A Potpourri of Reason Maintenance Methods

Incremental View Maintenance Reconsidered

Jakub Kotowski, Francois Bry, and Norbert Eisinger

Institute for Informatics, University of Munich
http://pms.ifi.lmu.de

Abstract. We present novel methods to compute changes to materi-
alized views in logic databases like those used by rule-based reasoners.
Such reasoners have to address the problem of changing axioms in the
presence of materializations of derived atoms. Existing approaches have
drawbacks: some require to generate and evaluate large transformed pro-
grams that are in Datalog ~ while the source program is in Datalog and
significantly smaller; some recompute the whole extension of a predicate
even if only a small part of this extension is affected by the change.
The methods presented in this article overcome these drawbacks and de-
rive additional information useful also for explanation, at the price of an
adaptation of the semi-naive forward chaining.

1 Introduction and Motivation

The mostly read-only Web has become a predominantly read/write social Se-
mantic Web — information is more volatile and systems that can handle changes
efficiently grow important. Semantic Web applications make use of the Resource
Description Framework (RDF) and the Web Ontology Language (OWL) a large
part of which can be axiomatized using Datalog rules. Social web applications
(e.g. wikis) are teeming with user activity that changes facts which in turn poses
high demands on a reasoner. Hence the need for materialization of views and
their maintenance. Materialization of views, i.e. storing atoms derived from rules
and base facts, is a database technique for improving the speed of query eval-
uation and it has been argued [6] feasible on the Semantic Web too. Efficient
incremental maintenance of materialized views is highly desirable as rules and
base facts change. Let us define the problem formally.

Let P be a definite range restricted logic program and D C P a subset of
P. The reason maintenance problem is the problem of computing Tl‘;’\ p given
the fixpoint T8, where Tp is the immediate consequence operator with respect
to P. The reason maintenance problem has a trivial inefficient solution which is
computing the fixpoint T;,’\ p directly from P\ D, disregarding 7. This paper
studies how to solve the reason maintenance problem incrementally by leverag-
ing information available from the fixpoint computed before base facts or rules
change.

First, we introduce so called support graphs — a framework that allows for
a unified description of the presented methods. Then we define three extended

http://pms.ifi.lmu.de

immediate consequence operators and formulate their properties. In Section [4
we then provide reason maintenance methods based on these operators.

2 Preliminaries

Throughout this paper a Datalog [27] rule language is assumed with range re-
stricted rules (i.e. a variable occurring in the rule head occurs in the rule body
t00). The formulas T and L respectively evaluate to true and false in all inter-
pretations. Rules with T as the body, e.g. h < T, are called base facts. A base
atom is the head of a base fact. A program is a finite set of rules. The usual
definition of the immediate consequence operator Tp and of its ordinal powers
is assumed, see e.g. [19]. Let r = h < b1,...,b, be a rule. Then head(r) = h,
body(r) = {b1,...,b,}, and atoms(r) = body(r) U {head(r)}. Let HB be the
Herbrand base, HU the Herbrand universe, and P a program. HUp C HU is
the set of ground terms that can be constructed with symbols occurring in P.
HBp C HB comprises all ground atoms that can be constructed with symbols
occurring in P. Note that HU p and HBp are finite for a Datalog program P.

A support with respect to a definite program P is a pair s = (r,0), where r €
P and o is a substitution such that dom(c) C var(r). Let r = A < By, ..., By.
Then head(s) = Ao is the head of s, and the set body(s) = {Bio,...,Byo}
is called the body of s. If n = 0 then s is called a base support, otherwise it is
called a derived support. Furthermore, heads(S) = {head(s) | s € S} for a set
of supports S. A support is ground if its head and its body are ground. We say
that s supports head(s).

The number of supports of an atom is infinite in general. The number of
ground supports with respect to HBp is finite for a Datalog program P because
the codomains of their substitutions are subsets of HU p which is finite. The
notion of a support is different from the notion of a rule instance. Consider the
program P = {r; = p(a,a) + T. ry=q(x) + p(x,x). r3=q(y) < pla,y)}.
The atom ¢(a) is derivable both via rule 79 and r3 from the base fact 1. In both
cases the resulting rule instance is ¢(a) < p(a, a). However there are two different
ground supports (rq, {x — a}) and (r3, {y — a}) which allows for distinguishing
the two different derivations of g(a).

Several operators on multisets are introduced later in this paper. There are a
number of different definitions of multisets [265]. We adopt the definitions from
[8] of extended multisets that allow infinite multiplicities. Infinity completes the
total ordering < on Ny so that each subset of N§° has the least upper bound
(and also the greatest lower bound) in N§°. Let D be a non-empty set. A multiset
on D is a pair A = (D, p), where p : S — N§°, multiplicity, is a function from
D, the domain set, to the set N§°. The empty multiset is denotedlﬂ PP, The
root [] of a multiset A = (D, p) is the set root(A) = {d € D | u(d) > 0}. A
multiset can be infinite in two different ways: its root is infinite or it contains
an element with infinite multiplicity. Let A = (D, ua), B = (D, ug) be multisets

! The domain set superscript may be omitted where it is clear from context.

and a € D. Let a €, (D,p) iff a € D and u(a) = i and a €,, (D, p) iff there
is an i > 0 such that a €, (D, p). Submultiset (A C,, B), proper submultiset
(A Cp, B), multiset union (A U,, B), multiset intersection (A N,, B), multiset
sum (AW B), and multiset removal (A © B) are defined as expected, cf. [§].
We denote multisets by square brackets “[|” and sets by braces “{ }”7, e.g.
A =1la,a,b,c] = ({a,b,c}, {(a,2),(b,1),(c,1)}), root(A) = {a,b, c}.

Analogically to the set-builder (also set comprehension) notation {z | P(x)},
the multiset-builder notation [z | P(z)] is used to specify multisets. P(x) is called
the (multiset-)builder condition and [z | P(z)] is the multiset of individuals that
satisfy the condition P(z). It is assumed that whenever the €, relationship
is used in the multiset-builder condition the multiplicities are transferred to the
resulting multiset. Also, in cases like [z | JyP(z,y)], the multiplicity of = in the
resulting multiset is [{y | P(x,y)}|. For example, let A = {a} and N = [n,n,n].
Then Ny = [{z,y} |z € A,y €,, N] = [{a,n},{a,n}, {a,n}], No = [{z,y} |z €
A,y € root(N)] = [{a,n}], N3 = {{z,y} | v € A,y €,, N} = {{a,n}}. Also,
ne,, N,ne3 N,{a,n}e3 Ny, {a,n} €l No, {a,n} € N3.

The multiset powerset, P(S), of a set S is the set of all multisets on S, i.e.
P(S) ={(S,pu) | p: S — N}, P(0) = 0. Let S = {a,b,c}. Then P(S) = {(S, u) |
p:S =N = {0, [a], [a,al,...,[0],[0,0],...,][c,[cq],-..,]ab],[a,a,b]...,
[a,b,0],...,[a,b,¢c],|a,a,b,cl,..., [a,bbcl,... [a,b,c,], ... [a,a,bbcl,...}.
The submultiset relation C,, is a partial order on P(S). (P(S), C,,,) is a complete
lattice, see Proposition 23 in Casasnovas et al. [§], which is important as it allows
us to apply Lloyd’s classical fixpoint theory for operators on complete lattices
[19] to our multiset operators. If an operator X is continuous on a complete
lattice then naive forward chaining with X computes its least fixpoint [19]. This
result can be used in proving correctness of semi-naive forward chaining with a
semi-naive mapping corresponding to X.

2.1 Support Graphs

A support graph is a data structure inspired by data-dependency networks of
classical reason maintenance [I1]. In contrast to data-dependency networks, sup-
port graphs can accommodate a notion of derivation which is close to the notion
of a proof from assumptions in classical mathematical logic. This allows for a
unified description of reasoning and reason maintenance methods presented here.
The proposed definition of a derivation has the advantage that the number of
derivations with respect to range restricted Datalog programs is always finite
which is in contrast to established counting reason maintenance methods: for
example in [23], the number of derivation trees (a notion defined in [20]) can be
infinite. P is assumed to be a definite range restricted Datalog program in the
rest of the paper unless explicitly stated otherwise. Support graphs are intro-
duced only informally here, see [I8] for details.

A support graph with respect to P is a bipartite directed graph where nodes
are ground atom nodes and ground supports connected by edges according to
the structure of the supports (see examples that follow). Atom nodes are la-
belled by atoms, i.e. an atom may be represented by multiple nodes in a support

graph. A support graph is compact if no two atom nodes have the same label. A
support graph induced by a set of supports S, denoted SG(S), is the compact
support graph corresponding to the supports in S. In diagrams, atom nodes are
represented as dots and supports as ovals. Base supports are emphasised by the
symbol T and no arrow (T is neither a node nor an edge in the s.g.), see Figure
A support graph G is homomorphically embedded in a support graph H if
there is a graph homomorphism from G to H that respects labellings, see Figure
A path in G is an alternating sequence of adjacent supports and atom nodes.
If there is a path from a node x to a node y in G, we say that = supports y in
G and y depends on x in G. If the path has length 1 we may add the adverb
“directly.” If the path has length > 1 we may add the adverb “indirectly.” A
node in a support graph depends on a rule if it is a support that includes the
rule or it depends on a support in the graph that includes the rule. A support
graph is well-founded if it is acyclic and each atom node has an incoming edge.
Note that all nodes with no incoming edge of a well-founded support graph are
base supports. Being acyclic, a well-founded support graph has at least one node
with no outgoing edge. A derivation of an atom a in a s.g. G is a minimal (w.r.t.
C) well-founded s.g. D that is homomorphically embedded in G and has a node
labelled a as its only sink node. The depth of D is the number of supports on
the longest path in D that ends with the only sink node. A support s € S is
well-founded in G if there exists a derivation of head(s) in G that includes s. A
node x in G depends strongly on a node y in G if y is in every derivation of x
in G. Consider Figure 2] Graphs D, E, F, and G are all derivations of d in H.
H is not a derivation because e.g. its proper subgraph D is well-founded. The
graph in Figure (1] is not well-founded for two reasons: it is cyclic and its atom
q(b,b) has no incoming edge. Let G’ be a supergraph of G with an additional
support s4 = (r4,0). Then G’ is not well-founded, but s3 is well-founded in G’
because G’ without s is a derivation of head(ss) in G’. The only support that
is well-founded in G is s7.

l—? r(a,b)
©®© ®

pla,b) ™ q(b,b)
s o
©

Fig. 1: The compact support graph SG(S) for P = {r1 = p(a,w) < T. ry =
p(u,v) < r(u,v). r3 = r(z,z) « p(x,y),q(y,2). ra = q(b,b) < T} and
S ={s1 = (r,{w = b}),s0 = (ro,{u = a,v = b}),s3 = (r3,{z — a,y —
b,z — b})}, where u, v, w, z,y are variables and a, b are constants.

The number of derivations of a from P is finite up to renaming of atom
nodes. Intuitively, a support graph consists only of ground supports and there is

oC oC
O/Y \ —>.d O/Y \ —>.d
i N\ o N\
A £ A A
QO O O O
T I T A
ae o d,
A A
O O
T T
(a) Support graph D. (b) Support graph E.
oC oC oC
O Moed O Mot O pod
b°/ %o Z b'/ ‘}o Z .{ \0/
S A \ S A X S5
D00 Q QO Q0
aIi iag a10><.a2 a1£ iaz
A A A A A A
O O O O o0
T T T T T T
(c¢) Support graph F. (d) Support graph G. (e) Support graph H.

Fig.2: Compact support graphs D and E and non-compact support graphs F
and G are homomorphically embedded in the compact support graph H. All
are with respect to the propositional definite program P = {d + a,c. ¢ +
a,b. a<a;. a+ax. a1+ T. ax<T. b+ T}

only a finite number of them with respect to a range restricted Datalog definite
program P and thus there is only a finite number of derivations w.r.t. P.

3 Extended Immediate Consequence Operators

The support Herbrand base sHB is the set of all ground supports. sHBp is the
set of all ground supports with respect to P.

Definition 1. The support keeping immediate consequence operator skTp for
P is the mapping skTp : P(sHBp) — P(sHBp) defined as skTp(F) = {s €
sHBp | s = (r,0),r = H < By,...,B, € P,dom(c) = var(r),body(s) C
heads(F') }.

The skTp operator is continuous and it is easy to see that T = heads(skT%),
for all ¢ € Ny, and T = heads(skT3). A modified classical naive forward chain-
ing algorithm where Tp is replaced with skTp computes skTs. A semi-naive
mapping skTp(F,A) : P(sHBp) x P(HBp) — P(sHBp) can be defined by
adding the condition (31 < j < n)Bjo € A to Definition

Algorithm 1.1: Semi-naive support keeping forward chaining
Input: P Initialization: F := 0; Ap := skTp(0); A := skTp(0)

while A#(
F := FUAp
Ap := skTp(F,heads(A)) {new supports}?
A = Ap\{s € Ar | head(s) € heads(F)}{excl. redundancies,cycles}

return F

Well-foundednes is important because of the following fact: a ground atom
a is in Ty iff a has a support w.r.t. P that is well-founded in SG(skTp). Ad-
ditionally, each support of an atom g € T not well-founded in G = SG(skTy)
depends strongly on g in G.

Definition 2. The support counting immediate consequence operator scIp for
P is a mapping scTp : P(HBp) — P(HBp) defined as scTp(S) = [Ho € HBp |
ds=(r,0),r=H < By,...,B, € P,body(s) C root(S),dom(c) = var(r) .

The “count” is represented by the multiplicities of ground atoms in the mul-
tiset. It can be shown by induction on i that T = root(scT), for all i € Ny
and also T8 = root(scT'y). Again, scTp is continuous and a corresponding semi-
naive mapping can be defined by adding the condition (31 < j < n)B,o € A to
Definition 21

Algorithm 1.2: Semi-naive support counting forward chaining

Input: P Initialization F := 0,; A := Tp(0); Ar := scTp(0m)

while A#D
F := FWAp
Ap := scTp(F,A) {new atoms}
A := root(Ar) \root(F) {exclude redundancies, cycles}?

return F

An extended atom is a pair (a,D), where a € HBp and D C HBp. D is
called a dependency of a. The derivation counting Herbrand base (w.r.t. P) is
the set dHBp = HBp x P(HBp). It follows that dHB is finite when HB is finite.

Definition 3. The derivation counting immediate consequence operator dcTp
for P is the mapping: dcTp: P(dHBp) — P(dHBp) defined as dcTp(S) =
[(Ho,D) € dHBp | (3s = (r,0)),dom(o) = var(r),r = H < By,...,B, €
P; (Vl <1< n) (EDl) (BZO',DZ) [SH S;Ho ¢ D;,Ho # B;o,D = U?:l D; U
{Bio}].

dcTp is continuous. A corresponding semi-naive mapping can be defined by
adding the condition (31 < j < n)(Bjo, D;) €, Ato Deﬁnition The derivation
count is represented by the multiplicities of extended atoms in the multiset.

Algorithm 1.3: Semi-naive derivation counting forward chaining

Input: P Initialization: F := (n; A := dcTp(Bm)
while A # 0p,

F := FWA

A := dcTp(F,A) {cycles are handled by dcITp itself}

return F

Proposition 1. (a, D) €%, dcT iff there are x derivations of a with respect to
P that use all and only atoms in D.

Corollary 1. The number of derivations of a with respect to P is Z T
3D(a,D) €2, deT¥

Proposition 2. Let P be a definite Datalog program. Then scTs and dcTy are
multisets with finite multiplicities.

It is easy to see that skTp,sclp, and dcTp operators all derive at least
the information derived by the Tp operator. Therefore Herbrand interpretations
induced by the extended fixpoints can straightforwardly be defined so that they
are the same as those induced by T%.

The operators allow for a formal and declarative specification how to de-
rive additional information that can be used for explanation and more efficient
reason maintenance. Supports, support counts, and derivation counts provide
information about derivability of atoms.

It is well-known [2I] that T% can be computed in O(n*) time for a range
restricted Datalog program P, where n is the number of constants in base facts
and k is the maximum over all rules in P of the number of variables in that rule.
It is easy to see that the worst case time complexity of Algorithms [T.1] and [I.2]
is also O(n*). For Algorithm [1.3|it is O(n?*) (the O(n*) computation may have
to be repeated up to O(n*) times).

4 Reason Maintenance

4.1 Support Counting

[B\D I D] [B\D, | D,]

Fig. 3: Tllustration how the sets U, K, and O relate. B is the set of base facts in
P. The left diagram assumes that D consists of base facts. The right diagram is
more general: sets Uy and Oy correspond to rules in D that are not base facts.

Let us review a reason maintenance technique without support graphs [I]
that can be improved upon by support counting. Let D C P be a set of rules

to remove. Let U C T be the set of (“unsure”) atoms that depend on a rule
from D in SG(skTp), See Figure [3| Let K = Ty \ U (“atoms to keep”), and
O =UNTg , (“otherwise supported atoms”). It holds that Tg\p = KUO,
i.e. the new fixpoint can be computed by determining U and K and then by
semi-naive forward chaining on K, i.e. T;;\ p = I'5(K). The semi-naive forward
chaining however includes a naive initialization step: A := Tp\p(K) \ K. This
A includes the atoms in O that are derivable in one step from K and P\ D and
it can be determined directly if support counts are kept.

Lemma 1. Let SU C skTy be the supports that depend on a rule from D. Let
acy, scTg. Thena € ONTp\p(K) iff v > [{t € SU | head(t) = a}|.

The lemma intuitively says that a is in O N Tp\p iff it has a support in
skT that does not depend on a rule from D. Such a support is an evidence
of derivability of a from P\ D because it necessarily is well-founded: it can be
shown that 1) an atom is derivable iff it has a well-founded support, and 2) a not
well-founded support strongly depends on the support’s head. From 2) it follows
that each not well-founded support of @ must be in SU which means that any
extra support of a that is not in SU is well-founded which by 1) means that a is
derivable. Algorithm uses this result to replace the naive initialization step
of [1] with a comparison of support counts.

Algorithm 1.4: scTp-based reason maintenance without support graphs

Input: scTp, D

Initialization: Tp := root(scTp),
SU:={s € skTp | s deps.on an r € D} ,K :=[a|a €,, scIp and a ¢ heads(SU)],
Ap := [a €heads(SU) | a €7, scTy and = > |{t € SU | head(t) = a}|],
A := root(Ap), F := K
while A#(
F := FWUAp
Ap := scTp\p(F,A) {repetitions add to F}%
A = root(Ar) \ root(F) {forbid cyclic derivations}

return F

Support Counting for Non-recursive Datalog Programs The SG(skT¥)
graph has no cycles for non-recursive P. This allows for a specialized incremental
reason maintenance algorithm that processes only atoms that are eventually
removed or at most one step further, see Algorithm Algorithm only
processes atoms in O, Algorithm (and the version in [I]) all atoms in U.

Algorithm 1.5: Reason maintenance with support counts and no cycles.
Input P, D, scTp
Initialization F := 0,, Ap := scIp(scTp),
A := {a| (Fr eNy)a €}, scTH and a €5, Ap}, Asx = A

while A#0
F := FWAp
Ap := scTp(scTp,A) {atoms losing a support}
A = {a|(FreNy)a€}, scTp and a €, FYAp}\ Ax
A = AsUA {atoms that lost all supports}

return scip 6 F

In the initialization, Algorithm first determines atoms that directly de-
pend on a rule to remove (scIp(scTy)) and out of these it takes atoms (A) that
lose all supports and therefore are not in the new fixpoint and it propagates their
deletion. The while cycle works similarly, with the difference that any affected
atom directly depends on an atom that lost all supports in the previous iteration
(Ap is computed using the scTp mapping and A, notice the set P).

4.2 Derivation Counting

Reason maintenance becomes a simple task in the case of base fact updates
when a dcTp fixpoint is available. Such a fixpoint provides information about
derivations of any atom in the form of extended atoms. Any atom derived from
a base fact has a corresponding extended atom in the dc¢T'p fixpoint that has the
base fact in its dependency. To compute the new fixpoint for a base fact removal,
it is only necessary to remove all extended atoms from the fixpoint that have
the base fact in its dependency.

Algorithm 1.6: Reason maintenance for base fact updates using derivation counts

Input P, dcTp, D
Inv:={(a,9) | (a,5) €, dcTp and ((S=0) or (3d € heads(D)) d € 9)]
return dcTp ©Inv {remove invalidated atoms}

Derivation counting does not keep track of rules that are used to derive an
atom. Reason maintenance for removing rules that are not base facts therefore
requires either tracking rules as well or a more sophisticated approach. The
dcTp operator and the current fixpoint can be used to determine all extended
atoms that were derived using a rule to remove: dcT'p (deT). All derivations that
use any atom from this multiset are invalidated. The corresponding extended
atoms can be computed by semi-naive dcTp forward-chaining analogously to
determining the set SU in [I].

Note that counting supports is inherently more efficient than counting deriva-
tions as it can be done by extending standard semi-naive forward chaining to
keep count of generated rule instances per atom. In contrast, counting derivations
is in general akin to generating all derivations. From this perspective, counting
supports of an atom amounts to determining the in-degree of the atom node
in the respective compact support graph while counting derivations amounts to
generating all specific subtrees (derivations) of the support graph.

10

5 Related Work

The reason maintenance problem is essentially a problem of changing knowl-
edge. As such, it is related to literature ranging from epistemology, to logic, to
databases. One of the overarching concepts is defeasible reasoning [I7] which in-
cludes two subfields related to this work: belief revision and reason maintenance.

Belief revision (also called AGM theory) [2I3] makes no distinction between
base and derived facts and it aims at revising a theory so that only a minimal
change occurs in its deductive closure. In contrast, databases typically manage
large sets of base facts and only a few views and the distinction between base
facts and derived facts is an important one. Reason maintenance [I12210] refers
to knowledge base update techniques which keep a record of derivations in form
of a “data dependency network.” Support graphs can be seen as a novel extension
of data dependency networks that can represent (non-compact) derivations. One
of the reason maintenance techniques has been specialized to RDF(S) reasoning
and implemented by Broekstra et al. [6]. Belief revision and reason maintenance
are closely related and are compared in the literature [12].

The reason maintenance problem has been studied in the field of deductive
databases under the name incremental view maintenance on and off since around
1980, see for example a survey article [14] by Gupta and Mumick, authors of the
probably most popular DRed algorithm [I5]. The DRed algorithm is similar to
the one described in [I] but does not directly handle rule updates and requires
program transformations that increase its size. The PF algorithm [I6] is sim-
ilar to DRed. Both work on the same principle of deriving an overestimation
of deleted atoms and then finding alternative derivations for them, cf [J] for a
comparison. In contrast to DRed and PF, the methods presented in this pa-
per use the original unchanged program. Staudt and Jarke developed in [25]
a purely declarative version of DRed. Their algorithm transforms the original
program into even more rules than DRed or PF and can add negation even if
the original program is definite. Volz, Staab, and Motik extended [28] Staudt
and Jarke’s version of DRed to handle rule changes and applied the resulting
method to reasoning on the Semantic Web. Their version of DRed transforms
12 RDF semantics Datalog rules into a maintenance program of 60 rules [28].
Their method leads to a complete recomputation for any change in base triples
in the case of a single (ternary) predicate axiomatization of RDF(S) which is a
significant disadvantage especially on the Semantic Web where this kind of ax-
iomatization is very common. In comparison, the methods presented here make
do with the original 12 rules, always only the relevant part of a predicate’s ex-
tension is recomputed, and no modification is necessary to handle general rule
updates in the case of the scTp-based methods.

Duplicate semantics [23] of Datalog programs counts so called derivation
trees defined by Maher in [20]. Maher’s definition allows for repetitions which is
excluded in our definition of derivation by the minimality condition. As a result,
it is possible that an atom has an infinite number of Maher’s derivation trees
while the number of derivations is always finite for Datalog programs in our
case. The main problem, detecting cycles in support graphs of recursive Datalog

11

programs, is the same in both cases and is studied also in [24]. In this respect,
scl'p and dcTp provide novel duplicate semantics. Moreover, the scTp-based
multiset semantics can be computed more efficiently than the original duplicate
semantics and to best of our knowledge it has not yet been described in the
literature. A similar counting approach for non-recursive Datalog programs is
described in [13] — it is less efficient than our method because it counts derivation
trees as opposed to counting just the in-degree of atom nodes.

6 Conclusion

We have presented novel methods for incremental maintenance of materialized
Datalog views. Our methods handle changes in both facts and rules, works by
evaluating the original and the target programs and recomputes only the af-
fected part of a predicate’s extension. The methods are applicable to important
Datalog-fragments of Semantic Web languages. An extension to stratifiable nor-
mal Datalog programs is straightforward and while aggregation is not handled
by our current methods, we are confident that the extension is possible.

It should be stressed that one reason maintenance method may not fit all
needs especially in a system containing as diverse kinds of information as a
semantic wiki. For example, semantic wikis employ RDF(S) and OWL ontologies
and often use many different ontologies to represent different kinds of data: some
important to users some not. As Weaver and Hendler showed [29], it is often
easy to split RDF(S) data in parts for which the fixpoint can be computed in
parallel. A similar strategy can be taken for reasoning and reason maintenance
in a semantic wiki. For a part of the data not directly visible to users only the
TS fixpoint may be computed, for other parts one of the skT, scTy, or dcTg
fixpoints may be computed which provide additional information with each atom
that can be used for ezplanation. In all cases, one of the reason maintenance
methods that takes advantage of the particular fixpoint can be used.

Acknowledgements. The research leading to these results is part of the project “KiWi
- Knowledge in a Wiki” and has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 211932.

References

1. Reasoning as Axioms Change: Incremental View Maintenance Reconsidered. Proc.
RR 2011 (2011)

2. Alchourron, C.E., Gardenfors, P., Makinson, D.: On the logic of theory change:
Contraction functions and their associated revision functions. Theoria 48 (1982)

3. Alchourron, C.E., Gardenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. J. Symbolic Logic (1985)

4. Blizard, W.: Dedekind multisets and function shells. Theoretical Computer Science
110(1), 79-98 (March 1993)

5. Blizard, W.D.: The development of multiset theory. The Review of Modern Logic
1(4), 319-352 (1991)

12

10.

11.
12.

13.

14.

15.

16.

17.
18.
19.
20.
21.

22.
23.

24.

25.

26.

27.

28.

29.

Broekstra, J., Kampman, A.: Inferencing and truth maintenance in RDF schema —
exploring a naive practical approach. Workshop on Practical and Scalable Semantic
Systems (PSSS) (2003)

Bry, F., Linse, B., Furche, T., Ley, C., Eiter, T., Eisinger, N., Gottlob, G., Pich-
ler, R., Wei, F.: Foundations of rule-based query answering. Springer LNCS 4636
Reasoning Web, Third International Summer School 2007 (2007)

Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets.
Fuzzy Sets and Systems 159(10), 1165-1177 (May 2008)

Dietrich, S.W.: Maintenance of Recursive Views. In: Encyclopedia of Database
Systems, pp. 1674-1679. Springer Verlag (2009)

Doyle, J.: Truth maintenance systems for problem solving. Tech. Rep. AI-TR-419,
Dep. of Electrical Engineering and Computer Science of MIT (1978)

Doyle, J.: The ins and outs of reason maintenance. Proc. IJCAT’83 (1983)

Doyle, J.: Reason maintenance and belief revision — Foundations vs. Coherence
theories. Cambridge University Press (1992)

Gupta, A., Katiyar, D., Mumick, I.S.: Counting solutions to the View Maintenance
Problem. In: In Workshop on Deductive Databases, JICSLP. pp. 185-194 (1992)
Gupta, A., Mumick, I.S.: Maintenance of Materialized Views: Problems, Tech-
niques, and Applications. Data Engineering Bulletin 18(2), 3-18 (1995)

Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.
SIGMOD Rec. 22, 157-166 (June 1993)

Harrison, J.V., Dietrich, S.W.: Maintenance of materialized views in a deductive
database: An update propagation approach. In: Workshop on Deductive Databases,
JICSLP. pp. 5665 (1992)

Koons, R.: Defeasible reasoning. In: Zalta, E.N. (ed.) The Stanford Encyclopedia
of Philosophy (Spring 2005)

Kotowski, J.: Constructive Reasoning for Semantic Wikis. Ph.D. thesis (2011)
Lloyd, J.: Foundations of Logic Programming. Berlin: Springer-Verlag (1987)
Mabher, M., Ramakrishnan, R.: Déja vu in fixpoints of logic programs. In: North
American Conference on Logic Programming (1989)

McAllester, D.: On the complexity analysis of static analyses. J. ACM 49(4), 512—
537 (2002)

McAllester, D.A.: Truth maintenance. AAAI90 (1990)

Mumick, I.S.: Query Optimization in Deductive and Relational Databases. Ph.D.
thesis, Stanford University (1991)

Mumick, I.S., Shmueli, O.: Finiteness Properties of Database Queries. Fourth Aus-
tralian Database Conference (1993)

Staudt, M., Jarke, M.: Incremental Maintenance of Externally Materialized Views.
In: Proc. 22th Int. Conf. VLDB. San Francisco, CA, USA (1996)

Syropoulos, A.: Mathematics of multisets. In: Multiset Processing, LNCS, vol.
2235. Springer Berlin / Heidelberg, Berlin, Heidelberg (December 2001)

Ullman, J.D.: Principles of database and knowledge-base systems. Computer Sci-
ence Press (1989)

Volz, R., Staab, S., Motik, B.: Incrementally Maintaining Materializations of On-
tologies Stored in Logic Databases. In: Journal on Data Semantics II, LNCS, vol.
3360. Springer, Berlin, Heidelberg (2005)

Weaver, J., Hendler, J.: Parallel materialization of the finite rdfs closure for hun-
dreds of millions of triples. In: Proc. ISWC2009 (October 2009)

	A Potpourri of Reason Maintenance Methods

