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Banking Regulation and Financial Accelerators: A

One-Period Model with Unlimited Liability

Wolfgang Bühler Christian Koziol∗

Abstract

In this paper, we analyze the consequences of bank regulation on the size of the

real sector. In particular, we address the question whether exogenous shocks on the

return-risk characteristics of the technology and on the equity of the real sector are

intensified or damped by a value-at-risk constraint on the credit portfolio of a bank.

We consider a one-period model with three risk-averse agents, an investor, a bank,

and a firm. The size of the markets for deposits and loans, their prices and the size

of the real sector are endogenous. We find that stricter regulation results in higher

loan rates, lower deposit rates, and lower activity in the real sector. A negative

shock on the return-risk position or on the risk buffer of the real sector reduces the

activities in the economy. Surprisingly, the sensitivity of the real sector’s activities

on negative shocks is smaller for a regulated financial sector than for a non-regulated

one. Therefore, in our economy, imperfections in the financial sector do not result

in procyclical or acceleration effects.

1 Introduction

The classical Keynesian model and business cycle theory basically assume that the finan-
cial structure in the economy has no impact on the real economic outcomes. For about
twenty years now, there has been a growth in literature, giving the financial sector of an
economy, especially the credit market, a more prominent role in explaining cyclical fluctu-
ations of the real sector. Starting with the work of Bernanke (1983) and Bernanke/Blinder
(1988) depressed asset prices and a large number of bank failures are not only reflections of
a real downturn, but themselves impact a real depression. Frictions in the credit markets
caused by incomplete and asymmetric information influence the borrower-lender relation-
ship and result in agency costs of debt. In a deteriorating real economy these capital costs
increase and accelerate the decline of real outcomes. This strand of literature is surveyed
in Bernanke/Gertler/Gilchrist (1999).

A second stream of literature discusses the impact of frictions in the financial sector
caused by bank regulation. The majority of the work done in this field concentrates

∗Chair of Finance, University of Mannheim. We are grateful to the participants of the 34. Ot-
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discussant Richard Stehle, Hendrik Hakenes, Martin Hellwig, and Ludwig van Thadden.
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on the effects of regulation on the individual bank behavior. Koehn/Santomero (1980),
Kim/Santomero (1988), and Rochet (1992) show in one-period models that a regulation
scheme, as imposed by the Basle Capital Accord, can result in negative incentives in the
sense that a regulated bank selects riskier positions than a non-regulated bank.

The discussion of the New Basle Capital Accord (Basle II) has increased the concerns on
the consequences of bank regulation. According to this new regulation framework, banks
can choose between a standard approach similar to Basle I and an internal rating based
approach (IRB approach) to quantify the capital requirements for their credit position. In
the long run, it is expected that internal value-at-risk models will be accepted to measure,
manage, and control the credit risk of banks. Basle II is, however, subject to an intense
discussion. The market risk paper by Danielsson/Zigrand (2002) and the credit risk
papers by Eichberger/Summer (2003) and Repullo/Suarez (2003) determine the banking
activity under the Basle II regulation scheme. These papers concentrate on an analysis of
banking activities and neglect the impact of regulation on the real sector. They also do
not allow for the possibility that banks may raise deposits from investors. As the volume
of deposits determines to a large extent the volume of granted loans, which in turn affects
the real sector, the chain from investors via the bank to the firm in raising funds for the
real sector should be taken into account for a discussion on procyclicality or acceleration
issues.

Blum/Hellwig (1995) analyze the effect of a Basle I like regulation on the real sector in a
classical Keynesian framework. The multiplier of a demand shock in the goods market is
larger in an economy with regulated banks than in an unregulated economy. This higher
sensitivity is driven by the fact that the firm’s investment demand reacts more sensitively
to a general demand shock if the capital adequacy requirement is binding compared with
the case that it is not binding. Blum and Hellwig’s result on the multipliers in the
regulated economy are lower than those in an identical, unregulated economy.

On a qualitative level, Danielson/Embrechts/Goodhart/Keating/Muennich/Renault/
Shin (2001) point out that the rating of loans on the basis of internal models depends on
the state of the business cycle and is therefore procyclical. This procyclicality in inter-
nal credit ratings will create procyclicality in capital costs, if banks use similar internal
models. As a result, the business downturn goes with a restricted loan granting which
amplifies the downturn. The main arguments on the procyclicality of bank regulation are
surveyed by Borio/Furfine/Lowe (2001).

To the best of our knowledge, we analyze for the first time the consequences of a regulation
of credit portfolios on the volume of granted loans, the loan and deposit rate, and the
activity in the real sector in a stochastic setting. This model comprises of a one-period
framework with three types of agents: investors, banks, and firms. In this economy with
perfect competition the banks collect deposits from the investors and grant loans to the
firms. Regulation is introduced by a value-at-risk condition for the unexpected losses of
the bank’s portfolio. Each agent is equipped with an initial endowment and has a negative
exponential utility function. The size of the markets for deposits and loans, their prices
and the size of the real sector are endogenous.

We understand our model to be a benchmark model that captures the main effects of
banking regulation on the real sector. However, we are well aware of the fact that some
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stylized features of our model are open to criticism. First, the risky returns of loans and
deposits are only partly linked to the returns of the real sector. E.g. deposits bear an
exogenous risk like operational risk even if banks invest their funds risk free. Second, the
values of loans and deposits at maturity are not capped at zero nor at their face value.
These assumptions allow us to derive the demand and supply functions for loans and
deposits analytically. If the non-linear characteristics of the loan and deposit contracts
at maturity are considered, the demand and supply functions can only be determined
numerically. Third, we do not address the question whether regulation of banks is welfare
improving for the agents. Therefore, we do not consider any benefits of regulation in our
model. In this paper we address exclusively the problem whether in a regulated banking
system macroeconomic shocks are amplified relative to a non-regulated financial sector.

Most of the results are obtained numerically. They can be summarized as follows: A
stricter regulation results in higher loan rates, lower deposit rates, and lower activity of
the real sector. A positive shock on the technology risk has negative effects on the real
sector and the loan rate, independent of regulation. An important numerical result is that
the sensitivity of the real sector’s activity is smaller for a regulated financial sector than
for a non-regulated one if the unregulated sector reacts at all. Therefore, in our economy,
imperfections in the financial sector do not result in procyclical or acceleration effects.

The paper is organized as follows. Section 2 presents the model framework and introduces
the characteristics of the investor, the bank, and the firm. The demand and supply for
loans and deposits of these agents is derived in Section 3. Section 4 discusses general
conditions and properties in equilibrium. A comparative static analysis of the real sector
in terms of various kinds of shocks is accomplished in Section 5. Section 6 concludes.

2 Model Framework

The most simple framework to study the impact of imposing a regulation scheme on
banks on the real sector of an economy is a model with three groups of agents: investors,
banks, and firms. The agents within each group are assumed to be identical with respect
to their preferences, beliefs and endowments. Furthermore, they are assumed to behave
competitively. Therefore, they are aggregated to one representative investor I, one bank
B, and one firm F .

Figure 1 shows the basic structure of the model. For expository purposes, we consider a
one-period model in which the agents take positions at time t = 0 and hold their position
until the planning horizon t = 1. The choice set of the agents, their utility functions, the
risk sources, and the markets for financial assets will be discussed in detail below.

(a) Investor

The representative investor holds an initial endowment equal to W I
0 > 0 at time t = 0

which is invested into a portfolio consisting of a risk-free asset and deposits. The amount
invested into the risk-free asset and the number of deposits xD must be non-negative, i.e.
short positions are prohibited. Let D0 be the price of one unit of a deposit, the investor
invests

xD ·D0

3



Figure 1: General Relationship between Investor, Bank, and Firm
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into deposits and the remaining wealth

W I
0 − xD ·D0 ≥ 0 (1)

into the risk-free asset. The risk-free asset yields an exogenous fixed return r ≥ 0 for the
period [0, 1]. The value D1 of one deposit unit at time t = 1 is assumed to be normally
distributed

D1 ∼ N
(
µD, σ

2
D

)
, µD > 0, σD > 0,

with exogenous expectation µD and variance σ2
D. This assumption means that the risk

of deposits is not exclusively determined by the credit risk of loans given to the firms in
the real sector. Deposits carry their own risks, e.g. operational risk. In addition, the
assumption that the value D1 of one deposit unit is normally distributed neglects the
typical contract structure of deposits. However, as we bind the deposit’s risk σD to a
small fraction of the firm’s risk, we believe that this assumption has no major impact on
the results. Obviously, we make this assumption to facilitate the analytical derivations of
the demand and supply functions.

The investor’s objective is to maximize the expected utility E
(
U I
(
W I

1

))
of the terminal

wealth
W I

1 = xD ·D1 +
(
W I

0 − xD ·D0

)
· (1 + r) . (2)

The utility function U I
(
W I

1

)
is assumed to exhibit constant absolute risk aversion

(CARA), i.e.

U I
(
W I

1

)
= −e−λI

·W I
1 , λI > 0.
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A basic determinant for the size of the real sector represents the decision as to how the
representative investor distributes his wealth between the riskless asset and deposits. In
general, the size of the real sector can vary between zero and the initial endowments of the
three groups of agents. In the first case, the investors have a zero demand for deposits,
in the second they invest W I

0 fully into deposits. This ”breathing” of the real sector with
the volume of deposits or with the size of risk-free investments, respectively, is necessary
to study the impact of the exogenous parameters on its size. It depends crucially on the
assumption that risk-free investments are not channeled back into the banking system
where they could be used for loans. Risk-free funds are invested outside our system of
three agents and are not available until the end of the period.

(b) Firm

The firm initially has an exogenous equity ofW F
0 > 0 which is invested together with funds

from a loan granted by the bank into a real technology. To strengthen the consequences of
bank regulation on the size of the real sector we assume that besides loans, firms have no
other possibilities to finance their real investments, e.g. by issuing bonds or stocks. This
assumption has the additional advantage that we need not to model the bond and/or the
stock market (see also the discussion in Section (e)).

The credit volume is
xL · L0,

where xL ≥ 0 denotes the number of credit units and L0 the value of one credit unit.
To reduce the number of different cases, which we have to discuss in Sections 3 and 4,
we assume that the firm has no risk-less investment opportunity. As a consequence, the
amount invested into the real technology is

W F
0 + xL · L0 > 0. (3)

At the terminal date t = 1, the firm obtains a return rV on the invested capital and the
loans are redeemed at L1. We assume that the firm has unlimited liability. This implies
that the terminal equity W F

1 at time t = 1 reads

W F
1 =

(
W F

0 + xL · L0

)
· (1 + rV )− xL · L1. (4)

In line with the assumption about the deposit value D1, we assume that both the return
rV on the technology and the loan redemption L1 are normally distributed

rV ∼ N
(
µV , σ

2
V

)
, µV > 0, σV > 0,

L1 ∼ N
(
µL, σ

2
L

)
, µL > 0, σL > 0,

with means µV and µL and variances σ2
V and σ2

L. The covariance matrix Σ2 of (rV , D1, L1)
′

is denoted by

Σ2 =




σ2
V ρD,V · σV σD ρL,V · σV σL

ρD,V · σV σD σ2
D ρD,L · σDσL

ρL,V · σV σL ρD,L · σDσL σ2
L


 , |ρD,L| < 1, |ρL,V | < 1, |ρD,V | < 1.

The firm has — analogous to the investor — a CARA utility function

UF
(
W F

1

)
= −e−λF

·WF
1 , λF > 0,
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and chooses the credit volume xL such that the expectation of its terminal utility
E
(
UF
(
W F

1

))
is maximized.

We normalize µD and µL to one and assume that correlations and the expected return
µV − 1 of the real investment are positive. As the main part of the loan’s and deposit’s
risk stems from the risk σV of the technology and is reduced by the firm’s and the bank’s
equity, we assume further that the relations

σV /µV ≥ σL ≥ σD

hold.

(c) Bank

The bank is a typical commercial bank which can collect deposits from the investor and
grant loans to the firm. It has the properties of a bank for two reasons. First, the firm can
raise funds only through bank loans. Therefore, the bank acts as a financial intermediary
in its strictest form. Second, the bank is regulated by a value-at-risk constraint on its
portfolio. This regulation feature will become apparent below. Thus, the bank is a
typical intermediary because the investor cannot invest into claims of the firm directly.
This function underlines the effect of a regulation.

The bank raises a non-negative number of deposits with a volume equal to

xD ·D0.

The bank invests these funds together with its exogenous initial equity W B
0 > 0 into loans

xL · L0 and the remaining part

xC := WB
0 + xD ·D0 − xL · L0 ≥ 0

into the risk-free asset with exogenous rate of return r. Since the bank also has unlimited
liability, the terminal wealth WB

1 of the bank results in:

WB
1 = xC · (1 + r)− xD ·D1 + xL · L1 (5)

The bank selects a loan and deposit volume such that the expected utility E
(
UB
(
WB

1

))

is maximized. Again, we assume

UB
(
WB

1

)
= −e−λB

·WB
1 , λB > 0.

For the trading book of a bank, it is regulatory acceptable to measure and control market
risks by an internal model, for example the value-at-risk (VAR) of this book (see e.g. Bank
of International Settlement (2003)). According to the third consultative paper of the New
Basle Accord, credit risk related to the bank book can be measured and controlled by the
standard approach or by a method based on internal ratings (IRB) of individual credits.
We extend this internal credit risk model to a VAR-based approach for the unexpected

losses. In other words, the VAR-approach for credit risk requires that the unexpected
loss of terminal wealth given by E

(
WB

1

)
−WB

1 exceeds the initial equity α′ ·WB
0 with

probability below or equal to p :

Pr
(
E
(
WB

1

)
−WB

1 ≥ α′ ·WB
0

)
≤ p (6)
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As the terminal wealth WB
1 is normally distributed, this condition simplifies to

SD
(
WB

1

)
≤ α′

N−1 (1− p)︸ ︷︷ ︸
=:α

·WB
0 , (7)

where SD
(
WB

1

)
denotes the standard deviation of the terminal wealth of the bank and

N−1 (·) indicates the inverse of the standard normal distribution function. Therefore,
regulation restricts the standard deviation of the bank’s wealth through the tightness
parameter

α =
α′

N−1 (1− p)

and the amount of initial equity WB
0 at the beginning of the planning period. The VAR

constraint (6) deserves two comments. First, the assumption that the equity has to cover
only negative deviations from the expected wealth at t = 1 results in the simple constraint
(7) for the standard deviation of the wealth WB

1 . Another possibility would be to relate
losses WB

1 −WB
0 to the equity WB

0 . In this case, the expected wealth E
(
WB

1

)
would be

part of the inequality (7). The qualitative results presented in Section 4 would not change
if this version of a VAR-constraint was used. Second, the constraint (6) depends on the
bank’s total portfolio of investments and deposits. This definition of the risk exposure
corresponds with the definition of market risk. It is, however, less suitable to measure
credit risk exposure as this risk is related exclusively with the loans. We include deposits
into the portfolio to add one degree of freedom to the VAR constraint. Otherwise, a
binding constraint would determine the loan volume and the bank has no choice problem.
If we extend the model to more than one lending relationship we can exclude the deposits
from the risky portfolio.

(d) Risk Sources

Figure 1 suggests that there is only one risk source in our economy. This risk comes from
the real sector and determines the risk of the credit and, finally, the risk of the deposits.
The real sector risk exposure is reduced by three mechanisms until it is transferred to
the deposit investors. First, the equity of the firm and the bank absorbs part of the
risk. Second, in the multi-firm-, multi-bank case, there exists, at least in principle, the
possibility that individual banks reshape the real sector risk and offer specific risk tranches.
Third, the regulation of banks introduces through the credit channel an upper limit to
the total risk the real sector can take.

In our preliminary model, we specify the risk transfer from the real sector to the deposit
investors by the following assumptions:

• Real risks are reshaped only by the equity of the firm and the bank. An additional
reshaping of risks by tranching is not considered.

• The credit value L1 per unit and the deposit value D1 per unit at the repayment
date are normally distributed.

As discussed in the introduction, this assumption destroys the typical put-option charac-
teristic of credits and deposits. Particularly, it has the obvious unrealistic consequence
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that the bank or the investor can lose more than its initial wealth. The well-known ad-
vantage of this assumption is that we can characterize the optimal behavior of the agents
in a mean-variance framework. Therefore, the results of this preliminary model should
be considered as an ’easily computable’ benchmark for more general versions in which
the risk transfer, the option feature of credits and deposits, and the diversification or
tranching possibilities of banks are considered explicitly.

On the other hand, the assumption of normally distributed, not perfectly correlated risks
of the loan and the deposit adds additional risk factors to the real sector risk. On the firm
and bank level these additional risks can be a consequence of market- and operational
risk factors. In the comparative static analysis we will relate the volatilities σD and σL of
the deposit and loan value D1, L1 to the volatility σV of the real-sector risk.

(e) Markets

In our model, we consider a market for credits and deposits only. The prices D0 and L0

for one unit of deposit or credit are characterized by a standard Walrasian equilibrium.

We do not consider a market for stocks issued by the firm or the bank for two reasons.
First, the possibility to increase the firm’s or bank’s equity would require the modelling of
the stock market and increase the complexity of the model. Second, and more importantly,
in the intended dynamic extension of the model in a dynamically complete market setting,
the investor could replicate the loan position of the bank. As a consequence the bank
would be superfluous in the model.

The assumption that the bank and the firm cannot issue new equity implies that in the
multi-period extension of the model the equity of the firms and banks is determined by
the exogenous initial equity and the aggregated losses and profits over time.

3 Demand and Supply of Deposits and Loans

Since the terminal wealth W i
1, i = I, B, F of each agent is normally distributed and all

three agents have negative exponential utility functions, the maximization of the expected
utility is equivalent to the maximization of the following mean-variance objective functions
OF i:

OF i := maxE
(
W i

1

)
− 1

2
λi · V

(
W i

1

)
, i = I, B, F,

where V (W i
1) is the variance of terminal wealth of agent i. We use this objective function

to determine the demand and supply of deposits and loans.

(a) Demand of Deposits

The investor determines his optimal demand xID (D0) of deposits by solving OF I with an
expected value and variance of his final wealth of

E
(
W I

1

)
= xD +

(
W I

0 − xD ·D0

)
· (1 + r) ,

V
(
W I

1

)
= x2

D · σ2
D.
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The first order condition of the unconstrained problem provides us with the solution

xD =
1−D0 · (1 + r)

λI · σ2
D

.

As a short sale of the risk-free instrument is excluded by (1), his demand is limited by

xID (D0) ≤ W I
0

D0

. In the case xD >
W I

0

D0

, we can easily see that the expected utility of

the investor is maximized for xID (D0) =
W I

0

D0

. Thus, we obtain the demand function of
deposits:

xID (D0) = min

(
max

(
1−D0 · (1 + r)

λI · σ2
D

, 0

)
,
W I

0

D0

)
(8)

The demand of deposits is positive if and only if D0 <
1

1+r
holds, and xID (D0) is strictly

monotonic decreasing inD0 as long as x
I
D (D0) is positive. The deposit volume xID (D0)·D0

is concave and increases first and then declines in D0 on the interval [0, 1/(1 + r)].

(b) Demand of Loans

The demand of loans xFL (L0) is determined by the firm. The expected value and the
variance of its terminal wealth follow from (4):

E
(
W F

1

)
=
(
W F

0 + xL · L0

)
· µV − xL,

V
(
W F

1

)
=
(
W F

0 + xL · L0

)2 · σ2
V + x2

L · σ2
L

− 2 ·
(
W F

0 + xL · L0

)
· xL · ρL,V · σV σL

Again, the unconstrained demand xL of loans follows from the first order condition and
is given by:

xL =
µV · L0 − 1 + λFW F

0 · (ρL,V σLσV − σ2
V · L0)

λF · (σ2
VL

2
0 − 2ρL,V σLσV · L0 + σ2

L)

If L0 is sufficiently low, the firm wants to take a short position in loans xL < 0 which is
excluded. In this case, xFL (L0) = 0 is optimal and the demand function xFL (L0) reads

xFL (L0) = max

((
µV − λFW F

0 σ
2
V

)
· L0 − 1 + λFW F

0 · ρL,V σLσV
λF · (σ2

VL
2
0 − 2ρL,V σLσV · L0 + σ2

L)
, 0

)
.

For the discussion of the demand function xFL (L0) we first note that the denominator
is always positive. The qualitative behavior of the demand for loans depends crucially
on the expression µV − λFW F

0 σ
2
V . This term is equal to the marginal expected utility

∂E(UF (WF
1 ))

∂WF
1

if the firm is restricted to equity financing. If this marginal utility at the

firm’s exogenous amount of equity W F
0 is non-positive, a larger equity volume would not

increase the firm’s expected utility. As this case is not interesting, we exclude it by the
assumption

µV − λFW F
0 σ

2
V > 0 (9)

In this case the demand xFL (L0) is positive if the loan value L0 per unit is above the
critical value

L0 =
1− λF ·W F

0 · ρL,V · σLσV
µV − λF ·W F

0 · σ2
V

(10)
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It can be further shown that xFL (L0) for L0 ≥ L0 is first strictly increasing in L0 until a

unique maximum L̂0. After L̂0 it strictly decreases in L0 and converges to zero if L0 goes
to infinity. The demand for the loan volume xFL (L0) · L0 is strictly monotonic increasing
for L0 ≥ L0 and converges to µV

λF σ2

V

−W F
0 . The first term in this difference is the optimal

real investment of the firm if it took no credit and could adapt its equity to the investment
volume.

It follows from the assumptions µV > 1, σV /µV ≥ σL, and ρL,V > 0 that the critical value
L0 is positive and below one.

(c) Supply of Deposits and Loans of the Unregulated Bank

The bank simultaneously supplies deposits and loans. Due to the non-negativity restric-
tions for the choice variables, we have to discuss five different cases for the optimal bank
decision. They differ by the structure of the bank’s balance sheet. In addition to the
equity the balance sheet can consist of

(i) loans, deposits, and the risk-free asset,

(ii) loans and deposits only,

(iii) loans and the risk-free asset,

(iv) deposits and the risk-free asset, or

(v) the risk-free asset only.

First, we consider an unregulated bank and discuss the structure of the non sign-restricted
solution and the feasible optimal holdings in sequence.

Case (i)

In general case (i) will hold if the choice variables of the bank are not restricted in sign.
Thus, the expected value and the variance of the unregulated bank’s wealth read:

E
(
WB

1

)
= xL − xD + xC · (1 + r) ,

V
(
WB

1

)
= x2

D · σ2
D + x2

L · σ2
L − 2 · xD · xL · ρD,L · σDσL

The expected utility of its terminal wealth is a strictly concave function. From the first
order conditions, we obtain the unrestricted solution

xD =
(1− L0 · (1 + r)) · ρD,L · σDσL − (1−D0 · (1 + r)) · σ2

L

λB ·
(
1− ρ2

D,L

)
· σ2

Dσ
2
L

, (11)

xL =
(1− L0 · (1 + r)) · σ2

D − (1−D0 · (1 + r)) · ρD,L · σDσL
λB ·

(
1− ρ2

D,L

)
· σ2

Dσ
2
L

.

If this solution provides non-negative volumes for deposits xD ≥ 0, loans xL ≥ 0, and also
non-negative holdings in the risk-free asset, xC ≥ 0, the units xD and xL represent the
supply of the bank. Otherwise, the bank’s optimal balance sheet has a different structure.

Case (ii)

If the bank optimizes its portfolio under the constraint xC = 0, the supply of loans and
deposits have to satisfy the following budget constraint

WB
0 + xD ·D0 = xL · L0.
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In this case the expectation and the variance of the bank’s terminal wealth are

E
(
WB

1

)
= xL − xD,

V
(
WB

1

)
= x2

D · σ2
D + x2

L · σ2
L − 2 · xD · xL · ρD,L · σDσL.

Substituting xD by means of the budget constraint, we obtain the unrestricted optimal
number of deposits xD and loans xL

xD =
xL · L0 −WB

0

D0

, (12)

xL =
D2

0 −D0L0 + λBWB
0 (σ2

DL0 −D0 · ρD,L · σDσL)
λB · (σ2

DL
2
0 − 2 · ρD,L · σDσLD0L0 + σ2

LD
2
0)

.

If xD and xL are non-negative, this solution is a feasible candidate for the optimal supply
of deposits and loans. Note that xD and xL are non-linear in L0 and D0.

Case (iii)

If the balance sheet of the bank is restricted to the risk-free asset and loans, we obtain
the following solution for the supply of loans:

xBL = min

(
max

(
1− L0 · (1 + r)

λB · σ2
L

, 0

)
,
WB

0

L0

)
(13)

This solution is determined analogously to the optimal investment of the investor.

Case (iv)

If the bank collects deposits and holds their total funds in the risk-free asset without
granting loans to the firm, the optimal number of deposits amounts to

xBD = max

(
D0 · (1 + r)− 1

λB · σ2
D

, 0

)
. (14)

We will later illustrate the fact that case (iv) cannot represent an equilibrium.

Case (v)

In case (v), the bank invests all of its equity in the risk-free asset; i.e. xD = xL = 0. This
portfolio cannot be optimal if xL is positive in case (iii).

Summary of Cases (i) – (v)

The optimal supply of deposits and loans can now be determined as follows: If the general
case (i) results in non-negative amounts for deposits, loans, and the risk-free asset, the
optimal supply xBD (D0, L0), x

B
L (D0, L0) is represented by (11).

If (11) does not satisfy the non-negativity constraints, the same analysis is done for case
(ii). Given that (12) results in a non-negative solution this will represent the optimal
portfolio of the bank if in addition the following relationship for the expected gross returns
for the risk-free asset, the deposits and the loans holds:

1 + r <
1

D0

<
1

L0

(15)
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Figure 2: Bank’s Optimal Portfolio Decision as a Function of current Values D0 and L0

The parameter values used are: r = 0.05, µV = 1.2, σV = 0.3, σL = 0.06, σD = 0.036,

ρL,V = 0.3, ρD,L = 0.3, WB
0

= 100, and λB = 0.5.
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If this condition is violated, the optimal portfolio is attained by evaluating the objective
function for the three portfolios given by (12), (13), and (14).

Figure 2 summarizes these findings for the unregulated bank. The area of case (i) is
formed by two linear restrictions a and b and and an ellipse c. Lines a and b are the
result of the non-negativity condition of xL and xD in (11), while the ellipse controls for
non-negative holdings xC ≥ 0 in the risk-free asset. For all feasible parameter sets, we can
show that both linear functions intersect at the point (1/(1 + r), 1/(1 + r)) and have a
positive slope. The slope of line b is always higher than that of a. If the ellipse c and line
b intersect at all, such as in Figure 2, each intersection has the property L0 ≤ 1/(1 + r).

If the risk aversion of the bank is sufficiently large, the ellipse does not intersect with b.
In this case, the non-negativity condition for the risk free asset is satisfied for every pair
of prices (D0, L0) below a and b, i. e. this condition does not become binding in case (i).

Line d separates the price pairs (D0, L0) for which xD is non-negative in case (ii). All
price pairs (D0, L0) below curve d and on the left of the ellipse c result in portfolios of
the structure (ii). If the risk aversion λB of the bank increases, the region where the bank
desires to have deposits and loans without risk-free assets in its balance sheet shrinks and
can become void.

The optimal bank portfolio has structure (iii) if case (i) or (ii) are not optimal and L0 is
below 1/(1 + r), i.e. the expected returns of the risky loans exceed the risk-free rate r.
Accordingly, the bank decides upon the optimal portfolio relating to case (iv) if cases (i)
to (iii) are not optimal and D0 is above 1/(1 + r). Otherwise, the bank holds its whole
equity in the risk-free asset.

We can see in Figure 2, that for a fixed L0 below 1/(1+ r) and a sufficiently high D0 case
(i) is optimal. In this case, the bank can raise funds at relatively ’cheap’ expected costs

12



and invests said deposits in loans. In order to control the risk of the bank’s portfolio, the
bank also has holdings in the risk-free asset.

When D0 declines for a fixed L0, the bank decreases its risk-free investment to zero. In
the unconstrained case, the bank would like to have a short position in the risk-free asset
for price pairs (D0, L0) in the area (ii). The short-sale restriction forces the bank to take
additional deposits instead.

If the price of a deposit unit declines further, a transition from the case (ii) to the case
(iii) occurs. For low D0 (relative to L0), the deposits are expensive and therefore the bank
holds its wealth WB

0 in loans and the risk-free asset only.

If the loan price is above 1/(1+ r) three cases can occur. For high prices D0, it is optimal
for the bank to have deposits, loans, and the risk-free asset according to case (i). If
D0 declines, a transition from case (i) to case (iv) occurs. The frontier is given by the
condition that xL in case (i) is zero (line a). If D0 declines further, it is not optimal for
the bank to take neither loans nor deposits (case (v)).

As a general result, we obtain that the bank simultaneously supplies positive amounts of
deposits and loans, if D0 ≥ 1/(1 + r) and L0 < 1/(1 + r) hold. In addition, the deposit
supply of the bank is strictly positive even for D0 = 1/(1+r) and L0 < 1/ (1 + r). Figure
2 verifies this result. Therefore, case (i) or case (ii) can be optimal but not case (iii).
These properties are the core for the analysis of the equilibria in Section 4.

(d) Supply of Deposits and Loans of the Regulated Bank

The regulated bank differs from the unregulated one by the additional VAR-constraint
(7) that relates the standard deviation of the terminal wealth to the regulation parameter
α and the initial wealth of the bank:

SD
(
WB

1

)
:=
√
x2
D · σ2

D + x2
L · σ2

L − 2 · xDxL · ρD,L · σDσL ≤ α ·WB
0 (16)

Analogously to the unregulated bank, we have to analyze the cases (i) to (v). Contrary
to the analysis above we now discuss each case conditional on the assumption that this
case represents the optimal portfolio of the unregulated bank.

Case (i)

In the first case, the bank grants loans, takes deposits, and adjusts the risk-free holdings
such that the regulatory condition is satisfied. To illustrate this result it is helpful to
characterize graphically the bank’s efficient portfolios in the well-known expected-wealth-
standard-deviation-of-wealth diagram (see Figure 3).

If the unrestricted solution (11) for the unregulated bank satisfies the non-negativity
constraints, then its E-SD-combination P lies on the tangent line through the points(
0, (1 + r)WB

0

)
and T (the tangency portfolio T exists and is characterized explicitly

below). If, in addition, the VAR-constraint is not binding (α = α2), then this portfolio is
obviously also optimal for the regulated bank. If the VAR-constraint is binding (α = α1),
the portfolio on the tangency line with SD

(
WB

1

)
= α ·WB

0 satisfies the non-negativity
constraints. It differs from the optimal portfolio of the non-regulated bank by a larger
investment in the risk-free asset. This portfolio is optimal for the regulated bank as all
expected-wealth-standard-deviation-of-wealth efficient portfolios lie on this line.
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Figure 3: Expected Wealth–Standard Deviation of Wealth Diagram
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The unrestricted tangency portfolio
(
xTD, x

T
L

)
exists and has the analytical representation:

xTD = WB
0 σ

2
L

A

C
,

xTL = WB
0 σ

2
D

B

C
,

where

A := 1−D0 · (1 + r)− (1− L0 · (1 + r))
σD
σL

ρD,L (17)

B := L0 · (1 + r)− 1 + (1−D0 · (1 + r))
σL
σD

ρD,L,

C := (L0 · (1 + r)− 1)L0σ
2
D − (1−D0 · (1 + r))D0σ

2
L

+ σDσL · ρD,L · (D0 + L0 − 2L0D0 · (1 + r)) .

If case (i) is assumed to be optimal for the unregulated bank, xTD and xTL are non-negative
and the optimal supply of deposits and loans by the regulated bank are

xregD (D0, L0) =
α ·WB

0

SDT
xTD, (18)

xregL (D0, L0) =
α ·WB

0

SDT
xTL,

where SDT stands for the standard deviation of the tangency portfolio.

Compared to the optimal portfolio of the unregulated bank, regulation in case (i) has the
obvious effect that a larger amount of the equity funds and the deposits is invested into
the risk-free asset at the expense of loans given to the firm.
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It is notable that the adverse risk incentive as discussed by Kim/Santomero (1988) and
Rochet (1992) does not occur. If case (i) is optimal for the unregulated bank, regulation
always results in a non-negative transfer of risky assets into the risk-free asset as the
regulator intends. It is also notable that the structure of the optimal solution is not
changed by an effective VAR-constraint in case (i).

Case (ii)

If it is optimal for the non-regulated bank to hold deposits and loans only, we obtain the
solution (12) in the case that the VAR-constraint is not binding. Otherwise the budget
restriction and

x2
Dσ

2
D + x2

Lσ
2
L − 2xDxLρD,LσDσL =

(
α ·WB

0

)2
(19)

determine xD and xL. It can be shown that there exist two solutions of which only the
following is efficient:

xregD =
xregL L0 −WB

0

D0

xregL = WB
0

σD · (L0σD −D0σL · ρD,L)− Sign
(

1
D0

− 1
L0

)
·D0 ·

√
A′

B′
,

The parameters A′ and B′ depend on the current values D0, L0 of deposits and loans and
on the variances and covariance of D1, L1 only.

In case (ii), the optimal portfolio of the unregulated bank can be represented graphically
in Figure 3 by an E-SD-combination on the non-linear part of the efficient frontier. If the
tangency portfolio satisfies the VAR-constraint (19), then case (ii) also characterizes the
optimal balance-sheet structure for the regulated bank. If the tangency portfolio violates
the VAR-restriction, the regulated bank will also invest into the risk-free asset and the
optimal balance sheet will exhibit the same structure as in case (i). Again, regulation
results in a simultaneous reduction of loans and deposits of the same size. Again, contrary
to the result by Kim/Santomero (1998) and Rochet (1992), regulation has the desired
impact on the risk exposure of the bank.

Case (iii)

If the unregulated bank grants loans and holds risk-free assets without taking deposits,
then a binding VAR condition results in

xregL = α · W
B
0

σL
.

Case (iv)

If it was optimal for the unregulated bank to collect deposits and to hold their total funds
in the risk-free asset, and if the regulation constraint was binding, (14) would reduce to

xregD = α · W
B
0

σD
. (20)

Case (v)
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As the bank has only equity and the risk-free assets, the VAR constraint has no effect.

Summing up, the discussion above shows that if one of the cases (i), (iii), (iv), or (v) is
optimal for the unregulated bank, the same case is also optimal for the VAR-regulated
bank. Only in case (ii), a stricter regulation can change the optimal structure to case (i).
Due to the risk appetite of the bank, case (ii) is preferable compared to case (i) without
regulation. If regulation becomes binding, the bank can be forced to reduce the volume
of loans and deposits and to invest in the risk-free asset.

We note that the general and important result that the bank always supplies a positive
amount of deposits and loans, if D0 ≥ 1/(1 + r) and L0 < 1/(1 + r) hold, is still valid
under regulation as this is the case for the unregulated banking system.

4 Equilibrium

We define an equilibrium for the non-regulated financial sector in the standard way as a
vector

(
D∗

0, L
∗

0, x
B
D, x

B
L , x

B
C , x

I
D, x

F
L

)
that satisfies the following conditions:

• xBi (D∗

0, L
∗

0), i ∈ {D,L,C}, xID (D∗

0), and xFL (L∗

0) are optimal choices of the bank,
the investor, and the firm.

• The deposit and loan market clear for the prices D∗

0 and L∗

0:

xID (D∗

0) = xBD (D∗

0, L
∗

0) (21)

xFL (L∗

0) = xBL (D∗

0, L
∗

0)

If the bank is regulated xBD and xBL in (21) have to be substituted by xregD (D∗

0, L
∗

0) and
xregL (D∗

0, L
∗

0).

We discuss subsequently important properties of the equilibria for the non-regulated and
the regulated bank. In the proof of these propositions, we make use of the general result
that the bank supplies a positive amount of deposits, if either D0 > 1/(1 + r) or D0 =
1/(1 + r) together with L0 < 1/ (1 + r) hold. Accordingly, the bank supplies a positive
amount of loans for L0 < 1/(1 + r). These properties hold for an unregulated bank as
well as for a regulated bank if α > 0. Generally, we presume α > 0. The case α = 0 is
uninteresting as the bank cannot take any risky positions.

An important determinant for the discussion of equilibria is the critical value L0 char-
acterized by (10). Depending on the size of L0 relative to 1/ (1 + r) the equilibria are
characterized differently.

Result 1 For L0 <
1

1+r
, the following relations must hold in equilibrium:

D∗

0 <
1

1 + r
,

L0 < L∗

0 <
1

1 + r
.
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The properties D∗

0 ≤ 1/(1 + r) and L∗

0 ≤ 1/(1 + r) are immediate consequences of the
fact that otherwise the investor has a zero demand for deposits whereas the bank supplies
deposits in a positive amount, xBD > 0 or xregD > 0. Analogously, L0 < L∗

0 ≤ 1
1+r

must
hold for the firm to have a positive demand for loans.

If L∗

0 = 1/ (1 + r) holds, the demand xFL of the firm is positive, while for the relevant region
D∗

0 ≤ 1
1+r

the supply xBL and xregL of the bank is zero. Therefore, the price L∗

0 = 1/ (1 + r)
cannot represent an equilibrium.

For D∗

0 = 1/ (1 + r) and L∗

0 < 1/ (1 + r), xID = 0 holds but xBD and xregD are positive.
Hence, the equilibrium price D∗

0 of a deposit must also be below 1/ (1 + r). As a con-
sequence of deposit and loan prices below 1/ (1 + r) and L0 < 1/(1 + r), the number
xID (D∗

0) and xFL (L∗

0) of deposits and loans in equilibrium are strictly positive.

Result 2 For L0 ≥ 1
1+r

, the equilibrium prices of deposits and loans are:

D∗

0 =
1

1 + r
,

L∗

0 ∈
[

1

1 + r
, L0

]
.

These prices result in zero supply and demand on both markets and represent equilibria.
For other prices, the markets do not clear. For L0 > L0, the firm has a positive demand
in loans but the bank does not supply loans and for prices L0 < 1/ (1 + r), it is vice versa.
Accordingly, if D0 differs from 1/ (1 + r), either only the bank (D0 > 1/ (1 + r)) or only
the investor (D0 < 1/ (1 + r)) are active in the deposit market.

These two results have important implications. In equilibrium, the volume of loans and
deposits is either strictly positive on both markets or the loan market and the deposit
market break down. Therefore, cases (iii) and (iv), in which the bank is either active in
the deposit or in the loan market, are not possible in equilibrium.

5 Comparative Static Analysis

In this section we analyze

• the expected loan rate rL := 1/L∗

0 − 1 and

• the loan volume LV = xFL (L∗

0) · L∗

0

in the case of a non-regulated and a regulated bank. In the core of our comparative
static analysis lies the variation of the regulation tightness parameter α. In addition, we
consider changes of the expected value µV and the standard deviation σV of the return
rV and the initial equity W F

0 of the firm.

The parameters of the base case are fixed as follows:

Risk-free rate r: 5%.
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Expected value of the firm’s gross return µV : 120%.

Volatility of the firm’s return σV : 30%.

Volatility of a loan unit σL: 6%.

Volatility of a deposit unit σD: 3.6%.

Correlation between the firm’s return and the loan rate ρL,V : 0.3.

Correlation between the loan rate and deposit rate ρD,L: 0.3.

Regulation tightness α: 0.4.

Initial wealth of the investor W I
0 : 2000.

Initial equity of the bank WB
0 : 100.

Initial equity of the firm W F
0 : 600.

Risk aversion of the investor λI : 2/W I
0 = 0.001.

Risk aversion of the bank λB: 0.2/WB
0 = 0.002.

Risk aversion of the firm λF : 0.5/W F
0 = 0.0008.

With these choices of parameter values, we try to describe a typical economy. The relation
between the initial wealth of the investor and the equity of the firm basically captures the
relation between the volume of the fixed income market and the stock market in Germany.
The equity of the banking sector is supposed to be smaller than that of the other two
sectors. Investors have a risk aversion with λI ·W I

0 equal to two. The firm, whose primary
goal is not to hedge risks, has a lower risk aversion. The relation between the volatility
σV of the real technology and the volatilities of loans σL and deposits σD is described in
Subsection 5.2, the choice of the regulation tightness parameter in Subsection 5.1.

As we consider a static model, we are not able to analyze the consequences of regulation
in a business cycle model. Instead, we approximate the effects of external shocks by the
relative sensitivity:

∂ (endog. variable)reg

∂exog. variable
/
∂endog. variable

∂exog. variable

The superscript ”reg” indicates the case of a VAR-regulated bank. Of special interest is
how the credit volume LV = xFL (L∗

0) · L∗

0, that determines together with the exogenous
initial equity W F

0 the size of the real sector, reacts to a change of the investment risk σV ,
the regulation tightness α, and the firm’s equity W F

0 . This last exogenous variable can
be understood as a state variable that characterizes the current state of the economy in
a business cycle. A relatively small value of W F

0 can be a consequence of previous losses
that reduced the equity or as a bad economic outlook. If this view is accepted, a small
value W F

0 characterizes a depressed economy and a relatively high value a prosperous one.

For these values of the exogenous variables the equilibrium in the non-regulated case
is characterized by the following values: The deposit volume xID (D∗

0) · D∗

0 amounts to
1279.3 units and the expected deposit rate to 5.2%. The loan volume is 1379.3 units
with an expected loan rate of 6.3%. The bank does not have the risk-free asset on its
balance sheet. Therefore, in equilibrium, the optimal portfolio of the non-regulated bank
is characterized by case (ii). The investor holds 36% of his wealth in the risk-free assets and
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Figure 4: p—α Diagram

This figure shows the probability p that the bank’s unexpected loss exceeds one third of its

equity as a function of the regulation tightness parameter α.
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64% in deposits. The firm invests a total of 1979.3 units into its production technology.

5.1 Response to Regulation Tightness α

The parameter α in the VAR-constraint

√
x2
Dσ

2
D + x2

Lσ
2
L − 2xDxLρD,LσDσL ≤ α ·WB

0

describes the regulation tightness. The tightness increases with a decreasing value of α.
For α ≥ 0.87 the VAR-constraint is not binding in equilibrium. If we select α′ = 1/3
(this parameter choice corresponds with the regulation of market risk), the non-regulated
bank experiences unexpected losses that exceed one third of its equity with a probability
of 35%. For this value of α′ the relationship is shown in Figure 4. p = 1% is related with
an α-value of about 0.4. For the non-regulated bank the probability of losses larger than
1/3 ·WB

0 is 35%.

Figure 5 shows the size of the real sector W F
0 + LV = xFL (L∗

0) · L∗

0 + W F
0 , the deposit

volume DV = xID (D∗

0) ·D∗

0, the expected deposit rate rD, and the expected loan rate rL
in equilibrium for a varying regulation tightness.

For values of α larger than 0.87 these four endogenous variables are not affected by α
as the constraint is not binding. The maximum demand for loans by the firm equals
µV /

(
λFσ2

V

)
−W F

0 = 15, 400. The critical price L0 below which the demand for loans is
zero amounts to 0.863 or to an expected loan rate of 15.9%.

Figure 5 shows that increasing regulation tightness forces the bank to reduce the size
of loans LV and deposits DV . As the size of the real sector differs only by the fixed
equity W F

0 of the firm from the loan volume, an increasing regulatory tightness results in
a shrinking real sector.

If α is below 0.15, the bank holds also the risk-free asset. This holding increases
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Figure 5: Impact of Regulation Tightness α

The parameter values used are: r = 0.05, µV = 1.2, σV = 0.3, σL = 0.06, σD = 0.036,

ρL,V = 0.3, ρD,L = 0.3, W I
0

= 2000, WB
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λF = 0.0008.
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monotonously if α decreases but it is always smaller than the bank’s equity as long as α
is positive. For α = 0, the bank’s optimal portfolio consists of the risk-free asset only.

The deposit rate rD decreases (D∗

0 increases) slightly with increasing regulation tightness
and converges to the risk-free rate r = 5%. On the contrary, the loan rate rL increases
(L∗

0 decreases) if the regulation tightness increases. This behavior of the two rates follows
immediately from the demand functions of the investor and the firm together with the
fact that for L0 <

1
1+r

= 0.952 < L̂ = 1.69 the firm’s loan demand increases in L0.

5.2 Response to Risk Shocks

In a model in which the production risk σV determines completely the loan and deposit
risk, only σV can be varied. For our analysis of a risk shock, we link the risk of a loan
σL to the production risk by considering the volatility σL (σV , L0) which results from an
otherwise identical firm but whose liability is limited by the nominal amount xFL (L0) of
debt. The variance σ2

L (σV , L0) of a loan contract with this repayment characteristic and
with production risk σV is given by

σ2
L

(
σ2
V , L0

)
=

∫
∞

−∞

(
min

(
xFL (L0) ,

(
xFL (L0)L0 +W F

0

)
· y
)
− EWL

)2 · n (y;µV , σV ) dy

xFL (L0)
2 ,
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Figure 6: Impact of Risk Shock σV

The parameter values used are: r = 0.05, µV = 1.2, ρL,V = 0.3, ρD,L = 0.3, α = 0.4,
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where EWL denotes the expectation

EWL =

∫
∞

−∞

min
(
xFL (L0) ,

(
xFL (L0)L0 +W F

0

)
· y
)
· n (y;µV , σV ) dy

and n (y;µ, σ2) stands for a normal density function with expectation µ and variance
σ2. Similarly, the variance σ2

D (σV , L0, D0) results from the fact that the bank’s liability
is limited by nominal value xID (D0) of the deposits (we assume that the bank holds no
risk-free asset):

σ2
D

(
σ2
V , L0, D0

)
=

∫
∞

−∞

(
min

(
xID (D0) , x

B
L (D0, L0) · y

)
− EWD

)2 · n
(
y; 1

L0

, σL (σV , L0)
)
dy

xID (D0)
2

with

EWD =

∫
∞

−∞

min
(
xID (D0) , x

B
L (D0, L0) · y

)
· n
(
y;

1

L0

, σL (σV , L0)

)
dy.

As a result of these relations, a higher volatility σV of the technology is carried forward
to a volatility σL of loans and deposits σD.

Figure 6 shows the results of a variation of σV . The volume of the technology W F
0 + LV

in the unregulated banking system is not affected by the risk of the technology σV below
0.24 but then strictly decreases with σV . In the case of a regulated banking system, the
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Figure 7: Relative Sensitivity
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∂σV
/
∂(WF

0
+LV )

∂σV
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real sectorW F
0 +LV is also constant for σV ≤ 0.15 as for these volatilities the regulation is

not binding.1 For a binding VAR constraint, W F
0 +LV declines with σV . If the volatility

is above 0.42, regulation is again not binding and the decline of the real sector W F
0 +LV

is identical to the case without regulation. The result that the real sector cannot increase
with σV is intuitive. When the risk σV in the economy increases, the positions held by
the firm, the bank, and the investor become more risky. Due to the risk aversion of the
agents, they are less willing to take these positions and therefore the investor invests a
lower amount in deposits such that the firm has a lower loan volume in equilibrium.

Since the regulated system coincides with the unregulated system for σV < 0.15 and σV >

0.42, the relative sensitivity
∂(WF

0
+LV )

reg

∂σV
/
∂(WF

0
+LV )

∂σV
is equal to one for these volatilities.

In the region 0.15 < σV < 0.24, the unregulated real sector is not affected such that the
relative sensitivity is not defined. Since the real sector decreases under regulation rather
than without regulation, we can speak from a procyclical effect for those volatilities. For
higher volatilities for which a regulation is binding, 0.24 < σV < 0.42, the decrease of
the real sector under regulation is less pronounced than without regulation. Hence, the
relative sensitivity is below one and regulation has a dampening effect on the real sector
as shown in Figure 7.

5.3 Response to Equity Shocks

The volume W F
0 of the firms equity — as discussed above — can be understood as a state

variable that characterizes the current state of the economy in a business cycle. Low
values of W F

0 are attributed to a depressed economy and vice versa.

An increase of the firm’s equity W F
0 results in a decrease of the firm’s optimal demand

1For those volatilities with a binding regulation where the real sector in the unregulated system is

independent of σV , we were not able to obtain equilibria numerically.
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Figure 8: Impact of Equity Shock

The parameter values used are: r = 0.05, µV = 1.2, σV = 0.3, σL = 0.06, σD = 0.036,
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xFL (L0) for loans as long as this demand is positive. This property of xFL follows im-
mediately from the representation of xFL in Section 3 and the fact that the inequality
σV > ρL,V · σL holds. Therefore, in the unregulated economy the loan volume and the
expected loan rate decrease strictly with the size of the equity, as shown in Figure 8. For
equity values larger than 2, 100 units the firm’s demand for loans is zero.

In the unregulated economy the VAR-constraint is binding for equity values below 1, 400
units. For values above this critical size the loan volume behaves as in the unregulated
economy. Below this critical value, the loan volume increases slightly with the firm’s
equity. The reason for this surprising behavior is the fact that the nominal volume of
loans and deposits is almost unaffected by an increase of W F

0 . But L0 (rL) increases
(decreases) with the firms’s equity as the firm’s demand function is shifted downward.

As a consequence, the relative sensitivity of the loan volume LV , which is shown in
Figure 9, is negative when regulation is binding. However, the sensitivity is close to zero
as the effect of the initial wealth W F

0 on the loan volume LV in the regulated economy is
relatively small.

6 Summary and Conclusions

In this paper we analyze the effect of a Value-at-Risk on the banks choice variables on the
size of the real sector and on the loan and deposit rates in equilibrium. We consider as a
starting point the most simple model to describe the relations between the real and the
financial sector in an economy. This model is characterized by one period, agents with
negative exponential utility and normally distributed risk factors. Our findings can be
summarized as follows:

A stricter regulation results in higher loan rates, lower deposit rates, and in a lower
activity of the real sector. A positive shock on the technology risk has negative effects
on the real sector and the loan rate in the regulated and unregulated economy. Our
most important and surprising finding is that contrary to the literature, regulation does
not accelerate but dampens the effects of exogenous risk shocks on the size of the real
sector if the unregulated economy reacts to this shock at all. This dampening effect of
bank regulation holds also for productivity shocks, a result that is not shown in this
paper. The basic reason for this unexpected result is that in the unregulated economy
the firm’s equilibrium demand for loans is fully affected by exogenous shocks. In the
regulated system a positive risk shock reduces the equilibrium volume of loans through
the VAR-constraint.

Since we consider this approach as a first benchmark model, there are many possibilities
to generalize it. For example, we can study effects from risk diversification by introducing
further firms. Analogously, we can allow for multiple banks in the economy to investigate
effects from competition among banks. Moreover, we can replace the unlimited liable
agents by agents with limited liability. This case explicitly takes into account the option
characteristics of loans and deposits. Then, only the risk from the real sector matters and
it is partly transferred to the bank and the investor via loans and deposits.
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