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Abstract
Background: Melon, Cucumis melo, and cucumber, C. sativus, are among the most widely cultivated
crops worldwide. Cucumis, as traditionally conceived, is geographically centered in Africa, with C.
sativus and C. hystrix thought to be the only Cucumis species in Asia. This taxonomy forms the basis
for all ongoing Cucumis breeding and genomics efforts. We tested relationships among Cucumis and
related genera based on DNA sequences from chloroplast gene, intron, and spacer regions (rbcL,
matK, rpl20-rps12, trnL, and trnL-F), adding nuclear internal transcribed spacer sequences to resolve
relationships within Cucumis.

Results: Analyses of combined chloroplast sequences (4,375 aligned nucleotides) for 123 of the
130 genera of Cucurbitaceae indicate that the genera Cucumella, Dicaelospermum, Mukia,
Myrmecosicyos, and Oreosyce are embedded within Cucumis. Phylogenetic trees from nuclear
sequences for these taxa are congruent, and the combined data yield a well-supported phylogeny.
The nesting of the five genera in Cucumis greatly changes the natural geographic range of the genus,
extending it throughout the Malesian region and into Australia. The closest relative of Cucumis is
Muellerargia, with one species in Australia and Indonesia, the other in Madagascar. Cucumber and
its sister species, C. hystrix, are nested among Australian, Malaysian, and Western Indian species
placed in Mukia or Dicaelospermum and in one case not yet formally described. Cucumis melo is sister
to this Australian/Asian clade, rather than being close to African species as previously thought.
Molecular clocks indicate that the deepest divergences in Cucumis, including the split between C.
melo and its Australian/Asian sister clade, go back to the mid-Eocene.

Conclusion: Based on congruent nuclear and chloroplast phylogenies we conclude that Cucumis
comprises an old Australian/Asian component that was heretofore unsuspected. Cucumis sativus
evolved within this Australian/Asian clade and is phylogenetically far more distant from C. melo than
implied by the current morphological classification.

Background
Knowing the closest relatives and natural composition of
the genus Cucumis L. is important because of ongoing
efforts by plant breeders worldwide to improve melon (C.

melo) and cucumber (C. sativus) with traits from wild rel-
atives [1]. Next to tomatoes and onion, melon and
cucumber may be the most widely cultivated vegetable
species in the world [2]. Economic interest from breeders
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also led to the sequencing of the complete chloroplast
genome of C. sativus [3]. Evolutionarily, Cucumis organel-
lar genomes are unusually labile [4-7], and major chro-
mosome rearrangements are thought to have taken place
during the evolution of Cucumis. Cucumis sativus is the
only species in the genus with a chromosome number of
n = 7, which is thought to have evolved from a presumed
ancestral karyotype with n = 12, but details of this reduc-
tion in chromosome number have remained unclear.
Thus, the genus Cucumis holds great interest as a system in
which to study the evolution of organellar and nuclear
genomes, and there are also several ongoing efforts to
map the genomes of C. melo and C. sativus [8].

Ongoing work on Cucurbitales and Cucurbitaceae [9,10]
has resulted in the generation of sequence data for a dense
sample of taxa that together represent 21% of the family's
800 species and 95% of its 130 genera (following the
most recent classification, 11]. Early results from this work
suggested that Cucumis might not be monophyletic. We
sought to test the monophyly of Cucumis by analyzing a
broad sample of taxa based on Kirkbride's biosystematic
monograph of the genus [12], other recent studies
[10,13], and geographical considerations (independent of
traditional assessments of morphology). Robust phyloge-
netic trees for Cucumis might also shed light on the ances-
tral areas of C. melo and C. sativus. It is thought that C.
sativus originated and was domesticated in Asia, while C.
melo is though to have originated in eastern Africa [14],
but with secondary centers of genetic diversity in the Mid-
dle East and India [15] and perhaps also China [16]. The
center of Cucumis evolution is thought to be Africa [12].

The circumscription of Cucumis dates back to Linnaeus
[17], with the most significant modern change being the
separation of Cucumella Chiovenda in 1929, which has
become generally accepted [11-13,18]. The two genera
differ only in the shape of their thecae, those of Cucumella
being straight or slightly curved, those of Cucumis strongly
curved and folded. Within the genus Cucumis, two sub-
genera are generally accepted, subgenus Melo (30 species,
including C. melo), with most species in Africa and a chro-
mosome n = 12, and subgenus Cucumis (2 species, C. sati-
vus and C. hystrix), which is confined to Asia and has
chromosome numbers of n = 12 and n = 7 [12,19].

Molecular phylogenetic studies of Cucumis have sampled
up to 16 species of Cucumis for chloroplast restriction sites
and nuclear isozymes, nuclear ribosomal DNA from the
internal transcribed spacer (ITS) region, microsatellite
markers, and a combination of RAPDs and chloroplast
markers [1,20-22]. With one exception, these studies
included only recognized species of Cucumis. A further
handicap was that the sister group of Cucumis was
unknown, so that trees could not be rooted reliably. Only

Garcia-Mas et al. [22] sampled a potential relative, Oreo-
syce africana, material of which they received under the
name Cucumis membranifolius Hook. f. and found embed-
ded among species of Cucumis (see Results and Discussion
for a problem with the identification of this material).
Morphological similarities, however, argue for adding
more representatives from African and Asian genera to
phylogenetic analyses of Cucumis. Besides Cucumella,
Dicaelospermum C. B. Clarke, Mukia Arn., Muellerargia
Cogn., Myrmecosicyos C. Jeffrey, and Oreosyce Hook. all
share key traits with Cucumis [summarized in [23]]. The
most recent morphology-based classification of Cucur-
bitaceae [11] includes five more genera in the tribe
Cucumerinae, to which Cucumis belongs. No representa-
tives of Cucumerinae were included in previous molecular
studies of Cucumis.

Because of the doubtful morphological separation from
its supposed closest relative, Cucumella [12,13,18], and
the insufficient sampling of other potentially related gen-
era, the status of Cucumis as a monophyletic genus has
remained equivocal. Here we address the three questions,
Is Cucumis monophyletic? What is the closest relative of
Cucumis? And what are the closest relatives of cucumber
and melon?, using a two-pronged approach that involves
chloroplast sequence data for all relevant genera of Cucur-
bitaceae and combined nuclear and chloroplast data for
species of Cucumis, Cucumella, Dicaelospermum, Mukia,
Muellerargia, Myrmecosicyos, and Oreosyce. Analysis of the
combined data unexpectedly revealed that a mono-
phyletic Cucumis lineage includes an Australian/Asian
clade in which cucumber, C. sativus, is nested. This then
raised the questions about the timing of the Australian
connections, which we address with molecular clock dat-
ing.

Results and Discussion
The non-monophyly of Cucumis and why it remained 
undiscovered; comparison with earlier molecular 
phylogenies
Parsimony (MP) and maximum likelihood (ML) analyses
of combined sequences from the chloroplast genes rbcL
and matK, the chloroplast intron trnL, and the spacers
rpl20-rps12 and trnL-F, under the GTR + G + I model
yielded a topology (Fig. 1) that was congruent with that
obtained from the nuclear internal transcribed spacer
region (Fig. 2). Chloroplast and nuclear data were there-
fore combined, and a parsimony tree from the combined
data with MP and ML bootstrap support is shown as Fig.
3 (seven of the species lack ITS sequences, Table 1). In the
family-wide analysis (with 123 of 130 genera of Cucur-
bitaceae sequenced), Cucumis is sister to Muellerargia (Fig.
4). The genera Cucumella, Dicaelospermum, Mukia, Myrme-
cosicyos, and Oreosyce are embedded among species of
Cucumis (Fig. 3). The remaining genera of Cucumerinae
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sensu C. Jeffrey [11], Cucumeropsis Naudin, Melancium
Naudin, Melothria L., Posadaea Cogn., and Zehneria Endl.
(plus Neoachmandra and Scopellaria [24]) group far from
Cucumis (Fig. 4). This fits with their geographic concentra-
tion in the New World (where Cucumis is absent): Melan-
cium is a monotypic genus from Brazil, Posadaea a
monotypic genus from tropical America, and Melothria
has ten species in Central America and South America.
However, Cucumeropsis, with a single species from tropical
Africa, and Zehneria, Neoachmandra, and Scopellaria, with
66 species in tropical and subtropical Africa, Madagascar,
Asia, New Guinea, and Australia [24] overlap with the nat-
ural range of Cucumis.

The sister genus to Cucumis, Muellerargia, consists of one
species in Madagascar and one in Indonesia and Queens-
land. Both are herbaceous trailers or climbers with straight
or apically reflexed anthers and softly spinose fruits. Muel-
lerargia has never been recognized as closely related to
Cucumis [12,25], perhaps because it is extremely poorly
collected, with but a few specimens even in major her-
baria: The Madagascan species, Muellerargia jeffreyana
Keraudren, is known from three collections (in the Paris
herbarium), and permission was not granted to sacrifice
material for this study. It is morphologically similar to the
Indonesian-Australian species M. timorensis Cogn. [26].
The poor documentation of the genus in herbaria also led
to the Australian species being described at least three
times; first as Muellerargia timorensis Cogn., then as Mel-
othria subpellucida Cogn., and then as Zehneria ejecta
Bailey (syn. Melothria ejecta (Bailey) Cogn.).

The Cucumis species relationships found here differ from
those found in earlier studies [1,20-22]. An unrooted
nuclear isozyme tree [21] showed C. sativus as the geneti-
cally most distant species, while C. melo was sister to an
African clade. The neighbor-joining tree from nuclear ITS
sequences of Garcia-Mas et al. [22] was rooted on Citrullus
lanatus and Cucurbita pepo, and showed C. sativus as the
first-branching species in the genus, while C. melo was sis-
ter to a large African clade. Finally, the chloroplast tree of
Chung et al. [1] also was rooted on Citrullus and showed
C. sativus and C. hystrix as sister to C. melo (as did studies
focusing on C. sativus; e.g., [27]). By contrast, the data pre-
sented here (Figs. 1, 2, 3, 4) indicate that (i) the deepest
divergence in Cucumis is between C. hirsutus and C. humi-
fructus on the one hand and all other species on the other,
(ii) C. sativus (cucumber) and C. hystrix are closer to
Dicaelospermum and Mukia than they are to any species of
Cucumis, and (iii) C. melo (melon) is sister to a clade com-
prising Dicaelospermum, Mukia, C. sativus, C. hystrix, and a
new species from Australia (HS414).

There are several possible explanations for the contrasting
findings of the earlier phylogenetic studies. First, the use

of distant outgroups might have "attracted" the long-
branched (i.e., mutation-rich) C. sativus, pulling it to the
base of the tree. Garcia-Mas et al. [22] and Chung et al. [1]
used Citrullus lanatus and/or Cucurbita pepo as sole out-
groups. Both taxa are many clades, and millions of years
of evolution, removed from the Cucumis clade (Fig. 4) and
therefore add long branches to neighbor-joining and par-
simony analyses [1,22]. The inclusion of these long
branches could have caused long-branch attraction
between them and C. sativus.

A second reason why previous molecular phylogenetic
studies were unable to test the monophyly of Cucumis and
to infer the sister clades of cucumber and melon is that
they did not include a sufficiently broad sample of taxa.
For example, rigidly testing the monophyly of Cucumis
section Melo required sequencing all of its species, C. melo,
C. hirsutus, C. humifructus, and C. sagittatus. Results (Figs.
1, 2, 3) show that C. hirsutus and C. humifructus, rather
than being close to C. melo, are sister to all other species of
Cucumis sensu lato, that is, including all five genera nested
in Cucumis.

Another possible reason for apparent differences between
earlier topologies and the phylogeny found here is insuf-
ficient signal in the data and misidentified material. Com-
parison of the ITS sequences of Garcia-Mas et al. [22] to
our ITS sequences showed that the sequence labeled Cucu-
mis membranifolius in GenBank (AJ488223) and Oreosyce
africana in the published paper (these names refer to the
same species fide [12]), does not represent Oreosyce afri-
cana. The sequence came from a seed provided by the
North Central Regional Plant Introduction Station in
Ames, Iowa, and since there is no voucher, its identifica-
tion cannot be verified. We also could not reproduce the
topology and bootstrap support obtained in the original
paper [22], partly probably because the phylogenetic sig-
nal in the data is weak, resulting in many equally likely
trees. Garcia-Mas et al. [22] included sequences resulting
from direct sequencing as well as sequences obtained by
pGEM-T Easy Vector cloning and found sequences from
multiple accessions generally grouping by species. Our
Cucumis ITS sequencing confirmed these authors' assess-
ment that ITS lineage sorting is not a problem in Cucumis.
The two C. ficifolius sequences obtained by Garcia-Mas et
al. [22] that do not group (Fig. 2) come from different
plants and may simply represent different species; how-
ever, since the material is unvouchered, the identifications
cannot be checked.

Implications for the evolution and biogeography of 
Cucumis
The phylogeny from the combined nuclear and chloro-
plast data (Fig. 3) implies that the deepest divergence lies
between the common ancestor of C. hirsutus and C. humi-
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Maximum likelihood tree for Cucumis based on combined sequences from chloroplast genes, introns, and a spacer (details see Table 1)Figure 1
Maximum likelihood tree for Cucumis based on combined sequences from chloroplast genes, introns, and a spacer (details see 
Table 1). The tree is rooted on Muellerargia, the closest relative of Cucumis, based on the family phylogeny shown in Fig. 4. Par-
simony bootstrap values (> 85%) based on 1000 replicates above branches and ML bootstrap values from 100 replicates below 
branches.
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Parsimony tree for Cucumis based on sequences from the nuclear internal transcribed spacer, rooted on Muellerargia as in Fig. 1Figure 2
Parsimony tree for Cucumis based on sequences from the nuclear internal transcribed spacer, rooted on Muellerargia as in Fig. 
1. Bootstrap values (> 65%) at branches are based on 1000 replicates. The genera marked with red lines are nested in Cucumis, 
and their species will need to be transferred to make Cucumis monophyletic. Species with the letters GM (Garcia-Mas) are 
from [22], while species labeled HS were generated for this study. The GenBank sequence labeled '?Oreosyce africana?' is from 
misidentified material (see text).
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Parsimony tree for Cucumis based on the combined chloroplast and nuclear data and rooted on Muellerargia as in Fig. 1Figure 3
Parsimony tree for Cucumis based on the combined chloroplast and nuclear data and rooted on Muellerargia as in Fig. 1. Parsi-
mony bootstrap values (> 75%) based on 1000 replicates above branches and ML bootstrap values from 100 replicates below 
branches. Species on pale grey background occur in Africa (C. prophetarum extends into India); the clade marked in grey-green 
occurs in Australia, the Malaysian region, Indochina, China, and India (Mukia maderaspatana extends into the Yemen and sub-
Saharan Africa; see Table 1 for geographic ranges); the natural range of melon (C. melo) is unclear. Information on chromosome 
numbers is from the Index to Plant Chromosome Numbers database available online at the Missouri Botanical Garden's web 
site.
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Table 1: Species and loci sequenced, their sources and geographic provenience, GenBank accession numbers, and status as 
nomenclatural types. 

Species DNA source Geographic 
origin of the 
sequenced 
material

rbcL gene matK gene trnL intron trnL-F spacer rpl20-rps12 spacer ITS spacer

Cucumella aspera (Cogn.) C. Jeffrey O. H. Volk 2789 (M) Namibia DQ785826 DQ785842 DQ785868 DQ785868 DQ785854 EF091850
Cucumella bryoniifolia (Merxm.) C. 
Jeffrey

M. Wilkins 214b, 
seeds cult. in Tucson, 
Arizona

Republic South 
Africa

DQ535798 DQ536657 DQ536763 DQ536763 DQ648165 EF091851

Cucumis anguria L. var. longaculeata 
Kirkbride (section Aculeatosi, series 
Angurioidei)

R. Seydel 3439 (M) Namibia DQ785827 DQ785843 DQ785869 DQ785869 DQ785855 -

Cucumis dipsaceus Spach (section 
Aculeatosi, series Angurioidei)

H. Schaefer 05/510 
(M)

Dar-Es-Salaam, 
Tanzania

DQ785828 DQ785844 DQ785870 DQ785870 DQ785856 EF093513

Cucumis ficifolius A. Rich. (section 
Aculeatosi, series Angurioidei)

J. E. Weiss s.n. (M), 
cult. BG Munich

Tropical East 
Africa

DQ785829 DQ785845 DQ785871 DQ785871 DQ785857 -

Cucumis heptadactylus Naudin 
(section Aculeatosi, series Myriocarpi)

W. Giess 168 (M) Republic South 
Africa

DQ785830 DQ785840 DQ785872 DQ785872 DQ785858 -

Cucumis hirsutus Sond. (section Melo, 
series Hirsuti)

N. B. Zimba et al. 874 
(MO)

Zambia DQ535799 DQ536658 DQ536804 DQ536804 DQ536542 -

Cucumis humifructus Stent (section 
Melo, series Humifructosi)

H. Merxmüller & W. 
Giess 30150 (M)

Namibia DQ785831 DQ785841 DQ785873 DQ785873 DQ785859 EF093514

Cucumis hystrix Chak. (subgenus 
Cucumis)

S. Suddee, W. J. J. O. 
de Wilde & B. E. E. 
Duyfjes 2503 (L)

Doi Chiang Dao, 
Thailand

DQ785832 DQ785846 - DQ785874 DQ785860 EF093515

Cucumis melo L. subsp. melo (section 
Melo, series Melo)

Store-bought 
cantaloupe

Unknown DQ535800 DQ536659 DQ536764 DQ536764 DQ648166 -

Cucumis melo L. subsp. agrestis 
(Naudin) Pangalo (section Melo, 
series Melo)

D. Podlech 32603 (M) Prov. Nangahar, 
Afghanistan

DQ785833 DQ785847 DQ785875 DQ785875 DQ785861 EF093516

Cucumis metuliferus Naudin (section 
Aculeatosi, series Metuliferi)

B. de Winter & W. 
Marais 4614 (M)

Angola DQ785834 DQ785848 DQ785876 DQ785876 DQ785862 EF093517

Cucumis metuliferus Naudin (section 
Aculeatosi, series Metuliferi)

J. Berhaut 7478 (M) Senegal DQ785835 DQ785849 DQ785877 DQ785877 DQ785863 -

Cucumis myriocarpus E. Mey. ex 
Naudin (section Aculeatosi, series 
Myriocarpi)

S. S. Renner et al. 
2801 (M), cult. Mainz 
BG

Republic South 
Africa

DQ785836 DQ785850 DQ785878 DQ785878 DQ785864 EF093518

Cucumis prophetarum L. 
subsp.prophetarum (section 
Aculeatosi, series Angurioidei)

K. H. Rechinger 28768 
(M)

Quetta, Pakistan DQ785837 DQ785851 DQ785879 DQ785879 DQ785865 EF093519

Cucumis sacleuxii Paill. & Bois 
(section Aculeatosi, series 
Angurioidei)

H. Schaefer 05/411 
(M)

Usambara Mts., 
Tanzania

DQ785838 DQ785852 DQ785880 DQ785880 DQ785866 EF093520

Cucumis sagittatus Peyr. section 
Melo, series Hirsuti)

D. Decker-Walters 
1124 (FTG)

Namibia DQ535802 DQ536661 DQ536806 DQ536806 DQ648168 EF093521

Cucumis sativus L.; Generic type 
(subgenus Cucumis)

1 S. S. Renner 2745 
(M), cult. BG Munich 2 

S. S. Renner 2822

1Unknown 
2Guangxi, China

1DQ53574
7

1DQ53666
2

1DQ53676
5

1DQ536765 1DQ648169 2 

EF093522

Cucumis sp. nov. HS414 P. I. Forster 9514 (NE) Australia EF174480 EF174478 EF174486 EF174486 EF174482 EF174483
Cucumis zeyheri Harvey & Sond. 
(section Aculeatosi, series 
Angurioidei)

D. Decker-Walters 
1114 (FTG)

Natal Republic 
South Africa

DQ535803 DQ536663 DQ536807 DQ536807 DQ648170 EF093523

Dicaelospermum ritchiei C.B. Clarke; 
Generic type; originally spelled 
Dicoelospermum

H. Santapaa 13354 
(MO)

Khandala, India DQ535806 - DQ536811 DQ536811 DQ536546 EF093524

Muellerargia timorensis Cogn. 
Zehneria ejecta F. M. Bailey; Generic 
type

D. L. Jones 3666 (NE) Queensland, 
Australia

DQ535777 DQ536704 DQ536842 DQ536842 DQ536571 EF093525

Mukia maderaspatana (L.) M. Roem. 
The type species of the genus, M. 
scabrella (L.) Wight, is a synonym of 
this name.

J. Maxwell 02-434 
(CMU)

Chiang Mai, 
Thailand

DQ535761 DQ536705 DQ536843 DQ536843 DQ648182 EF093526

Mukia javanica (Miq.) C. Jeffr. H. Schaefer 05/133 
(M)

Yunnan, China EF174479 EF174477 EF174485 EF174485 EF174481 EF174484

Myrmecosicyos messorius C. Jeffr.; 
Generic type

P. R. O. Bally B15187 
(EA)

Lake 
Elementaita, 
Kenya

- DQ536706 DQ535872 - DQ536572 EF093527

Oreosyce africana Hook.f.; Generic 
type

H. Schaefer 05/450 
(M)

Usambara Mts., 
Tanzania

DQ785839 DQ785853 DQ785881 DQ785881 DQ785867 EF093528

Oreosyce africana Hook.f.; Generic 
type

E. Phillips 2821 (Z) Malawi DQ535833 DQ536711 DQ536845 DQ536845 DQ536576 -

Numbers in bold indicate sequences newly generated for this study. Herbarium acronyms follow the Index Herbariorum available online at the New York Botanical Garden's 
web site. BG = botanical garden. Sections and series of Cucumis are from [12].
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Detail of one of highest global likelihood trees for Cucurbitaceae obtained from combined chloroplast sequences (matK, rbcL, the trnL intron and spacer, and the rpl20-rps12 spacer; 4,966 aligned nucleotides; GTR + G), with parsimony bootstrap values based on 100 replicates shown at branchesFigure 4
Detail of one of highest global likelihood trees for Cucurbitaceae obtained from combined chloroplast sequences (matK, rbcL, 
the trnL intron and spacer, and the rpl20-rps12 spacer; 4,966 aligned nucleotides; GTR + G), with parsimony bootstrap values 
based on 100 replicates shown at branches. Modified from 10, which contains the full tree with all 123 genera. Highlighted are 
the Cucumis clade and the genera of Cucumerinae in the most recent morphological classification (11).
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fructus and the stem lineage of the remainder of the genus.
From the geographic ranges of the species of Cucumis sensu
lato (i.e., the natural clade identified here) and its sister
genus Muellerargia (with one species in tropical Australia
and Indonesia, the other in Madagascar), the area where
Cucumis may have originated cannot reliably be inferred.
Strict and semi-parametric molecular clocks indicated that
the deepest divergence in Cucumis may date back to 48–45
my and that the split between the C. melo lineage and its
Australian/Asian sister clade is only slightly younger. The
divergence of C. sativus from C. hystrix may be about 8 my
old and that of their common ancestor from the ancestor
of Dicaelospermum and Mukia maderaspatana about 19 my.
The bulk of the African species appears to have evolved
more recently. The absence of a fossil constraint within
Cucumis, however, cautions against over-confidence in the
molecular clock estimates.

Based on the tree (Fig. 3), the earliest divergence events in
Cucumis likely took place in Africa. However, contrary to
the traditional classification [12], which groups C. melo
with the African C. hirsutus, C. humifructus, and C. sagitta-
tus, melon is closest to an Australian/Asian clade (marked
in grey-green in Fig. 3) that comprises an undescribed
Australian species [28], species currently placed in Mukia
(M. javanica, M. maderaspatana), Dicaelospermum ritchiei
from Western India (recently transferred to Mukia [29]),
and Cucumis sativus and C. hystrix from India, China,
Burma, and Thailand. In addition to the two species we
sequenced, Mukia comprises three others [29], its overall
geographic range extending from Indo-China southeast to
Java, Borneo, and the Philippines, and west through
India, Pakistan, and the Yemen into sub-Saharan Africa.
Given the geographic distribution of its extant closest rel-
atives (Fig. 3), C. melo itself could have originated some-
where in Asia and then reached Africa from there, rather
than originating in Africa as traditionally assumed
[14,15]. Notably, Indian melon landraces exhibit the larg-
est isozyme variation among Asian melons [16] and Aus-
tralia is a center of complex morphological variation of C.
melo [28].

The evolution of morphological traits relevant for Cucumis
breeders, for example fruit type, habit, and sexual system,
will need to be reinterpreted based on the phylogenetic
relationships presented here. Most of the 52 described
species in the Cucumis clade are monoecious perennials,
and the monoecious sexual system and perennial habit
may be the ancestral condition from which an annual
habit and dioecy appear to have evolved several times.
However, the sexual system and habit of key taxa, such as
Dicaelospermum, Muellerargia, and the as yet undescribed
species from Australia [28] (Fig. 3) are not reliably known
because species are under-collected and have not been
studied in the field. Of the 17 species of Cucumis not yet

sequenced, most are monoecious perennials; only C. kala-
hariensis A. Meeuse and C. rigidus Sond. are dioecious and
perennial. Species currently placed in Mukia [29] and
Cucumella [13] are mostly monoecious and perennial. The
evolution of smooth fruits from spiny fruits, a traditional
key character in Cucumis, and the mode of fruit opening
are much more plastic than formerly thought. For exam-
ple, in Oreosyce africana and Muellerargia timorensis the
fruits open explosively [[30]; I. Telford, Beadle Herbar-
ium, Armidale, personal communication, Feb. 2007); in
C. humifructus, fruits mature below ground and are then
dug up and the seeds dispersed by antbears, Orycteropus
afer [31]; in the new species from Australia (HS414 in
Figs. 1 and 2), the developing fruit is pushed into rock
crevices by the elongating pedicel and also matures below
ground; and in Myrmecosicyos messorius the fruits are tiny
and apparently dispersed by harvesting ants around
whose nest entrances the species grows.

Conclusion
Based on congruent nuclear and chloroplast phylogenies
we conclude that a monophyletic Cucumis comprises an
old Australian/Asian clade that includes cucumber and at
least eight other species, most of them currently placed in
Mukia. The new insights about the closest relatives of
melon and cucumber have implications for ongoing
genomics efforts. It is known that Cucumis organellar
genomes are unusually labile. Thus, in C. sativus, rbcL has
been transferred from the plastome to the mitochondrial
genome [4], and huge amounts of degenerate repetitive
DNA have accumulated in C. sativus mitochondria [5-7].
The seven meiotic chromosomes of C. sativus are larger
than the 12 of its wild sister species or progenitor C. hystrix
[32] and consist of six metacentrics and one submetacen-
tric chromosome [33]. To infer the genome rearrange-
ments that must have taken place during the evolution
and domestication of C. sativus, analyses of co-linearity
will be required between the cucumber lineage and its
closest relatives Dicaelospermum ritchiei and species of
Mukia. Finally, the possibility that C. melo may have
evolved in Asia and reached Africa secondarily needs to be
tested.

Methods
Taxon Sampling and Data Sets Analyzed
Table 1 lists all species sampled with authors, status as
generic types where applicable, plant sources, and Gen-
Bank accession numbers [TreeBASE: study accession
S1604, matrix accession M2887, M3250 and M3251]; 79
chloroplast and 20 ITS sequences were newly generated
for this study. Species concepts and generic assignments
throughout this study follow recent classifications [11-
13,29], although as a result of this study, species in several
genera have been transferred into Cucumis ([34]; this also
provides a morphological key to the 52 described spe-
Page 9 of 11
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cies). To resolve species relationships within Cucumis, we
added sequences from the nuclear internal transcribed
spacer region (220 nt of ITS 1, 163 nt of the 5.8S gene, and
240 nt of ITS 2) for the same species for which chloroplast
data were generated. DNA extraction, purification, and
sequencing of the selected loci followed standard proce-
dures [10]. All PCR products were sequenced in both
directions. Direct PCR amplification of ITS yielded single
bands and unambiguous base calls, except in C. ficifolia,
the sequences of which were therefore not used.
Sequences were edited and assembled with the
Sequencher software (Gene Codes) and aligned by eye,
using MacClade [35]. The aligned chloroplast matrix com-
prised 4,375 positions after exclusion of a poly-T run in
the matK gene, a poly-A run in the trnL intron, a TATATA
microsatellite region in the trnL-F intergenic spacer and a
poly-A run in the rpl20-rps12 intergenic spacer. The
aligned ITS matrix comprised 677 aligned positions, and
we excluded a poly-G stretch of 25 nt and a poly-C stretch
of 17 nt from the ITS1 and a poly-C stretch of 11 nt from
ITS2.

Phylogenetic Analyses
Equally weighted parsimony analyses were conducted
using PAUP 4.0b10 [36]. The search strategy involved 100
random taxon addition replicates with tree-bisection-
reconnection branch swapping, MulTrees and Steepest
Descent in effect, no limit on trees in memory, and saving
all optimal trees. For MP analyses, gaps were treated as
missing data, while for ML searches (below) they were
mostly removed. To assess node support, parsimony
bootstrap analyses were performed using 1000 replicate
heuristic searches, each with 10 random addition repli-
cates and otherwise the same settings as used for tree
searches. More computationally intensive heuristic
approaches have been found not to increase the reliability
of bootstrapping [37]. Maximum likelihood analyses and
bootstrapping were performed using GARLI 0.951 [38].
GARLI searches relied on the GTR + G + P-invar model,
which ModelTest 3.06 [39] selected as the best fitting
model for the combined data. Parameters were estimated
over the duration of specified runs.

Molecular clock dating
Molecular clock dating in Cucurbitaceae is problematic
because of the family's scarce fossil record. Without mul-
tiple calibrations, such as could come from several
securely assigned fossils, relaxed molecular clock methods
have been shown to perform poorly [40-42]. We therefore
relied on a strict clock approach and compared it with
results obtained with the semi-parametric penalized like-
lihood approach [40] implemented in r8s vs. 1.7). For
strict clock dating, we employed the maximum likelihood
topology obtained (under GTR + G) with the family data
set of Kocyan et al. [10] augmented by the Cucumis

sequences generated for this study for a total of 193 taxa
and 5,028 aligned nucleotide positions. The tree was
imported into PAUP [36], rooted on Corynocarpaceae,
and rbcL branch lengths were then calculated under a GTR
+ G + I + strict clock model. Branch lengths were saved and
a mutation rate obtained by dividing the distance from
the most recent common ancestor (mrca) of Trichosanthes
to the present (0.01416) by 65 my, based on the oldest
seeds assigned to this genus [43]. Using the resulting rate
of 0.000218 substitutions/site/my, we obtained an age of
47.6 my for the mrca of Cucumis by dividing the distance
from the basal divergence in Cucumis to the present
(0.01037) by 0.000218. The time of the divergence of C.
melo from its sister clade was calculated accordingly
(0.00975 : 0.000218 = 44.7 my). To check this strict clock
estimate based on rbcL, we imported the 193-taxon-ML
tree with branch lengths from the combined chloroplast
data (5,028 nt) into r8s and ran a cross validation analy-
sis, using the following upper and lower temporal con-
straints. The mrca of the family Cucurbitaceae was
constrained to maximally 100 my and minimally 65 my
old based on Cucurbitales family relationships and fossil
records [9,43]; the mrca of Trichosanthes was constrained
to minimally 65 my [42]; and the mrca of an endemic
clade of two species occurring on Hispaniola was con-
strained to maximally 30 my old based on the oldest ages
of Dominican amber [44]. Penalized likelihood yielded
an age of 44.9 my for the mrca of Cucumis.

Abbreviations
ML, maximum likelihood; MP, maximum parsimony;
mrca, most recent common ancestor; my, million years;
nt, nucleotide.
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