Content-Aware DataGuides for Indexing Large Collections of XML Documents

Felix Weigel Holger Meus$ Francois Bry Klaus U. Schulz
nstitute for Computer Science 2European Southern Observatory ?Centre for Inform. & Language Processing
University of Munich (LMU), Germany Headquarter Garching, Germany University of Munich (LMU), Germany
{weigel,bry@informatik.uni-muenchen.de hmeuss@eso.org schulz@cis.uni-muenchen.de
Abstract tion selects virtually all papers in the library. Other appli-

cations include retrieval in structured web pages and manu-
XML is well-suited for modelling structured data with als; collections of tagged textual content, such as linguistic

textual content. However, most indexing approaches per-or juridical documents; compilations of annotated scientific
form structure and content matching independently, com-data, e.g. monitoring output in computer science or astron-
bining the retrieved path and keyword occurrences in a third omy; e-business applications managing product catalogues;
step. This paper shows that retrieval in XML documents canor web service descriptions. Novel Semantic Web applica-
be accelerated significantly by processing text and struc- tions will make the need for combined content and structure
ture simultaneously during all retrieval phases. To this end, retrieval of XML metadata even more urgent.
the Content-Aware DataGuide (CADG@nhances the well- All these applications have in common that they (1)
known DataGuide with (1) simultaneous keyword and path query XML (i.e. semi-structured) data which (2) contains
matching and (2) a precomputed content/structure join. EX- |arge portions of text and (3) requires persistent index struc-
tensive experiments prove the CADG to be 50-90% fasteryres for efficient processing. In addition, many of the
than the DataGuide for various sorts of query and doc- 4torementioned cases deal with rather static data, where up-
ument, including difficult cases such as poorly structured gates are local and unfrequent. Despite the wealth of index-
queries and recursive document paths. A new query classisng techniques known from both Information Retrieval (IR)
fication scheme identifies precise query characteristics with 5nq gatabase (DB) research, there are few approaches de-
a predominant influence on the performance of the individ- gigned for this characteristic class of data. While IR index-
ual indices. The experiments show that the CADG is appli- ing approaches tend to neglect the structure of documents,
cable to many real-world applications, in particular large many approaches developed by the DB community disre-
collections of heterogeneously structured XML documents.gard the textual content of XML data. TB&taGuide[6, 9]

as the ground-breaking approach to indexing XML is a pure

structure index in its original form, and is used with a sepa-

rate inverted keyword index i®]. As a consequence, it suf-
1. Introduction fers from an increased retrieval overhead even for selective

queries, similar to inverted lists in multi-attribute search.

The eXtensible Markup Language (XM[3] has estab- More re_cent adaptations of the DataGuide give up the strict

lished itself as the representation format of choice for semi- S€Paration of content and structure, but still process both
structured datal]. Many modern applications produce and Seéquentially. TheContent-Aware DataGuide (CADGh-
process large amounts of XML data, which must be queriedtreduced in this paper as an extension of the DataGuide,
with both structural and textual selection criteria. A typi- US€S both structura[and textual selection criteria S|mullt:';1ne—
cal example are digital libraries and archives, where either ©USly during all retrieval phases. Compared to the original
human users or management and mining tools search for paPataGuide, this reduces the evaluation time by more than
pers with, say, a title mentionir{ML” and a section about 0% in most cases, and up to 90% under favourable, yet
“SGML” in the related work part. Obviously, both the query Nighly realistic conditions.
keywords {(XML" , “SGML") and the given structural hints This paper is organized as follows. The next section de-
(title, related work) are needed to retrieve relevant papers:scribes the DataGuide as the basis of the CADG, along with
searching fofrXML” and“SGML” alone would yield many a simple query formalism to be used throughout the text.
unwanted papers dealing mainly with SGML, whereas a The following two sections introduce the Content-Aware
query for all publications with a title and a related work sec- DataGuide on different levels of abstraction: first secon

https://core.ac.uk/display/12175071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

#0 | #1 | #2 | #3 #4 #5 #6

preface & | &1 | &2 | &3 | &4;&7 &5;88 | &6

(c) annotation table

"index"

"index" "survey" "XML"
&2;&5;&6;&8 &2 &8
(a) document tree (b) index tree (d) content table

Figure 1. Data structures of the original DataGuide

explains two abstract conceptsauintent awarenessne of D, the set of document nodes reached’byabel path. To-
which (thestructure-centricapproach) is shown to be su- gether the index tree and the annotation table encode nearly
perior. Sectiord elaborates on two concrete realizations of all structural information which is present in the document
structure-centric content awareness, Ittentity CADGand collection. Only parent/child relations between document
the Signature CADG The following section is dedicated nodes cannot be reconstructed from the DataGuide, due to
to the exhaustive experiments performed to compare boththe merging of multiple document paths in a single index
CADGs with the original DataGuide. The paper concludes path. For instance, from figutke(b) and(c) one cannot tell

with remarks on related work and future research. whether in(a) &8 is a child of&4 or &7, which are both
referenced by the parent &B’s index node#5.
2. Indexing XML with the original DataGuide A third data structure indexes the textual document con-

tent. The DataGuide described above, as a pure path index,

A well-known and influential approach to indexing semi- 1gnores textual content altogetheieywordsoccurring in
structured data is thBataGuide[6, 9]. A DataGuide is es- the document collection are indexed in a sepacatetent
sentially a compact representation of the document tree, intable, which is stored on disk like the annotation table. The
which all distinct label paths appear exactly once, as showncontent table is an inverted list mapping a keyword to the set
in figure 1. The tree on the lefa) depicts a small doc- of document nodes where it occurs, as shown in figuib.
ument collection. The corresponding DataGuide is shown More formally, it implements a mappingg. : k — Dy
in the middle(b). A comparison of both trees reveals that Wherek is a keyword andD;. the set of document nodes
multiple instances of the same document label path, like Which contain an occurrence éf Note that although fig-
/book /chapter /section in (a), collapse to form a single in- grel sh_ows both the content taplg and the annotation table
dex label path inb). Therefore the resultinqidex tree N non-first normal form XF?), this is not mandatory.
which serves as a path index, is usually much smaller than Our data model for tree queries, which covers the core
the document tree (although theoretically its size is linear in XPath constructs, distinguishes betwegnicturalandtex-
that of the document tree). Hence it is supposed to be heldtual query nodes. While structural query nodes are matched
in main memory even for large document collections. by document nodes with a suitable label path, textual query

Without references to individual document nodes, how- nodes correspond to certain keywords occurring in such
ever, the index tree only allows to find out about the exis- a document node. As shown in figugfor the query
tence of a given label path, but not its position in the col- tree/book][.//+[" XML" | and ./preface/para[" index"]],
lection. To this end, every index node asnotatedwith each query path consists of structural nodes, linked by la-
the IDs of those document nodes it represents (i.e. thosebelled edges, and possibly a single textual leaf node con-
reached by the same label path as the index node). For intaining a non-empty set of query keywords, which are log-
stance, the index nod#gl in figure 1 (b) with the label path ically con- or disjoined. Edges to structural query nodes
/book/chapter/section points to the document node&s! may be eitherigid (solid line), which means that the two
and&7, as they are accessible via this very path in the doc- linked query nodes only match a parent/child pair of docu-
ument trega). The annotations of all index nodes are stored ment nodes, osoft(dashed line), corresponding to XPath'’s
on disk in amannotation table (c)Formally, the table repre- descendant axis. Similarly, a textual query node is either
sents a mappindg, : ¢ — D; whereiisanindex node and reached by a rigid edge, indicating that its keywords must

occur in the text contained in any document node match-document nodes where this keyword occurs. In pt&ase
ing the parent query node, or a soft edge, in which case thethe content/structure join, each annotation set retrieved dur-
keywords may also be nested deeper in the subtree of theng the previous phase is intersected with the occurrence set
document node. For a formal language definition, 4€ [for “XML" to find out which of the document nodes with

a matching label path contain an occurrence of the query

book keyword. Here almost all candidate index nodes are dis-
carded, their respective annotation set and the singleton oc-
R $0 currence set being disjoint. On#p references a document
preface node which meets both the structural and textual selection
CD criteria of the given query path. The document node in the
e ¥ parzs intersection{&5; &8} N {&8} = {&8} is returned as the
only hit. Since the example is a path query, we are finished.
D$Z C:J$4 If there were more paths in the query tr&8's ancestors
- would need to be retrieved, too, in order to join the hits of
D all query paths (retrieval phagdg.
$5 In the above example a lot of false positives (all index

nodes bu#0 and#5) are retrieved during path matching and
Figure 2. Query tree kept in the fetching phase, to be finally ruled out in retrieval
phase3. Not only does this make the path matching step un-
necessarily complex; it also causes needless disk accesses
in phase2. The reason why the false positives are not dis-
carded during the first two retrieval phases is that structural
1. Path matching:[he query paths are matched Separate|y and textual selection criteria are handled separately. While
against the index tree. both are satisfied when considered in isolation, the join of
content and structure in pha3eeveals the mismatch. Note
2. Occurrence fetchingannotations of the index nodes that a reverse matching order — first keyword fetching, fol-
found in phaSG. are fetched from the annotation table, lowed by navigation and annotation fetching —is no good,
query keywords are looked up in the content table. ynjess keyword fetching fails altogether (in which case nav-
igation is useless, and the query can be rejected as unsatis-
fiable right away). Moreover, it results in similar deficien-
cies for queries with selective paths, but unselective key-
4. Path join: the results of all query paths are joined to words. In other words, the DataGuide faces an inherent de-
form hits matching the entire query tree. fect, keeping structural and textual selection criteria apart
during the first two retrieval phases. Therefore we propose
a Content-Aware DataGuidehich combines structure and
content matching from the very beginning of the retrieval
process. This accelerates the evaluation process especially
when querying selective keywords and unselective phaths.

Query processing with the DataGuide is divided into the
following four retrieval phases

3. Content/structure joinfor each query path, the sets of
annotations and keyword occurrences are intersected.

While phased and3 are accomplished in main memaory,
phase? involves two disk accesses. Phasmay, but need
not, require further 1/0O operations.

As an example, consider the pseudo-XPath query
/book// x [" XML"]. It selects all document nodes below a

tree root labelledook which contain an occurrence of the
keyword “XML” (note that the shorthang XML"] is not 3 TWO approaches towards a Content-Aware

part of the XPath language). In phasethe query path DataGuide (CADG)
/book//« is searched in the index tree shown in figli(®).
All nodes in the index tree except the rog qualify as As stated in the previous section, the objective of the

structural hits. This illustrates that unselective query paths Content-Aware DataGuide (CADG) is to integrate content
featuring the// andx constructs may cause multiple index matching with both path matching and annotation fetching
nodes to be retrieved during path matching. In ptagsee (retrieval phase4 and2, respectively), thus saving an ex-

annotations (i.e. IDs of matching document nodes) of all plicit content/structure join (phas®. In short, one can say

index nodes from the previous retrieval phase are fetchedthat the CADG enhances the original DataGuide with a ma-
from the annotation table. In our example, looking up the terialized content/structure join and a keyword-aware path
index node IDgt1 to #6 in the table yields the six annotation

. . . 1 The integrated content information of a CADG can also be used
Sets{&l}' {&2}3 {&3}’ {&4’ &7}’ {&5’ &8}’ and{&6}’ r? to facilitate schema browsing with the index tree, as proposed for the
spectively. Besides, a look-up of the query keywt(¥L DataGuide in§]. Creatingkeyword-specific views of the document schema

in the content table identifie&8} as the singleton set of in this way is not explored here for reasons of brevity.

"survey" "XML" &

matching procedure. More specifically, we propose two dif-
ferent techniques (an exact and a heuristic one) to prune

book book
index paths which are irrelevant to a given query keyword. o o
This content-aware navigationot only reduces the number preface chapter
of paths to be visited during phasgbut also excludes false para| | section]
positives from the expensive annotation fetching in pt2ase 2 i

para

Besides, the two table look-ups in phaséannotation and
keyword occurrence fetching) are integrated within a sin-
gle content-aware annotation fetchirstep, which again re-
duces the number of disk accesses by up to 50%. The idea i<

#5

(a) content-centric index trees

to precompute the content/structure join (phasat index- "index" "survey” "xML" B

ing time such that document nodes can be retrieved simulta-[4, | 45 | #6 42 45 40 | #1 |# | #a

neously by their label path and the keywords they contain. [%546 [s - - %0 | a1 | & |aaar

This also avoids the intersection of possibly large sets of

document node IDs at query time. (b) content-centric content/annotation table
We examine two symmetric approaches to meeting the

above objectives. Theontent-centric approacksee sec- Figure 3. Content-centric CADG approach

tion 3.1), being simple but inefficient, only serves as start-
ing point for the more sophisticatestructure-centric ap-
proach which is pursued in the sequel. Sect®@presents

it from an abstract point of view. Two concrete realizations, «yn1» subtree is selected and used during path matching.

as mentioned above, are covered in secfion This narrows down the search space to the path reaching in-
]] dex node#5, excluding false positives right from the start.
3.1. Naive content-centric approach Occurrence and annotation fetching is accomplished by a

. _ _ single look-up in the content/annotation table, where the en-

One way to restrict path matching televantindex try for #5 and“XML" is selected and returned as query re-
nodes, i.e. those referencing one or more document nodesyjt. Note that no explicit content/structure join is required
in which a given query keyword occurs, is to create multi- at query time.
ple kgyword-specmc index subtr.ees_. Figareepicts four Obviously the content/annotation table may easily take
such index subtrees, each of which indexes only those paths : . I
; : o up more space on disk than the original DataGuide’s con-
in the document tree from figufie(a) where a specific key- . :

4 tent and annotation tables together. In fig@réb) there

word occurs. Document nodes without textual content are

associated with the empty word, For instance, th&XML" are e.g. multiple columns referrmg. to the mde.x noﬁiﬁsr.
. . X . . #5, whereas column headers in figuteare unique. This
index subtree in the third column ignores all but a single

document path/book/chapter/section/para, which is the redunde_m_cy, which is due to the Cartes_lan produc’F underly-
. - ing the join of the content and annotation tables, increases
only one leading to an occurrence of the keywtttL" in

. ! g with the number ofpath-unselectivékeywords, i.e. those
figure1 (a). Analogously, the annotation fetching step be- occuring under a variety of different label paths. Although

comes content-aware when partitioning the annotation table . . : .

. . I . unselective keywords, being of restricted use as selection

into keyword-specific subtables, which is equivalent to pre- _ .~ . . . S . o
criteria, are sometimes disregarded in indexing, it is true

computing the content/structure join from retrieval phaise that the faster query processing provided by content aware-

a right outer joig dg. x dg, of the DataGuide’s content) : :
and annotation tables in first normal foririNF) produces NEss comes at the price of increased storage cpnsumpuon
(see sectiorb.2 for experimental results). Yet this trade-

a content/annotation tabjeshown inNF? in figure 3 (b), . ; ; ;
. I . off is common to most indexing techniques. A much more
which replaces the original tables. Formally, it represents a. . .
: , ; . important drawback of the content-centric approach is that
mappingcadgc. : (k,i) — Dy,; wherek is a keyword

. : ; not only the content/annotation table but also the index sub-
is an index node ID, and;, ; is the set of document nodes L .

L trees reside in secondary storage. Since the complete set of
wherek occurs and which are referencedby

: . index subtrees (which has the same cardinality as the set of
In terms of classic database systems, each index subtree . :
. : g Idexed keywords) cannot be held in main memory, select-
is built over a keyword-specifigiew of the data. Conse-

o ing the right index subtree for a query keyword thus entails
quently, the appropriate index subtree can only be chosen alé\n additional disk access for loading the appropriate index

query time, after the desired keywords have been specified. . ! .
When processing the sample query from secfioe.g., the subtree. When processing queries with more than one key-

word, multiple index subtrees need to be fetched from disk,
2 with dg.'s document node column eliminated which is clearly prohibitive at query time.

3.2. Structure-centric approach avoid repeated exhaustive keyword searches in the query
tree, every query node accomodates keyword information

The naive approach presented in the previous subsectiorn @ compact representation suitable for fast content match-

: L . ing during retrieval phasesand2, similar to an index node.
is content-centridn the sense that the indexed keywords This is accomplished in a preliminanuery preprocessin
determine the structure of both the index tree and the con- P P Query prep g

tent/annotation table. A second, more viable approach toSten taking place in an new retrieval phase 0 (see below).
content awareness preserves the original DataGuide’s in-

.. #0 #1 #2 #3 #4 #5 #6
dex tree in its integrity, grouping the indexed keyword oc- - _ -
. . . & & "index"|"survey"| & & "index"| "XML" |"index"|
currences by their label paths. Thgructure-centricap-
&0 &1 &2 &2 &3 84;&7 | &5;&8 &8 &6

proach allows path matching to be performed without load-
ing the index tree from disk. It resides in main memory
like the index tree of the DataGuide. However, each node
of the CADG carries a small amount of additional content
information necessary to prune irrelevant index paths dur-
ing phasel. Dedicated data structures to be presented in
the next section encode (1) whether an index nbdef-
erences any document node where a given keyvkood-
curs, and (2) whether any ok descendants (including
itself) does. In the remainder of this paper, we refer to the
former relation between an index nodand a keyword:
ascontainment(i containsk), and to the latter agovern-
ment(i governsk). For instance, in figurd (a) and (b),

the index nodet4 does not contain any keyword, although
it governs bothindex” and“XML” . Note that by defini-
tion, containment implies government, but not vice versa.
During retrieval phasé, the government relation is exam-
ined for any index node reached during path matching, in
what we call thegovernment testA containment tesiakes
place in retrieval phas® to avoid needless disk accesses.
Both of theserelevance testare integrated with the orig-
inal DataGuide’s retrieval procedure (see secfpmo en-

able content-aware navigation and annotation fetching, as .]
follows. During path matching, whenever an index node 4- TWO realizations of the structure-centric ap-

Figure 4. Structure-centric CADG approach

The referenced document nodes to be fetched in phase
are stored on disk in a combined content/annotation table,
as shown in figurel. It is almost identical to the content-
centric one in figured (b), except that the corresponding
mappingcadygs. : (i,k) — Dy, takes its two arguments
in reverse order, thus reflecting the structure-centric char-
acter of the approach. In fact, théF? table in figure4
can be considered as consisting of seven index-node spe-
cific content tables (labelled0 to #6), each built over a
label-path specific view of the document collection. Note
that this conceptual difference between the content-centric
and structure-centric content/annotation tables vanishes on
the physical level, both tables being identicalliNF. In-
dex node ID and keyword together make up the primary
key to support combined content/structure or pure struc-
ture queries (during phagg as well as pure content queries
(during phase 0). Accordingly, both tables are equal in size.

i is being matched against a structural query ngdethe proach: ldentity and Signature CADG
proceduregoverns(i, g) is performed. It succeeds if and
only if for each textual query nodg belowg containing a The concept of a structure-centric CADG, as discussed

keyword conjunction)\” _ k., condition (2) above is true in the previous section, does not specify data structures and
for i and all keywordsk,, (or at least one keyword in case algorithms for integrating content information with the in-

of a disjunction\/%_ k). In this case path matching con- dex and query trees. In this section we propose two alter-
tinues with the descendants ofotherwisei is discarded native content representations, along with a suitable query
along with its entire subtree. During retrieval ph&ée- preprocessing as well as containment and government tests
fore fetching the annotations of any index nadeatching (formal proofs of correctness are omitted). The first ap-
the parent node of a textual query nagle the procedure proach, which exploits index node IDs (see sectab), is
contains(i, q;) is called to verify condition (1) for all of guaranteed to exclude all irrelevant index nodes from path
q+'s keywords (in case of a keyword conjunction, or at least matching and annotation fetching. A second, signature-
one if they are disjoined). Upon successannotations are pased realization of the structure-centric CADG (see sec-

fetched from disk; otherwise the nodés ignored. tion 4.2) represents keywords in an approximate manner,
The realization of thgoverns() and contains() proce- possibly mistaking some irrelevant index nodes as relevant

dures depends on how content information is represented irduring query processing. A final verification, performed si-

the index node given as first parameter (see sedijorin multaneously with the annotation fetching step, eventually

any case, however, the query node handed over as secondiles out these false positives. Hence both variants of the
parameter must bear content information, too, namely aboutCADG produce exact results, regardless of whether their
the query keywords attached to its outgoing query paths. Tocontent awareness is based on heuristic techniques or not.

4.1. Identity CADG conjunction discussed above (hence the second-order con-
struct for textual query nodes in the previous paragraph):
after all the childrery, are not required to be all matched

The Identity CADGrelies on index node IDs to enable : . .
;) ; . by the same document node, which simultaneously contains
content-aware path matching and annotation fetching, as in-

troduced in sectio. The idea is to prepare a list ofle- occurrences of all the|r.query kgyword;. Consequently, the

. . . government test for an index notlmatchingy, is supposed
vant index nodefor each path in the query tree, compris- . .
. i . . to succeed as soon as there exists for each child query node
ing the IDs of all index nodes which contain the query key-

words of this path. (Refer to sectid®2 for a definition gv One descendant afcontaining the keywords below,

. . ; without demanding that it be the same for@ll Therefore
of the containment and government relations between index . .

. the sets contained in thg, sets are not merged. In cage
nodes and keywords.) Assembled in a query preprocess- g

:) . .~ has no children|, := is used as a “don't care” sym-
ing step (retrieval phase 0) to be described next, these Ilstsbol ensuring thaqtsthe gC(Z))vernment test for such queryynodes
are attached to the query tree (see figbye In the index '

. . always succeeds (see below). Note that all childreare
tree, by contrast, content information is only represented :
S) ! .~ treated alike, regardless of whether they are structural or
implicitly by means of index nodes IDs. Unlike the Sig-

nature CADG presented below, the Identity CADG has no textual query nodes, AS. a consequence, this preprocessing
. . ; .~ .~ procedure also copes with mixed-content query trees.
dedicated data structures for storing keyword information in
the index tree. During retrieval phageonly ancestors of
relevant index nodes are considered, while other nodes are
pruned off. Similarly, only annotations of relevant index
nodes are fetched during phaaeAncestorship among in-
dex nodes is tested by navigating upwards in the index tree

preface

(which requires a single backlink per node) or else compu-
tationally, by means of numbering schemes like e.qg. interval | #5 | o H2H5HE] o
encoding 8, 17]. Alternatively, ancestor IDs could be de- nxyL .
termined during phase 0 and stored in the query tree. Cj Cj
#5 2 #2;#5#6 4
Query preprocessing During retrieval phase 0, each D
nodeg of a given query tree is assigned alsatf sets of rel- | #2:45:46 |$5

evantindex node IDs, as illustrated in fig&eT his second-
order set is used for the relevance tests as described below.
Let us consider first textual, then structural query nodes.
Any textual query node, with a single keyword is asso-
ciated with the sel, of IDs of index nodes containing, Figure 5 illustrates the preprocessed tree query
i.e.ly, == {lg}. Ix, is the set of all index nodes associated /book[.//*[" XML" | and . /preface/para[’ index"]]. To
with kg in the con_tent/:_:mnotation table. _If the query node g5ch query nodgthe member sets 6f have been attached
represents a conjunctiof;_, k., of multiple keywords, (one per row). For instance, the root of the query tgge,
their respective selg, are intersected,, := {(\/_, s, }, is associated with the sy = {{#5}; {#2;#5;#6}}. All

because the conjoined keywords must all occur in the samesais of index node IDs have been computed using the con-
document node, and hence be referenced by the same indegnt/annotation table shown in figude

node for the query to match. Analogously, a query node

representing a disjunctioy’, _, k,, of keywords is associ- Relevance tests As described in sectioB.2, the gov-

ated with the uniorl,, := {UJ;_,Ix,} Of sets of relevant ernment tesyoverns(i, ¢;) is performed whenever an in-

index node IDs. I, = {(D} the query is immediately re- dex nodei is matched against a structural query nage

jected as unsatisfiable (without entering retrieval ptigse during retrieval phasé. In each set,, < |I,., a descen-

because no index node references any document node whergant of; is searched (e.g. using binary searcH,jfis or-

all keywords of the current query path occur. dered), withi counting as its own descendant, too. The test
Each structural query nodg inherits sets of relevantin- governs(i, ¢;) succeeds if and only if there is at least one

dex nodes (contained in a second-orderlggtfrom each (reflexive) descendant afin each set,,. Note that as a

of its childreng, (0 < v < m),i.e.l,, := - ,ls. Thus special case, the condition is satisfiedlfgr= .

the textual context of a whole query subtree is taken into The containment tesbntains(i, ¢;) is performed when

account while matching any single query path. Itis impor- processing a textual query nogieduring retrieval phasg.

tant to keep the member sets of all children’s sgtsepa- It takes place for every index nodematchingg,’s parent

rate rather than intersect them like in the case of a keywordg,, provided its government test succeeded. This ensures

Figure 5. Identity CADG: adapted query tree

thati or any of its descendants references a document nodet.2. Signature CADG
relevant tog;'s keywords. To determine whether annota-

tion fetching fori is justified, the index node is searched in The Signature CADGdiffers from the Identity CADG

the only member sdf; of the singleton selt;,, which con- iy several respects. Most importantly, keyword information
tains the index nodes relevant fors keywords. Again, for content-aware path matching and annotation fetching is
binary search may be applied lif is ordered. The test represented only approximately. The resulting heuristic rel-
contains(i, ¢;) succeeds if and only if € I,. Obviously evance tests are not guaranteed to rule out all index nodes
contains() is similar to governs() except that it is based \hich are irrelevant w.r.t. a given query keyword, some of
on an identity relation between the index node being ex- them being recognized as false hits only when looked up in
amined and the members of the setdjnrather than an the content/annotation table. (Nevertheless the retrieval is
ancestor/descendant relation. Hence the containment test igxact, as explained below.) Unlike the Identity CADG, the
stricter than the government test, as claimed in se&ian Signature CADG relies on additional data structusigr(a-

As an example of content-aware retrieval with the Iden- tures in the index tree, created at indexing time, to repre-
tity CADG, consider the query tree in figuBe whose left ~ sent the keyword occurrences referenced by an index node.
branch has already been discussed in se@ioBince the The query tree is prepared in a similar manner at query time.
Identity CADG’s index tree is identical to the DataGuide’s, As a third difference, a precomputed cumulative content
we also refer to figurd (b) in the following. The corre- representation for entire index subtrees substitutes for the
sponding content/annotation table is given in figdreBe- ancestor/descendant check in the government test.
ginning with the labebook, path matching identifies the
index node#0 as a structural match for the query node Signatures A common IR technique for the concise
$0. The relevance tegbverns(#0, $0) succeeds because in "épresentation and fast processing of content information
both sets associated wigld, {#5} and {#2; #5;#6}, there aresignaturesi.e. bit strings of a fixed length. Every key-
is a descendant af0 (namely#5). The two paths leaving word to be indexed or queried is assigned a (preferrably
$0 are processed one after the oth$@’s left child $1 is unique and sparse) signature. Note that this does not re-
reached by a soft edge without label constraint. Hence allduire all keywords to be known in advance, nor to be ex-
index nodes but0 are structural matches f&l, as ob- plicitly assigned a signature before indexing. Instead a suit-
served in sectio®. First, the root’s left childtl undergoes ~ @ble signature may be created from the keyword's character
a government test fag1. Since none of its descendants is S€quence, e.g. using hash functions (which may produce a
in $1's list, governs(#1, $1) fails right away, excluding the ~ Negligible quantity of ambiguous signatures).
whole left branch of the index tree from further processing. ~ Sets of keywords, e.g. in a document or query node, can
#2 never enters path matching, let alone annotation fetch-be represented collectively by a single signature, resulting
ing_ As the first node in the r|ght index paﬂfs passes the from the bitwise diSjunCtionLﬂ) of the individual keyword
government test fog1 (being an ancestor af5), but fails ~ Signatures. As shown in figu@ this may cause ambigu-
in the containment test fa2 since#3 ¢ {#5}. Its child ities due to overlapping bit patterns. In fact, the heuristic
#4 satisfies the government test for the same reasa3as hature of the Signature CADG's content awareness results
Analogously, it fails incontains(#4,$2). By contrast#5 from this concise, but lossy content representation. Other
passes both tests, being itself a member of kst and operations on signatureg, s; include the bitwise conjunc-
$2's ID list, {#5}. Consequently#5's occurrences of the tion (so [Ms1), bitwise inversion £so), and bitwise implica-
keyword “XML” are fetched from the content/annotation tion which we define asy T s1 := (=so) U s1.
table, retrieving&8 as$1's only hit. The last matching in-
dex node is ruled out immediately by the government test "index" [01100000] # [01000100] "midi"
governs(#6,$1), which reveals tha#6 is not an ancestor
of the only relevant index nodéb. Processing the second
guery path is similar, and omitted here for brevity.

mxmML," [00000110] # [00100010] "min"

"index" u "XML" [01100110] = [01100110] "midi" u "min"

The sample query above shows how content-awareness
can save both main-memory and disk operations. Compared
to the DataGuide (see sectig)) two subtrees (rooted &l
and#6, respectively) are pruned during retrieval phdse
and only one disk access is performed instead of seven dur-
ing phase. Another I/O operation is needed in phase O for Index tree. The Signature CADG's index tree closely
looking up relevant index nodes. Note that this saves theresembles the one of the original DataGuide (see figure
whole evaluation for queries with non-existent keywords. The only difference is that each index nodkas two sig-
The final results are identical for both index structures. natures attached to it. Aontainment signaturés created

Figure 6. Ambiguous keyword signatures

from the bitwise disjunction of the signatures of all key-
words occurring in’s referenced document nodes. (If there
are no such keywords;s containment signature is set to

any single query path. The signature of a childless structural

query node is set t@0000000 |which guarantees that any

index node’s government test will succeed, as one would

00000000 |) For content-aware navigationgavernment expect for a query node without textual constraints.
signatureencodes the keywords referencedibyr any of Figure8illustrates the tree query from figuethis time
its descendants in the index tree. Inner index nodes inheritpreprocessed for the Signature CADG. The keyword signa-
their children’s government signatures and combine it with tures are the same as in figufe They are either fetched
their own containment signature, again by bitwise disjunc- from asignature tablewhere they have been stored at in-
tion. For leaf nodes, both signatures are identical. Figure dexing time, or created on the fly. Although the former so-
depicts the index tree of a Signature CADG built over the lution requires some extra disk space and an additional I/O
document collection from figuré (a). operation at query time, it proved superior to dynamic sig-
nature creation in our experiments (see sechipn
book

11011110

00000000

#0 01011100

‘l

$0

preface chapter g
* .0 preface
11011010 01011100 =
e OITHE l 01011100 I$1 01001000 $3
#1 #3
para section "XML" para
11011010 01011100 01011100 l 01001000 '
Sﬂiz $4
11011010 00000000
#2 #4 "index"
para figure
government signature 01001000
01001000: "index"
11010010: "survey" 01011100 45 01001000 46

01011100: "XML"

Figure 8. Signature CADG: adapted query tree
Figure 7. Signature CADG: index tree

Relevance tests The government testoverns(i, gs)

Query preprocessing Similar to the index tree, the for an index node and a structural query nodg simply
query tree is prepared for content-aware navigation and oc-consists of the bitwise implication @f’'s signature and’s
currence fetching with the Signature CADG. Every textual government signaturg,, C s,. This means that those bits
query nodeg; has a single signature,, created from the setins,, because of the query keywords belgymust also
keyword signatures,, of all keywordsk,, (0 < u < p) at- be set ins,, which is definitely the case when each such
tached to this node (which are either stored sigmature ta- query keyword occurs in some document node referenced
ble or created on the fly). If there is only one such keyword, by i or its descendants. However, the converse is not al-
sayky, thens,, := si,. In the case of a keyword conjunc- ways true:s,, C s, may also hold whe does not govern
tion A?_, kv, sq, is set to be the bitwise disjunction of the all the keywords iny,'s subtree. Recall from figuré that
keyword signaturess,, := | |”_, sk,. The reason for this the disjunction of different sets of keyword signatures can
somewhat counterintuitive definition will become apparent produce identical results. Likewise, other keywords than
when examining the containment test. Informally, disjoin- the ones responsible fey, can makes, look as ifi were
ing the signatures allows each keyword to “leave its foot- relevant w.r.tgs, although itis not. In this case, path match-
print” in the query node’s signature, as required for a key- ing continues in the subtree rooted agnoring the fact that

word conjunction. Analogously,, :=[1_, s, forakey-
word disjunction\/? _ k,, in ¢;. A structural query node’s
signatures,, indicates which keywords are contained in
the textual query nodes beloyy. To this end, the signa-
turess,, of its childreng, (0 < v < m) are disjoined,
Sq. = Ll 8q,. As observed for the Identity CADG,
this upward propagation of keyword information includes

occurrence fetching for any of its nodes is doomed to fail.
Analogously to the government test just described, the
containment testontains(i, ¢;) for an index node and a
textual query node; is just the bitwise implication of;'s
signature and’s containment signature,, T s.. It suc-
ceeds whem,'s keywords occur in document nodes refer-
enced by itself (regardless of its descendants), where they

the textual context of a whole query subtree when matchingcause the same bits to be setsinas ins,,. But as with

the government test,might also pass the containment test 5. Experimental evaluation
without actually containing all keywords is,,, in which
case occurrence fetching for this index node (including a Thjs section gives an overview of the extensive experi-
database access) is performed in vain. ments that were carried out in order to evaluate the Content-
For instance, reconsider the query from figuge Awgre .DataGuide. Besides con?ent-awarengss,. various op-
/bookl.//*|" XML" | and . /preface/para|" index"]|, and timizations have be_en testeql Wlth both re._allzanons o_f the
CADG as well as with the original DataGuide. A detailed

the index tree in figure7 whose corresponding con- X
report on the evaluation can be found &v].

tent/annotation table looks like the one in figute The
query tree’'s root labebook leads to index nodetO,)
whose government signature [i$1011110 | Since the -1. Experimental set-up

test governs(#0,$0)=(01011100 | T |11011110 | suc-

ceeds, path matching continues with the query ngtle The tests have been performed on three document collec-
The //« step is matched by all index nodes except the tions with different characteristic€itiesis a small collec-
index root, as observed in sectighl #0's left child tion (16,000 nodes, 1.3 MB) describing German cities. Itis
#1 is immediately discarded in the government test for @ homogeneous collection, comprising 19,000 distinct key-
$1, governs(#1,$1) :[01011100] C |11011010 | since words in 253 different label paths (with a maximal length
the antepenultimate bit is set #il's signature, but not 0f 7) which are not recursive (i.e., no label appears twice on
in #1's. Therefore the left branch of the index tree a path). The second collectioXMark, is a medium-sized

is pruned, and path matching continues wiB. It (417,000 nodes, 30 MB) synthetically generated collection
passegoverns(#3,$1)=(01011100) = [01011100], but [18] with 515 different label paths and 84,000 different key-
not contains(#3,$2) =(01011100] [00000000 |. The words. This collection is slightly more heterogeneous than
same is true for#3's only child #4. Yet the remain- theCitiescollection and contains some recursive paths. The
ing index nodes behave differently: whilg5 passes third collection NP, 510 MB), containing syntactically an-
both governs(#5,$1) (same asgoverns(#3,$1)) and glyzed German noun phrasels31,. was the most challeng-
contains(#5,$2) =(01011100] C [01011100 |, contribut- ing collection, not only due to its sizeNP is a strongly

ing the document nod&s to the result#6 fails already in recursive and heterogeneous collection (2,349 different la-
the first test[01011100] = [01001000 | (the fourth and bel paths of maximal depth 40). In total, 130,000 different
sixth bits are missing in its government signature). Accord- Keywords appear in 458,000 different nodes. _
ingly, #6 is excluded from further navigation (which cannot e tested four basic index structures, namely the orig-
take place anyway#6 being a leaf node) and annotation nal DataGuide, the Identity CADG, the Signature CADG
fetching, thus saving a look-up in the content/annotation ta- (With 64-bit signatures and 3 bit set in each keyword sig-

ble. The second query path is processed similarly. nature), and a yarigtion of the Iatte_r, 'eac.h equipped with all
possible combinations of four optimizations. Thus a total

In this example, the number of disk accesses comparedof 64 different index configurations were compared to each
to the DataGuide is reduced from seven to two (includ- other. For lack of space, we only report on the first three
ing query preprocessing), like with the Identity CADG index structures without optimizations here. Both hand-
above. Moreover, signatures are more efficient data struc-crafted and synthetic path query sets were evaluated against
tures than node ID sets (in terms of both storage and pro-the different document collections, resulting in four test
cessing time), and make the relevance checks and preprosuites: unlikeCitiesMwith 166 manually created queries on
cessing easier to implement. Note, however, that if an- the Cities collection, CitiesA (191 queries)XMarkA (163
other keyword with a suitable signature occurred in the doc- queries), and\NpA (160 queries) consist of automatically
ument node referenced b6, e.g. the keywordquery” generated queries on tiities XMark, andNP collections,
with the signatur€00011100], then#6 would be mistaken respectively. For a systematic analysis of the experimental
to be relevant fori$5's query keyword*XML” . The rea- results, the queries of all test suites were classified accord-
son is that both#6’s government and containment signa- ing to severquery characteristicswhich are summarized
tures would then be the bitwise disjunction of the two sig- in tablel. Each characteristic of a given query is encoded
natures representirfgndex” and“query”, U by one of seven bits inquery signatureletermining which
(00011100 | = [01011100 |, which equals the key- class the query belongs to. A bit value of 1 indicates a more
word signature forXML” . Hence bothgoverns(#6,$1) restrictive nature of the query w.r.t. the given characteris-
and contains(#6,$2) would succeed. Only after a con- tic, whereas 0 means the query is less selective and there-
tent/annotation table look-up woul turn out to be afalse fore harder to evaluate. Hand-crafted queries were classi-
hit. This illustrates how the Signature CADG trades off fied manually, whereas synthetic queries were assigned sig-
pruning precision against navigation efficiency. natures automatically during the generation process. Two

groups of query characteristic turned out to be most inter-5.2. Results

esting for our purposes. First, the bits 2, 3, and 4 con-

cern the navigational effort during evaluation: queries with Figure9 shows the performance results for four selected
--000-- signatures (read-" as a “don’t care” symbol), sets of path query classe4] provides similar results for
being structurally unselective, cause many index paths to beree queries). Each plot covers the queries in all classes with
visited. Second, the bits 1 and O characterize keyword se-certain characteristics, as indicated by the plot title. For in-
lectivity, a common IR notion which we have generalized to stance, the upper right plot assembles all query classes with
structured documents: A keyword is calleode-selectivé mismatch queriesif----- , see tabld), i.e. 32 classes al-
there are few document nodes containing that keyword, andtogether. By contrast, the lower left plot narrows down to
path-selectivéf there are few index nodes referencing such those queries with few path joins, many soft-edged struc-
document nodes (for details on the collection-specific selec-tural and textual nodes, and unselective labalsop-- , 8

tivity thresholds, seelf7]). For instance, the query classes query classes). As labelled on the abscissa, every test suite
----- 10 contain queries whose keywords occur often in comprises three boxes, each of which represents the perfor-
the documents, though only under a small number of differ- mance of a single index, i.e. Identity CADG (ICJ), Signa-

ent label paths. Not all 128 query classes were used in eversture CADG (SCH), or DataGuide (DGEJ). The relative

test suite, e.g. because specific combinations of path- angherformance compared to the DataGuide, which determines
node-selective keywords hardly ever occurred in the data.the height of each box, was computed as follows. First, the
This is particularly the case fotMarkAwhere only 60% of time needed to evaluate any given query with a specific in-
all query classes were populated, whereas the query classesex was averaged over all iterations of that query. Next,
in the other test suites are nearly complete. the average time was normalized w.r.t. the DataGuide’s av-
erage value for that query (which produces 100% for the
DataGuide, being compared to itself). Then the relative

6| 1------ query r_esult mismatch _ times of all queries in a single query class were averaged.
S| -1 branching few path joins Finally, the average over the relative evaluation times of all
4] --1---- soft structure | few soft-edged struct. nodeg

selected classes was plotted. The step-wise averaging en-

3| -—1-— 'ak;el selectivity righly fSE|ZCtiV§ |abe|s| . sures that query classes of different cardinality are equally
i 11 Sotthteth it he_whlso t-ethgel tetthl(Ja no ;S weighted. Normalization w.r.t. to the DataGuide takes place
""" _ parh setectivity| igh’y pati-Se1ect. keyworas before averaging to make fast and slow queries mutually
0| ------ 1 node selectivity| highly node-select. keywords . . .
comparable (otherwise long-evaluating queries would pre-
Table 1. Query classification scheme dominate the result).

Relative retiieval time: avg —1—— Relative vetrieval time: avg 11-————

The index structures were integrated into the XML re-
trieval systemX? [11] that computes &omplete Answer
Aggregatg(CAA) [10] for a query. The advantage of using
this data structure in our case is that a CAA is a minimal rep-
resentation for the set of all answers to a query. Query eval-
uation time as a performance measure in all experimentss
includes CAA construction. Since large parts of the query 3
evaluation algorithms and even index algorithms are sharec=
by all basic index structures, the comparison results are not? o
polluted with implementational artefacts. CiesM Ciiiest Mbakd - NpA CitesM Citiest MMatd - NpA

tirne (% DataGuide)
tirne (% DataGuide)

CitiesM CitiesA XMakA Npa CitiesM CitiesA XMakA NpA

Relative retvieval time: avg —1000— Relative retrieval time: avg —10001—

(G

time (% DataGuide)

All tests have been carried out sequentially on the same Figure 9. Retrieval time CADG vs. DataGuide
computer (AMD Athlon XP 1.33 GHz, 512 MB, running
SuSE Linux 7.3 with kernel 2.4.16). The PostgreSQL re-
lational database system (with a disabled database cache), As figure9 shows, the Signature CADG outperforms the
version 7.1.3, was used as relational backend for storingoriginal DataGuide by more than 50% on average for all
the index structures. To compensate for file system cachequery classes in th€itiesM, XMarkA, andNpAtest suites,
effects, each query was processed once without taking theand much more for selected classes. ClitiesA the per-
results into account. The following iterations of the same formance gain lies between 30 and 40%, probably due to a
query (between three and ten, depending on the test suitehigher CAA construction overhead (see secfipn
were then averaged. A comparison of the four plots above reveals that certain

additional characteristics of path queries (upper left plot) 6. Related work

further increase the relative performance gain of the Signa-

ture CADG by a factor 2 to 20 (except f@itiesA). Mis- . .))

match queries (upper right plot) are usually favourable to In this section we discuss approaches directly rglatgd to
the CADG, which detects misplaced or non-existent query the CADG, focussing on XML index structures which in-
keywords early during retrieval. The relative performance corporate the textual content of the documents. Work on
gain still grows for queries with fairly unspecific structure Index structures for XML in general is surveyed e[,

(lower left plot), causing more index nodes to be visited An early approach targeted at integrating text retrieval
and more annotations to be fetched from disk. Here the(and relevance ranking) with an index structure for semi-
benefits of content awareness reduce the Signature CADG’structured data is thBUS index[15]. In contrast to our
evaluation time to well below 30% of the DataGuide’s approach, a keyword is mapped to both the containing doc-
in three out of four test suites. Finally, when consider- ument nodes and index nodes. The latter are used to fil-
ing only those poorly structured queries with path-selective ter out document nodes which do not satisfy the path con-
keywords (lower right plot), the Signature CADG’s perfor- ditions related to the keyword. This corresponds to the
mance on th&lP collection once again rises dramatically to DataGuide’s content/structure join, although carried out at
a gain of 97.5% compared to the original DataGuide. This index node rather than document node level. Note that the
proves that the Signature CADG is particularly effective for CADG uses structural and content information simultane-
large amounts of data. Moreover, its preference for queriesously in an earlier retrieval phase (content-aware annotation
with little structure but selective keywords makes it most fetching), thus saving the fetching of false positives as well
suitable for realistic applications, for three reasons: usersas an explicit content/structure join.

(1) tend to use selective keywords to reduce the number of The Signature File Hierarchy[4] is based on keyword
hits, (2) often ignore the document schema, unwilling to signatures like the Signature CADG. However, these signa-
explore it before querying, and (3) are likely to focus on tures are not propagated to index nodes. Instead document
content rather than structure, being accustomed to the flahode signatures need to be fetched from disk during path
keyword search facilities of today’s WWW search engines. matching. For realistic data collections, this entails a sig-
The same is true for synthetic queries, which often neglectnificant overhead owing to 1/O operations.

structure to support different document schemata. The IndexFabric [5] enriches the DataGuide’s index
nodes with Tries representing textual content. This is equiv-
alent to the materialized join of the CADG. In contrast to
our work, the IndexFabric is equipped with a sophisticated
layered storage architecture. Ignoring the notion of content-
aware navigation, however, it is closer to the DataGuide.
A very simple approach to content indexing for XML
documents is presented if7): designed as an extension
Figure 10. Index size CADG vs. DataGuide for inverted-file based index structures mapping keywords
to document nodes, th@ontext Indexdoes not use a tree
structure to summarize the document schema. Every key-
Figure9 also illustrates that heuristic content-awareness Word occurrence bears approximative information about the
is much more effective than the |dentity CADG'’s exact re- respective document node’s structural context (eg its label
a”zation, despite a possib|e overhead caused by unprune@ath) in the form of a structure Signature. It serves to discard
mismatches. The price to pay is an increased storage overstructural mismatches early in the retrieval process.
head due to the signature table. As depicted in figlr¢he Similar in spirit to the aforementioned approach is the
Signature CADG grows to 150% of the size of tGdies work described ing]. Here keyword occurrences are an-
collection, which is three times as big as the DataGuide. notated with information about the structural context in the
However, the storage overhead is reduced considerably foform of Materialized Schema Path& datastructure opti-
XMark andNP, again recommending the CADG for large- mized for compact representation of schema and document
scale applications. Also note that the storage measurementpaths. Flexible access is not only provided to individual
include so-calledunction wordgi.e. extremely unselective keywords, but also to larger portions of content and to node
keywords without a proper meaning) and inflected forms, labels, based on collection statistics. From another point
which may be excluded from indexing using common IR of view, the approach resembles the content-centric CADG
techniques like stop word lists and stemming. This further (see sectior3.1), although using index paths (Materialized
reduces the storage overhead. The resulting index, althougtschema Paths) instead of DataGuides to represent keyword-
inexact, is well suited for result ranking like it4]. specific fragments of the document collection.

Storage overbead (index tiee and tables on disk)

space (% doc. collection)

=

Ciries HKMark NP

7. Conclusion Acknowledgements The authors thank Tim Furche for
providing the query generator used in the experiments.

Results In this paper, we have introduced the Content- References

Aware DataGuide (CADG) as an efficient index structure

for XML documents. The CADG enhances the original [1]
DataGuide with content-aware navigation and annotation
fetching. As a means of integrating content and structure
matching during all retrieval phases, these optimizations
save a join of the retrieved document node sets at query time
as well as many needless I/O operations. Two concrete re- [3]
alizations of the CADG have been presented, the Identity
CADG featuring exact and the Signature CADG heuristic
content-awareness. Based on a novel query classification [4]
scheme, experiments prove that (1) the Signature CADG is
faster than the Identity CADG, and (2) the Signature CADG
outperforms the original DataGuide by more than 50% in [5]
nearly all test suites, when averaging all path query classes.
For classes containing queries with little structure and selec-
tive keywords, which have been shown to be most important [6]
in real-world applications, the Signature CADG's retrieval

time is only 3-40% of the DataGuide’s. The highest perfor-
mance gain, and lowest storage overhead (5% of the origi- [7]
nal data), is achieved for a large, heterogeneous document
collection of several hundred MB. 8]

(2]

Future Work . CAAs as representations of query results
usually contain not only the IDs of the retrieved document [9]
nodes, but also of some of their ancestors. Currently these
ancestor IDs are looked up in the database for each hit, caus-
ing many I/O operations especially for unselective queries. [10]
We plan to address this performance bottleneck using num-
bering schemes similar to the one described]n [[11]

Other possible investigations may concern incremental
index updates as well as a generalization to graph databases.

In particular, signature propagation in the Signature CADG
needs to be reviewed when indexing graph-shaped docu-
ments. In special cases we expect the CADG for a graph
database to be even smaller than the corresponding origi—[ls]
nal DataGuide. (General complexity results for graph doc-
uments and queries can be found 18][) Future research

may also include new techniques for adaptively increas- [14]
ing the level of content-awareness based on query statis-
tics. An on-going project tries to amalgamate DataGuide
and CADG techniques with the rather limited indexing sup-
port for XML which are provided by commercial relational [16]
database systems, like e.g. IBM’s XML Extender.

As far as the performance evaluation is concerned, we
plan to refine the proposed query classification scheme and17]
to generate queries based on actual documents rather than
DTDs. Furthermore it would be interesting to assess the [18]
benefits of both content-aware navigation and the material-
ized content/structure join separately.

(12]

S. Abiteboul, P. Buneman, and D. Sucibata on the Web:
from Relations to Semistructured Data and XMMorgan
Kaufmann, 1999.

M. Barg and R. K. Wong. A Fast and Versatile Path Index
for Querying Semi-Structured Data. Rroc. 8th Int. Conf.

on Database Systems for Advanced Applicati@a93.

T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler.
Extensible Markup Language (XML) 1.0 (Second Edition).
W3C Recommendation, 2000.

Y. Chen and K. Aberer. Combining Pat-Trees and Signa-
ture Files for Query Evaluation in Document Databases. In
Proc. 10th Int. Conf. on Database and Expert Systems Ap-
plications 1999.

B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and
M. Shadmon. A Fast Index for Semistructured Data. In
Proc. 27th Int. Conf. on Very Large Data Bas@601.

R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
In Proc. 23rd Int. Conf. on Very Large Data Bas&997.

Y. K. Lee, S.-J. Yoo, K. Yoon, and P. B. Berra. Index struc-
tures for structured documen®roc. 1st ACM Int. Conf. on
Digital Libraries, 1996.

Q. Li and B. Moon. Indexing and Querying XML Data for
Regular Path Expressions. Rroc. 27th Int. Conf. on Very

Large Data Bases2001.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A Database Management System for
Semistructured Daté5SIGMOD Record26(3):54-66, 1997.

H. Meuss, K. Schulz, and F. Bry. Towards Aggregated An-
swers for Semistructured Data. Rroc. 8th Int. Conf. on
Database Theory2001.

H. Meuss, K. Schulz, and F. Bry. Visual Querying and Ex-
ploration of Large Answers in XML Databases wittt XA
Demonstration. IfProc. 19th Int. Conf. on Database Engi-
neering 2003.

H. Meuss and C. Strohmaier. Improving Index Structures
for Structured Document Retrieval. Rroc. 21st Ann. Col-
loquium on IR Researcti999.

J. Oesterle and P. Maier-Meyer. The GNoP (German Noun
Phrase) Treebank. IRroc. 1st Int. Conf. on Language Re-
sources and EvaluatiQri998.

T. Schlieder and H. Meuss. Querying and Ranking XML
DocumentsJASIS Spec. Top. XML/IR 53(6):489-5@802.

] D. Shin, H. Jang, and H. Jin. BUS: An Effective Indexing

and Retrieval Scheme in Structured Documents.Pioc.

3rd ACM Int. Conf. on Digital Libraries1998.

F. Weigel. A Survey of Indexing Techniques for Semistruc-
tured Documents. Technical report, Dept. of Computer Sci-
ence, University of Munich, Germany, 2002.

F. Weigel. Content-Aware DataGuides for Indexing Semi-
Structured Data. Master’s thesis, Dept. of Computer Sci-

ence, University of Munich, Germany, 2003.
XML Benchmark Project. Benchmark suite for XML repos-

itories. Available atttp://monetdb.cwi.nl/xml

	. Introduction
	. Indexing XML with the original DataGuide
	. Two approaches towards a Content-Aware DataGuide (CADG)
	. Naive content-centric approach
	. Structure-centric approach

	. Two realizations of the structure-centric approach: Identity and Signature CADG
	. Identity CADG
	. Signature CADG

	. Experimental evaluation
	. Experimental set-up
	. Results

	. Related work
	. Conclusion

