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Abstract
Individuals who compete in a contest-like situation (for example, in sports,

in promotion tournaments, or in an appointment contest) may have an incen-
tive to illegally utilize resources in order to improve their relative positions.
We analyze such doping within a tournament game between two heteroge-
neous players. Three major effects are identified which determine a player’s
doping decision — a cost effect, a likelihood effect and a windfall-profit effect.
Moreover, we discuss whether the favorite or the underdog is more likely
to be doped, the impact of doping on overall performance, the influence of
increased heterogeneity on doping, the welfare implications of doping, and
possible prevention of doping.
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1 Introduction

In practice, there exist diverse competitive situations in which individuals il-

legally utilize resources in order to improve their positions. Such behavior can

be characterized as doping. Naturally, we associate doping with professional

sports where athletes sometimes take drugs to improve their performance so

that their probability of winning a contest increases. Perhaps most spectac-

ular are the cases of detected doping along with professional cycling in the

last decade — in particular the disqualification of the Festina athletes during

the Tour de France 1998. Moreover, there are also several well-known cases

of revealed doping in connection with the Olympic Games.

However, doping as defined above can also take place in other contexts.

For example, we can imagine that employees try to bribe customers or su-

pervisors within a hierarchical contest in order to win promotion to a higher

level. The first example — bribing of customers — can also be called corrup-

tion:1 We can think, for example, of a sub-supplier’s salesman who bribes

an employee of another firm so that this firm orders the salesman’s initial

products. The bribing of supervisors has been discussed in the context of

influence activities in the literature.2 In this case, the employee transfers a

monetary or non-monetary side payment to his supervisor in order to get

excellent marks which improve his promotion chances. Finally, fraudulent

accounting to embellish the financial status of a firm represents a further

example of doping in business.3

Moreover, we can remember doping cases in which scientists manipu-

lated research results in order to improve their chances of getting additional

research funds or attractive positions either at universities or in industry.
1For the economics of corruption see, for example, Tirole (1996).
2See Fairburn and Malcomson (1994).
3See Berentsen and Lengwiler (2004).
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In particular, the perils of doping may be highest in experimental research

where doping can hardly be detected. The importance of scientific fraud

are indicated exemplarily by the report ”Fraud and Misrepresentation in

Science” (Report F. I-88) of the Council on Scientific Affairs, by the joint

report ”Scientific Fraud and Misrepresentation” (Report I-89) of the Council

on Ethical and Judical Affairs and the Council on Scientific Affairs, and by

the ”Framework for Institutional Policies and Procedures to Deal with Fraud

in Research” of the Association of American Universities, the National As-

sociation of State Universities and Land Grant Colleges, and the Council on

Graduate Schools from the years 1988 and 1989.

Although these examples are very different, they all have the common

characteristics of doping as defined above: There is a tournament or contest-

like situation between individuals who compete for a given winner prize (e.g.

a medal, a monetary prize, research funds, promotion or appointment to

an attractive position), and these individuals have the opportunity to in-

crease their winning probabilities by using illegal activities. Of course, if

such behavior is detected, the respective individual will be excluded from

the competition, i.e. he will get defaulted. These heterogeneous examples

should demonstrate that the doping problem is a relevant topic not only in

professional sports but also in a lot of other contest-like situations.

The economic consequences of doping are meaningful. For example, if

doping instead of ability and/or effort is decisive for promotion and appoint-

ment decisions, there will be a misallocation of talent and/or a decrease in

incentives given that competitors observe the impact of doping. Furthermore,

doping is meaningful from an economic perspective because lots of resources

are spent for the implementation of drug tests in order to prevent doping in

professional sports.
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This paper concentrates on the doping game between two players of dif-

ferent ability in order to address the following questions: Are favorites or

underdogs more likely to be doped? Does doping increase or decrease overall

performance? Does increased heterogeneity increase or decrease the likeli-

hood of doping? Is mutual doping welfare enhancing or decreasing? What

policies should be adopted in the latter case? Are drug tests prior (ex-ante

testing) or after the tournament (ex-post testing) more effective to prevent

doping? Note that we focus on the game between the two players who have

to decide on both doping and the use of legal inputs (i.e., effort, training or

— more general — investment). In the discussion, we will point to several pos-

sibilities which can be used to prevent doping. However, we do not explicitly

solve the optimization problem of a contest organizer who has to decide on

the design of the contest. One important reason for this restriction is that

from an economic perspective it is not clear whether the contest organizer

(e.g. a private investor, a sport league or society) really wants to prevent

doping.

We identify three effects which determine the use of drugs in tourna-

ments. The first effect is called likelihood effect which covers the aspect that

taking drugs enhances one’s own likelihood of winning given that doping is

not detected. The second effect is labelled cost effect: Recall that in the

model we assume that the contestants also invest in legal inputs to win the

tournament. Depending on the impact of doping on the outcome of the tour-

nament and depending on the degree of heterogeneity, doping may or may not

increase overall investment incentives and, therefore, also investment costs.

Doping will increase (decrease) investment costs, if it makes the competition

between the heterogeneous players less (more) uneven. The third effect is

named windfall-profit effect: If one player is got defaulted because of doping
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and the other player not, the latter one will receive the winner prize for sure

without having outperformed his competitor. The interplay of these three

effects determines whether mutual doping or a no-doping equilibrium is more

likely.4 Typically, the likelihood effect encourages the use of drugs whereas

the windfall-profit effect mitigates it, but the cost effect will be ambivalent.

For a certain kind of welfare function it is shown that mutual doping in-

creases welfare under socially optimal tournament prizes. If the organizer

of the tournament wants to prevent doping, he should choose a large loser

prize and a small spread between winner and loser prize. Under reasonable

assumptions, the favorite is more likely to be doped than the underdog, and

ex-ante testing will be more effective than ex-post testing given that doping

has a sufficiently high impact on the outcome of the tournament.

There exist two strands of related literature. First, there are some papers

on doping and cheating in sporting contests. Eber and Thépot (1999) con-

sider two homogeneous athletes who have to choose between doping (D) and

no-doping (ND), but do not exert legal inputs such as effort or investment.

Depending on the parameter constellations, each of the four combinations

(D,D), (ND,ND), (D,ND), and (ND,D) can be an equilibrium. More-

over, by doing comparative statics the two authors analyze several possibil-

ities to prevent doping. However, they do not discuss why society should

deter athletes from taking drugs. Maennig (2002) does not consider a techni-

cal model on doping. Instead he points to the parallels between doping and

corruption in international sports. As a measure against doping, he suggests

high financial penalties for the athletes who got defaulted due to a positive

doping test. Of course, this solution will only work, if individuals do not face

problems of limited liability. Haugen (2004) uses a simple game-theoretic
4Here, ”more likely” means ”exists for a larger range of parameter constellations”.
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model in order to discuss doping of two homogeneous athletes who do not

choose efforts or investments. Under certain assumption he obtains an equi-

librium in which both players takes drugs. Since doping implies a disutility

when being caught, this equilibrium is a kind of prisoner’s dilemma, i.e. both

would be better off with not taking drugs.5 Berentsen (2002) considers dop-

ing of heterogeneous players in a contest model. Again, input decisions on

effort or investments are neglected. Berentsen shows that, for certain parame-

ter constellations, a mixed-strategy equilibrium exists in which the favorite

has a higher probability of taking drugs than the underdog. However, the

favorite does not always have a higher probability of winning. Preston and

Szymanski (2003) focus on different forms of cheating in contests — doping,

sabotage, and match fixing. They discuss how these forms of cheating arise

and how society can deal with them. Konrad (2003), contrary to the papers

before but in line with this paper, discusses a tournament model in which

players choose both doping and legal inputs. However, contrary to this pa-

per the legal input and doping are complements in the players’ production

functions, and the probability of getting defaulted is zero.6 Konrad shows

that, given a welfare maximizing winner prize, mutual doping is always wel-

fare enhancing. Finally, Berentsen, Bruegger and Loertscher (2004) discuss

cheating and doping in an evolutionary game in order to determine those

factors which enhance the dissemination of doping within society.

The second strand of literature deals with sabotage in tournaments or

contests. Similar to doping, a player gains a relative competitive advantage

by choosing sabotage. However, this relative advantage arises from decreas-

ing a competitor’s output and not by illegally increasing one’s own output.
5Bird and Wagner (1997) argue in a similar way that doping leads to a prisoner’s-

dilemma like situation.
6Instead of this, each player faces a convex cost function for consuming drugs.
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Papers that deal with this subject are Lazear (1989), Konrad (2000), Chen

(2003) and Kräkel (2005). Contrary to the doping literature, sabotaging

players never get defaulted but have to bear costs of exerting sabotage.

The paper is organized as follows: In the next section, a tournament

model with doping is introduced. This model is analyzed in Section 3 which

also contains the main results. Additional results are offered in Section 4, in

which ex-ante testing is compared to ex-post testing, and both endogenous

tournament prizes and the implications of doping on welfare are discussed.

The paper concludes in Section 5.

2 The Model

We consider a rank-order tournament between two risk neutral players or

athletes A and B.7 The output or performance of player i (i = A,B) can be

described by the function

qi = µi + ai + εi + di. (1)

µi denotes the legal input of player i which is endogenously chosen by him

for improving his performance. This input may be effort or training, for

example. According to Lazear and Rosen (1981, p. 842) we will refer to

this variable more generally as investment. There are many examples in

practice which fit well with such additive performance function: Consider,

for example, the case where µi indicates how seriously player i trains for the

forthcoming tournament. In the case of bribing a supervisor, µi denotes those

merit points that are due to real effort. Considering the case of a research
7Most of the assumptions follow the seminal tournament paper by Lazear and Rosen

(1981).
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contest, we can interpret µi as those research papers of scientist i which are

based on correct research.8

The ability or talent of player i is given by ai > 0. Let, in the subse-

quent sections, ∆a := ai − aj > 0 (i, j = A,B; i 6= j) be the ability differ-
ence. Hence, in the following the subscript ”i” indicates the favorite and

the subscript ”j” the underdog in the tournament. εi is an exogenously

given random term. It stands for luck, noise or measurement error. εi and

εj (i, j = A,B; i 6= j) are assumed to be identically and independently dis-
tributed (i.i.d.) Let F (·) denote the cumulative distribution function (cdf)
of the composed random variable εj − εi and f (·) the corresponding density.
We assume that f (·) has a unique mode at zero.9 Note that, due to the

i.i.d.-assumption, the density f (·) is symmetric around zero. Finally, the
variable di describes the doping decision of player i. Each player can only

choose between two values di = d > 0 (doping) and di = 0 (no-doping).10

While abilities ai and aj are assumed to be common knowledge, each player

cannot observe the doping decision of his opponent. Hence, we consider a

game of imperfect information.

It is assumed that investment µi entails costs on player i which are de-

scribed by c (µi) with c (0) = 0, c0 (µi) > 0 and c00 (µi) > 0 for µi > 0.

Depending on the meaning of µi, costs may be the disutility of effort in
8Technically, an additively separable production function for a tournament between

heterogeneous agents allows the derivation of an explicit solution for the equilibrium in-
vestments. If heterogeneity or the impact of doping were introduced via different cost
functions or different labor productivities the model would not be analytically tractable
any longer.

9For example, εj and εi may be normally distributed with mean m and variance σ2.
Then the convolution f (·) again describes a normal distribution with εj−εi ∼ N

¡
0, 2σ2

¢
.

If εj and εi are uniformly distributed, the distribution of εj − εi will be triangular with
mean zero. In addition, the assumption is not unusual in the tournament literature; see,
e.g., Drago, Garvey and Turnbull (1996), Chen (2003).
10The simple choice between doping and no-doping sketches the idea that, if a player

decides to take drugs, he will choose the optimal degree of doping that solves the trade-off
between effectiveness and the probability of being caught.
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monetary terms or the opportunity costs for time-consuming training, for

example. The two players compete for tournament prizes w1 and w2 with

w1 > w2 > 0. The prizes are exogenously given. Although this assumption is

not critical here since we focus on the game between the two players without a

third party as principal or contest designer, the assumption will be discussed

in Section 4. If no player gets defaulted and qi > qj, player i will be declared

the contest winner and receives the high winner prize w1, whereas player j

only receives the loser prize. If no player gets defaulted and qi < qj, player

j will receive w1 and player i the loser prize w2. If one player is accused for

being doped and gets defaulted, he will receive no prize11 whereas the other

player gets the winner prize w1. Let the probability of getting defaulted be

θi = θ > 0 if the player has chosen di = d, and θi = 0 if he has chosen di = 0.

In other words, only if a player has decided to take drugs, there will be a

positive probability of being accused and getting defaulted.12

The timing of the game is the following: At the first stage, both players si-

multaneously decide on di (i = A,B). At the second stage, each player i only

knows his own doping decision and chooses his input variable µi (i = A,B).

After that, nature chooses εi and εj so that the two players’ outputs qi and

qj can be compared. Finally, a doping test takes place so that player i gets

defaulted with probability θi depending on his choice of di (i = A,B).
11Assuming a fine for the detected player would not alter the qualitative results of the

paper.
12Berentsen (2002) considers the possible case of a wrong test result for a player who

has decided not to take drugs. This case may happen if, for example, the doping test is
imperfect or the player has consumed an illegal drug unintentionally. Note that our results
will remain qualitatively the same, if we assume a positive probability of getting defaulted
when not being doped.
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3 Results

In this section we solve the two-stage game described above by backwards

induction. First, we look at the tournament stage where the two players

simultaneously choose their inputs µ∗i (di, dj) and µ
∗
j (di, dj) for given pairs

(di, dj). Then we consider the first stage where the players decide on d∗i and

d∗j given the anticipated best responses µ
∗
i (di, dj) and µ

∗
j (di, dj) for the next

stage. By assumption, each player cannot observe the doping decision of his

opponent. However, in equilibrium at stage two each player can infer from

the first-stage equilibrium conditions whether the other player is doped or

not.

3.1 The Tournament Stage

At the second stage of the game, the two players choose µi and µj, respec-

tively, in order to maximize their expected utilities for given values di and

dj. Player i’s probability of winning the tournament can be written as

prob{qi > qj} = prob
©
µi + ai + εi + di > µj + aj + εj + dj

ª
= F

¡
µi − µj +∆a+ di − dj

¢
with ∆a > 0. Let ∆w:= w1−w2 denote the spread between winner and loser
prize. Then, the favorite’s expected utility is given by

EUi (µi; di, dj) =
¡
w2 +∆wF

¡
µi − µj +∆a+ di − dj

¢¢
(1− θi) (1− θj)

+w1 (1− θi) θj − c (µi) , (2)
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whereas the underdog wants to maximize

EUj
¡
µj; di, dj

¢
=

¡
w2 +∆w

£
1− F ¡µi − µj +∆a+ di − dj

¢¤¢
(1− θi) (1− θj)

+w1 (1− θj) θi − c
¡
µj
¢
. (3)

With probability (1− θi) (1− θj), the outcome of the tournament is not an-

nulled, because no player gets defaulted. In this case, each player receives w2

for sure — either directly as loser prize or as part of w1 in case of winning — and

the additional prize spread ∆w with probability F
¡
µi − µj +∆a+ di − dj

¢
or 1−F ¡µi − µj +∆a+ di − dj

¢
, respectively. With probability (1− θi) θj,

only the underdog gets defaulted so that the favorite is declared the winner

of the tournament. With probability (1− θj) θi the opposite happens. In any

case, players i and j have to bear their investment costs c (µi) and c
¡
µj
¢
.

Note that doping itself creates a natural trade-off for each player: On

the one hand, taking drugs enhances a player’s performance and, therefore,

also his winning probability. On the other hand, doping implies a positive

probability of getting defaulted. As we will see below, it will be crucial

whether the influence of d or the influence of θ dominates. Of course, if the

probability of being detected, θ, is sufficiently large, neither player will prefer

to take drugs and we will have no real doping problem at all. Hence, the

scenario in which the influence of d dominates the influence of θ will be

considered as the more relevant one in the remaining part of the paper.13

The first-order conditions for µ∗i and µ
∗
j show that, if an equilibrium in

pure strategies exists at the tournament stage,14 it will be symmetric and
13Technically, we can think of θ → 0 in this case. In addition, according to Haugen

(2004) the probability of being caught is rather low in practice.
14It is well-known in the tournament literature that the existence of pure-strategy equi-

libria cannot be guaranteed in general; see, e.g., Lazear and Rosen (1981), p. 845, fn.
2; Nalebuff and Stiglitz (1983). Hence, we assume that ∆w is sufficiently small, f (·)
sufficiently flat and c (·) sufficiently steep so that existence is no problem.
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described by

µ∗i = µ
∗
j = µ

∗ (di, dj) = c
0−1 (∆wf (∆a+ di − dj) (1− θi) (1− θj)) . (4)

In Eq. (4), c
0−1 (·) denotes the inverse of the marginal cost function which

is monotonically increasing due to the convexity of c (·). Hence, equilibrium
investments µ∗i and µ

∗
j increase in the prize spread ∆w and the marginal

probability of winning f (·), but decreases in each player’s probability to get
defaulted. If θi and θj tend to 1, equilibrium investments will be nearly zero

as each player anticipates that the tournament outcome will be almost surely

annulled. Given di = dj, equilibrium investment µ∗ (di, dj) decreases in the

ability difference ∆a. Since the density f (·) has a unique mode at zero, it is
monotonically decreasing for positive values. In other words, increasing ∆a

leads to values of f (·) at its right tail which become smaller and smaller.
Intuitively, increasing the ability difference means that the competition be-

comes highly uneven which destroys both players’ incentives.

The influence of doping on equilibrium investment is ambivalent. On the

one hand, di = d instead of di = 0 further leads to the right-hand tail of

the density and, therefore, to smaller values of µ∗. On the other hand, the

influence of dj depends on the magnitude of ∆a and the favorite’s doping

decision. If ∆a is sufficiently large, dj = d leads back to the mode of f (·)
so that µ∗ increases. The same holds for arbitrarily positive values of ∆a

if di = d. In both cases, the underdog gets back into the race by choosing

dj = d. Since now the competition becomes more even, both players choose

higher investment levels in the tournament. If, however, d is rather large

relative to the ability difference and the favorite decides not to take drugs,

dj = d will deteriorate competition. In this situation, again the contest

becomes highly uneven, but now the players have switched their roles. Since
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d outbalances the initial ability difference ∆a, player j becomes the new

favorite and player i the new underdog in the tournament. However, note

that doping does not only influence µ∗ via the marginal winning probability

f (·), but also via θi and θj. As the choice of d implies θ whereas choosing

no-doping implies a zero probability of getting defaulted, doping by any

player always lessens equilibrium investment via θi or θj. The findings can

be summarized in the following proposition:

Proposition 1 (i) µ∗ (d, dj) < µ∗ (0, dj) for dj ∈ {0, d} .
(ii) If the impact of θ on µ∗ dominates the impact of d, then µ∗ (di, d) <

µ∗ (di, 0) for di ∈ {0, d}.
(iii) If the impact of d on µ∗ dominates the impact of θ, the following results

will hold:

If d < 2∆a, then µ∗ (di, d) > µ∗ (di, 0) for di ∈ {0, d}. If d > 2∆a, then

µ∗ (d, d) > µ∗(d, 0), but µ∗ (0, d) < µ∗ (0, 0).15

Proposition 1 shows that doping by the favorite will always be detrimental

if high investment levels are desirable. First, di = d makes the uneven con-

test more uneven which weakens overall incentives. Second, by the favorite’s

doping a nullification of the tournament becomes more likely which further

lowers incentives. However, doping by the underdog may increase incentives

if it counterbalances the favorite’s higher ability and may, therefore, be desir-

able. Note that although the doping variable and investments are substitutes

in the players’ production functions so that each player can save investment

costs by substituting d for µ, a higher doping level may lead to increased

exertion of µ∗. The results of Proposition 1 also point out that doping will
15Note that the last result µ∗ (0, d) < µ∗ (0, 0) also holds for arbitrarily values of θi and

θj .
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generally decrease equilibrium investment, if doping tests are highly reliable

in the sense of θ being close to 1.

3.2 The Doping Stage

At the first stage of the game, both players simultaneously have to decide on

di and dj while knowing that both will choose µ∗ (di, dj) according to (4) in

the subsequent tournament stage. We will focus on two possible equilibria

— the doping equilibrium
¡
d∗i , d

∗
j

¢
= (d, d) and the no-doping equilibrium¡

d∗i , d
∗
j

¢
= (0, 0).16

We start by analyzing the doping equilibrium (d, d). Both players will

choose doping as best responses if

EUi (µ
∗ (d, d) ; d, d) > EUi (µ

∗ (0, d) ; 0, d) and

EUj (µ
∗ (d, d) ; d, d) > EUj (µ

∗ (d, 0) ; d, 0)⇔

(w2 +∆wF (∆a)) (1− θ)2 + w1 (1− θ) θ − c (µ∗ (d, d)) > (5)

(w2 +∆wF (∆a− d)) (1− θ) + w1θ − c (µ∗ (0, d))

and

(w2 +∆w [1− F (∆a)]) (1− θ)2 + w1 (1− θ) θ − c (µ∗ (d, d)) > (6)

(w2 +∆w [1− F (∆a+ d)]) (1− θ) + w1θ − c (µ∗ (d, 0)) .
16The analysis of the two possible equilibria

¡
d∗i , d

∗
j

¢
= (d, 0) and

¡
d∗i , d

∗
j

¢
= (0, d) does

not offer new insights since the same effects as in the two symmetric equilibria will work.
When comparing the two asymmetric equilibria it is not clear which conditions are more
restrictive.
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By rearranging these inequalities we obtain

∆w (1− θ) [F (∆a) (1− θ)− F (∆a− d)] > (5’)

θ (w1θ + w2 (1− θ)) + c (µ∗ (d, d))− c (µ∗ (0, d))

and

∆w (1− θ) ([1− F (∆a)] (1− θ)− [1− F (∆a+ d)]) > (6’)

θ (w1θ + w2 (1− θ)) + c (µ∗ (d, d))− c (µ∗ (d, 0)) .

Note that the right-hand side of inequality (5’) is always smaller than the

right-hand side of (6’) since c (µ∗ (0, d)) > c (µ∗ (d, 0)). Hence, inequality (6’)

will always be more restrictive than (5’) if17

F (∆a) (1− θ)− F (∆a− d) >
[1− F (∆a)] (1− θ)− [1− F (∆a+ d)]⇔

[F (∆a+ d) + F (∆a− d)− 1] < [2F (∆a)− 1] (1− θ) .

If θ is sufficiently large, the inequality will never hold. However, given the

more interesting case in which the influence of d dominates the influence of

θ, the inequality will hold, if

F (∆a+ d) + F (∆a− d) < 2F (∆a)⇔
F (∆a+ d)− F (∆a) < F (∆a)− F (∆a− d) . (7)

17Note that, because of the symmetry of f (·), 2F (∆a) > 1 since ∆a > 0, and
F (∆a+ d) +F (∆a− d)− 1 = F (∆a+ d)−F (−∆a+ d) > 0 since each cdf is monoton-
ically increasing.
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Since f (·) has a unique mode at zero, the corresponding cdf F (·) is strictly
convex for negative values and strictly concave for positive values, which

implies that (7) holds as ∆a > 0. In this case, the underdog’s condition

for a doping equilibrium is more restrictive than the favorite’s equilibrium

condition. In other words, the favorite prefers mutual doping under more

parameter constellations than the underdog. To sum up, we can rearrange

condition (6’) in order to obtain the following result:

Proposition 2 Let the influence of d dominate the influence of θ. A doping

equilibrium
¡
d∗i , d

∗
j

¢
= (d, d) will exist if and only if

∆w (1− θ) [F (∆a+ d)− F (∆a) (1− θ)] >

θw1 + c (µ
∗ (d, d))− c (µ∗ (d, 0)) . (8)

Proposition 2 highlights three effects which determine the doping decision

of the two players:18 The left-hand side of (8) can be referred to as likelihood

effect. As F (·) is monotonically increasing, the choice of dj = d leads to a
higher probability of winning for the underdog. Hence, the likelihood effect

supports condition (8). However, note that the left-hand side of (8) only

shows a reduced form of the likelihood effect. According to (6’) the original

version of the likelihood effect is characterized by

(1− θ) ([1− F (∆a)] (1− θ)− [1− F (∆a+ d)]) ,

and this difference will only be positive, if the influence of d dominates the

one of θ. Since this expression describes the additional probability mass of

winning when taking drugs given that the other player is doped, it should be
18Condition (8) only captures the underdog’s preferences. However, similar considera-

tions also hold for the favorite.
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indeed positive, if the doping problem should be of any relevance. Otherwise,

it will not be plausible at all for players to take drugs.

The difference c (µ∗ (d, d)) − c (µ∗ (d, 0)) implies a cost effect. If the
impact of d on µ∗ dominates the impact of θ, this difference will be positive.

In this case, the underdog’s doping increases equilibrium investments and

investment costs which makes condition (8) less likely to hold. The term

θw1 characterizes a windfall-profit effect. If the underdog chooses dj = d

instead of dj = 0, he will benefit with a lower probability from the favorite

getting defaulted (so that the underdog receives the winner prize). This

effect also makes condition (8) less likely to hold. The interplay of all three

effects determines whether both players mutually prefer to take drugs or

not. Of course, the importance of each effect depends on the specific sport

under consideration and on the concrete meaning of the diverse variables. In

particular, if µi and µj only capture the actual effort exerted in the contest

so that c (·) describes the disutility of effort, the cost effect can be neglected
in most sports. In this case, each athlete will typically do his best without

thinking about the corresponding exertions. If, however, µi and µj describe

time consuming training, the cost effect may become very important.

Now we can do some comparative statics concerning condition (8). As

we have seen in Proposition 1, the effect of doping on investment and, hence,

investment costs is ambiguous. For this reason we ignore the cost effect for

a moment.19 For θ → 0 or d → ∞ we obtain the trivial result that mutual

doping is always an equilibrium. Similarly, if θ → 1, the combination (d, d)

will never be an equilibrium. Next, we can analyze the influence of hetero-

geneity on condition (8). The ability difference ∆a can serve as a measure
19For example, we can think of µi and µj only describing effort as argued above. How-

ever, the influence of the cost effect can easily be added by considering Eq. (4) and the
discussion of Proposition 1, but such a complete analysis would be less concise.
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of heterogeneity. Differentiating the term in brackets at the left-hand side of

(8) with respect to ∆a yields f (∆a+ d)− f (∆a) (1− θ) so that we obtain

two results: 1. This term tends to be negative, if θ is rather low, so that

d is decisive. 2. The term will become positive, if d is sufficiently small,

so that θ becomes crucial. Therefore, higher heterogeneity will not support

a doping equilibrium if the doping test is highly unreliable, whereas it will

support mutual doping if doping has only a small impact on the outcome

of the tournament. An intuition for the first finding comes from the con-

cavity of F (·) in the positive range. If ∆a is quite large, the underdog’s
additional probability of winning by choosing dj = d instead of of dj = 0,

i.e. [1− F (∆a)] − [1− F (∆a+ d)] = F (∆a+ d) − F (∆a), is very small
because the favorite will almost surely win the tournament due to the large

ability difference. In this situation the likelihood effect has only a low im-

pact. The second result can be explained by the fact that, in the end, the

relevant additional probability of winning is F (∆a+ d)−F (∆a) (1− θ), i.e.

the extra probability conditional on whether the doping underdog will not

get defaulted. Of course, if θ is large and hence becomes crucial, the like-

lihood effect will be of great importance which supports condition (8). As

we have assumed in Proposition 2 that the influence of d dominates the one

of θ, we can conclude that in this situation more heterogeneity would rather

work against a doping equilibrium.

Finally, we can analyze the influence of the tournament prizes w1 and

w2 on (8). At first sight, one might expect that high winner prizes provoke

more doping and are therefore detrimental. However, condition (8) shows

that both the likelihood effect and the windfall-profit effect increase in w1 so

that the influence of the winner prize is not clear at all. The left-hand side

of (8) points out that the prize spread ∆w is a crucial parameter. Standard
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tournament results show that investment incentives do not depend on the

absolute values of w1 and w2 but on the spread ∆w (see also Eq. (4)). The

likelihood effect demonstrates that the incentives to be doped also increase

in the prize spread. Hence, a tournament organizer can try to prevent doping

by setting only a moderate prize spread.20 Note that this decision would also

lessen the perils of other forms of cheating like sabotage (see Lazear 1989),

but comes at the cost that productive incentives would also decrease. Since

∆w = w1 − w2, mutual doping can be prevented by a high loser prize w2.
This policy would have two effects: First, the prize spread and hence the

expected gains from doping would decrease. Second, by inspection of (6) we

can see that each player earns an expected base salary w2 (1− θi) (1− θj).

If w2 is high, the players might prefer not to take drugs in order to receive

the base salary w2 with higher probability.

In the next step, we can analyze under which conditions a no-doping

equilibrium
¡
d∗i , d

∗
j

¢
= (0, 0) will exist. By rearranging the equilibrium con-

ditions EUi (µ∗ (0, 0) ; 0, 0) > EUi (µ
∗ (d, 0) ; d, 0) and EUj (µ∗ (0, 0) ; 0, 0) >

EUj (µ
∗ (0, d) ; 0, d) we get the following proposition:

Proposition 3 A no-doping equilibrium
¡
d∗i , d

∗
j

¢
= (0, 0) will exist if and

only if

∆w [F (∆a+ d) (1− θ)− F (∆a)] < (9)

θw2 + c (µ
∗ (d, 0))− c (µ∗ (0, 0))

20See also Eber and Thépot (1999), 441-442. Up to now, it is not clear whether a
tournament organizer really wants to prevent doping. This point will be discussed in
Section 4.
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and

∆w ([1− F (∆a− d)] (1− θ)− [1− F (∆a)]) <

θw2 + c (µ
∗ (0, d))− c (µ∗ (0, 0)) . (10)

Contrary to the doping equilibrium it is not clear whether the favorite’s or

the underdog’s equilibrium condition is more restrictive. The windfall-profit

effect is identical for both players. Since µ∗ (d, 0) < µ∗ (0, d) the right-hand

side of (9) is smaller than the right-hand side of (10). Hence, according to the

cost effect the favorite’s equilibrium condition seems to be more restrictive.

However, comparing the left-hand sides of (9) and (10) we can see from

condition (7) (i.e. from the concavity of the cdf in the positive range) that —

for all values of θ — the likelihood effect is always stronger for the underdog.

Comparative statics give insights similar to the results in the discussion of

Proposition 2. In particular, the higher the loser prize w2 and the lower the

prize spread ∆w the more likely both players will prefer not to be doped.

Finally, we can infer from the results of Propositions 1 to 3, which type

of player more likely tends to be doped.21 As can be seen from conditions

(5’) and (6’) as well as from (9) and (10), the windfall-profit effect influences

both players in the same way. Hence, this effect can be neglected in our

comparison. Concerning the cost effect, doping will be more attractive for

the favorite than for the underdog: According to Proposition 1 doping by the

favorite always decreases the players’ investment costs, whereas the impact

of the underdog’s doping on costs is not clear. Whether the likelihood effect

stronger supports doping by the favorite than by the underdog or vice versa,
21In the model by Berentsen (2002) for certain parameter constellations there exists a

mixed-strategy equilibrium where the favorite will be doped with a higher probability than
the underdog if doping is sufficiently effective, the costs of doping are sufficiently small
and the winner prize is sufficiently large.
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depends on the given situation. Recall that the cdf is convex in the negative

range and concave in the positive range. Consider, for example, the situation

of the favorite.22 If the underdog decides to take drugs, the favorite’s original

lead ∆a will be reduced by −d. In this situation, by also choosing d the fa-
vorite increases his winning probability by the amount F (∆a)−F (∆a− d)
(see (5’)). If, however, the underdog chooses no-doping, the favorite’s addi-

tional winning probability from doping will only be F (∆a+ d)−F (∆a) (see
(9)). When discussing the relative importance of the likelihood effect for both

players we also have to take into account that basically the favorite already

has a lead ∆a so that the additional winning probability from doping should

be lower compared to an underdog who takes drugs. Of course, the higher

the lead ∆a the lower will be the probability gains from taking drugs for the

favorite. To sum up, — when abstracting from θi and θj — the likelihood and

the cost effect always work into the same direction for the favorite, whereas

this is not clear for the underdog: By choosing di = d the favorite does not

only increase his winning probability but also lowers investment costs (see

Proposition 1(i)). However, choosing dj = d instead of dj = 0 increases the

underdog’s winning probability, too, but will increase investment costs if the

players significantly differ in ability or the favorite also chooses doping (see

Proposition 1(iii)).

4 Discussion

Ex-ante versus ex-post testing

As we have seen in Section 3, the organizer of a tournament can decrease

the players’ incentives to take drugs by choosing a high loser prize or a low
22Of course, similar considerations also hold for the underdog.
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prize spread. However, up to now it is not clear whether the organizer would

really be interested in preventing the consumption of drugs. On the one hand,

doping and the disqualification of players who have consumed drugs harms

the reputation of a specific sport which may imply fewer spectators or lower

revenues from the selling of broadcasting rights. On the other hand, the

organizer may be interested in high performances qi and high investments

µ∗. Note that qi always increases in di, and that µ∗ may increase under

certain conditions if the underdog takes drugs (see Proposition 1 (iii)). For

the moment, let us assume that the organizer is interested in preventing the

consumption of drugs and that he can choose between ex-post testing after

the tournament (as in Section 3) and ex-ante testing before the tournament

starts. In the case of ex-ante testing, the doping test takes place between

the two stages of the game which have been discussed in the previous section

(i.e., after the doping decision but before the players choose investment).23

In the following, we will discuss the question, whether the organizer of the

tournament should prefer ex-ante or ex-post training in order to combat

doping.

In the case of ex-ante testing, the objective function of the favorite at the

tournament stage is given by

EUi (µi; di, dj) =
¡
w2 +∆wF

¡
µi − µj + di − dj +∆a

¢− c (µi)¢ (1− θi) (1− θj)

+w1 (1− θi) θj (11)
23In practice, if µi and µj denote efforts ex-ante testing will mean a test directly before

the tournament. If the investments stand for (final) training, ex-ante testing will take
place in an early training period.
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and that of the underdog by

EUj
¡
µj; di, dj

¢
=

¡
w2 +∆w[1− F (µi − µj + di − dj +∆a)]− c ¡µj¢¢ (1− θi) (1− θj)

+w1 (1− θj) θi. (12)

The important difference of (11) and (12) compared to the objective functions

(2) and (3) is given by the fact that if using ex-ante testing the tournament

will not take place in any case. The two players will only compete (by

choosing investments) with probability (1− θi) (1− θj). With probability

1 − (1− θi) (1− θj) there will be no tournament, no investments and no

investment costs because of the disqualification of at least one contestant.24

In analogy to Section 3, we obtain a symmetric equilibrium described by

µ̂∗i = µ̂
∗
j = µ̂

∗ (di, dj) = c
0−1 (∆wf (di − dj +∆a)) . (13)

By comparing (13) and (4) we can see that, for a given pair (di, dj), equi-

librium investments will always be larger under ex-ante than under ex-post

testing. The intuition for this result is straightforward. In the case of ex-

post testing, players do not know whether the tournament will be annulled

afterwards so that their investments are lost. This leads to lower incentives

which decrease in θi and θj according to (4).

Now we can turn to the doping stage where the two players have to de-

cide on di and dj, respectively. Again, we can consider a possible doping

equilibrium (d, d). Note that the corresponding equilibrium conditions will

be identical to (5’) and (6’) with the exception that c (µ∗ (d, d)) has to be
24Note that if one player gets defaulted under ex-ante testing, the other player will

receive the winner prize although no tournament takes place. This special situation is due
to the fact that we consider a two-person tournament. However, for n > 2 contestants we
would have a similar effect. In that case, the remaining contestants’ winning probability
would increase by the disqualification of a player.

23



replaced with c (µ̂∗ (d, d)) (1− θ)2, c (µ∗ (0, d)) with c (µ̂∗ (0, d)) (1− θ), and

c (µ∗ (d, 0)) with c (µ̂∗ (d, 0)) (1− θ). Since c (µ̂∗ (0, d)) > c (µ̂∗ (d, 0)), again

because of (7) the underdog’s condition for a doping equilibrium is more re-

strictive than the favorite’s condition, given that the influence of d dominates

the one of θ. Hence, under ex-ante testing and dominance of d, we will have

an equilibrium
¡
d∗i , d

∗
j

¢
= (d, d) if and only if

∆w (1− θ) [F (∆a+ d)− F (∆a) (1− θ)] >

θw1 + c (µ̂
∗ (d, d)) (1− θ)2 − c (µ̂∗ (d, 0)) (1− θ) . (14)

Comparing (14) and (8) yields the following result:

Proposition 4 Let the influence of d dominate the influence of θ. A doping

equilibrium
¡
d∗i , d

∗
j

¢
= (d, d) will be more likely under ex-ante than under

ex-post testing if and only if

c (µ∗ (d, d))− c (µ∗ (d, 0)) > (15)

c (µ̂∗ (d, d)) (1− θ)2 − c (µ̂∗ (d, 0)) (1− θ) .

Here, ”more likely” means that the equilibrium condition (14) is less

restrictive than condition (8). The proposition points out that only the cost

effect is decisive whether mutual doping is more likely under ex-ante or ex-

post testing. If the influence of d dominates the influence of θ (i.e., if d is

sufficiently large relative to θ) both the left-hand and the right-hand side of

(15) will be positive. We obtain the following finding:

Corollary 1 If c000 (µ) < [c00 (µ)]2 /c0 (µ), there will exist a threshold value d̄

so that for d > d̄ a doping equilibrium is more likely under ex-post testing.

Proof. See appendix.
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First note that the condition given in the corollary is not restrictive at

all, since it holds for most of the cost functions (e.g. for the family of cost

functions c (µ) = µδ

δ
with δ > 1). According to Corollary 1, given a suffi-

ciently large impact of doping, the organizer of the tournament will always

prefer ex-ante testing if he wants to prevent mutual doping by the two play-

ers. Note that if d goes to infinity, investments µ∗ (d, 0) and µ̂∗ (d, 0) — and

hence the corresponding investment costs — will tend to zero. In this case,

the cost effect is solely determined by the (expected) investment costs for the

pair (d, d). The lower these costs, the more attractive will be mutual doping

for the players. Since for d > d̄ we have c (µ̂∗ (d, d)) (1− θ)2 > c (µ∗ (d, d))

(i.e. expected costs are higher under ex-ante testing), the players more likely

take drugs under ex-post testing in this situation.

Endogenous tournament prizes

Until now, tournament prizes have been assumed to be exogenous in order

to focus on the doping game between the two heterogeneous players. Dis-

cussing endogenous prizes seems to be problematic in this context. First,

we have to specify the objective function of the organizer of the tourna-

ment. In the economic literature on sport contests, several possible objective

functions have been discussed.25 The organizer may be interested in com-

petitive balance to guarantee an attractive competition and, therefore, high

revenues from the selling of broadcasting rights. Alternatively, the organizer

may want to maximize total expected performance minus tournament prizes,

E [qi + qj] − w1 − w2. As another alternative, the organizer’s revenues may
increase in the realization of top performances (e.g., beating records) so that

the organizer may want to maximize max {qi, qj}− w1 − w2. To sum up, it
25See, for example, Fort and Quirk (1995), Szymanski (2003), Szymanski and Kesenne

(2004), Falconieri, Palomino and Sákovics (2004), Kesenne (2005).
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is not quite clear how the correct objective function should look like.

Second, given a certain objective function, it is not obvious whether the

organizer wants to prevent doping or not. For example, the organizer may

want to implement doping by the underdog but prevent doping by the favorite

in order to increase competitive balance.26 As can be seen from (1), (4) and

(13), the impact of such increased competitive balance on both expected total

performance and maximum individual performance is ambiguous. Besides

the basic ambiguity resulting from the trade-off concerning di (or dj) and

θi (or θj), on the one hand equilibrium investments will increase in more

balanced competition via (di, dj) = (0, d) if the influence of d dominates

the one of θ. This in turn increases total expected performance as well as

maximum individual performance. On the other hand, the pair (di, dj) =

(0, d) may lead to low values of both E [qi + qj] and max {qi, qj}, since qi
directly increases in di so that no-doping by the favorite may be unfavorable

for the organizer in the end. Finally, if the reputation of a certain sport is

fundamentally harmed by detected doping, preventing doping may be the

organizer’s primary aim in any case.

When calculating optimal prizes, the organizer would choose w1 and w2

in order to maximize his objective function subject to the players’ incentive

constraint (4), the two participation constraints EUi
¡
µ∗
¡
d∗i , d

∗
j ; d

∗
i , d

∗
j

¢¢ ≥ ū
and EUj

¡
µ∗
¡
d∗i , d

∗
j ; d

∗
i , d

∗
j

¢¢ ≥ ū with ū denoting the players’ reservation

utility, and two constraints implementing a favored pair
¡
d∗i , d

∗
j

¢
. If, for

example, the organizer wants to implement a doping equilibrium (d, d) and

the players are not wealth-restricted (i.e., there is no limited liability), the

organizer will choose the lowest possible loser prize w∗2 which makes the

participation constraint of the player with the lower expected utility just
26Here, we have to assume that d < 2∆a is satisfied, because otherwise competition

would become more uneven.

26



bind. This loser prize both guarantees that the organizer’s labor costs become

as low as possible and supports the doping condition (8). In this case, we

have d∗i = d
∗
j = d so that the underdog’s participation constraint is binding in

the optimum and the favorite, who starts with a lead ∆a in the tournament,

receives a positive rent EUi − ū > 0. Furthermore, a rather large prize

spread ∆w∗ is chosen by the organizer in order to support condition (8) and

to implement considerable investment levels µ∗ according to (4). Note that

despite risk neutral players and unlimited liability, the organizer will not

implement first-best effort because of the players’ heterogeneity.

Welfare analysis

For a welfare analysis, similar problems arise as in the discussion of optimal

tournament prizes since first we have to define welfare in the given context.

Following the analysis of Konrad (2003) we can, for example, define welfare

as the difference of expected total output minus total costs. Hence, in our

model welfare would be

W =
X
k²{i,j}

(µk + ak + dk +E[εk]− c (µk)) (16)

Konrad (2003) considers a model in which the doping and the investment

inputs are complements in the production function. Furthermore, both in-

puts have separable convex cost functions.27 There is only one prize in the

Konrad model which is given to the tournament winner. Konrad shows that

if the tournament prize that maximizes welfare is chosen, mutual doping

will be welfare improving. In our model, both inputs are substitutes in the

production function. However, we find the same curious result:
27In the Konrad model, doping does not imply the possibility to get defaulted.
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Proposition 5 If tournament prizes are chosen which maximize welfare W ,

mutual doping (di, dj) = (d, d) will be welfare enhancing.

Proof. Obviously, the first-best investment for each player which maxi-

mizes W as given in (16), is

µFB = c
0−1(1). (17)

We know that players choose investments according to (4). Comparing (17)

and (4) shows that the prize spread

∆wFB =
1

f(∆a+ di − dj) (1− θi) (1− θj)
(18)

implements first-best incentives for any pair (di, dj). Hence, the only influ-

ence of doping on welfare remains via dk (k = i, j) in (16) so that di = dj = d

leads to maximum welfare.

If welfare maximizing tournament prizes are chosen, these prizes will al-

ways be adjusted to the doping levels (di, dj). In other words, incentives

are not influenced by doping under optimal prizes. In this case, doping d

will only increase both players’ aggregate performance and therefore overall

welfare. Of course, this curious result crucially depends on the definition

of welfare. If overall welfare is reduced by detected consumption of drugs

since the spectators’ utilities decrease, mutual doping will not necessarily be

welfare maximizing.28

28Note that the athletes’ health costs from taking drugs typically also reduce welfare.
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5 Conclusion

Although doping in contests is an important topic from an economic per-

spective, it is not clear whether the utilization of illegal resources should be

generally prevented from the viewpoint of the contest organizer or from so-

ciety’s perspective. Hence, in this paper we focus on a stylized doping game

between two players in order to analyze the determinants of doping and pos-

sible alternatives for preventing doping given that such behavior is welfare

reducing.

Contrary to most of the existing doping models, we assume heterogeneous

players who choose both doping and a legal input (e.g., effort or training) and

face a positive probability of getting defaulted in case of doping. Further-

more, we assume that doping, the legal input and ability are substitutes in

the players’ production function. We identify three effects which determine

the attractiveness for taking drugs: a likelihood effect (i.e. doping increases

one’s own probability of winning if not getting defaulted), a cost effect (i.e.

doping influences the exertion of the legal input and hence costs), a windfall-

profit effect (i.e. if one player is disqualified, the other player wins for sure).

Interestingly, under reasonable assumptions the favorite is more likely to use

drugs than the underdog, and mutual doping by both players may be welfare

enhancing. Comparing ex-ante and ex-post drug tests shows that ex-ante

testing will be more effective in preventing the consumption of drugs, if dop-

ing has a sufficiently high impact on the outcome of the tournament.

In a next step, it would be interesting to analyze the players’ doping

decision within a closed model where the organizer of the tournament wants

to maximize a certain objective function and doping is a continuous variable.

However, this step will not be a trivial one since there exist several trade-offs

when discussing doping in such a context. In particular, more doping will
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typically lead to a higher probability of getting defaulted and to higher health

costs of the players. Hence, it will be difficult to find out the optimal level of

doping from both the organizer’s and society’s perspective. Perhaps, it will

be helpful to concentrate on a specific application, for example on doping in a

certain professional sport. By this it might be easier to formulate a concrete

objective function for the organizer of the contest since in professional sports

the selling of broadcasting rights is of major importance.

30



Appendix:

Proof of Corollary 1:

By using (4) and (13), condition (15) can be rewritten as

H (∆wf (∆a+ d)) (1− θ)−H (∆wf (∆a+ d) (1− θ)) >

H (∆wf (∆a)) (1− θ)2 −H ¡∆wf (∆a) (1− θ)2
¢

(A1)

with H (·) = c ¡c0−1 (·)¢. First, we will show that H (·) is convex given the
condition in Corollary 1. In order to simplify notation, let

µ (x) := c
0−1 (x) (A2)

so that

H (x) = c (µ (x)) . (A3)

From (A2) we have c0 (µ (x)) = x and, hence, c00 (µ (x))µ0 (x) = 1 which gives

µ0 (x) =
1

c00 (µ (x))
(A4)

so that we obtain

µ00 (x) = −c
000 (µ (x))µ0 (x)

[c00 (µ (x))]2
. (A5)

H 00 (x) > 0 ensures convexity of H (·). We obtain H 0 (x) = c0 (µ (x))µ0 (x)

and, by using (A4) and (A5),

H 00 (x) = c00 (µ (x)) [µ0 (x)]2 + c0 (µ (x))µ00 (x)

=
c00 (µ (x))

[c00 (µ (x))]2
− c

000 (µ (x)) c0 (µ (x))

[c00 (µ (x))]3

=
1

c00 (µ (x))
− c

000 (µ (x)) c0 (µ (x))

[c00 (µ (x))]3
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which is positive, if [c00 (µ (x))]2 /c0 (µ (x)) > c000 (µ (x)).

Next we can show that (A1) and, therefore, (15) can never hold, if

d becomes sufficiently large. Note that the argument in the first H (·)-
function at the left-hand side of (A1) describes a convex combination of 0 and

∆wf (∆a+ d), whereas the argument in the first H (·)-function at the right-
hand side of (A1) is a convex combination of 0 and ∆wf (∆a). Since H (·)
is convex, both the left-hand and the right-hand side of (A1) are positive.

Recall that f (·) has a unique mode at zero and, therefore, monotonically
decreases for positive values. Hence, d → ∞ leads to f (∆a+ d) → 0, and

(A1) reduces to

0 > H (∆wf (∆a)) (1− θ)2 −H ¡∆wf (∆a) (1− θ)2
¢
, (A6)

which is always false because of H (·)’s convexity. In other words there exists
a threshold d̄ so that (15) never holds for d > d̄.
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