
Model Theory and Entailment Rules for RDF
Containers, Collections and Reification

François Bry1 and Tim Furche1 and Benedikt Linse1

University of Munich,
http://www.pms.ifi.lmu.de

Abstract. An RDF graph is, at its core, just a set of statements consist-
ing of subjects, predicates and objects. Nevertheless, since its inception
practitioners have asked for richer data structures such as containers (for
open lists, sets and bags), collections (for closed lists) and reification (for
quoting and provenance). Though this desire has been addressed in the
RDF primer and RDF Schema specification, they are explicitely ignored
in its model theory. In this paper we formalize the intuitive semantics
(as suggested by the RDF primer, the RDF Schema and RDF seman-
tics specifications) of these compound data structures by two orthogonal
extensions of the RDFS model theory (RDFCC for RDF containers and
collections, and RDFR for RDF reification). Second, we give a set of
entailment rules that is sound and complete for the RDFCC and RDFR
model theories. We show that complexity of RDFCC and RDFR entail-
ment remains the same as that of simple RDF entailment.

1 Introduction

Being endorsed by the W3C and equipped with a model theoretic semantics,
RDF/S1 is the data format destined to form the basis of the Semantic Web.
A large number of RDFS vocabularies, such as FOAF, Dublin Core, DOAP,
RSS, SKOS, XMP, etc. have been proposed, and are used by popular software
such as Firefox, Thunderbird, Photoshop and Acrobat. Due to its simplicity and
precise semantics, RDF/S is amenable for computer processing, reasoning and
understanding. Path, query and rule languages such as SPARQL [1], RQL [2],
Versa [3], nSPARQL [4], RDFLog [5, 6] and XcerptRDF [7] can be used to
process RDF data.

There is, however, a gap within the specification of the semantics of RDF/S.
While the largest part of the vocabulary is reflected in the model theory, the
vocabulary employed for describing RDF containers, collections and reification
is barely reflected in the model theory, although their intuitive semantics is
mostly well-understood and informally specified in [8], [9] and [10].

Containers and Collections are the recommended way for describing groups
of things within RDF. Containers may either be bags for describing multi-sets

1 We use RDF/S to refer to RDF data considered either under the RDF or the RDFS
semantics.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12175098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of things, alternatives for describing choices among multiple items or sequences
for describing groups of resources for which the order is relevant. Containers
are meant to be open in that there may be other elements than the ones in a
given RDF graph. In contrast, RDF collections are meant to be closed. While
one could imagine many types of collections, only one type of collection, namely
RDF lists, has been specified by the W3C. The RDFCC model theory presented
in this contribution formalizes the intuitions of openness, closedness and order.

RDF reification is used to describe information about statements. It can
be used to express beliefs, assumptions, or fears, as well as meta data about
statements, such as their originators, their time and place. Neither do statements
imply their reifications nor vice versa.

The RDF primer explains the absence of a model theory for the RDF speci-
ficities as follows:

“It is important to understand that while these types of containers are
described using predefined RDF types and properties, any special mean-
ings associated with these containers, e.g., that the members of an Alt
container are alternative values, are only intended meanings. These spe-
cific container types, and their definitions, are provided with the aim
of establishing a shared convention among those who need to describe
groups of things. All RDF does is provide the types and properties that
can be used to construct the RDF graphs to describe each type of con-
tainer. RDF has no more built-in understanding of what a resource of
type rdf:Bag is than it has of what a resource of type ex:Tent (dis-
cussed in Section 3.2) is. In each case, applications must be written to
behave according to the particular meaning involved for each type.”2 [8]

Providing an “intended meaning” without a formal semantics gives rise to
confusion among authors of RDF documents on the one hand and users and
creators of RDF query and transformation languages on the other.

“This concept of promoting intended semantics without formalization
– because there is no formal entailment associated with the semantics
of containers – will most likely continue to generate some confusion in
the future about exactly what is meant when one uses a specific con-
tainer.” [11]

In fact,the lack of a formal semantics for containers, collections and reifica-
tion has already impacted their adoption. Even W3C recommendations such as
SPARQL shun specific support for containers, collections and reification beyond
mere syntax. Thus, there is a danger that different RDF communities invent
different, potentially incompatible replacements for these concepts.

The RDF Semantics document [9][Section 3.3] anticipates the development
of semantic extensions for RDF/S, and mentions some intuitive consequences
2 While this quote addresses the use of containers (i.e. RDF bags, alternatives and

sequences) only, the RDF Primer takes the same stance with respect to RDF collec-
tions and reification.

for RDF collections, containers and reification, which are not formalized by the
model theory, and which are thus candidates for a semantic extension. This
paper provides such an extension, and tries to mirror the intuitive semantics
as close as possible. We thereby prepare the ground for a consistent treatment
and understanding of RDF containers, collections and reifications in all RDF
documents, tools and query languages.

Containers, collections and reifications and their semantics have been studied
before. [12] proposes a concise nested representation of RDF containers, collec-
tions and reifications, and provides transformations from this nested representa-
tion to RDF graphs and conversely. In contrast to [12] we do not introduce any
new syntax, but adhere to the approach of semantic extensions as suggested by
[9].

[13] proposes a semantics for RDF reification (but not for containers and
collections) based on F-Logic, but does not provide a model theoretic semantics
or entailment rules. Our approach is different from [13] in that we provide two
kinds of semantics for RDF reification: a cautious semantics which allows differ-
ent reifications of the same RDF statement, and a brave semantics that assumes
that the identity of a statement is given by its subject, predicate and object.
The approach in [13] corresponds to the brave reification semantics introduced
in this paper.

Section 2 recapitulates the basic notions of RDF triples, graphs, RDF/S
interpretations, RDF/S entailment and RDF/S entailment rules. The remainder
of this paper is aligned along its contributions:

– Section 3 reconsiders the incompleteness-problem of the RDFS entailment
rules described in [14] and propose an alternative solution named RDFS+

that does not require blank nodes in predicate position. A sound and com-
plete set of entailment rules for RDFS+ is presented, and RDFS+ entailment
is shown to have the same computational properties as RDFS entailment.

– Section 4 presents the RDFCC model theory for containers and collections,
and a set of entailment rules that is shown to be sound and complete with
respect to the RDFCC model theory. We argue that the RDFCC model
theory captures the intuitive semantics of RDF containers and collections.

– Section 5 provides a model theory and sound and complete entailment rules
for the reification vocabulary. Again, we argue that the RDFR model theory
captures the intuitive semantics of RDF reification.

– Also in Sections 4 and 5 RDFCC and RDFR entailment are shown to have
the same computational properties as RDFS entailment.

– Finally, Section 6 provides suggestions on query primitives for containers,
collections and reifications to be incorporated in SPARQL, which is the
predominant RDF query language as of today.

2 Preliminaries

Being intended not only for computer processing but also for computer un-
derstanding, RDF information is represented in simple sentences of the form

(subject, predicate, object). These sentences are called RDF triples, or, alter-
natively, RDF statements. RDF triples and RDF graphs (sets of triples) are
formed over RDF vocabularies, i.e. three disjoint fixed sets of URIs3, Strings
(called literals in RDF) and blank node identifiers. Blank nodes in RDF graphs
are considered as existentially quantified variables, and give rise to an interesting
field of research within the Semantic Web community. In this paper, we consider
mostly ground RDF graphs (i.e. graphs without blank nodes) because the issues
of blank nodes are orthogonal to the semantics of containers, collections and
reifications.

Definition 1 ((ground) RDF triple, (ground) RDF graph). Let U be a
set of URIs, L a set of literals and B a set of blank node identifiers. An RDF
triple over U,B,L is an element in ((U ∪B)×U × (U ∪B∪L)). A ground RDF
triple over U,B,L is an element in (U × U × (U ∪ L)). A (ground) RDF graph
over U,B,L is a set of (ground) triples over U,B,L.

As in first order logic, the semantics of RDF graphs is fixed via interpreta-
tions. RDF interpretations are somewhat unusual in that they map predicates via
the function IS to elements of the domain IR, which are subsequently mapped
via IEXT to subsets of IR×IR. This approach of giving names to predicate re-
lations has the benefit that the set of relations becomes countable, while the set
of subsets of (IR× IR), i.e. the set of unnamed binary relations, is, by Cantors
theorem, uncountable if IR is infinite.

As a second peculiarity, RDF interpretations must deal with RDF literals.
RDF literals are treated differently from URIs, because they are completely
described by the sequence of characters they are made up of. On the other hand,
living beings, artifacts or concepts cannot be completely described by a single
string of characters, and have thus a surrogate identity given by their URI.
Also the treatment of RDF literals is orthogonal to the semantics of containers,
collections and reifications. Therefore we do not further discuss RDF literals
in this contribution. There are (at least) five increasingly restrictive definitions
of interpretations in RDF/S: simple RDF interpretations, RDF interpretations,
RDFS interpretations, RDFS datatype interpretations and OWL interpretations.
Here, only simple RDF interpretations and RDFS interpretations are considered,
since RDFCC and RDFR interpretations are based upon them.

Definition 2 (Simple RDF interpretation [9]).
A Simple interpretation of an RDF vocabulary V = U ∪ L is a 6-tuple

(IR, IP, IEXT, IS, IL, LV) where

– IR 6= ∅: the domain or universe of I.
– IP : the set of properties of I.
– IEXT : IP → P(IR× IR).

3 URIs are often abbreviated by qualified names consisting of a namespace prefix and
a local part. In this contribution we omit the well-known namespace prefixes rdf:,
rdfs: and owl:, when the namespace prefix is clear from the context.

– IS : U → IR ∪ IP .
– IL : a mapping from typed literals in V into IR.
– LV ⊆ IR: the set of literal values

Simple RDF interpretations only give the semantics of URIs and typed lit-
erals. The semantics of RDF triples, graphs and untyped literals on the other
hand is fixed by RDF denotations. Put briefly, denotations give the structurally
recursive application of interpretations to ground triples and graphs, thereby
defining their truth values.

A ground triple (s, p, o) is true in an interpretation I, if (I(s), I(o)) ∈ IEXT (I(p)),
and a ground RDF graph is true in I if all its triples are true in I. As an immedi-
ate consequence, a triple (or a graph) that contains a URI not in the vocabulary
of an interpretation I is always false under I. RDF denotations may also be
based on RDFS, RDFCC, RDFR, RDFD or other, more restrictive notions of
RDF interpretations. See [9] or Section A.1 for the Definition of RDF denota-
tions.

RDF interpretations extend simple RDF interpretations by further restricting
the usage of the type predicate, and XML literals. We do not discuss RDF
interpretations but refer to [9].

RDFS interpretations assign a semantics to the RDFS classes 4 Class, Resource,
Literal, Datatype, ContainerMembershipProperty, and to the RDFS predi-
cates domain, range, subPropertyOf, subClassOf, member. Besides the map-
pings IS for URIs, IL for typed literals and IEXT for predicates, RDFS in-
terpretations use yet another mapping ICEXT that maps classes to their class
extensions. See [9] or Section A.1 for the definition of RDFS interpretations.

For RDF and especially for RDFS, so-called entailment rules have been iden-
tified, which can be used to derive additional knowledge from RDF graphs. While
the definitions of (simple) RDF/S interpretations impose constraints on the valid
interpretations of a graph only, entailment rules are syntactical transformations
on RDF graphs, such that the model relationship between interpretations and
the graphs to be transformed remain untouched. For simple RDF entailment,
these entailment rules are very restricted. Given an RDF graph consisting of
the single triple (a, b, c), one may add other triples to the graph in which the
subject, the object or both are replaced by a blank node identifier. For RDFS
entailment, these transformations include entailment rules for the transitivity of
the subclass relationship, the subproperty relationship, entailment rules for the
special predicates domain and range. For the sake of brevity, we do not give
the complete list of RDFS entailment rules, but instead refer to [9], Section 7.3.
Validity of these transformation rules is defined as follows:

Definition 3 (Valid and invalid entailment rules on RDF graphs). Any
entailment S −→ E is valid if S entails S ∪ E in every case. Otherwise it is
invalid.

4 As in the rest of this contribution, the namespace prefixes rdf: and rdfs: are
omitted.

Definition 3 is based on the notion of entailment. Since there are different
notions of entailment in RDF/S, we speak of simply valid entailments for simple
RDF entailment, valid entailments for RDF entailment, valid RDFS entailments
for RDFS entailment, etc.

3 RDFS+ Entailment

The RDFS entailment rules have been shown to be incomplete in [14] for the
following reason: Given two RDF properties p1 and p2 with p1 subproperty of
p2, one can derive that for a triple (a, p1, b) also the triple (a, p2, b) must hold
(RDFS entailment rule rdfs7). Moreover, given a property p with domain u,
and an RDF triple (v, p, w), the triple (v, type, u) is entailed (RDFS entailment
rule rdfs2). Now consider the following RDF graph:

G = { (friend, supPropertyOf, :Knows), (:Knows,domain,Person), (1)
(john, friend, chuck)}

The graph G in Equation 1 RDFS-entails the triple (john, type, Person), but
this triple cannot be derived by the entailment rules rdfs2 and rdfs7, since it
would require an intermediate triple with a blank node in predicate position,
which is forbidden in RDF. As a solution [14] proposes the notion of generalized
RDF graphs, which are RDF graphs that allow blank nodes in predicate position.

In this contribution, we take a different approach. We argue that the RDFS
semantics is unintuitive in one respect: It does not transfer the domain and range
specifications from super-properties to subproperties. To see this, consider the
RDF graph H in Equation 2. It is the same as G except that for the blank
node _:Knows, we use a URI knows, serving both as a resource and a predicate
name. While it is clear that H RDFS-entails the triples (john, knows, chuck) and
(john, type, Person), doesH also RDFS-entail the triple (friend, domain, Person)?

H = { (friend, supPropertyOf, knows), (knows,domain,Person), (2)
(john, friend, chuck)}

According to the RDFS model theory, it does not. However, it is intuitive that
the domain of a subproperty p1 is a subclass of the domain of the corresponding
superproperty p2, since the RDFS model theory requires that IEXT (I(p1)) ⊆
IEXT (I(p2)). Moreover, altering the RDFS model theory such that domain and
range specifications are inherited from superproperties to subproperties, results
in no additional entailments other than just this inheritance. To see this, consider
the graph RDFS(H) which is the closure of H under the RDFS entailment
rules:5

5 We omit blank nodes introduced by the RDF entailment rules.

RDFS(H) = { (friend, supPropertyOf, knows), (knows,domain,Person),
(john, friend, chuck), (john, knows, chuck), (john, type,Person)}

Adding the triple (friend, domain, Person) would once again allow the deriva-
tion of (john, type, Person), but no other additional triples. This is easy to see,
since domain and range appear as premises only in the RDFS entailment rules
rdfs2 and rdfs3.6

We thus propose to add to the Definition of RDFS interpretations the se-
mantic condition in 4 and to the RDFS entailment rule Equations 3 and 4.

Definition 4. An RDFS+ interpretation is an RDFS interpretation with the
following additional semantic conditions:7

– If (p1, p2) ∈ IEXT (I(subPropertyOf)) and (p2, C) ∈ IEXT (I(domain))
then (p1, C) ∈ IEXT (I(domain)).

– If (p1, p2) ∈ IEXT (I(subPropertyOf)) and (p2, C) ∈ IEXT (I(range))
then (p1, C) ∈ IEXT (I(range)).

Analogously to the other RDF entailment relationships, we say that an RDF
graph H RDFS+-entails an RDF graph G, iff all RDFS+ interpretations of H
are also RDFS+ interpretations of G.

(p1, subPropertyOf, p2), (p2,domain, C)
(p1,domain, C)

(3)

(p1, subPropertyOf, p2), (p2, range, C)
(p1, range, C)

(4)

We denote the union of the set of RDFS entailment rules from [9] and Equa-
tions 3 and 4 as the set of RDFS(+) entailment rules.

Theorem 1 (Completeness and Complexity of the RDFS+ entailment).
Given two RDF graphs H and G, H RDFS+-entails G, if and only if an instance
of G is in the RDFS(+) closure of H. RDFS+ entailment is NP-complete in
general, but in P if H is ground.

See Section A for the proof of Theorem 1.

4 RDFCC Model Theory

In this section, we introduce the RDFCC extension of RDFS, i,e, the formaliza-
tion of the intuitive semantics of RDF containers and collections as specified in
6 Obviously, this reasoning is based on the correctness and completeness of the RDFS

entailment rules.
7 Namespace prefixes are omitted for the sake of brevity.

[8], [9] and [10]. Moreover we give a sound and complete set of entailment rules
as a purely syntactical characterization of RDFCC entailment.

The RDF container vocabulary consisting of the names Bag, Seq, Alt, List,
first, rest, nil, _1, _2, . . . must be used with care in order to respect its
intuitive semantics:

Definition 5 (RDFCC interpretation). An RDFCC interpretation is an
RDFS interpretation (see Definition 12) which satisifes the following conditions:

1. (x, y) ∈ IEXT (i), i ∈ N ⇒ x ∈ ICEXT (Container)8

2. (x, y) ∈ IEXT (member) ⇒ x ∈ ICEXT (Container)
3. (x, y), (x, z) ∈ IEXT (i), i ∈ N, x ∈ ICEXT (Seq) ⇒ x = z.9

4. (x, y) ∈ IEXT (first) ∪ IEXT (rest) ⇒ x ∈ ICEXT (List).10

5. (x, y), (x, z) ∈ IEXT (first) ⇒ x = z.
6. (x, y), (x, z) ∈ IEXT (rest) ⇒ x = z.
7. x ∈ ICEXT (List) ⇒ x = I(nil) ∨

(∃y, z ∈ IR . (x, y) ∈ IEXT (first) ∧ (x, z) ∈ IEXT (rest)).
8. (x, y) ∈ IEXT (i), i ∈ N ⇒ ∃ y1, . . . yi−1 ∈ IR . (x, yj) ∈ IEXT (j) ∀

1 ≤ j ≤ i.
9. for any bijective mapping π : {1, . . . , n } → {1, . . . , n } holds:

(x, y1) ∈ IEXT (1), . . . , (x, yn) ∈ IEXT (n), x ∈ ICEXT (Alt)⇒ (x, yπ(i)) ∈
IEXT (1), . . . , (x, yπ(n)) ∈ IEXT (n)

10. The class extensions of bags, lists, sequences and alternatives are disjunct:
C,D ∈ {Bag,Seq,Alt,List} ∧ C 6= D ⇒
ICEXT (C) ∩ ICEXT (D) = ∅

RDF provides both the unnumbered container membership property (short
UCMP) member and the numbered container membership properties _1, _2,
. . . (NCMPs). Since the intuitive semantics of alternatives is independent of the
order of its elements, the member property suggests itself for their specification.
However, RDF bags and alternatives are mostly specified using numbered con-
tainer membership properties, as in the RDF Primer. Condition 9 above ensures
that an RDF alternative entails all reorderings of its elements, as Example 1
illustrates.11

Example 1 (Semantics of NCMPs in RDF alternatives and sequences). Condi-
tion 9 states that an RDF alternative RDFCC-entails any reordering of the
alternative, such that the RDF graphs in Equations 5 and 6 entail each other.

8 This semantic condition is stronger than the RDFS axiomatic triples stating that
the domains and ranges of the numbered container membership properties (NCMPs
for short) _1, _2, etc are simply Resource.

9 This semantic condition is equivalent to stating that the numbered container mem-
bership properties are all functional properties (owl:FunctionalPoperty in OWL).

10 This semantic condition is in line with the RDFS axiomatic triples stating that the
domain of first and rest is List.

11 RDF bags are discussed later on in this section.

{(eg:alt, type,Alt), (eg:alt, 1, eg:a), (eg:alt, 2, eg:b)} (5)
{(eg:alt, type,Alt), (eg:alt, 1, eg:b), (eg:alt, 2, eg:a)} (6)

There is no equivalent semantic condition for RDF sequences, since for se-
quences, the order is relevant, and thus two sequences with the same members
but different order must be interpreted as two different elements in IR. Thus
the RDF graph in Equation 7 does not RDFCC-entail the RDF graph in Equa-
tion 8 nor the other way around. This is reflected in the RDFCC model theory
in that there are RDFCC interpretations for 7 and 8 which are not RDFCC
interpretations for 8 and 7, respectively.

{(eg:alt, type,Seq), (eg:alt, 1, eg:a), (eg:alt, 2, eg:b)} (7)
{(eg:alt, type,Seq), (eg:alt, 1, eg:b), (eg:alt, 2, eg:a)} (8)

Example 2 (Openness/Closedness of RDF Containers/Collections). The RD-
FCC model theory formalizes the intuitive notion of openness of RDF containers
and closedness of RDF collections given in [8]. To see this, consider the RDF
graphs H1, H2, G1 and G2 below. While the graphs H1 and H2 are always com-
patible, G1 and G2 are only compatible under the assumption that eg:a denotes
the same resource as eg:b. Therefore the membership of eg:x is fixed, once it is
given an first and an rest predicate.

H1 = {(eg:x, type,Alt), (eg:x,member, eg:a)}
H2 = {(eg:x,member, eg:b), (eg:x,member, eg:c)}
G1 = {(eg:x, type,List), (eg:x,first, eg:a)}
G2 = {(eg:x,first, eg:b), (eg:x, rest,nil)}

The specification of RDF bags is problematic with the currently available
RDF vocabulary. On the one hand, RDF bags are unordered as RDF alternatives,
and thus an RDF bag should entail any reordering of its elements. On the other
hand, multiple occurrences of the same element within a bag do matter – the bag
(or multi-set) {a, a} is different from the bag {a}. Entailment of all reorderings
would thus loose the information about the cardinality of elments in a bag.

Specificiation of RDF bags with the UCMP member does not solve the prob-
lem either, since the model theory is set-based. A clean solution to this dilemma
would be the introduction of URIs card_1, card_2 . . . , which are used to specify
the cardinality of an element within an RDF bag. See Section A.3 for a model
theoretic formalization of RDF bags with this extended vocabulary.

With the RDFCC model theory requiring the disjointness of the class ex-
tensions of RDF bags, sequences, alternatives and lists, there are RDF graphs
that have no interpretation under the RDFCC semantics. One such graph is

{(a, type,Bag), (a, type,Alt)}. We call this situation an RDFCC clash. In the
RDFS extension for datatypes, similar cases can occur: The graph

{(:x, type, xsd:string), (:x, type, xsd:decimal)}

has no interpretation under the datatype extension of RDFS. This situation
is referred to as a datatype clash.

RDFCC entailment is analogous to RDF simple entailment, RDF entailment
and RDFS entailment: We say that an RDF graph G1 entails an RDF graph
G2 under the RDFCC semantics (written G1 |=RDFCC G2), iff all RDFCC
interpretations of G1 are also RDFCC interpretations of G2.

The model theoretic characterization of RDFCC implies the following triples
and syntactic entailment rules, which are valid in the sense of Definition 3.12

(i,domain,Container) ∀i ∈ N (9)
(member,domain,Container) (10)

(first,domain,Container) (11)
(rest,domain,Container) (12)

(a, type,List), a 6= nil
(a,first, :X), (a, rest, :Y)

(13)

(a, i, b)
(a, j, :Z j) ∀1 ≤ j < i

(14)

(a, i, b)
(a,member, b)

∀i ∈ N (15)

(a, i, b), (a, type,Alt)
(a, j, b)

∀1 ≤ j ≤ i (16)

Note that in Equation 13 we assume the unique name property for the URI
nil. While in general, the unique name assumption is insensible for a distributed
environment like the Web, in this particular case we can argue that anybody who
uses (and thus knows) the URI List should also know (and thus use) the URI
nil for referencing the empty RDF list.

For an RDF graph G, RDFCC(G) is the closure of G under the RDFCC and
the RDF/S entailment rules. Unfortunately, the RDFCC entailment rules are not
complete in the sense that they allow to derive all graphs G′ RDFCC-entailed
by an RDF Graph G. In particular, G1 |=RDFCC G2 ⇔ RDFCC(G1) |=RDFS

RDFCC(G2) is not true for arbitrary RDF graphs G1 and G2 as Example 3
shows.

Example 3 (Incompleteness of the RDFCC entailment rules). Consider the RDF
graphs g1 and g2 below. Clearly g1 RDFCC-entails g2, but g2 is not in the
RDFCC closure of g1. The missing entailment rules are borrowed from OWL,
and given in Definition 6.
12 _:X, _:Y, _:Z_1, . . . denote fresh blank node identifiers.

g1 = {(eg:a, 1, eg:b), (eg:a, 1, eg:c), (eg:c, type, foaf:Person)}
g2 = {(eg:b, type, foaf:Person)}

To complete the RDFCC entailment rules, the owl:functionalProperty
and owl:sameAs properties are necessary for the formulation of entailment rules
reflecting Condition 3 of Definition 5. These additional entailment rules are given
together with the RDFCC axiomatic triples ACC in Definition 6.

Definition 6 (RDFCC(+) closure). The set ACC is the following set of RD-
FCC axiomatic triples:

– (1, type, owl:functionalProperty)
– (2, type, owl:functionalProperty)
– . . . ,
– (first, type, owl:functionalProperty)
– (rest, type, owl:functionalProperty)
– (owl:sameAs, type, owl:symmetricProperty)

The RDFCC+ entailment rules are as follows:

(p, type, owl:functionalProperty), (a, p, b), (a, p, c)
(a, owl:sameAs, c)

(17)

(a, owl:sameAs, b), (a, pred, obj)
(b, pred, obj)

(18)

(a, owl:sameAs, b), (subj, a, obj)
(subj, b, obj)

(19)

(a, owl:sameAs, b), (subj, pred, a)
(subj, pred, b)

(20)

(p, type, owl:symmetricProperty), (a, p, b)
(b, p, a)

(21)

With RDFCC(+) we refer to the union of the RDFCC entailment rules and
the RDFCC+ entailment rules. Given an RDF graph G, RDFCC(+)(G) denotes
the closure of G ∪ ACC ∪ ARDFS under the RDFCC(+) and RDF/S entailment
rules.

Theorem 2 (Soundness and Completeness of RDFCC(+)). Given two
RDF graphs G1 and G2 which are free of RDFCC clashes, (G1∪ACC) |=RDFCC

(G2 ∪ ACC) iff RDFCC(+)(G1) |=RDFS RDFCC
(+)(G1).

See Section A.4 for a proof sketch of Theorem 2.

Lemma 1 (Interpolation Lemma for RDFCC). Given two RDF graphs H
and G free of RDFCC clashes, H ∪ACC |=RDFCC G ∪ACC , iff an instance of
G is a subset of the RDFCC(+) closure of H.

Lemma 1 is a direct consequence of the RDFS entailment lemma and Theo-
rem 2. It gives rise to the following complexity results about RDFCC entailment:

Theorem 3 (Complexity of RDFCC entailment). Given two RDF graphs
H and G, deciding H |=RDFCC G is NP-complete, and in P if G is ground.

Proof. NP-hardness of RDFCC entailment is inherited from simple entailment
[14], whose NP-hardness has been shown by a reduction from the Clique problem.
That proof does not make use of any vocabulary that is further constrained in
the RDFCC model theory.

Polynomial time RDFCC entailment for ground target graphs would be im-
mediate if the RDFCC closure of an RDF graph were of polynomial size. Un-
fortunately, this is not the case because for the following three reasons: (i) Both
the set of RDFS axiomatic triples, and the set of RDFCC axiomatic triples are
infinite. (ii) Rule 14 adds an apriori unknown number of triples to the closure,
and (iii) Rule 16 considers an exponential number of permutations. These issues
are solved as follows: (a) Only those RDFS and RDFCC axiomatic triples for the
predicates _i are considered in the computation of the closure that are actually
relevant for the graph – i.e. the predicate must occur somewhere in the graph.
(b) When syntactically deciding entailment, Rule 9 need not be applied for the
computation of the closure. Instead a simple integer comparison can check if for a
triple (a, i, b) in the entailed graph, there is some triple (a, j, b) with i < j in the
entailing graph. (c) We replace all numbered container membership properties
(NCMP) used for RDF alternatives with the unnumbered container member-
ship property (UCMP) member. Moreover, we include only the RDFS axiomatic
triples for those NCMPs which are used in the entailing graph, as detailed in [14].
With these three restrictions, the size of RDFCC closure of an RDF graph G is
polynomial in G. Since for ground target graphs, checking entailment reduces to
checking the subset relationship, this implies the second part of Theorem 3.

As for RDFS(+) entailment, RDFCC entailment for non-ground graphs is
in NP, since we may guess a mapping φ from the blank nodes in the entailed
graph G to the vocabulary of the entailing graph H, and subsequently check that
φ(G) ⊆ RDFCC(+)(H), where RDFCC(+)(H) is computed with restrictions
(a), (b) and (c) above.

5 RDFR Model Theory

In this section we introduce the RDFR extension of RDFS, i.e. the formalization
of the intuitive semantics of RDF reification. We distinguish a cautious reification
semantics that allows different occurrences of the same reified statement, and a
brave reification semantics, that assumes that the identity of a reified statement
is given only by the values of its subject, predicate and object properties. As
for RDFCC, we give a sound and complete set of entailment rules for the syntac-
tical characterization of RDFR entailment, and we show that RDFR entailment
is NP complete for arbitrary graphs, and in P if the target graph is ground.

Definition 7. A cautious RDFR interpretation is an RDFS interpretation sat-
isfying the following conditions and the axiomatic triples in Definition 8.

1. If (x, y), (x, z) ∈ IEXT (p) for p ∈ {subject, predicate, object} then x = z. In
other words, subject, predicate, and object are functional properties.

2. If (x, y) ∈ IEXT (p) for p ∈ {subject, predicate, object} then x ∈ ICEXT (Statement).
3. If x ∈ ICEXT (Statement) then ∃s, p, o ∈ IR . (x, s) ∈ IEXT (subject),

(x, p) ∈ IEXT (predicate) and (x, o) ∈ IEXT (object).13

Definition 8. The RDFR axiomatic triples ARDFR are the following:

1. (subject, tpe, functionalProperty)
2. (predicate, tpe, functionalProperty)
3. (object, tpe, functionalProperty)
4. (subject, domain,Statement)
5. (predicate, domain,Statement)
6. (object, domain,Statement)
7. (sameAs, type, symmetricProperty)

Definition 9 (Brave RDFR interpretations). A cautious RDFR interpre-
tation is a brave RDFR interpretation, iff it additionally satisifies the following
condition:

– if (x, s) ∈ IEXT (I(subject)), (y, s) ∈ IEXT (I(subject)),
(x, p) ∈ IEXT (I(predicate)), (y, p) ∈ IEXT (I(predicate)),
(x, o) ∈ IEXT (I(object)), (y, o) ∈ IEXT (I(object)) then x = y.

Cautious (|=c
rdfr) and brave (|= rdfrb) RDFR entailment are defined analo-

gously to RDFS entailment.

Definition 10 (RDFR Entailment Rules). The RDFR entailment rules in-
clude the RDFCC entailment rules 17, 18, 19 and 20. Rule 22 makes the set
of RDFR entailment rules complete for |=c

rdfr.
14 |=b

rdfr entailment additionally
requires Rule 23.

(a, type,Statement)
(a, subject, :S), (a, predicate, :P), (a, object, O)

(22)

(x, subj, s), (y, subj, s), (x, pred, p), (y, pred, p), (x, obj, o), (y, obj, o)
(x, sameAs, y)

(23)

The RDFR closure RDFR(G) of an RDF graph G is the closure of (G ∪
ARDFR) under the RDFR and the RDF/S entailment rules.
13 This semantic condition is stronger than the RDFS axiomatic triples stating that

the domains of subject, predicate, and object are Statement. Together with these
axiomatic triples, this condition ensures that any resource with an subject has also
an predicate and object (and vice versa).

14 _:S, _:P and _:O are fresh blank node identifiers.

Theorem 4 (Soundness, Completeness and Complexity of RDFR). Given
two RDF graphs H and G, H |=c

RDFR G iff RDFR(H) |=RDFS RDFR(G).
RDFR entailment is NP-complete for arbitrary graphs and in P, if the target
graph is ground.

See Section A.5 for a proof sketch of Theorem 4.

6 Conclusion and Outlook

This contribution formalizes the semantics of RDF grouping and reification con-
structs and gives rules to implement this semantics. We have shown that entail-
ment for this extension remains in the same complexity class as simple entail-
ment.

While many queries over containers, collections and reifications are express-
ible over their triple serializations in query languages such as SPARQL or RD-
FLog, most queries requiring the absence of triples in a container, some order
among elements in a container, or queries involving elements of an RDF List,
are not:

– Finding all containers that contain only the resources eg:a and eg:b is
impossible in SPARQL. While SPARQL supports negation as failure through
optional graph patterns and the unbound keyword, we would have to test for
the absence of an infinite number of RDF triple patterns (for each predicate
_i with i > 0).

– Finding all RDF sequences that contain the resources eg:a and eg:b with
eg:a appearing before eg:b. Again, there is an infinite number of RDF
graphs that could satisfy this query.

– Testing for the absence of a particular resource within an RDF container.
– Finding all elements of an RDF list. In SPARQL this would require the

specification of a path expression with an a-priori unknown depth. In path
languages such as Versa or nSPARQL, such queries are expressible.

– Finding all RDF bags/sequences/alternatives with exactly n members with
n ≥ 0.

This calls for a representation of RDF specificities as a compound data struc-
ture instead of as sets of triples. In XcerptRDF [7], the RDF graph H := H1∪H2

from Example 2 would be represented as the term

eg:x{ bagOf { eg:a, eg:b, eg:c } }

and the query q1 = eg:x{ bagof {{ eg:b, eg:c }} } would match with
H (because double curly braces specify that there may be more elements in
the data than given in q1), but the query q2 = eg:x{ bagof{ eg:b, eg:c } }
would not (because single curly braces specify that there must be exactly the
two elements eg:b and eg:c given in q2). Also the other queries above are ex-
pressible in XcerptRDF in a concise and straight-forward manner. Such query

primitives could be easily incorporated into SPARQL, and also should be inte-
grated since querying containers and collections is a central requirement for RDF
query languages [15]. However, the use of such primitives makes only sense un-
der the RDFCC semantics, i.e. under consideration of the RDFCC entailments,
and under the assumption that the queried graphs respect the RDFCC model
theory. This work lays the foundation for such an extension of SPARQL.

References

1. Seaborne, A., Prud’hommeaux, E.: SPARQL query language for RDF. W3C recom-
mendation, W3C (January 2008) http://www.w3.org/TR/2008/REC-rdf-sparql-
query-20080115/.

2. Karvounarakis, G., Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis,
D., Scholl, M., Tolle, K.: RQL: A functional query language for RDF. In Gray,
P.M.D., Kerschberg, L., King, P.J.H., Poulovassilis, A., eds.: The Functional Ap-
proach to Data Management: Modelling, Analyzing and Integrating Heterogeneous
Data. LNCS, Springer-Verlag (2004) 435–465

3. Ogbuji, C.: Versa: Path-based RDF query language (2005)
4. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navigational language for RDF.

In Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W.,
Thirunarayan, K., eds.: International Semantic Web Conference. Volume 5318 of
Lecture Notes in Computer Science., Springer (2008) 66–81

5. Bry, F., Furche, T., Ley, C., Linse, B., Marnette, B.: RDFLog: It’s like datalog
for RDF. In: Proceedings of 22nd Workshop on (Constraint) Logic Programming,
Dresden (30th September–1st October 2008). (2008)

6. Bry, F., Furche, T., Ley, C., Linse, B., Marnette, B.: Taming existence in RDF
querying. In Calvanese, D., Lausen, G., eds.: RR. Volume 5341 of Lecture Notes
in Computer Science., Springer (2008) 236–237

7. Bry, F., Furche, T., Linse, B., Pohl, A.: XcerptRDF: A pattern-based answer to the
versatile web challenge. In: Proceedings of 22nd Workshop on (Constraint) Logic
Programming, Dresden, Germany (30th September–1st October 2008). (2008) 27–
36

8. Manola, F., Miller, E.: RDF primer, W3C recommendation. Technical report,
W3C (2004)

9. Hayes, P.: RDF semantics. World Wide Web Consortium, Recommendation REC-
rdf-mt-20040210 (February 2004)

10. McBride, B.: Rdf vocabulary description language 1.0: RDF schema (2004)
11. Powers, S.: Practical RDF. O’Reilly & Associates, Inc., Sebastopol, CA, USA

(2003)
12. Conen, W., Klapsing, R., Kppen, E.: RDF M&S revisited: From reification to

nesting, from containers to lists, from dialect to pure xml. In: In Proceedings of
the Semantic Web Working Symposium (SWWS). (2001) 2–7

13. Yang, G., Kifer, M.: Reasoning about anonymous resources and meta statements
on the semantic web. J. Data Semantics 1 (2003) 69–97

14. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
schema and a semantic extension involving the OWL vocabulary. J. Web Sem.
3(2-3) (2005) 79–115

15. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A comparison of RDF query
languages. (2004) 502–517

A Appendix

A.1 Denotations and RDFS Interpretations

Definition 11 (Denotation of ground RDF graphs). Given an RDF inter-
pretation I = (IR, IP, IEXT, IS, IL, LV) over a vocabulary V , the denotation
of a ground RDF graph is defined as follows:

– if E is a plain literal ”aaa” in V then I(E) = aaa

– if E is a plain literal ”aaa”@ttt in V then I(E) = <aaa,ttt>

– if E is a typed literal in V then I(E)=IL(E)
– if E is a URI reference in V then I(E)=IS(E)
– if E is a ground triple (s, p, o) then I(E) = true if s, p, o are in V , I(p) is

in IP and (I(s), I(o)) is in IEXT (I(p)).
– if E is a ground RDF graph then I(E) = false if I(E′) = false for some

triple E′ in E, otherwise I(E) = true.

Definition 12 (RDFS interpretation [9]). An RDFS interpretation is an
RDF interpretation that satisfies the following additional conditions and the
RDFS axiomatic triples ARDFS (see [9]).

– x ∈ ICEXT (y) iff (x, y) ∈ IEXT (I(type))
– IC = ICEXT (I(Class))
– IR = ICEXT (I(Resource))
– LV = ICEXT (I(Literal))
– If (x, y) is in IEXT (I(domain)) and (u, v) is in IEXT (x) then u is in
ICEXT (y).

– If (x, y) is in IEXT (I(range)) and (u, v) is in IEXT (x) then v is in ICEXT (y).
– IEXT (I(subPropertyOf)) is transitive and reflexive on IP .
– If (x, y) is in IEXT (I(subPropertyOf)) then x and y are in IP and IEXT (x)

is a subset of IEXT (y).
– If x is in IC then (x, I(Resource)) is in IEXT (I(subClassOf)).
– If (x, y) is in IEXT (I(subClassOf)) then x and y are in IC and ICEXT (x)

is a subset of ICEXT (y).
– IEXT (I(subClassOf)) is transitive and reflexive on IC.
– If x is in ICEXT (I(ContainerMembershipProperty)) then (x, I(member))

is in IEXT (I(subPropertyOf)).
– If x is in ICEXT (I(Datatype)) then (x, I(Literal)) is in IEXT (I(subClassOf)).

A.2 Proof for Theorem 1

Proof. Theorem 1 is based on the completeness of the RDFS entailment rules
from [9] apart from the exception identified by [14] for blank nodes in predicate
position. To see that the RDFS+ extension eliminates the problem of intermedi-
ate triples with blank nodes in predicate position, note that the RDFS entailment
rule rdfs7 is the only one which may derive such invalid triples. Moreover, take

notice that the RDFS(+) closure of the graph G in Equation 1 contains the
triple (john, type, P erson).

NP-hardness of RDFS+ entailment is a direct consequence of NP-hardness
of RDFS entailment [14]. RDFS+ entailment is in NP , since the RDFS(+) clo-
sure RDFS(+)(H) of H can be computed in polynomial time, if the axiomatic
triples for the _i predicates are restricted to the ones occurring in H. Entail-
ment can then be checked by guessing the right assignment φ of URIs in H
to blank nodes of the entailed graph G, and testing the subset relationship
φ(G) ⊆ RDFS(+)(H) in linear time. For ground graphs, φ need not be guessed,
but is the empty mapping.

A.3 Formalization of RDF Bags

Definition 13 gives a formalization of the intuitive semantics of RDF bags, if
the cardinality of elements within a bag are specified via the predicates card 1,
card 2.

Definition 13 (Formalization of RDF bags). An RDFCC interpretation is
an RDFCCBag interpretation, if the following additional semantic conditions
hold:

1. if (x, y) ∈ IEXT (card i) for some natural number i > 0, then x ∈ ICEXT (Bag).
2. if (x, y) ∈ IEXT (card i) and (x, y) ∈ IEXT (card j) for two natural numbers

i, j > 0 then i = j.

Condition 1 in Definition 13 ensures that the cardinality properties are only
used for the specification of RDF bags. Condition 2 ensures that the cardinality
of an element within an RDF bag is uniquely determined. Since this formalization
of RDF bags introduces new vocabulary and requires a redefinition of the merge
of an RDF graph, it is not part of the RDFCC model theory.

A.4 Proof Sketch for Theorem 2

The correctness of Theorem 2 is substantiated by the following assignment of
entailment rules to the semantic conditions in Definition 5.

– Conditions 1 and 2 are reflected by entailment rules 9 and 10, respectively.
– Condition 3 is reflected by the RDFCC+ entailment rules 17, 18, 19 and

20 together with the axiomatic triples (i, type, owl:functionalProperty) for
i ∈ N, i > 0.

– Condition 4 is reflected by the rules 11 and 12.
– Conditions 5 and 6 are reflected by the RDFCC+ rules 17, 18, 19 and 20,

together with the axiomatic triples (first, type, owl:functionalProperty) and
(rest, type, owl:functionalProperty), respectively.

– Condition 7 is reflected by rule 13.
– Condition 8 is reflected by rule 14.
– Condition 9 is reflected by rule 16.
– Condition 10 is ensured by the assumption that the graphs are free of RD-

FCC clashes.

A.5 Proof Sketch for Theorem 4

The validity of the RDFR entailment rules is substantiated by the following
association of entailment rules and axiomatic triples to the semantic conditions
of RDFR interpretations:

– Axioms 1, 2 and 3 together with the entailment rules 17, 18, 19 and 20 are
valid due to Condition 1 in Definition 7.

– Axioms 4, 5 and 6 are valid due to Condition 2 of RDFR interpretations.
– Entailment rule 22 is valid due to Condition 3 in Definition 7.

The RDFR entailment rules are complete, since the semantic conditions of
Definition 7 are orthogonal to each other, and because the semantic conditions
on the interpretations are spelt out by the entailment rules according to the
association given above.

The complexity results are proven in the same way as for RDFS(+).

