(b) }
succeeds on { succ(b)-init(a) <= 2 min }
fails on and {

event e: action$initialized {}
not event f: action$succeeded {}

} where {end(f)-end(e) <= 2 min}
END

body match. So in order to obtain support for complex
actions as they have been described in this paper we need
to express them by these rather limited means. Note that
in the following we will just focus on complex action rules,
as anonymous complex actions that are specified in reactive
rules can be easily transformed to complex action rules and
the same methods as they are discussed below can be applied
to translate conditional actions as well.

The basic idea to obtain support for complex action rules
is rather simple: as all information related to actions is com-
municated by means of events, we can split complex action
rules into several independent reactive rules. Appropriate
queries for events entailed by the execution of the corre-
sponding actions are then used to make sure that the con-
straints that were specified for the complex actions are actu-
ally satisfied. So basically, each action from the concurrent
part is moved to its own reactive rule and the succeeds on
and fails on parts are translated to declarative rules that
derive the according action$succeeded and action$failed
events.

Listing 11 contains a complex action rule which is inten-
tionally kept very abstract in order to obtain concise exam-
ples. It executes two actions a and b, whereby b should
be initiated at least 30 seconds after a has been successful.
Moreover, the specified action ca is considered successful
when b is detected to be successful at most 2 minutes after
a has been initialized and it fails if it has not been successful
within 2 minutes. In the following, this complex action rule
will be translated into four new rules: a reactive rule that ex-
ecutes a when ca has been initialized, another reactive rule
that executes b when a has been successful and 30 seconds
have passed, and finally two declarative rules, one that de-
rives that ca has been successful when a was initiated and in
addition b has been successful within at most two minutes
and a second one that derives that ca failed if it has not
been successful within two minutes.

The first reactive rule executes a and hence requires the
value of the parameter x, which has been passed to the action
on the execution of ca. Therefore, the reactive rule queries
the ca$initiated event in its body in order to obtain the re-
quired value. The second reactive rule needs, in addition to
the parameter y, also information on the exact time point of
a’s success, as the condition succ(a)+30 sec <= init(b)
specifies a lower bound for the initiation of b. Therefore,
a query for a$succeeded events is added to the body of
the rule whereby the time point of the actions success can
be reconstructed by means of the occurrence of the accord-
ing event, that is end(a-succ). Moreover, the delayed ex-
ecution of b is realized by means of a well chosen negated

Listing 12: Translation of the concurrent Part
ON

event : ca$initiated { id{var Id}, x{var X} },
DO

action a: a{ param {var X}, prov{var Id} }
END

ON
and{

event : ca$initiated { id{var Id}, y{var Y} },
event a-succ: a$succeeded { prov{var Id} },
not event b-init: b$initiated { prov{var Id} }

} where { end(b-init) < end(a-succ)+30 sec }
DO

action : b{ param {var Y}, prov{var Id} }
END

Listing 13: Translation of the succeeds/fails on Part
DETECT

ca$succeeded { id{var Id}, var Params }
ON

and{
event : ca$initiated {id{var Id}, var Params },
event a-init: a$initiated { prov{var Id} },
event b-succ: b$succeeded { prov{var Id} }

} where { end(b-succ)-end(a-init) <= 2 min }
END

DETECT
ca$failed { id{var Id}, var Params }

ON
and {

event e: ca$initialize {id{var Id},var Params }
not event f: ca$succeeded { id{var Id} }

} where {end(f)-end(e) <= 2 min}
END

query which cannot match any event between the success
of a and the following 30 seconds, but nevertheless blocks
the evaluation of the query within this period and thus
also blocks the execution of b. Note that the constraint
end(b-init) < end(a-succ)+30 sec which determines the
time for the delay of b’s execution is directly derived by
negating the constraint in the where part of the according
action and substituting time points referring to the execu-
tion of actions by event identifiers of the according events.

However, one issue still remains as b is executed when-
ever an a action succeeds which satisfies the given time con-
straints regardless of whether the action has been caused by
the complex action rule for ca or by any other unrelated
rule which just happend to execute a. Therefore, additional
provenance information that allows to reconstruct the ac-
tual cause of an action is considered. Accordingly, the id
of the ca instance is added to the payload of a and hence
ca$initiated and a$succeeded events can be joined to de-
termine whether a has been actually caused by the same
action instance of ca.4 The respective reactive rules can be
found in listing 12.

The declarative rule for deriving the according success
events for ca is straight forward. An event is derived when
the ca action has actually been initiated and the events for
the initiation of a and the success of b that have been caused
by this very action occur within two minutes. Again, time
points referring to the execution of actions are substituted by

4The additional parameters can be omitted from the accord-
ing events when they are actually sent to the actuators.

event identifiers and the according event queries are added
to the body of the rule. Moreover, the available provenance
information is used to ensure that all events have actually
been caused by the same action instance of ca.

The failure specifications for the complex action from list-
ing 11 is given by means of generic event query. Therefore,
the complete query is just copied to a new declarative rule
which derives the according ca$failed event. Moreover, for
all atomic event queries that use action identifier to refer to
actions of the corresponding complex action the actual name
of the referred action is inserted and the provenance infor-
mation on these events is joined with the id of the initiation
of the complex action. The respective declarative rules are
given in listing 13.

There are some technical particulars that have been simpli-
fied or left out from the description, such as, the treatment
of several equally actions inside a complex action rule, etc.
For further details on the transformation of complex actions
refer to [22].

7. RELATED WORK
The need for reactive extensions of event processing ap-

proaches has already been identified by other authors, most
notably in [23] and [20].

In their work on event-driven reactivity, Schmidt et. al. [23]
envision a holistic approach which uniformly integrates events,
actions, conditions, context and situations. The authors em-
phasise the need for a notion of context and situations for
reactive event processing systems, which can indeed be ob-
tained by means of stateful objects.

There have been efforts in the field of active databases
towards transactions that enable composite reactions which
are triggered by ECA rules [17, 9]. Lately, this work has been
extended to incorporate particular characteristics of event
streams into the notion of transactions [26]. However, work
in this area mainly focuses on composite database updates
that do not incorporate a notion of time for actions.

Engel et. al. [12] investigate extensions for complex event
processing towards proactive event-driven applications. The
authors propose to integrate prediction and automatic deci-
sion making technologies to enable proactive reactions based
on future uncertain events. However, simulations as they are
required for emergency management are far too complex to
be specified and efficiently computed within the event pro-
cessing system.

Behrends et. al. [4] propose to specify composite actions
in ECA rules by means of the CSS process algebra [18]. In
this way, reasoning on the properties and the effect of con-
currently executed actions is enabled. However, although
CSS is a powerful formalism, its plainly formal nature limits
the relevance for practical purposes.

A homogeneous reaction rule language with versatile pre/-
postconditions for reactive rules, transactional knowledge
base updates and means for asynchronous message exchange
that enables reactive behavior of the event processing sys-
tems is proposed by Paschke et. al. [20].

All presented approaches lack an explicit notion of exter-
nal actions as they are desirable for emergency management
and hence do not provide means that deal with their par-
ticularities. Consequently, implementing emergency man-
agement applications, although sometimes possible, is very
cumbersome in the according systems.

8. CONCLUSION
In this paper we proposed versatile complex actions for

emergency management. Although building up from rela-
tively simple components, the overall integration into a ingle
language for complex event and complex action processing is
innovative and original, extends over previous contributions,
and fulfills a need, especially for emergency management ap-
plications, so far largely neglected.

The approach to complex actions described in this arti-
cle contributes to substantially improve emergency manage-
ment as it is today and enables the design and implementa-
tion of innovative new strategies for emergencies in public
infrastructures.

Even though the approach to complex actions proposed
in this article has been motivated by an emergency manage-
ment use case, it is more generally applicable to large classes
of reactive event processing applications that require both
complex events and complex actions of the kind considered
in this article.

9. ACKNOWLEDGEMENTS
We thank Marco Bettelini and Nikolaus Seifert for intro-

ducing us to their vision of novel and innovative emergency
management. We also thank Simon Brodt for countless dis-
cussions and his valuable feedback.

This work has been partly founded by the European Com-
mission within the project “EMILI — Emergency Manage-
ment in Large Infrastructures” under grant agreement num-
ber 242438.

10. REFERENCES
[1] Fire Investigation Summary Düsseldorf. Technical

report, National Fire Protection Association, 1998.

[2] J. F. Allen. Maintaining knowledge about temporal
intervals. Commun. ACM, 26(11):832–843, Nov. 1983.

[3] J. Baeten. A brief history of process algebra.
Theoretical Computer Science, 335(2-3):131–146, May
2005.

[4] E. Behrends, O. Fritzen, W. May, and F. Schenk.
Combining ECA Rules with Process Algebras for the
Semantic Web. In Proc. Int. Conf. on Rules and Rule
Markup Languages for the Semantic Web, pages 29–38.
IEEE Press, 2006.

[5] S. Brodt and F. Bry. Temporal Stream Algebra.
submitted for publication, 2012.

[6] F. Bry and M. Eckert. Rule-based composite event
queries: the language XChangeEQ and its semantics.
In Proc. Int. Conf. on Web Reasoning and Rule
Systems (RR), pages 16–30. Springer, 2007.

[7] F. Bry and P.-L. Pătrânjan. Reactivity on the web:
paradigms and applications of the language XChange.
In Proc. Symp. on Applied Computing (SAC), pages
1645–1649. ACM, 2005.

[8] F. Bry and S. Schaffert. Towards a declarative query
and transformation language for XML and
semistructured data: Simulation unification. Proc. Int.
Conf. on Logic Programming (ICLP), 2401:255–270,
2002.

[9] S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin,
and R. H. Badani. ECA Rule Integration into an
OODBMS: Architecture and Implementation. In Proc.

Int. Conf. on Data Engineering (ICDE), pages
341–348. IEEE Press, 1995.

[10] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald,
V. Sharma, and W. M. White. Cayuga: A General
Purpose Event Monitoring System. In CIDR, pages
412–422, 2007.

[11] M. Eckert, F. Bry, S. Brodt, O. Poppe, and
S. Hausmann. Two Semantics for CEP, no Double
Talk: Complex Event Relational Algebra (CERA) and
its Application to XChangeEQ. In Reasoning in
Event-based Distributed Systems, volume 347 of
Studies in Computational Intelligence, pages 71–98.
Springer, 2011.

[12] Y. Engel and O. Etzion. Towards proactive
event-driven computing. In Proc. Int. Conf. on
Distributed Event-Based Systems (DEBS), pages
125–136. ACM, 2011.

[13] N. H. Gehani, H. V. Jagadish, and O. Shmueli.
Composite Event Specification in Active Databases:
Model and Implementation. In Proc. Int. Conf. on
Very Large Data Bases (VLDB), pages 327–338.
Morgan Kaufmann, 1992.

[14] S. Hausmann, S. Brodt, and F. Bry. Dura - Concepts
and Examples. Deliverable d4.3, Institute for
Informatics, University of Munich, 2011.

[15] R. Kowalski and M. Sergot. A logic-based calculus of
events. New generation computing, 4(1):67–95, 1986.

[16] J. Krämer and B. Seeger. Semantics and
implementation of continuous sliding window queries
over data streams. ACM Trans. Database Syst., 34(1),
Apr. 2009.

[17] D. McCarthy and U. Dayal. The architecture of an
active database management system. In Proc. int.
Conf. on Management of Data (SIGMOD), pages
215–224. ACM, 1989.

[18] R. Milner. A Calculus of Communicating Systems,
volume 92 of LNCS. Springer, 1980.

[19] P. H. Morris and N. Muscettola. Execution of
Temporal Plans with Uncertainty. In Proc. Nat. Conf.
on Artificial Intelligence and Conf. on Innovative
Applications of Artificial Intelligence, pages 491–496.
AAAI Press, 2000.

[20] A. Paschke, A. Kozlenkov, and H. Boley. A
Homogeneous Reaction Rule Language for Complex
Event Processing. Proc. Int. Workshop on Event
Driven Architecture and Event Processing Systems
(EDA-PS), 2007.

[21] N. W. Paton and O. Dı́az. Active database systems.
ACM Comput. Surv., 31(1):63–103, Mar. 1999.

[22] M. Scherr. Desugaring Dura: Compiling a High-Level
Event Processing Language. Diploma thesis, University
of Munich, 2011.

[23] K.-U. Schmidt, D. Anicic, and R. Stühmer.
Event-driven Reactivity: A Survey and Requirements
Analysis. In Proc. Int. Workshop on Semantic
Business Process Management, pages 72–86, 2008.

[24] N. Seifert, M. Bettelini, and S. Rigert. Emergency
management and rules in control systems of critical
infrastructures. Deliverable d3.2 annexe a, ASIT Ltd.,
2011.

[25] T. Vidal and H. Fragier. Handling contingency in

temporal constraint networks: from consistency to
controllabilities. Journal of Experimental and
Theoretical Artificial Intelligence, 11(1):23–45, 1999.

[26] D. Wang, E. A. Rundensteiner, and R. T. E. Iii.
Active Complex Event Processing over Event Streams.
Proc. VLDB Endowment, 4(10):634–645, 2011.

[27] D. D. Woods and E. S. Patterson. How Unexpected
Events Produce An Escalation Of Cognitive And
Coordinative Demands. In P. A. Hancock and P. A.
Desmond, editors, Stress, Workload, and Fatigue,
pages 290–304. Lawrence Erlbaum Associates, 2001.

