Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Rubidium metaborate, $\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$

Sabine Schmid and Wolfgang Schnick*

Department Chemie und Biochemie, Lehrstuhl für Anorganische Festkörperchemie, Ludwig-Maximilians-Universität, Butenandtstraße 5-13 (D), D-81377 München, Germany
Correspondence e-mail: wolfgang.schnick@uni-muenchen.de

Received 15 April 2004
Accepted 26 April 2004
Online 30 June 2004
Rubidium metaborate, $\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$, was obtained by the reaction of $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ and BN using a radiofrequency furnace at a maximum reaction temperature of 1173 K . The crystal structure has been determined by single-crystal X-ray diffraction. The space group is $R \overline{3} c$, with all atoms positioned on a twofold axis (Wyckoff site 18e). The ionic compound is isotypic with $\mathrm{Na}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}, \mathrm{~K}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$ and $\mathrm{Cs}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$.

Comment

A wide variety of alkali borates have been reported. The title compound, $\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$, belongs to the series of alkali metaborates $M_{3} \mathrm{~B}_{3} \mathrm{O}_{6}(M=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}$ and Cs$)$. Surprisingly, a single-crystal structure determination of $\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$ has not been published previously; Schneider \& Carpenter (1970) and Schlaeger \& Hoppe (1994) assumed $\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$ to be isotypic with the other alkali metaborates, but the structure has never been examined by single-crystal X-ray diffraction. We present here the crystal structure of $\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$, solved and refined from X-ray diffraction data.

Figure 1
The crystal structure of $\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$, viewed along the crystallographic c axis, with 99% probability displacement ellipsoids.

Figure 2
The Rb atom surrounded by $\mathrm{B}_{3} \mathrm{O}_{6}{ }^{3-}$ rings, with 99% probability displacement ellipsoids.

We confirm that $\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$ is isotypic with $\mathrm{Na}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$ (Marezio et al., 1963), $\mathrm{K}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$ (Schneider \& Carpenter, 1970) and $\mathrm{Cs}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$ (Schlaeger \& Hoppe, 1994).

The lattice parameters increase from Na to Cs , along with the size of the cations. The previously published lattice parameters of $\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$ (Schneider \& Carpenter, 1970) are nearly equivalent to those found in the present investigation. The characteristic building units are cyclic planar $\mathrm{B}_{3} \mathrm{O}_{6}{ }^{3-}$ anions, which can be described as comprising three corner-sharing $\mathrm{BO}_{3}{ }^{3-}$ groups. The $\mathrm{B}-\mathrm{O}$ bond length for terminal atom O 1 is 1.315 (6) \AA, while the $\mathrm{B}-\mathrm{O}$ bond to bridging atom O 2 [1.407 (3) \AA] is significantly longer. The $\mathrm{B}-\mathrm{O}$ distances of the $M_{3} \mathrm{~B}_{3} \mathrm{O}_{6}(M=\mathrm{Na}, \mathrm{K}, \mathrm{Rb}$ and Cs$)$ series are compared in Table 1. The $\mathrm{B}_{3} \mathrm{O}_{6}{ }^{3-}$ rings in $\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$ are stacked in a staggered manner along [001], with consecutive rings rotated with respect to one another by 60° (Figs. 1 and 2). Each Rb atom is surrounded by seven O atoms, with $\mathrm{Rb}-\mathrm{O}$ distances of $\sim 3 \AA$.

Experimental

$\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$ was obtained by the high-temperature reaction of $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ (2.0 mmol) and $\mathrm{BN}(2.0 \mathrm{mmol})$ using a radiofrequency (rf) furnace. Details of the experimental set-up are given in Schnick et al. (1999). Under an atmosphere of pure argon, the starting compounds were placed in a tungsten crucible, which was positioned at the center of the induction coil of an rf furnace. The reaction was performed under an atmosphere of pure nitrogen (purified by silica gel, potassium hydroxide, molecular sieve, $\mathrm{P}_{4} \mathrm{O}_{10}$ and a BTS catalyst). The reaction batch was heated to 1173 K at a rate of $7.3 \mathrm{~K} \mathrm{~min}^{-1}$. The temperature was maintained for 2 h and then the product was cooled at a rate of $0.2 \mathrm{~K} \mathrm{~min}^{-1}$ to 473 K . Subsequently, the mixture was quenched to room temperature. $\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$ was obtained as a coarse crystalline white solid mixed with RbCN .

inorganic compounds

Crystal data
$\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$
$M_{r}=384.85$
Trigonal, $R \overline{3} c$
$a=13.1572$ (19) \AA
$c=7.7434(15) \AA$
$V=1160.9(3) \AA^{3}$
$Z=6$
$D_{x}=3.303 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: numerical (X-SHAPE; Stoe \& Cie, 1999),
$T_{\text {min }}=0.056, T_{\text {max }}=0.154$
5001 measured reflections
231 independent reflections

Refinement

Refinement on F^{2}

$R(F)=0.019$
$w R\left(F^{2}\right)=0.046$
$S=1.22$
231 reflections
22 parameters

Mo $K \alpha$ radiation
Cell parameters from 8606 reflections
$\theta=3.1-40.3^{\circ}$
$\mu=18.87 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.38 \times 0.19 \times 0.17 \mathrm{~mm}$

226 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.082$
$\theta_{\text {max }}=25^{\circ}$
$h=-15 \rightarrow 15$
$k=-15 \rightarrow 15$
$l=-9 \rightarrow 9$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0139 P)^{2}\right. \\
& +8.1199 P \text {] } \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.43 \mathrm{e}^{\text {A }}{ }^{-3} \\
& \Delta \rho_{\text {min }}=-0.40 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.00105 \text { (19) }
\end{aligned}
$$

Table 1
A comparison of $\mathrm{B}-\mathrm{O}$ distances (\AA) and $\mathrm{O}-\mathrm{B}-\mathrm{O}$ angles $\left({ }^{\circ}\right)$ in $\mathrm{Na}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}, \mathrm{~K}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}, \mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$ and $\mathrm{Cs}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$.

Compound	$\mathrm{B}-\mathrm{O} 1$	$\mathrm{~B}-\mathrm{O} 2$	$\mathrm{O} 2-\mathrm{B}-\mathrm{O} 2$	$\mathrm{O} 2-\mathrm{B}-\mathrm{O} 1$
$\mathrm{Na}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$	$1.28(2)$	$1.43(1)$	$114.5(6)$	$122.8(7)$
$\mathrm{K}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$	$1.33(1)$	$1.398(5)$	$117.3(8)$	$121.3(4)$
$\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$	$1.315(6)$	$1.407(3)$	$115.7(5)$	$122.1(2)$
$\mathrm{Cs}_{3} \mathrm{~B}_{3} \mathrm{O}_{6}$	$1.298(8)$	$1.416(4)$	$114.8(3)$	$122.6(3)$

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2003) and WinGX (Farrugia, 2003).

This work was supported by the Fonds der Chemischen Industrie, Germany, and by the Deutsche Forschungsgemeinschaft.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1042). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2003). WinGX. Version 1.64.05. University of Glasgow, Scotland.
Marezio, M., Plettinger, H. A. \& Zachariasen, W. H. (1963). Acta Cryst. 16, 594-595.
Nonius (1997-2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Schlaeger, M. \& Hoppe, R. (1994). Z. Anorg. Allg. Chem. 620, 1867-1871.
Schneider, W. \& Carpenter, G. B. (1970). Acta Cryst. B26, 1189-1191.
Schnick, W., Huppertz, H. \& Lauterbach, R. (1999). J. Mater. Chem. 9, 289296.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. Release 97-2. University of Göttingen, Germany.
Spek, A. L. (2003). PLATON. Utrecht University, The Netherlands.
Stoe \& Cie (1999). X-SHAPE. Version 1.06. Stoe \& Cie, Darmstadt, Germany.

