Fully Chlorinated N-Silyl Amides of Titanium and Tungsten – Crystal Structure of Cl₃SiNW(Cl₃)N(SiCl₃)₂

Bernd Schwarze, Wolfgang Milius, and Wolfgang Schnick*

Laboratorium für Anorganische Chemie der Universität, Postfach 101251, D-95440 Bayreuth, Germany

Received January 15, 1997

Keywords: N-Silyl amides / Precursor / ¹⁴N NMR / Titanium / Tungsten

The reaction of hexachlorodisilazanyllithium $(Cl_3Si)_2NLi$ (1), with TiCl₄ leads selectively to the novel fully chlorinated amides $(Cl_3Si)_2NTiCl_3$ (2) or $[(Cl_3Si)_2N]_2TiCl_2$ (3), respectively, depending on the molar ratio of the starting materials. The analogous reaction of 1 with WCl₆ yielded the amide imide $Cl_3SiN \equiv W(Cl_3)N(SiCl_3)_2$ (5) by elimination of SiCl₄. The relative amounts of the starting materials had no effect

Fully chlorinated *N*-silylamido or -imido compounds are promising candidates for molecular preorganization leading to novel polymer, and highly crosslinked, silicon-nitrogen networks. For example SiPN₃^[1] has been synthesized via the molecular precursor Cl₃Si $-N=PCl_3$, which already contains the required structural element of two vertex-sharing tetrahedra centered by, respectively, a phosphorus or a silicon atom, which are connected through a common nitrogen atom. Ammonolysis of this precursor, followed by thermal condensation, preserves this structural element and directly yields the highly crosslinked crystalline ceramic compound SiPN₃, which contains a network structure of corner-sharing SiN₄ and PN₄ tetrahedra^[1]. A similar approach has been used for the synthesis of the non-crystalline ceramic Si₃B₃N₇^[2].

In the context of a systematic investigation of nitrido bridges between main-group elements and transition metals, we are now targeting molecular precursor compounds which might be valuable for the synthesis of ternary nitrides, or nanocomposites, in the system Ti-Si-N and W-Si-N. As in the synthesis of SiPN₃, fully chlorinated *N*-silylamido or -imido compounds of Ti and W seem to be appropriate candidates for this synthetic approach.

Several *N*-trimethylsilyl amides or imides with a large number of transition metals and main-group elements exist. Their synthesis by the reactions of metal halides with hexamethyldisilazane or with hexamethyldisilazanyllithium have been extensively studied in the literature^[3-8]. In contrast there are only a few compounds reported with nitrogenbearing trichlorosilyl groups instead of trimethylsilyl groups^[9-11], and Zn is the only transition metal reported so far^[11] in these systems.

Wannaget et al. have already investigated the preparation and the reactivity of hexachlorodisilazane and showed that N-lithiation is readily achieved by treatment with nBuLi on the formation of **5**. ^{14/15}N- and ²⁹Si-NMR data on the starting materials and products show significantly different effects, when compared with those of analogous *N*-trimethylsilyl derivatives, due to the lower energy of the electrons in the N–Si and N–M σ bonds. The crystal structure of **5** (triclinic, space group $P\bar{1}$) was determined by X-ray structure analysis.

in pentane to give hexachlorodisilazanyllithium (1; see Equation 1)^[9]. Recently, Burgdorf et al. described an improved synthesis of chlorodisilazanes starting from $CaCl_2(NH_3)_8^{[12]}$ (see Equation 2). Reactions of 1 were carried out with boron and silicon halides and the possibility of substitution reactions was shown in principle^[10].

Here we report on the synthesis and characterization of fully chlorinated *N*-silylamides obtained by the reaction of 1 with $TiCl_4$ and WCl_6 .

Results and Discussion

The reactions of 1 with TiCl₄ are summarized in Scheme 1. The mono-substituted product 2 is obtained in high yield by the reaction of 1 with TiCl₄ in a molar ratio of 1:1 (Scheme 1a). It is a yellowish solid which gives bright yellow solutions in organic solvents. The treatment of 1 with TiCl₄ in a molar ratio of 2:1 (Scheme 1b) gives the corresponding diamide 3. On heating, 3 decomposes to 2 and the well-characterized 4-membered ring $6^{[9b,13]}$ (Scheme 1c).

FULL PAPER

Scheme 1

The reaction of 1 with WCl₆ (Scheme 2) leads directly to the amide imide 5 which can be recrystallized from pentane to give yellow crystals (vide infra). Solutions of 5 in aromatic solvents exhibit a dark brown color. The formation of 5 can be explained by the elimination of SiCl₄ from the proposed intermediate 4, resulting in a W=N multiple bond (Scheme 2b). This type of reaction is well known for the analogous *N*-trimethylsilyl derivatives, e.g. with tantalum as the central atom^[4a]. The relative amounts of the starting materials 1 and WCl₆ may be varied across a wide range without any effect on the formation of 5. Obviously, a monosubstitution product analogous to 2 is much more reactive towards 1 than WCl₆ itself.

Scheme 2

Crystal Structure of 5^[14]

Details of the X-ray structure analysis of **5** are summarized in Table 1. The tungsten amide imide $Cl_3SiN \equiv$ $W(Cl_3)N(SiCl_3)_2$ is monomeric. There are no significantly short intermolecular atomic distances. The coordination sphere of the central atom of **5** is best described to be of pseudo-square-pyramidal geometry, with the imido group at the apex. The SiCl₃ groups [Cl₃Si(3)] and [Cl₃Si(1)] show rotational disorder. The imido group is nearly linear [angle $W \equiv N - Si \ 165.4(6)^\circ$] and the imido nitrogen atom can be viewed as sp-hybridized. The coordination of the amido nitrogen atom is trigonal planar. The two bonds between W and N differ by nearly 30 pm [W \equiv N \ 171.8(9), W-N 200.7(8) pm] which is significantly larger than the value found for the comparable dimeric tantalum compound $[Me_3SiN \equiv Ta(Br_2)N(SiMe_3)_2]_2^{[4a]}$. The bond lengths W–N are in the same range as those found for other tungsten amides and imides^[15–17]. In contrast to the tantalum derivative $[Me_3SiN \equiv Ta(Br_2)N(SiMe_3)_2]_2$, the hybridization of the nitrogen atoms in **5** has no effect on the N–Si bond lengths (average value 171.5 pm) which correspond to those of a normal Si–N single bond^[13] which also holds for the W–Cl bond lengths^[18]. The bond lengths Si–Cl of the Si(2)Cl₃ group are as expected^[13] (bond lengths in the rotationally disordered groups were fixed).

Figure 1. Molecular structure of 5^[a]

^[n] Selected bond lengths [pm] and angles [°]: W Cl1 229.8(3), W-Cl2 231.4(3), W-Cl3 230.5(3), N1-Si1 171.1(9), N2-Si2 171.4(8), N2-Si3 172.5(10); N1-W-N2 104.0(4), N1-W-Cl1 102.5(3), N2-W-Cl1 153.5(3), N1-W-Cl2 98.5(3), Cl2-W-Cl3 162.1(1), W-N1-Si1 165.4(6).

Table 1. Crystallographic data of 5

Empirical formula	Cl ₁₂ N ₂ Si ₃ W
Crystal system, space group	triclinic, P 1
Unit-cell dimensions [pm] [°]	a = 879.8(2)
	b = 888.5(2)
	c = 1318.4(2)
	$\alpha = 99.14(2)$
	β = 98.10(2)
	γ = 100.55(2)
Unit-cell volume V [10 ⁶ pm ³]	985.0(3)
Z	2
Density (calcd.) [g/cm ³]	2.433
Diffractometer, radiation	Siemens P4, Mo- K_{α} ,
	λ = 71.073 pm
Temperature [K]	296
20 range [°]	2.0–55.0
Reflections collected	5391, ω scan
Independent reflections	4509 (R _{int} = 0.0423)
Observed reflections	4181 with <i>F</i> ₀ ≥ 2.0 σ(<i>F</i> ₀)
Absorption correction	semi-empirical (y scans)
Min./max. transmission factors	0.0282/0.0575
Solution	direct methods
Number of parameters refined	162
Program	Siemens SHELXTL PLUS
	(VMS)
$R/wR[w^{-1} = \sigma^2(F_o)]$	0.0583/0.0571

Crystalline 5 shows a reversible phase transition between room temperature and -100 °C, associated with an enlargement of the unit cell without destruction of the single crystal.

NMR Spectroscopic Results

The measured NMR data of hexachlorodisilazane and of the compounds 1-6 are listed in Tables 2 and 3. All NMR data of the compounds 2 and 3 are consistent with the proposed structures. Because of the absence of any protons which could be used for polarization transfer only direct ²⁹Si-NMR measurements were possible. The ²⁹Si nuclei of the transition-metal derivatives are shielded by 4-8 ppm when compared with hexachlorodisilazane; this is caused by the replacement of the proton by a transition-metal halide group. In contrast, the ²⁹Si nuclei of (Me₃Si)₂N-TiCl₃, the methyl analogue of 2, are deshielded with respect to hexamethyldisilazane^[19]. The replacement of a second chlorine atom at the titanium center against a bis(trichlorosilyl)amido group leads to further ²⁹Si shielding by 1.8 ppm. The trichlorosilyl groups at the imido nitrogen atoms of 5 give signals with a high shielding at $\delta = -59.8$. This significantly high shielding of the ring Si nuclei in 6 to a value of $\delta = -39.8$ is typical of 4-membered rings, and is probably a result of the short transannular Si-Si distance of 246.3 pm^[13] which is comparable to a covalent Si-Si single bond length of 234 pm^[20].

Table 2. ¹⁴N- and ²⁹Si-NMR data^[a] of hexachlorodisilazane, compounds 1-3, and 6

Compound	Hexachloro- disilazane ^[b]	1	2	3	6
δ ¹⁴ N (ν _{1/2}) δ ²⁹ Si	313 (430) 25.5	-283 (250) -43.5	–117 (160) –29.6	–140 (510) –31.4	283 (220) 30.2 (SiCl ₃) 39.8 (SiCl ₂)

 ${}^{[a]}$ C₆D₆, 25 °C. - ${}^{[b]}$ $\delta^1 H =$ 2.82; ${}^1J[{}^{15}N, {}^1H] =$ 71.9 Hz; ${}^1J[{}^{29}Si, {}^{15}N] =$ 28.8 Hz.

$Cl_{3}Si - N \equiv W \begin{pmatrix} SiCl_{3} \\ I \\ Cl_{3}Si - N \equiv W \\ Cl \\ Cl \\ Cl \\ Cl \\ SiCl_{3} \\ SiCl_{3} \\ Cl \\ SiCl_{3} \\ SiCl_{3} \\ Cl \\ SiCl_{3} \\ SiC$						
δ ¹⁴ N (v _{1/2}) (N-I)	$\delta^{14}N(v_{1/2})$ (N-II)	δ ²⁹ Si (Si-I)	δ ²⁹ Si (Si-II)			
93 (110)	-167 (310)	-59.8	-33.1			

^[a] C₆D₆, 25°C.

The most instructive information on the product distribution, and on the progress of the reactions, is obtained by ¹⁴N-NMR spectroscopy. Previously, only a few ^{14/15}N chemicals shifts of transition-metal amides and imides were measured^[17], most of them by ¹⁵N-NMR spectroscopy of samples enriched with ¹⁵N^[17,21]. Our investigations on ¹⁴N-NMR spectroscopy show that the resonances of transition-metal amides and imides are surprisingly easy to observe (see Figure 2).

The substitution of the proton of hexachlorodisilazane against lithium in 1 leads to a ¹⁴N deshielding of 30 ppm and to a sharpening of the ¹⁴N-NMR signal. The δ^{14} N values of the compounds 2 (δ^{14} N = -117) and 3 (δ^{14} N = -140) can be explained by the lower acidity of the TiCl₂ group when compared with that of the TiCl₃ group. In a mixture, the increase of the line width of the ¹⁴N-NMR signal due to the higher molecular weight of 3 (Figure 2) is also indicative. The low ¹⁴N shielding, together with a sharp ¹⁴N-resonance signal for the imido-nitrogen atom of 5, is typical of sp-hybridized ¹⁴N atoms^[17,21,22].

The marked ¹⁴N deshielding in metal amides or imides, if the metal is an early transition element in a high oxidation state, may be explained by the contribution to the paramagnetic shielding term σ_p of B₀-induced mixing of ground and electronic excited states. This concerns in particular the electrons in the M–N σ bond, the nitrogen lone pair of electrons, and the presence of unoccupied metal dorbitals. The comparison between $\delta^{14}N$ of 2 ($\delta^{14}N = -117$) and $(Me_3Si)_2NTiCl_3$ ($\delta^{14}N = +30^{[19]}$) indicates the influence of the electronegative chloro substituents. The energy of electrons in the N–Si and also in the M–N σ bonds, as well as that of the lone pairs of electrons, is lower in 2 than in $(Me_3Si)_2NTiCl_3$. Therefore, the mean ΔE is larger in 2 and paramagnetic contributions become smaller^[23] i.e. ¹⁴Nnuclear shielding increases. The same arguments explain the high shielding of the ²⁹Si nuclei. However, in comparison with amines, the effect of the neighboring metal center still dominates the ¹⁴N deshielding but not the ²⁹Si shielding in 2, 3, and 5.

Financial support by the *Fonds der Chemischen Industrie*, and especially by the *Deutsche Forschungsgemeinschaft* (Schwerpunktprogramm "Nitridobrücken zwischen Übergangsmetallen und Hauptgruppenelementen" and Gottfried-Wilhelm-Leibniz-Programm), is gratefully acknowledged. The authors are indebted to Prof. *B. Wrackmeyer*, Universität Bayreuth, for critical discussion.

Experimental Section

All preparative work and handling of the samples was carried out under pure N_2 using dry glassware and dry solvents.

FULL PAPER

CaCl₂(NH₃)₈^[12] and hexachlorodisilazanyllithium (1)^[9b] were prepared as described. The preparation of hexachlorodisilazane is analogous to literature procedures^[12]. SiCl₄, TiCl₄, WCl₆, and nBuLi in hexane (1.6 M) were commercial products and used without further purification. - IR spectra: Bruker IFS 66v/; KBr pellets. - NMR spectra: Bruker ARX 250 (¹H, ¹⁴N, ¹⁵N, ²⁹Si); chemical shifts are given with respect to Me₄Si [δ^1 H (C₆D₆) = 7.15; δ^{29} Si: $\Xi(^{29}\text{Si}) = 19.867184 \text{ MHz}$ and neat MeNO₂ [δ^{14} N: $\Xi(^{14}$ N) = 7.223656 MHz; δ^{15} N: $\Xi(^{15}$ N) = 10.136767 MHz].

(Cl₃Si)₂NH: To a cooled (-78°C) solution of 400 g of SiCl₄ (2.4 mol) in 500 ml of pentane, 40 g of $CaCl_2(NH_3)_8$ (0.16 mol ≈ 1.28 mol of NH₃) was added in one portion. Then the mixture was stirred at room temp. for 8 d. After that, the reaction mixture was filtered, and pentane and SiCl₄ were removed from the filtrate by distillation. Distillation of the residue at reduced pressure gave 60 g (18%) of hexachlorodisilazane as a colorless, extremely moisturesensitive liquid (b.p. 81°C/40 Torr).

 $(Cl_3Si)_2N - TiCl_3$ (2) and $[(Cl_3Si)_2N]_2TiCl_2$ (3): To a solution of 0.7 g of 1 (2.4 mmol) in 20 ml of CH₂Cl₂ at -78°C, 0.5 g (2.4 mmol) or 0.25 g (1.2 mmol) of TiCl₄, respectively, were added in one portion. After the mixture was warmed to room temp., it was stirred for 4 h. Then the mixture was filtered. Removal of the solvent from the filtrate gave 1.0 g of 2 (95%; m.p. 190°C) or 0.8 g of 3 (97%; m.p. 140°C under decomposition), as yellowish solids. -3: IR: \tilde{v} [cm⁻¹] = 1405, 985, 815, 746, several vibrations between 400 and 630.

 $Cl_3SiN \equiv W(Cl_3)N(SiCl_3)_2$ (5): A solution of 0.7 g of 1 (2.4 mmol) in 10 ml of CH₂Cl₂ was added carefully to a stirred solution of 0.5 g of WCl₆ (1.3 mmol) in 20 ml of CH₂Cl₂ at -78° C. The mixture was allowed to warm up. At a temperature of 0°C the color changed from dark brown to yellow and LiCl began to precipitate. After stirring for 1 h at room temp., the reaction mixture was filtered. Removal of the solvent in vacuo from the filtrate gave an orange oil. Recrystallization from pentane gave 0.5 g of 5 (58%) as yellow platelets (m.p. 115°C). – IR: \tilde{v} [cm⁻¹] = 1403, 1178 [vW≡N)], 1083, 964, 772, 624, several vibrations between 400 and 600.

- ^[1] H. P. Baldus W. Schnick, J. Lücke, U. Wannagat, G. Bogedain, Chem. Mater. 1993, 5, 845-850.
- H. P. Baldus, O. Wagner, M. Jansen, Mat. Res. Soc. Symp. Proc. **1992**, 271, 821-826.
- ^[3] ^[3a] R. A. Andersen, Inorg. Chem. 1979, 18, 1724-1725.
 ^[3b] C. Airoldi, D. C. Bradley, H. Chudzynska, M. B. Hursthouse, K. M. Abdul Malik, P. R. Raithby, J. Chem. Soc., Dalton Trans. 1980, 2010–2015. – ^[3e] R. Schichtenmaier, J. Strähle, Z. Anorg. Allg. Chem. 1993, 619, 1526-1529. - [3d] M. A. Putzer,
- J. Magull, H. Goesman, B. Neumüller, K. Dehnicke, *Chem. Ber.* 1996, 129, 1401–1405.
 ^[4] ^[4a] D. C. Bradley, M. B. Hursthouse, K. M. Abdul Malik, G. B. Chota Vuru, *Inorg. Chim. Acta* 1980, 44, L5–L6. ^[4b] D. C. Bradley, M. B. Hursthouse, K. M. Abdul Malik, A. J. Nielson, G. B. Chota Vuru, J. Chem. Soc., Dalton Trans. 1984, 1069-1072. - ^[4c] K. D. Scherfise, K. Dehnicke, Z. Anorg. Allg.

Chem. 1985, 528, 117-124. - [4d] D. M. Hoffman, S. Suh, J. Chem. Soc., Chem. Commun. 1993, 714-715.

- ^[5] R. D. Köhn, G. Kociac-Köhn, M. Haufe, Chem. Ber. 1996, 129, 25-27.
- ^[6] M. A. Putzer, B. Neumüller, K. Dehnicke, J. Magull, Chem. Ber. 1996, 129, 715-719.
- [7] P. B. Hitchcock, M. F. Lappert, L. J.-M. Pierssens, J. Chem. Soc., Chem. Commun. 1996, 1189–1190. ^[8] [^{8a]} M. Allen, H. C. Aspinall, R. S. Moore, M. B. Hursthouse,
- ^[8b] H. W. A. I. Karvalov, Polyhedron 1992, 11, 409-413. Turner, R. A. Andersen, A. Zalkin, D. H. Templeton, *Inorg. Chem.* **1979**, *18*, 1221–1224. – ^[8c] L. R. Avens, S. G. Bott, D. L. Clark, A. P. Sattelberger, J. G. Watkin, B. D. Zwick, *Inorg. Chem.* 1994, 33, 2248-2256. - [^{8d]} M. Westerhausen, J. Greul, H.-D. Hauser, W. Schwarz, Z. Anorg. Allg. Chem. 1996, 622, 1295 - 1305
- [9] 6, 446. – ^[96] U. Wannagat, H. Moretto, P. Schmidt, Z. Anorg. Allg. Chem. **1971**, 385, 164–176. – ^[94] U. Wannagat, Fortschr. Chem. Forsch. **1967**, 9, 102–144. – ^[9e] U. Wannagat, Pure Appl. Chem. 1969, 19, 325-338.
- [10] [10a] U. Wannagat, M. Schulze, H. Bürger, Z. Anorg. Allg. Chem.
 1970, 375, 157-165. [10b] U. Wannagat, H. Moretto, P.
 1071, 381 Schmidt, M. Schulze, Z. Anorg. Allg. Chem. 1971, 381, 288 - 311.
- ^[11] U. Wannagat, P. Schmidt, Inorg. Nucl. Chem. Lett. 1968, 4, 331-334
- ^[12] H. Fleischer, K. Hensen, D. Burgdorf, E. Flindt, U. Wannagat, H. Bürger, G. Pawelke, Z. Anorg. Allg. Chem. 1995, 621, 239 - 248
- ^[13] U. Wannagat, E. Flindt, D. J. Brauer, H. Bürger, F. Dörrenbach, Z. Anorg. Allg. Chem. 1989, 572, 33-46.
- ^[14] Further details of the crystal-structure investigations are available on request from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD-406413, the names of the authors, and the journal citation.
- ^[15] [^{15a]} M. G. B. Drew, G. W. A. Fowles, D. A. Rice, N. Rolfe, J. Chem. Soc., Chem. Commun. 1971, 231–232. [^{15b]} M. G. B. Drew, K. C. Moss, N. Rolfe, Inorg. Nucl. Chem. Lett. 1971, 1219-1222.
- [16] [16a] D. M. Berg, P. R. Sharp, *Inorg. Chem.* 1987, 26, 2959–2962.
 [16b] K. W. Chiu, R. A. Jones, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1981, 2088 - 2097.
- ^[17] W. A. Nugent, J. M. Mayer, Metal-Ligand Multiple Bonds, John Wiley & Sons, New York 1988, pp. 129-219, and refs. cited therein.
- [18] [18a] T. Godemeyer, A. Berg, H.-D. Groß, U. Müller, K. Dehnicke, Z. Naturforsch., B 1985, 40, 999-1004. [18b] T. Godemeyer, K. Dehnicke, D. Fenske, Z. Naturforsch., B 1985, 40, 1005-1009.
- ^[19] B. Wrackmeyer, J. Weidinger, in preparation.
- ^[20] Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed., 4 th suppl., vol. B1, H. Keller-Radek, D. Koschel, U.

- ¹⁰¹ (1972, 1972, 1973, 1973, 1974

[97006]