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University of Wisconsin–Madison

Sven Rady ‡
University of Munich

Abstract

We propose a life-cycle model of the housing market with a property ladder and
a credit constraint. We focus on equilibria which replicate the facts that credit con-
straints delay some households’ first home purchase and force other households to buy
a home smaller than they would like. The model helps us identify a powerful driver of
the housing market: the ability of young households to afford the down payment on
a starter home, and in particular their income. The model also highlights a channel
whereby changes in income may yield housing price overshooting, with prices of trade-
up homes displaying the most volatility, and a positive correlation between housing
prices and transactions. This channel relies on the capital gains or losses on starter
homes incurred by credit-constrained owners. We provide empirical support for our
arguments with evidence from both the U.K. and the U.S.
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1 Introduction

Buying a home requires a substantial amount of cash up front. The down-payment require-

ment limits the value of many first home purchases, primarily for younger households with

little savings. Once a household owns its first home, it must accumulate further wealth if it

wants to move up the property ladder. Any gains or losses on the first home have a major

impact on the household’s net worth and hence the timing of its next move.

We argue that understanding the equilibrium consequences of these features of hous-

ing consumption is key to understanding the volatility of housing prices, their tendency to

display overshooting patterns, fluctuations in their cross-sectional variance, and the rela-

tionship between housing prices and transactions.

We propose a life-cycle model of the housing market with two types of homes available

in limited supply, “starter” homes and “trade-up” homes, and a down-payment constraint

on borrowing. While all households enjoy living in a house of their own, they differ in the

utility premium they derive from a trade-up home compared to a starter home. Households

also differ in their income streams.

The first contribution of the model is to highlight the critical role of marginal first-

time buyers in housing market fluctuations. That is, any factor that affects the ability

of potential first-time buyers to afford the down payment on a starter home can have a

dramatic impact on the overall housing market. This points to the volatility in the income

of young households as a factor in some of the “excess” volatility of housing prices. The

same insight helps us rationalize large housing market swings following national institutional

reforms in financing availability.

The second contribution of the model is to shed new light on the mechanism whereby

down-payment constraints affect the transmission of income shocks to housing prices and

transactions. We show that this mechanism offers a rationale for the positive correlation

between housing prices and transactions observed in the U.S. and the U.K., given empirical

evidence on the response of housing prices to income shocks and on fluctuations in the

cross-sectional variance of housing prices.

Lamont and Stein (1999) and Malpezzi (1999) show in the U.S. and Miles and Andrew

(1997) in the U.K. that housing prices overreact to income shocks. Poterba (1991), Smith

and Tesarek (1991), Mayer (1993) and Earley (1996) provide evidence that the prices of

properties at the upper end appreciate more than the prices of cheaper properties during

a boom and depreciate at a higher rate during downturns. In the model, when both these

phenomena occur in response to a change in income, there are more housing transactions

when housing prices are on the rise and fewer when housing prices are on the decline. In
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both the U.S. and the U.K., there is evidence that this relationship between housing prices

and transactions has been holding over time; see Stein (1995) and Ortalo-Magné and Rady

(2004).

Young households are the marginal first-time buyers of starter homes in our model, and

the price of starter homes regulates entry into the housing market. Any household that can

afford the down payment on a starter home buys it. Thus the equilibrium price of starter

homes must be such that the number of first-time buyers who can afford the down payment

equals the number of homeowners who are leaving the housing market. This establishes a

direct link between the price of starter homes and the wealth of the youngest households.

A large proportion of households in our model have sufficient wealth to choose their

home without any concern for the down-payment constraint. Changes in the price of starter

homes shift their demand for trade-up homes in the obvious way. This establishes a first

link between the price of starter homes (and hence the ability of younger households to

afford down payments) and the price of trade-up homes.

There is a second way the price of starter homes affects the demand for trade-up homes:

capital gains. In response to an income increase, gains on starter homes make their owners

more able to afford the down payment on a trade-up home. To the extent that some of

the owners of starter homes are keen to move up the property ladder, this again shifts

the demand for trade-up homes upward. Once income stabilizes, gains on starter homes

disappear and the demand for trade-up homes shifts back down. The symmetric reasoning

applies for a negative change in incomes. The capital gains mechanism can explain both

why housing prices may display overshooting and why they depend on past incomes and

prices; see, for example, Case and Shiller (1989), Meese and Wallace (1994), Cho (1996)

and Capozza et al. (2002).

In the case of an income increase, gains on starter homes may affect enough owners that

the price of trade-up homes will overreact to the change in income, i.e., increase at a higher

rate than income. We show that whenever the capital gains channel is strong enough to

cause this overreaction in the price of trade-up homes, moves up the property ladder by

owners of starter homes generate an overall increase in transactions. The symmetric result

obtains for an income decrease.

In summary, if the effect of capital gains or losses on the housing demand of constrained

repeat buyers is strong enough to generate price overreaction, the level of prices, the cross-

sectional variance of prices and the number of transactions move with income. This is likely

to happen when: (1) few first-time buyers of starter homes pay cash for them, (2) there are

few first-time purchases of trade-up homes, and (3) changes in the relative price of homes
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have only a limited impact on the willingness of unconstrained households to move along

the property ladder.

Our approach is different from the traditional approach to modelling housing prices,

which treats homes like any other financial asset. Poterba (1991), for example, assumes

that a home provides units of housing services whose price is forward-looking, determined by

arbitrage in relation to other financial assets. This approach cannot account for the observed

time series properties of housing prices without some form of departure from rationality;

see Wheaton (1999). By design, this approach is silent with regard to fluctuations in

transactions and assumes constant relative prices for homes of different sizes.

The search for alternative frameworks to rationalize housing market dynamics has taken

primarily two directions. One line of research focuses on the search and matching features

of the housing market; see, for example, Arnott (1989), Wheaton (1990), Williams (1995),

Krainer (2001) and Krainer and LeRoy (2002). This approach has yielded a number of

insights that we see as complementary to our findings.1

A second line of research focuses on the role of credit market imperfections and house-

holds’ consumption demand for housing. Our work is closest to that of Stein (1995) in its

focus on down-payment constraints but differs in terms of model design and predictions.

Stein’s static model demonstrates how extreme credit distress may result in lower hous-

ing prices and fewer transactions because negative equity prevents some households from

moving. Assuming many households have too much debt to meet the down-payment re-

quirement on their current homes, he finds a lower equilibrium housing price than if there

were no down-payment constraint. The lower the price of housing, the more households

that find themselves with too much debt to move, hence the fewer transactions.

None of our results require such extreme joint distributions of housing and debt, and

our reasoning applies to booms as well as busts. In our dynamic framework, transactions

arise out of changes in the equilibrium allocation of properties from one period to the next;

the allocation of debt at the start of each period is the result of households’ optimizing

behaviour in the period before. Furthermore, our model incorporates first-time buyers, and

we allow the relative prices of homes of different sizes to fluctuate.

1Genesove and Mayer (2001) add another factor that could amplify the depth of housing market down-
turns. They provide evidence that nominal loss aversion on the part of sellers may contribute to depressing
housing transactions when prices decline. See also Engelhardt (2003).
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2 Empirical Evidence

We describe evidence on the relation between housing prices and the income of young

households, and between housing prices and transactions. We then draw on the empirical

literature to provide a background for our modelling choices.

2.1 Income of the young

Many empirical studies identify income as one of the drivers of housing prices; see, for

example, Poterba (1991), Englund and Ioannides (1997), Muellbauer and Murphy (1997),

Malpezzi (1999) and Sutton (2002). Researchers usually rely on average income measures

such as per capita disposable income. These average measure are meant to capture the fact

that when households are richer, they demand more of everything and thus more housing.

We abstract from this effect of income on housing demand. In our model, income drives

housing demand through a different and complementary mechanism: Changes in income

affect a household’s housing demand whenever they free the household from a binding

credit constraint. Most broadly, the model suggests that any factor that affects the housing

demand from potential first-time buyers has a direct impact on the housing market.

Figure 1 graphs real U.S. housing prices, per capita disposable income and the median

income of 25- to 34-year-old households, the time series closest to the income of the marginal

first-time buyers in our model.2 A simple linear regression using the yearly data from 1970

to 2003 confirms the visual impression; both variables have positive and highly significant

effects on housing prices.3

In Ortalo-Magné and Rady (1999), we document that down-payment requirements in

England and Wales dropped from 25% to 15% following the credit market liberalization

of the early 1980s. In response to such a change, the price of starter homes would rise by

66% in our model because, with the same savings, first-time buyers could afford the down

payment on a home 66% more expensive (0.66 = 0.25/0.15 − 1). The income of young

households in England and Wales grew by 27.5% over 1982-89.4 When we combine the

effects of this credit market liberalization and the growth in income, our model accounts

for the 88% housing price growth over the period.

2Data sources: FHLMC national conventional mortgage home price index, disposable personal income
from the U.S. Bureau of Economic Analysis, and median 25- to 34-year-old household income from the U.S.
Census Bureau. All variables are converted into real terms with the deflator used by the B.E.A. to deflate
the disposable personal income series.

3The estimated coefficients for income per capita and the median income of 25- to 34-year-old households
are 0.50 (0.06) and 0.78 (0.18), respectively; standard errors in parentheses. Together, the two income
variables explain 90 percent of housing price variations.

4According to Family Expenditure Survey and U.K. Economic Accounts, as compiled by Simons (1996).
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Figure 1: Real US housing prices and incomes

With regards to the subsequent housing market bust in England and Wales, Andrew

and Meen (2003b) find that changes in the income of young cohorts were a critical factor

of the declines in both transactions and prices.

2.2 Transactions

Stein (1995) provides evidence of a positive relationship between the number of transactions

and the percentage of change in prices in the U.S. over the period 1968-1992. Berkovec and

Goodman (1996) find a positive relationship between the percent changes in transactions

and prices over 1968-1993. Follain and Velz (1995), however, report a negative relationship

between the number of transactions and the housing price level in a panel of 22 U.S. cities

over 1986-1992.
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With the benefit of an extra decade of data since these studies, we run the regres-

sions reported in Stein (1995) using the same data source. We find a significant positive

relationship between transactions and price changes.5

In Ortalo-Magné and Rady (2004), we find the same positive relationship in data from

England and Wales over 1970-2002. Andrew and Meen (2003a) and Benito (2004) report

similar results.6

Holmans (1995) and Benito (2004) find that fluctuations in the overall number of trans-

actions are attributable mainly to fluctuations in the number of repeat buyers moving up

the property ladder, which accords with our model.

2.3 Model background

Caplin et al. (1997, p. 31) argue “it is almost impossible for a household to buy a home

without available liquid assets of at least 10% of the home’s value.” It is this effective

wealth requirement that we want to capture with the credit constraint in our model.

Studies of household-level data confirm that credit constraints restrict the housing con-

sumption of a significant proportion of households; see, for example, Ioannides (1989), Jones

(1989), Zorn (1989), Duca and Rosenthal (1994), Engelhardt (1996), Haurin, Hendershott

and Wachter (1996, 1997) and Engelhardt and Mayer (1998). Linneman and Wachter (1989)

find that the down-payment requirement in U.S. mortgages restricts households’ access to

credit more than the income constraint that precludes monthly payments above a given

fraction of income. Even when lending standards allow some households to buy property

without much initial wealth, the poorest buyers cannot borrow beyond the liquidation value

of their collateral. And buying a home without a reasonable down payment remains very

expensive.

According to the Annual National Survey of Recent Home Buyers in Major Metropolitan

Areas by the Chicago Title and Trust Company and the English Housing Survey, buyers’

own savings and housing equity are by far the two major sources of funds for repeat buyers;

down payments of first-time buyers come primarily from their savings. Engelhardt (1996)

5For example, for the U.S. as a whole, using annual price and transaction data from the National
Association of Realtors over 1968-2003, we obtain Transactions = 153686 % Price change + 122202.9 Time
trend + 289121.2 with standard errors equal to 18990, 6232 and 208105, respectively. The adjusted R2

is 0.92. The estimate for the effect of price changes is very similar to the one obtained by Stein: a 10
percent drop in prices is associated with a reduction of the number of transactions by about 1.5 million
units relative to an average of 4 million transactions per year in the 1990s.

6Leung et al. (2002) report evidence of a positive relationship between housing prices and transactions
for Hong Kong. Hort (2000) does not find any robust pattern in Swedish data. Bardhan et al. (2003)
report evidence of a positive relationship between capital gains at the bottom of the property ladder and
transactions at the top end of the ladder in Singapore.
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reports that only one-fifth of U.S. first-time buyers receive some help from relatives in

accumulating their down payment, and only 4 percent receive their whole down payment

from relatives. The vast majority of first-time buyers pay down payments out of their own

savings. Engelhardt and Mayer (1998) find that only 4 percent of repeat buyers receive

help from family and friends for their down payments.

The life-cycle pattern of housing consumption of a significant proportion of households

involves lumpy adjustments along the property ladder with jumps toward larger dwellings

when buyers are young. Evidence from housing surveys both in the U.S. and the U.K.

indicates that some households move to a more expensive property within a few years of

their first purchase. Fernández-Villaverde and Krueger (2002) report evidence consistent

with the view that households in the U.S. cannot move into their target home early in their

life cycle because of financial constraints and that they work their way up the property

ladder. Clark et al. (2003) provide support for this view. Households with the strongest

income growth tend to climb the ladder progressively except for the richest households, who

appear to move right away into a home at the upper end of the property ladder. Banks et al.

(2002) find that households in the U.K. also tend to climb the property ladder progressively.

They report that first-time buyers in the U.K. tend to be younger than first-time buyers in

the U.S. They attribute this difference in part to the lower down-payment requirement in

the U.K.

We assume housing preferences such that some households move up the ladder for pref-

erence reasons, and some down. There is some evidence that housing consumption declines

with age for the elderly, but this remains a debated issue in the literature; see, for exam-

ple, Mankiw and Weil (1989), Venti and Wise (1990, 1991, 2001), Green and Hendershott

(1996), Jones (1997) and Megbolugbe et al. (1997). What is critical in our model is that in

every period, some households move to a home cheaper than the one that they sell. This is

supported by evidence in both the U.S. and the U.K.; cf. Statistical Abstract of the U.S.

and English Housing Survey.

3 Model

The model must be rich enough to capture the interaction of households eager to climb the

property ladder but credit constrained, and wealthier households who choose their home

according to preferences. The concept of a property ladder requires at least two types of

dwelling. Climbing this minimal property ladder requires at least three periods: one period

to buy, one to trade up, and one to sell. For income shocks to affect the pace at which some

agents climb the property ladder, agents must differ in terms of wealth.
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There are many options available to characterize agents who trade without restrictions

imposed by wealth. We choose to add an extra period of life, a period when wealth is high

enough so that credit constraints no longer bind, no matter the type of property. Of course,

if not all wealthy agents are to hold the same dwelling, they must have heterogeneous

preferences. The challenge is to design a model that incorporates this double-heterogeneity

of wealth and preferences and still permits a tractable determination of equilibrium prices

and transaction volume.

3.1 Economic environment

Population. A measure one of agents is born at the start of each period. Each agent

lives for four periods, so the total population always has measure four. Within each cohort,

agents are distributed uniformly over the unit square. Each agent is identified by the indices

(i,m) ∈ [0, 1]× [0, 1] which determine her endowment stream and her preference for houses

relative to flats at age 4, respectively. While all agents learn their index i at the beginning

of life, they learn their index m at age 3 only.

Commodities. The commodities are a numeraire consumption good and two types of

dwellings: starter homes, called “flats” hereafter, and trade-up homes, called “houses.”

Each dwelling can accommodate only one agent, who must be an owner-occupier. Thus, the

set of possible housing choices isH = {∅, F, H}, where ∅ stands for no housing consumption,

F for a flat, and H for a house.

Endowments. Agents are born without any initial wealth. At age j = 1, . . . , 4, agent

(i,m) receives an endowment of ej(i) units of the numeraire good, where the functions

ej : [0, 1] → IR+ are continuous and strictly increasing.

Preferences. The preferences of agent (i,m) are described by the utility function

4∑
j=1

cj + U(h2,
1
2
) + U(h3,

1
2
) + U(h4,m),

where cj is the non-negative amount of the numeraire good consumed in the jth period of

life; hj ∈ H is the type of housing enjoyed at the beginning of the jth period of life; and

the utility of housing is given by

U(h,m) =




−∆ if h = ∅,
0 if h = F,
u(m) if h = H

where ∆ > 0, and u : [0, 1] → IR is strictly increasing and continuous. Thus, all agents have

the same utility premium ∆ for a flat relative to no housing. Up to age 3, all agents’ utility

premium for a house relative to a flat is u(1
2
). At age 3, they learn their preference index
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m before they trade in the housing market. Subsequently, all agents with preference index

m have the utility premium u(m) for a house relative to a flat.

Technology. Flats and houses are in fixed supply at measures SF and SH , respectively.

Agents have access to a storage technology for the numeraire good that allows them to save

at the exogenously given rate of interest r.

Credit constraints. Agents are allowed to borrow at the rate of interest r, but face a

borrowing constraint. An agent’s end-of-period non-housing wealth is not allowed to fall

below γ − 1 times the value of any property he owns, where 0 < γ < 1. This constraint

implies that in order to acquire property h ∈ {F, H}, an agent must have a total wealth

of at least γ times the price of the property. We will refer to this amount as the required

“down payment.”

Markets. In each period, there are competitive markets for flats and houses, with prices

denoted pF and pH . We use the notation p∅ for the “price” of the no-housing option; by

definition, p∅ = 0 at all times. There are no rental markets for dwellings and no other asset

markets.

Timing. Within each period, agents first derive utility from housing. Second, they receive

their endowment of the numeraire good; third, they trade in the housing market; and fourth,

they consume the numeraire good.

3.2 Comments

The age 1 and age 2 cohorts represent households whose housing consumption may be

limited by their wealth because of the credit constraint. First-time buyers build their down

payments solely from their own endowments; if need be, repeat buyers build their down

payments from their own endowments and any gains on their first purchase.

The age 3 cohort represents households whose housing choices are not restricted by the

credit constraint. The shock at age 3 to a household’s relative preference for houses and

flats (that is, the revelation of the preference index m) implies that not all unconstrained

households attach the same utility premium to houses relative to flats and that some house-

holds move due to preference reasons at age 3. The direction of these moves can be up the

property ladder as well as down.

The model allows for an arbitrary continuous income distribution within each cohort,

but requires the ranking of agents according to income to be invariant over the life cycle

for tractability.

The linear utility of non-housing consumption will imply that all such consumption is

postponed until the last period of life. This feature keeps the model analytically tractable,
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particularly with respect to the equilibrium law of motion of the distribution of dwellings

and savings.

We assume a fixed rate of return r on the storage technology in order to capture a small

open economy where the interest rate is set exogenously. We abstract from the effects of

shocks to interest rates (or equity returns) on the demand for housing.7

The assumption of a perfectly inelastic supply of flats and houses is not critical to our

results; the results obtain as long as supply is not perfectly elastic, which will hold as long

as the supply of land is upward sloping. Of course, everything else equal, prices would

respond less to changes in endowments, the higher the price elasticity of supply.

3.3 Parameter assumptions

We impose assumptions on the parameters of the model so that the steady-state equilibrium

of the model captures the interaction of the three groups of agents: constrained first-time

buyers, constrained repeat buyers, and unconstrained repeat buyers.

First, the supplies of flats and houses are assumed to satisfy

5
2

< SF + SH < 3 and 1
2

< SH < 1. (1)

The first condition implies that not all households can own property. The second condition

implies that within each cohort there must be some households that do not own a house.

Second, we assume that the down payment is greater than the discounted user cost of a

property when its price is constant; i.e.,

γ >
r

1 + r
. (2)

This ensures that a household who can afford the down payment on a property can also

afford to live in this property for one period when prices are constant.

Third, the endowment profiles ej : [0, 1] → IR+ (j = 1, . . . , 3) are assumed to satisfy:

e1(0) = 0, (3)

e2(0) > e1(3− SF − SH), (4)

e2(i) > e1(i) for all i ∈ [0, 1], (5)

e3(0) > e(1), (6)

e(1) > max{e1(1), e(3− SF − SH)}+ rγ−1e1(3− SF − SH), (7)

7Flavin and Yamashita (2002), Flavin and Nakagawa (2003), Cocco (forthcoming) and Yao and Zhang
(forthcoming) study the interaction between housing demand and investments in other assets. Housing
returns are set exogenously in these models. Lustig and Van Nieuwerburgh (2004) analyze the impact of
housing price fluctuations on the pricing of stocks in a model where housing serves as collateral.
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where

e(i) = (1 + r) e1(i) + e2(i)

denotes the accumulated value of the endowments agents receive at ages 1 and 2.

Assumption (3) guarantees that some age 1 households cannot pay the down payment

on any dwelling. Thanks to assumption (4), however, all age 2 households will be able to

afford the down payment on a flat in steady state.

Assumption (5) specifies that households earn more at age 2 than at age 1. Combined

with assumption (2), this ensures that at constant housing prices, a household that can

pay the down payment on a given dwelling at age 1 can do so again at age 2, taking into

account the cost of holding that property from one period to the next.8

Assumption (6) gives age 3 households an endowment large enough to render both

housing alternatives affordable in the sense that no age 3 household faces a binding credit

constraint.

Assumption (7) will ensure that in steady-state equilibrium, some households trade up

from a flat to a house at age 2; this will allow capitals gains on flats to have an effect on

transitional dynamics.

Our last set of assumptions concern the parameters of the agents’ utility functions:

0 > u(1− SH), (8)

u(1
2
) > (1 + r)2rγ−1 [e(1)− e1(3− SF − SH)] , (9)

∆ > u(1
2
) + (1 + r)2rγ−1e1(3− SF − SH). (10)

Assumption (8) ensures that not all houses are held by agents of age 3 when housing prices

are constant. Assumptions (9) and (10) will ensure that in steady state, each agent of age

2, 3 or 4 achieves a better trade-off between a dwelling’s utility and its effective cost when

they own a flat rather than no property, and all members of cohorts 2 and 3 achieve a still

better trade-off when they own a house.

In fact, the right-hand side of (9) will turn out to be an upper bound, at steady-state

prices, on the cost of choosing a house rather than a flat at age 1, 2, or 3, evaluated in terms

of numeraire consumption at age 4. Similarly, (1 + r)2rγ−1e1(3 − SF − SH) is an upper

bound on the cost of acquiring a flat, evaluated in terms of numeraire consumption at age

4.

8 Formally, under (2) and (5), e1(i) ≥ γph implies e(i)−rph > (2+r)γph−rph = γph +[(1+r)γ−r]ph >
γph.
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4 Recursive Equilibrium

The state of the economy at the beginning of a period is given by the collection of dis-

tribution functions x = (M∅,2,MF,2,MH,2,M∅,3,MF,3,MH,3,M∅,4,MF,4,MH,4) defined on

[0, 1] × IR, where Mh,j(i, w) is the measure of households of age j who own a property

of type h, and have an endowment index lower than or equal to i and non-housing wealth

lower than or equal to w. We do not need to include cohort 1 here as it is born without

any wealth or property.

The state of an individual household of age 1 is simply given by its endowment index

i. At age 2, the state of a household further comprises the dwelling h and the non-housing

wealth w with which it enters the given period. At ages 3 and 4, the preference index m

also becomes part of the state of the household.

In a recursive equilibrium, prices are deterministic time-invariant functions of the state

of the economy. This implies that household decisions depend on their individual state

variables and, through prices, on the state of the economy as a whole.

Definition 1. A recursive competitive equilibrium consists of

• a state space X, that is, a set of states x as defined above,

• decision rules c1(i, x), c2(i, h, w, x), c3(i,m, h, w, x) and c4(i, m, h, w, x) for numeraire

consumption,

• decision rules h1(i, x), h2(i, h, w, x), h3(i,m, h, w, x) and h4(i,m, h, w, x) for housing

purchases,

• decision rules w1(i, x), w2(i, h, w, x), w3(i,m, h, w, x) and w4(i,m, h, w, x) for next-

period non-housing wealth,

• value functions v1(i, x), v2(i, h, w, x), v3(i,m, h, w, x) and v4(i,m, h, w, x),

• property price functions pF (x) and pH(x), and

• a law of motion x′ = φ(x) for the state of the economy

such that the following conditions hold:

(a) Given the law of motion for the state of the economy and the property price functions,

the decision rules solve agents’ maximization problems and generate the respective

value functions. That is, for all x ∈ X, and with Γj(i, h, w, x) denoting the set of all

12



(c, h′, w′) ∈ IR+ ×H× IR such that:

c + ph′(x) +
w′

1 + r
≤ ej(i) + ph(x) + w, (11)

w′

1 + r
≥ (γ − 1)ph′(x), (12)

(a.1) c = c1(i, x), h′ = h1(i, x) and w′ = w1(i, x) solve

v1(i, x) = max
(c,h′,w′)∈Γ1(i,∅,0,x)

{
c + v2(i, h

′, w′, φ(x))
}

;

(a.2) c = c2(i, h, w, x), h′ = h2(i, h, w, x) and w′ = w2(i, h, w, x) solve

v2(i, h, w, x) = max
(c,h′,w′)∈Γ2(i,h,w,x)

{
c + U(h, 1

2
) +

∫ 1

0

v3(i,m, h′, w′, φ(x)) dm

}
;

(a.3) c = c3(i,m, h, w, x), h′ = h3(i,m, h, w, x) and w′ = w3(i,m, h, w, x) solve

v3(i,m, h, w, x) = max
(c,h′,w′)∈Γ3(i,h,w,x)

{
c + U(h, 1

2
) + v4(i,m, h′, w′, φ(x))

}
;

(a.4) c = c4(i,m, h, w, x), h′ = h4(i,m, h, w, x) and w′ = w4(i,m, h, w, x) solve

v4(i,m, h, w, x) = max
(c,h′,w′)∈Γ4(i,h,w,x)

{
c + U(h,m)

}
;

where it is understood that the right-hand side equals −∞ if Γ4(i, h, w, x) is

empty.9

(b) Housing markets clear. That is, for all x ∈ X:

SF =

∫ 1

0

1h1(i,x)=F di +
∑

h∈H

∫

[0,1]×IR

1h2(i,h,w,x)=F dMh,2(i, w)

+
∑

h∈H

∫ 1

0

∫

[0,1]×IR

1h3(i,m,h,w,x)=F dMh,3(i, w) dm, (13)

SH =

∫ 1

0

1h1(i,x)=H di +
∑

h∈H

∫

[0,1]×IR

1h2(i,h,w,x)=H dMh,2(i, w)

+
∑

h∈H

∫ 1

0

∫

[0,1]×IR

1h3(i,m,h,w,x)=H dMh,3(i, w) dm, (14)

where 1ξ is the usual indicator function for statement ξ.

9Clearly, h4(i,m, h,w, x) = ∅ and w4(i,m, h, w, x) = 0 are optimal. This is taken into account in the
formulation of the market clearing conditions in (b).
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(c) The law of motion of the state of the economy is generated by agents’ decision rules.

That is:

φ




M∅,2
MF,2

MH,2

M∅,3
MF,3

MH,3

M∅,4
MF,4

MH,4




(i, w) =




∫ i

0
1h1(y, x)=∅1w1(y, x)≤w dy∫ i

0
1h1(y,x)=F 1w1(y,x)≤w dy∫ i

0
1h1(y,x)=H1w1(y,x)≤w dy∑

h∈H
∫

[0,i]×IR
1h2(y,h,z,x)=∅ 1w2(y,h,z,x)≤w dMh,2(y, z)∑

h∈H
∫

[0,i]×IR
1h2(y,h,z,x)=F 1w2(y,h,z,x)≤w dMh,2(y, z)∑

h∈H
∫

[0,i]×IR
1h2(y,h,z,x)=H 1w2(y,h,z,x)≤w dMh,2(y, z)∑

h∈H
∫ 1

0

∫
[0,i]×IR

1h3(y,m,h,z,x)=∅ 1w3(y,m,h,z,x)≤w dMh,3(y, z) dm∑
h∈H

∫ 1

0

∫
[0,i]×IR

1h3(y,m,h,z,x)=F 1w3(y,m,h,z,x)≤w dMh,3(y, z) dm∑
h∈H

∫ 1

0

∫
[0,i]×IR

1h3(y,m,h,z,x)=H 1w3(y,m,h,z,x)≤w dMh,3(y, z) dm




.

5 Steady-State Equilibrium

Definition 2. A steady-state equilibrium is a recursive competitive equilibrium with a

singleton state space X = {x∗}.

In particular, every fixed point of the law of motion of a recursive competitive equilibrium

gives rise to a steady-state equilibrium.

In the remainder of the paper, we adopt the following convention. Given a continuous

and strictly increasing function f : [0, 1] → IR, we set f−1(x) = 1 for x > f(1), and

f−1(x) = 0 for x < f(0).

Proposition 1 There is a unique steady-state equilibrium. The price of flats in this equi-

librium is

p∗F = γ−1e1(3− SF − SH). (15)

The price of houses, p∗H , solves

3− SH = e−1
1 (γp∗H) + min

{
e−1
1 (γp∗F ), e−1(γp∗H)

}

+ e−1(rp∗F + γp∗H)− e−1
1 (γp∗F ) + u−1(r[p∗H − p∗F ]). (16)

The steady-state allocation of properties at the beginning of each period is determined by the

critical endowment indices

i ∗F = e−1
1 (γp∗F ) = 3− SF − SH , (17)

i ∗H = e−1
1 (γp∗H), (18)

i ∗∅H = e−1(γp∗H), (19)

i ∗FH = e−1(rp∗F + γp∗H) (20)
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and the critical preference index

m ∗
H = u−1(r[p∗H − p∗F ]), (21)

where 0 < i ∗F < 1
2

< i ∗FH < i ∗H ≤ 1, 0 < i ∗∅H < i ∗FH , and 0 < m ∗
H < 1

2
:

• Age 2 agents with endowment index i < i ∗F hold no property; those with i ∗F < i < i ∗H
hold a flat; and those with i > i ∗H hold a house.

• Age 3 agents with endowment index i < min{i ∗F , i ∗∅H} or i ∗F < i < i ∗FH hold a flat;

those with min{i ∗F , i ∗∅H} < i < i ∗F or i > i ∗FH hold a house.

• Age 4 agents with preference index m < m ∗
H hold a flat; those with m > m ∗

H hold a

house.

The steady-state measures of flats and houses bought and sold each period are

n ∗F = i ∗H − i ∗F + min{i ∗F , i ∗∅H}+ (i ∗F −min{i ∗F , i ∗∅H}+ 1− i ∗FH) m ∗
H , (22)

n ∗H = 1 + i ∗F −min{i ∗F , i ∗∅H} − i ∗FH + (min{i ∗F , i ∗∅H}+ i ∗FH − i ∗F ) (1−m ∗
H). (23)

The critical endowment and preference indices identified in Proposition 1 are sufficient

to compute the state of the economy x∗ associated with the steady-state equilibrium. First,

as all non-housing consumption is postponed to age 4, a household’s state variable w at ages

2, 3 and 4 is determined fully by the history of endowments and housing choices. Second,

the critical indices are enough to determine almost every household’s history of housing

choices from its endowment index i and preference index m.10

Figure 2 depicts the steady-state allocation of properties to households at the beginning

of any period. The endowment index i increases from 0 to 1 as we move right. The preference

index m increases as we move up. This allocation is such that households complete up to

three housing transactions over the life cycle. Some buy their first property at age 1 (i ≥ i ∗F ),

and all others at age 2. Repeat buyers are either of age 2 (i ≥ i ∗FH) or age 3 (i ≥ i ∗FH and

m < m ∗
H , or i < i ∗FH and m > m ∗

H). Some households purchase only one home over

the course of their lives (for example, i ∗F ≤ i < i ∗FH and m < m ∗
H), some purchase three

(i ∗FH ≤ i < i ∗H and m < m ∗
H), all others two.

These patterns of life-cycle behaviour match the empirical observations in both the U.S.

and the U.K. That is, (1) first-time buyers tend to be younger than repeat buyers; (2)

first-time buyers tend to buy cheaper properties than repeat buyers; (3) some households

move to a more expensive property within a few years of their first purchase; and (4) some

10The allocation of dwellings to the null set of age 4 households with preference index m = mH is
arbitrary.
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Age:

- i

6
m

2

i ∗F i ∗H

∅ F H

3

6
min{i ∗F , i ∗∅H}

i ∗F i ∗FH

F H F H

4

m ∗
H

F

H

Figure 2: Steady-state equilibrium allocation of properties

households move to a home cheaper than the one they sell. Computing the measure of

households that buy flats and houses in each cohort and adding up across cohorts yields

the expressions (22)–(23) for the steady-state transaction volumes.

Proposition 1 allows for i ∗H = 1 or i∅H ≥ i ∗F , both leading to a simpler allocation of

properties than depicted in Figure 2. If i ∗H = 1, there are no house purchases at age 1; if

i∅H ≥ i ∗F , there are no first-time purchases of houses at age 2. As i ∗F < i ∗FH < 1, however,

there are always some house purchases by households that owned a flat before. Given the

down-payment constraint, this creates a channel for capital gains or losses on flats to affect

the transition dynamics of our model economy.

The proof of Proposition 1 establishes that three statements must hold in any steady-

state equilibrium: (1) When weighing housing utility against user costs, all age 1 and 2

households find it optimal to acquire as much housing as possible, given their current wealth

and the down-payment constraint; (2) all age 2 households can afford the down payment on

a flat; and (3) when weighing housing utility against user costs, all age 3 households find it

optimal to acquire either a flat or a house, and in this choice they are not restricted by the

down-payment constraint.

These statements imply that the households that do not acquire any property must be

the poorest households in the economy, and hence households of age 1. Since there must be

a measure 3− SH − SF of them by market clearing, the steady-state price of flats must be

such that the households of age 1 with endowment index 3−SH−SF are just able to afford

the down payment on a flat. This yields the steady-state flat price p∗F defined in (15).

The three statements also imply that in any steady-state equilibrium, housing purchases

at age 1 and 2 are driven entirely by the credit constraint, while housing purchases at age

3 are determined entirely by preferences. This is why the beginning-of-period steady-state

allocation of properties to cohorts 2 and 3 is determined entirely by the endowment indices

iF and iH of the agents who are just able to finance a flat or a house, respectively, at age 1

and by the endowment indices i∅H and iFH of the agents who are just able to finance a house

16



at age 2, having acquired no property or a flat, respectively, at age 1. The allocation of

properties to cohort 4 is determined entirely by the preference index mH of the households

who are indifferent between holding a flat and holding a house, given the steady-state user

costs of each.

Using these critical indices to compute the total demand for houses and imposing market

clearing yields equation (16) for the steady-state price of houses. Lemma A.1 in the Ap-

pendix shows that this equation has a unique solution p∗H and in particular that p∗H > p∗F .

It is then straightforward to verify that the prices p∗F and p∗H together with the housing

decisions derived from the critical indices (17)–(21) give rise to a unique steady-state equi-

librium.

To interpret equation (16), note that its left-hand side is the equilibrium measure of

agents of age 1 to 3 who do not acquire a house. On the right-hand side, e−1
1 is the

distribution function of age 1 endowments; e−1 is the distribution function of accumulated

age 1 and 2 endowments; and u−1 is the distribution function of utility premiums of houses

relative to flats after age 3.

The first term on the right-hand side is thus the measure of age 1 agents who cannot

afford the down payment on a house. The second term is the measure of age 2 agents who at

age 1 could not afford the down payment on a flat and now cannot afford the down payment

on a house. The difference e−1(rp∗F + γp∗H) − e−1
1 (γp∗F ), which is shown to be positive in

Lemma A.1, is the measure of age 2 agents who at age 1 could afford the down payment on

a flat but, having held the flat from the last until the current period and having incurred

the user cost rp∗F , cannot afford the down payment on a house now. The last term on the

right-hand side of (16) is the measure of age 3 agents who, at constant prices p∗F and p∗H ,

prefer a flat to a house.

6 Permanent Changes in Endowments

Starting from the steady state described in the previous section, we want to investigate the

dynamic response of equilibrium prices and numbers of transactions to a small unanticipated

permanent change in agents’ endowments. We focus on proportional changes that multiply

each agent’s endowment by the same factor. We first discuss how steady-state prices change

with endowments. Then, we establish that for sufficiently small changes in endowments,

there is a recursive competitive equilibrium that reaches the new steady state within five

periods, with prices and the housing allocation settling down within two periods.
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6.1 Comparison of steady states

Consider endowment profiles {zej}4
j=1 with a constant z > 0 such that all the condi-

tions set out in Section 3.3 continue to hold. By Proposition 1, there is again a unique

steady-state equilibrium, featuring an allocation of properties as in Figure 2. We de-

note variables pertaining to this new steady state by the superscript ∗∗. Thus, we have

p ∗∗F = γ−1ze1(3− SF − SH) by the analogue of equation (15), while the price of houses p ∗∗H

is uniquely determined by the analogue of equation (16):

3− SH = e−1
1 (z−1γp ∗∗H ) + min

{
e−1
1 (z−1γp ∗∗F ), e−1(z−1γp ∗∗H )

}

+ e−1(z−1[rp ∗∗F + γp ∗∗H ])− e−1
1 (z−1γp ∗∗F ) + u−1(r[p ∗∗H − p ∗∗F ]). (24)

The corresponding critical endowment and preference indices are

i ∗∗F = e−1
1 (z−1γp ∗∗F ) = 3− SF − SH , (25)

i ∗∗H = e−1
1 (z−1γp ∗∗H ), (26)

i ∗∗∅H = e−1(z−1γp ∗∗H ), (27)

i ∗∗FH = e−1(z−1[rp ∗∗F + γp ∗∗H ]), (28)

m ∗∗
H = u−1(r[p ∗∗H − p ∗∗F ]). (29)

The following proposition compares steady-state prices:

Proposition 2 The steady-state price of flats is proportional to endowments:

p ∗∗F = zp∗F .

The steady-state price of houses changes less than proportionally with endowments, but

more, in absolute terms, than the price of flats:

p∗H + (z − 1)p∗F < p ∗∗H < zp∗H if z > 1,

zp∗H < p ∗∗H < p∗H + (z − 1)p∗F if z < 1.

Proportionality of the steady-state price of flats to z follows because this price is pro-

portional to the endowment of the age 1 households with endowment index 3 − SF − SH .

If the steady-state price of houses were to change proportionally to z as well, we would see

unchanged demand for houses by households of age 1 and 2, but, because of a proportional

change in the user cost difference between houses and flats, a decline (for z > 1) or increase

(for z < 1) in the demand by age 3 households. If the steady-state price of houses were to

change by the same amount as the steady-state price of flats, keeping the user cost differ-

ence unchanged, we would see unchanged demand for houses by age 3 households, but an
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increase (for z > 1) or decline (for z < 1) in the demand by households of age 1 and 2.

As both these scenarios are incompatible with market clearing in the new steady state, we

obtain the second part of Proposition 2.

6.2 Transition to the new steady state

Let p∗F and x∗ be the price of flats and the state of the economy in the steady-state equilib-

rium for endowment profiles {ej}4
j=1. Take this state as the initial condition of an economy

with endowment profiles {zej}4
j=1. For z sufficiently close to 1, we construct a recursive com-

petitive equilibrium that reaches the steady state for endowment profiles {zej}4
j=1 within

five periods, with housing prices and the housing allocation settling down within two pe-

riods. As before, we write x∗∗, p ∗∗F and p ∗∗H for the state and the property prices in the

steady-state equilibrium for endowment profiles {zej}4
j=1.

Proposition 3 For z sufficiently close to 1, an economy with endowment profiles {zej}4
j=1

and initial condition x∗ admits a recursive competitive equilibrium with

• law of motion φ(x∗) = x1, φ(x1) = x2, φ(x2) = x3, φ(x3) = x∗∗ and φ(x∗∗) = x∗∗,

• flat prices pF (x) = p ∗∗F = zp∗F for all x ∈ {x∗, x1, x2, x3, x∗∗},

• house prices pH(x∗) = p+
H and pH(x) = p ∗∗H for all x ∈ {x1, x2, x3, x∗∗}, where p+

H is

the unique solution of

3− SH = e−1
1 (z−1γp+

H) + min
{
e−1
1 (γp∗F ), e−1

+ (γp+
H)

}

+ e−1
+ ((1 + r)p∗F − p ∗∗F + γp+

H)− e−1
1 (γp∗F ) (30)

+ u−1((1 + r)p+
H − p ∗∗H − rp ∗∗F ),

and e+(i) = (1 + r) e1(i) + ze2(i).

The idea behind the construction of this equilibrium is that for sufficiently small changes

in endowments, the allocation of properties in all states along the transition should be of

the same type as in the initial state x∗; that is, allocations should be fully determined by

critical endowment and preference indices as shown in Figure 2. Flat prices should continue

to be determined through the requirement that a measure 3−SF −SH of age 1 households

are unable to acquire any property because of a binding credit constraint. This means that

in all states along the transition, flat prices should be proportional to the endowment of the

age 1 households with endowment index 3 − SF − SH , and thus adjust within one period,

changing proportionally with endowments.
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With flat prices determined by contemporaneous age 1 endowments, the only lagged

variables needed to compute the critical indices that determine the demand for houses are

once-lagged age 1 endowments. These enter directly into i∅H , the endowment index of the

households that are just able to acquire a house at age 2 as their first property. In addition,

once-lagged age 1 endowments enter directly and through the lagged price of flats into iFH ,

the endowment index of the households that are just able to move from a flat to a house at

age 2. Thus, the price of houses and these critical indices should reach their new steady-

state levels within two periods – the time it takes for once-lagged age 1 endowments to

reach their new level.

It takes up to five periods for the state of the economy to settle on the new steady state

because the price of houses at the time endowments change, pH(x∗), is different from the

new steady-state price of houses. If some households of age 1 buy a house at that price,

the joint income and wealth distribution keeps adjusting until these households leave the

economy four periods later.

We can interpret equation (30) much like equation (16). Note that e+(i) corresponds to

the endowments accumulated after two periods of life by a household that is age 1 under

endowment profiles {ej}4
j=1 and age 2 under endowment profiles {zej}4

j=1. The difference

e−1
+ ((1+r)p∗F −p ∗∗F +γp+

H)−e−1
1 (γp∗F ) is the measure of age 2 agents who own a flat in state

x∗ and cannot afford the down payment on a house at price p+
H . Here, we take advantage

of the fact that in state x∗, an age 2 household’s endowment index i and the prices p∗F and

p∗H determine the household’s dwelling h and non-housing wealth w at the beginning of

the period. In the case of an age 2 flat owner, we know that its endowment index satisfies

e1(i) ≥ γp∗F and that its non-housing wealth is w = (1 + r)[e1(i) − p∗F ]. With the changed

endowments and property prices, this household can afford the down payment on a house

if and only if w + ze2(i) + p ∗∗F ≥ γp+
H , or e+(i) ≥ (1 + r)p∗F − p ∗∗F + γp+

H . The last term on

the right-hand side of (30) is the measure of age 3 agents who, anticipating the user costs

(1 + r)p+
H − p ∗∗H and rp ∗∗F for houses and flats, respectively, prefer a flat to a house.

The critical endowment and preference indices that characterize the allocation of prop-

erties in state x1 are

i+F = e−1
1 (z−1γp ∗∗F ) = 3− SF − SH , (31)

i+H = e−1
1 (z−1γp+

H), (32)

i+∅H = e−1
+ (γp+

H), (33)

i+FH = e−1
+ ((1 + r)p∗F − p ∗∗F + γp+

H), (34)

m+
H = u−1((1 + r)p+

H − p ∗∗H − rp ∗∗F ). (35)
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As i+F = i ∗F = i ∗∗F = 3 − SF − SH , we henceforth write simply iF for this cut-off. The

transaction volumes arising in the transition from x∗ to x1 are

n+
F = i+H − iF + min{iF , i+∅H}+ (iF −min{iF , i ∗∅H}+ 1− i ∗FH) m+

H , (36)

n+
H = 1− i+H+ iF−min{iF , i+∅H}+ i ∗H− i+FH+ (min{iF , i ∗∅H}+ i ∗FH− iF)(1−m+

H). (37)

These numbers can be directly read off Figure 2 and its counterpart in state x1.

7 Price and Volume Dynamics

We can now analyse the reaction of property prices and transaction volumes to a small

change in endowments. Suppose the economy is in steady-state equilibrium with endowment

profiles {ej}4
j=1. At time t = 0, endowment profiles shift permanently to {zej}4

j=1, with z

close enough to 1 that Proposition 3 applies.11 From t = 0 on, the economy evolves according

to the recursive competitive equilibrium constructed above. The price of flats changes

proportionally with endowments at t = 0, reaching its new steady-state level p ∗∗F = zp∗F
immediately.

As to the price of houses at t = 0, it is straightforward to see that p+
H > p∗H if z > 1, and

p+
H < p∗H if z < 1. Suppose, for example, that endowments rise (z > 1). First, the demand

for houses from first-time buyers of age 1 and 2 shifts upward. Second, flat owners of age 2

have a dual advantage over their counterparts in the initial steady state: They enjoy both

higher endowments in the second period of their lives and capital gains on their flats. This

causes the demand for houses from repeat buyers of age 2 to shift upward. Third, the higher

price of flats and the expectation of a higher price differential between houses and flats in

the future (implied by the second part of Proposition 2) cause the demand for houses from

age 3 households to shift upward. Thus the price of houses must rise.

Note that the change in the price of houses depends on the change in age 1 endowments

in two ways: first, through the demand from credit-constrained age 1 buyers, and second,

through the change in the price of flats. Age 1 endowments are thus critical to both flat

and house price dynamics in our model.

How much does the price of houses change, and what does this mean for the concomitant

change in the number of transactions? We start the analysis with the case where capital

gains and losses on flats have the strongest possible effect on the dynamics of prices and

transaction volumes.

11In other words, we analyze the response of the economy to an unexpected change in endowments. By
continuity, the results obtained here remain if households attach a low positive probability to the change
in endowments.
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Definition 3. We say that all house purchases are repeat purchases if i ∗H = i+H = i ∗∗H = 1

and min{i ∗∅H , i+∅H , i ∗∗∅H} ≥ iF .12 We say that the price of houses overshoots its new steady

state level if |p+
H − p∗H | > |p ∗∗H − p∗H |. Finally, we say that transaction volumes move with

prices if the differences n+
H − n ∗H , n+

F − n ∗F , p+
H − p∗H and p+

F − p∗F all have the same sign.

Proposition 4 Suppose that all house purchases are repeat purchases. Then, the price of

houses overshoots its new steady-state level if and only if

ze1(i
∗∗
FH) < p ∗∗F , (38)

that is, if in the new steady state the price of flats exceeds the age 1 wealth of those households

that are the marginal house buyers at age 2. If the price of houses overshoots, transaction

volumes move with prices.

A sufficient condition for (38) in terms of the primitives of the model is the inequality

e1(1) < γ−1e1(3− SF − SH).

To provide some intuition for this result, we first note that in the absence of first-time

buyers of houses, the demand for houses comes entirely from flat owners of age 2 and

households of age 3; market clearing for houses simply means i ∗FH + m ∗
H = i+FH + m+

H =

i ∗∗FH + m ∗∗
H = 2− SH . What is more, the change in the price of houses from pH(x∗) = p+

H to

pH(x1) = p ∗∗H is driven entirely by the wealth of the age 2 owners of flats. This is because

age 3 households’ willingness to pay for a house (which depends on the current price of flats

and predicted future property prices) is the same in the two states x∗ and x1, and hence in

periods t = 0 and t = 1.

Now assume z > 1 for concreteness, and consider an age 2 household that owns a flat

at the beginning of period 1. One period earlier, this household earned ze1(i) and bought

its flat at the price p ∗∗F . Contrast this with an age 2 household born one period earlier that

has the same income index and owns a flat at the beginning of period 0.

When this household was age 1 (and the economy was still in the old steady state),

it earned e1(i) and bought its flat at the price p∗F < p ∗∗F ; that is, it earned less than the

first household, but bought its flat more cheaply. Under condition (38), the endowment

disadvantage is more than compensated by the price advantage; as both income and the

price of flats rise by the same proportion, and the income is lower than the price of flats,

the price rises by more than the income in absolute terms. Given that the resale value of a

flat is the same in periods 0 and 1, the household that is age 2 in period 0 is thus wealthier.

12With z close to 1, a sufficient condition for this in terms of the primitives of the model is e( 3
2 − SH) ≥

max{e1(1), e(3−SF−SH)}+rγ−1e1(3−SF−SH), which is stronger than assumption (7). In fact, arguing as
in the proof of Lemma A.1, one sees easily that this inequality implies p∗H > γ−1 max{e1(1), e(3−SF−SH)}.
By continuity, z close to 1 then implies the same lower bound for p+

H and p ∗∗H .
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As this translates into a greater ability to pay for a house, the equilibrium price of houses

must be higher in period 0, so p+
H > p ∗∗H .

That is, owners of flats who reach age 2 as endowments rise enjoy capital gains, while

those one period later do not. Under condition (38), these capital gains outweigh the

endowment disadvantage at age 1 and cause the price of houses to overshoot.

Because of this overshooting, the difference between the costs of holding a house and

holding a flat from period 0 to period 1, (1 + r)p+
H − p ∗∗H − rp ∗∗F , exceeds the corresponding

difference in the new steady state, r[p ∗∗H − p ∗∗F ], which by the second part of Proposition 2

in turn exceeds the corresponding difference in the initial steady state, r[p∗H − p∗F ]. This

means that the critical preference index m+
H exceeds m ∗

H .

Relative to the initial steady state, the measure of age 3 house owners who buy a flat

in period 0 thus increases by (1 − i ∗FH)(m+
H −m ∗

H); as the measure of first-time purchases

of flats is constant and equal to 1, the transaction volume for flats increases. The measure

of age 2 owners of flats who buy a house in period 0 increases by i ∗FH − i+FH = m+
H −m ∗

H ,

while the number of age 3 flat owners who buy a house declines by i ∗FH (m ∗
H −m+

H).

Figure 3 compares the resulting allocation of dwellings to households in period 1 and

the allocation in the initial steady state. The dark shaded area at age 3 results from the

increase in house purchases by age 2 households in period 0. The light shaded area at age

4 results from the decline in house purchases by age 3 households, and the dark shaded

area at age 4 from the increase in flat purchases by age 3 households. The rise in repeat

purchases at age 2 is the dominant force; it causes the transaction volume for houses to rise

as well.

Age:

- i

6
m

2

iF

∅ F

3

i+FH

i ∗FH

F H

4

m ∗
H

i∗FH

m+
H

F

H

Figure 3: Allocations of dwellings and transactions

The intuition behind the rise in transactions is that for house prices to overshoot, age 2

flat owners’ ability to pay for houses must have risen strongly. This increased ability to pay

allows more of these households to trade up, thereby causing a surge in house transactions.
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At the same time, more age 3 households trade down when the house price rises strongly,

which causes a surge in flat transactions.13

Note that the increase in the number of houses owned by the young does not mean a

one-for-one increase in the number of older households trading down from a house to a flat.

Instead, the shift in the distribution of houses in favour of the young is moderated by those

age 3 households that were planning to move to a house for preference reasons but now

choose to remain in their flat because houses have become more expensive.

The absence of first-time buyers of houses assumed in Proposition 4 makes capital gains

or losses on flats as strong a driver of equilibrium dynamics as possible. The impact of these

capital gains or losses is weaker in the presence of first-time buyers of houses because their

ability to pay for a house does not depend on the flat price.14

Still, as the result below shows, it remains true that whenever the house price reacts

strongly enough, transaction volumes move with prices.

Definition 4. We say that the price of houses overreacts to the change in endowments if

|p+
H − p∗H | > |z − 1|p∗H .

By the second part of Proposition 2, this is a stronger condition than overshooting.

Proposition 5 If the price of houses overreacts, transaction volumes move with prices.

The intuition for this result is essentially the same as that given after Proposition 4.

If the house price overreacts to rising endowments, capital gains for credit-constrained flat

owners must have been large enough to compensate for the reduced demand for houses

by credit-constrained first-time buyers and unconstrained repeat buyers. These capital

gains allow more credit-constrained flat owners to trade up, which produces a surge in the

transaction volume for houses. At the same time, more credit-constrained first-time buyers

acquire flats and more unconstrained repeat buyers trade down from a house to a flat, so

the transaction volume for flats rises as well.

It remains to identify conditions for overreaction of the house price. If z > 1, we have

p+
H > zp∗H if and only if the right-hand side of (30) with p+

H replaced by zp∗H is smaller

13Note that overshooting is not necessary to generate the co-movement of prices and volumes. In fact, it
is trivial to verify from (21) and (35) that m+

H −m ∗
H has the same sign as p+

H − p∗H and p+
F − p∗F if and only

if
|p+

H − p∗H | >
1

1 + r
|p ∗∗H − p∗H |+

r

1 + r
|p ∗∗F − p∗F |,

which is somewhat weaker than overshooting by the second part of Proposition 2.
14For example, condition (38) is necessary but no longer sufficient for overshooting of house prices when

some house purchases at age 2 are first-time purchases.
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than the left-hand side. Combining this with the characterization of p∗H in (16), we see that

p+
H > zp∗H if and only if

e−1(rp∗F + γp∗H)− e−1
+ ((1 + r)p∗F − p ∗∗F + γzp∗H)

> min
{
iF , e−1

+ (γzp∗H)
}−min

{
iF , e−1(γp∗H)

}
(39)

+ u−1((1 + r)zp∗H − p ∗∗H − rp ∗∗F )− u−1(r[p∗H − p∗F ]).

It is straightforward to verify that the difference in the second line of (39) is non-negative,

while the difference in the third line is positive. So, a necessary condition for overreaction of

house prices to increasing endowments is that the left-hand side of (39) be strictly positive.

Proceeding as in the proof of Proposition 4, one sees easily that this is equivalent to the

inequality e1(i
∗
FH) < p∗F , which is reminiscent of condition (38) for overshooting when there

are no first-time buyers of houses, and has the same intuitive interpretation.

The difference in the second line of (39) is trivially lower than iF −min{iF , i ∗∅H}, which

is the measure of age 2 first-time buyers of houses in the initial steady state. Overreaction

in the price of houses is more likely when that measure is small.

Finally, the difference in the third line of (39) shows that overreaction in the price of

houses is more likely when the density of utility premiums of houses over flats is small

around r[p∗H − p∗F ].

We are overall likely to observe overreaction in prices and a positive correlation between

prices and transactions when: (1) few first-time buyers of flats pay cash for them; (2) there

are few first-time purchases of houses; and (3) changes in the relative price of homes have

only a limited impact on the willingness of unconstrained households to move along the

property ladder.

8 Conclusion

We identify a new driver of housing prices: the ability of young households to afford the

down payment on a starter home. We present evidence of a strong and positive correlation

between housing prices and one of the determinants of this ability, the income of young

households.

We identify a new channel whereby changes in income affect housing price levels, the

relative prices of properties and housing transactions. Our model explains conditions under

which we expect prices to overshoot, to overreact to changes in income, and to display

a positive correlation with housing transactions. Critical in determining whether such

patterns occur in equilibrium is the extent to which changes in income affect the number

of credit-constrained owners moving up the property ladder.
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These results suggest avenues for further empirical research on housing consumption and

housing market fluctuations. A number of papers consider the effects of housing capital

gains or losses on household moving behaviour; see, for example, Genesove and Mayer

(1997), Henley (1998), Chan (2001), Engelhardt (2003) and Seslen (2004). None of them

considers this question conditional on purchase of the current home under a binding credit

constraint. Thus, the empirical literature does not speak to the capital gains channel we

identify in our model.

More could be learned from a focus on the factors identified as determinants of the

strength of the capital gains channel. For example, Lamont and Stein (1999) find that

housing prices are more likely to display overreaction to income shocks in Metropolitan

Statistical Areas (MSAs) where a large proportion of households have a high level of debt

relative to the value of their home. The distribution of debt is of course determined endoge-

nously. It would be interesting to see whether differences in the distribution of debt across

MSAs can be related to exogenous factors that determine the response of prices to income

changes in the model.

The model is analytically tractable despite its dynamic nature and the presence of credit

constraints, two assets, and two dimensions of household heterogeneity. This allows us to

provide a transparent characterization of basic forces that drive the housing market. Our

simplifying assumptions deserve some comments, however.

We assume households live for four periods. This does not mean we think of each

model period as representing a fourth of a typical household’s life span. Rather, four is

the minimum number of periods required to capture interactions in the market of first-

time buyers, credit-constrained repeat buyers, and unconstrained households that might

move due to preference reasons. Taking the model to data would require an increase in

the number of periods that households live. This would obviously increase the number of

income and price lags relevant to current prices and the current allocation. The relevant

number of lags would be determined by how long it takes credit-constrained households to

accumulate their down payments and climb the property ladder.

The model abstracts from “horizontal” transactions: moves by repeat buyers between

two homes within the same price range. In Ortalo-Magné and Rady (2000), we provide

evidence that fluctuations in the number of “vertical” transactions up and down the property

ladder accounted for most of the fluctuations in housing transactions in England and Wales

over the past three decades.

The model also abstracts from the option to rent a home. If rental properties are

different from owner-occupied properties and conversion is costly, our results extend readily.

In Ortalo-Magné and Rady (1999), we study the effects of income growth and credit market
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liberalization in a simpler variant of the model where starter homes can be either rented or

owner-occupied, with households preferring the latter. Chiuri and Jappelli (2003) provide

cross-country evidence in support of our predictions with regard to variation in the owner-

occupancy rates of different cohorts across countries. If all homes can be either rented or

owned and provide the same utility flow either way, then credit constraints are irrelevant

and our results disappear.

We assume an exogenous and constant interest rate, and we do not consider a number

of features of mortgage contracts. We also focus on the consumption demand for housing,

not any investment motive households may have. Relaxing some of our assumptions should

not affect the basic forces we identify.
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Appendix

Lemma A.1 shows that equation (16) has a unique solution and in particular that p∗H > p∗F .

Lemma A.1 Equation (16) has a unique solution p∗H , which satisfies the inequalities p∗F < p∗H and 1
2 <

e−1(rp∗F + γp∗H) < 1.

Proof: The function f : IR → IR defined by

f(pH) = e−1
1 (γpH) + min

{
e−1
1 (γp∗F ), e−1(γpH)

}

+ e−1(rp∗F + γpH)− e−1
1 (γp∗F ) + u−1(r[pH − p∗F ]). (A.1)

is continuous and weakly increasing, constant at the negative level −e−1
1 (γp∗F ) for small pH , constant at

the level 3 for large pH , and strictly increasing everywhere else. So there is a unique real number p∗H such
that f(p∗H) = 3− SH .

Note that e−1
1 (γpH) ≤ 1 and min

{
e−1
1 (γp∗F ), e−1(γpH)

}− e−1
1 (γp∗F ) ≤ 0 for all pH . This implies that

f(γ−1[e( 1
2 )− rp∗F ]) ≤ 3

2 + u−1(rγ−1[e( 1
2 )− rp∗F − γp∗F ]). (A.2)

As e( 1
2 )− rp∗F − γp∗F < e(1)− γp∗F = e(1)− e1(3− SF − SH), assumption (9) implies that the second term

on the right-hand side of (A.2) is strictly smaller than 1
2 . So we have f(γ−1[e( 1

2 ) − rp∗F ]) < 2 < 3 − SH

by the second part of assumption (1). This proves p∗H > γ−1[e( 1
2 ) − rp∗F ] or e−1(rp∗F + γp∗H) > 1

2 . As
e( 1

2 ) > e(3 − SF − SH) > (1 + rγ−1)e1(3 − SF − SH) by assumptions (1)–(2) and (4)–(5), we also have
p∗H > p∗F .

By assumption (7), e(1)− rp∗F exceeds both e1(1) and e(3− SF − SH), so we have

f(γ−1[e(1)− rp∗F ]) = 2 + u−1(rγ−1[e(1)− rp∗F − γp∗F ]). (A.3)

As e(1)− rp∗F > e1(3−SF −SH) = γp∗F by assumption (7) again, the second term on the right-hand side of
(A.3) exceeds u−1(0), which by assumption (8) is strictly larger than 1−SH . So we have f(γ−1[e(1)−rp∗F ]) >
3− SH , which proves p∗H < γ−1[e(1)− rp∗F ] or e−1(rp∗F + γp∗H) < 1.

Note that this result implies e−1(rp∗F + γp∗H) > e−1
1 (γp∗F ) as the latter equals 3 − SF − SH , which is

smaller than 1
2 by the first part of assumption (1).

Proof of Proposition 1: Consider a steady-state equilibrium with flat price pF and house price pH .
Clearly, both these prices are strictly positive. The time-invariant ex post costs of holding a property from
one period to the next are ηF = rpF and ηH = rpH , respectively.

Suppose that pF ≥ pH and thus ηF ≥ ηH . Then, there is no demand for flats from agents of age 1 or 2
since houses yield higher utility to these agents and are not more expensive to hold than flats. Moreover,
ηH − ηF ≤ 0 < u(1

2 ) by assumption (9), so fewer than half of all age 3 agents demand a flat (whether they
are credit-constrained or not). Given that SF > 1 by assumption (1), therefore, the market for flats cannot
clear. This proves pF < pH .

By market clearing, the measure of agents who own no property in equilibrium is 3− SF − SH , which
by assumption (1) lies strictly between 0 and 1

2 . This is an upper bound on the measure of agents of age 1
who cannot afford a flat. As a consequence, the steady-state flat price must satisfy γpF ≤ e1(3−SF −SH)
or pF ≤ p∗F . By assumption (10), this implies (1 + r)2ηF < ∆.

By assumption (8) and the fact that ηH > ηF , the demand for houses from cohort 3 is strictly lower
than SH . This means that some houses must be acquired by agents of age 1 or 2. Thus,

pH < γ−1e(1), (A.4)

the maximum price any agent of age 1 or 2 could pay.
As a consequence of the upper bound (A.4), all agents of age 3 are unconstrained in their choice of

housing. By an argument similar to the one in footnote 8, in fact, the total beginning-of-period wealth
of each age 3 agent amounts to at least e3(0), whatever the history of housing consumption. By (6) and
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(A.4), this is enough to cover the down payment γpH and, by (2) again, to permit positive consumption at
age 4. As the housing option chosen at age 3 is the one that maximizes the difference between the utility
of the option and the corresponding user cost, and ηF < ∆ by what we saw earlier, owning a flat clearly
dominates owning no property for all age 3 agents. So the optimal housing correspondence at age 3 is

G3(m) =




{F} if m < mH ,
{F, H} if m = mH ,
{H} if m > mH ,

(A.5)

where the critical preference index is

mH = u−1(r[pH − pF ]). (A.6)

Cohort 3 thus demands a measure 1−mH of houses.
Since e2(0) > e1(3−SF − SH) ≥ γpF by assumption (4), all agents of age 2 can afford a flat, whatever

their housing consumption at age 1. (For households that acquired property at age 1, this is established in
footnote 8.) As the housing choice at age 2 does not affect the set of feasible housing choices at age 3, the
housing option chosen at age 2 is the one that maximizes the difference between the utility of the option
and (1 + r) times the corresponding user cost. As (1 + r)ηF < ∆ by what we derived earlier, owning a flat
dominates owning no property for all age 2 agents.

Thus, agents who do not own a property must be of age 1, and there must be a measure 3−SF −SH of
them. Yet, we already know that any property affordable at age 1 continues to be so at age 2 (see footnote 8).
We also know that (1+r)2ηF < ∆, while assumption (10) implies ∆− (1+r)2ηF > u( 1

2 )− (1+r)(ηH−ηF ).
At steady-state user costs, therefore, consuming a flat at age 2 and 3 dominates the no-property option
followed by a house. This means that those households that do not acquire a flat at age 1 want one,
but cannot afford the required down payment; as there are a measure 3− SF − SH of them, we must have
pF = p∗F . By (A.4) and assumption (9), we thus have (1+r)2(ηH−ηF ) < u( 1

2 ). This implies ηH−ηF < u( 1
2 );

hence 0 < mH < 1
2 .

At age 2, a flat is a feasible choice, and the housing choice at age 2 does not affect the set of feasible
housing choices at age 3. We have established that all age 2 agents will buy a property. We also know
that (1 + r)(ηH − ηF ) < u( 1

2 ), so when the user cost difference is taken into account, a house dominates
a flat. Thus, housing choices at age 2 depend entirely on whether an agent can afford the down payment
on a house or not. For those agents who did not buy any property at age 1, therefore, the optimal housing
correspondence at age 2 is

G2(i, ∅) =
{ {F} if i < i∅H ,
{H} if i ≥ i∅H ,

(A.7)

where the critical endowment index,

i∅H = e−1 (γpH) , (A.8)

is strictly smaller than 1 by (A.4). For agents who bought a flat at age 1, the optimal housing correspondence
at age 2 is G2(i, F ) = F if rpF + γpH > e(1); if rpF + γpH ≤ e(1), it is

G2(i, F ) =
{ {F} if i < iFH ,
{H} if i ≥ iFH ,

(A.9)

where the critical endowment index is

iFH = e−1 (rpF + γpH) . (A.10)

And for agents who bought a house at age 1, the optimal housing correspondence at age 2 is G2(i,H) = {H}.
We already know that any property affordable at age 1 will continue to be so at age 2. We also know

that (1+r)2ηF < ∆ and (1+r)2(ηH−ηF ) < u(1
2 ), so a flat is better than no property, and a house is better

than a flat, when user costs are taken into account. Moreover, consuming a flat at age 2 and 3 dominates
the no-property option followed by a house. If γpH ≤ e1(1), therefore, the optimal housing correspondence
at age 1 is

G1(i) =




{∅} if i < iF ,
{F} if iF ≤ i < iH ,
{H} if i ≥ iH ,

(A.11)

29



where the critical endowment indices are

iF = e−1
1 (γpF ) = 3− SF − SH , (A.12)

iH = e−1
1 (γpH) . (A.13)

If γpH > e1(1), the optimal housing correspondence at age 1 is

G1(i) =
{ {∅} if i < iF ,
{F} if i ≥ iF .

(A.14)

Cohort 1 demands a measure 1− iH of houses.
Note that iFH < iH if iH < 1 because the equality e1(iH) = γpH implies e(iH) > rpH+γpH > rpF +γpH

by the argument in footnote 8. As iFH ≤ iH trivially if iH = 1, we can conclude that iFH ≤ iH always.
Thus, cohort 2 demands a measure max{iF − i∅H , 0}+ 1−max{iF , iFH} of houses.

Since SH < 1 and 1−mH > 1
2 , cohorts 1 and 2 cannot acquire more than the measure 1

2 of houses in
equilibrium. This implies iH > 1

2 and max{iF , iFH} > 1
2 . As iF < 1

2 , the latter means iFH > 1
2 > iF . The

market clearing condition for houses thus becomes

1− iH + max{iF − i∅H , 0}+ 1− iFH + 1−mH = SH . (A.15)

After inserting pF = p∗F , this is equivalent to the equation f(pH) = 3− SH with the function f defined in
(A.1). The only possible steady-state house price is therefore pH = p∗H .

Setting pF = p∗F and pH = p∗H in (A.6), (A.8), (A.10), (A.12) and (A.13) yields the cutoff indices
(17)–(21). By Lemma (A.1), we have 1

2 < e−1(rp∗F + γp∗H) < 1. First, this means 1
2 < i ∗FH < 1; in

particular, i ∗FH < i ∗H by the argument two paragraphs earlier. Second, it implies that γp∗H > e( 1
2 )− rp∗F >

(1 + r)γp∗F + e2( 1
2 )− rp∗F > e2( 1

2 ) > e(0) by assumptions (1)–(3), hence i ∗∅H > 0. Third, it implies that p∗H
satisfies the upper bound (A.4), so by assumption (9) we have (1 + r)2(η∗H − η∗F ) < u( 1

2 ) and 0 < m ∗
H < 1

2 .
We also have (1 + r)2η∗F < ∆ and ∆− (1 + r)2η∗F > u( 1

2 )− (1 + r)(η∗H − η∗F ) by assumption (10). The
same arguments as above show that all agents of age 3 are unconstrained in their choice of housing, all
agents of age 2 can afford a flat, and any property affordable at age 1 continues to be affordable at age
2. Thus, the policy correspondences Gj , evaluated for the cutoff indices (17)–(21), describe the optimal
housing decisions when households face the time-invariant prices p∗F and p∗H . These decisions are the ones
described in the statement of the proposition, and as all non-housing consumption is postponed to age 4,
they uniquely determine, via the budget constraints, a state x∗ as well as households’ savings decisions.
That this constitutes a steady-state equilibrium is obvious from what we have shown before.

As to steady-state transaction volumes, the measure of age 1 agents who buy a flat each period is i ∗H−i ∗F .
In the age 2 cohort, it is min{i ∗F , i ∗∅H} (all those agents who could not afford a flat one period earlier and do
not move to a house now); and in the age 3 cohort, it is (i ∗F −min{i ∗F , i ∗∅H}+ 1− i ∗FH)m ∗

H (all those agents
who lived in a house and now decide to move to a flat). A measure 1− i ∗H of agents buys a house at age 1, a
measure i ∗F −min{i ∗F , i ∗∅H}+ i ∗H − i ∗FH does so at age 2, and a measure (min{i ∗F , i ∗∅H}+ i ∗FH − i ∗F )(1−m ∗

H)
at age 3. This proves (22)–(23).

Proof of Proposition 2: Suppose z > 1. Evaluating the right-hand side of (24) with p ∗∗H replaced by
p∗H +(z−1)p∗F yields an expression that is easily seen to be strictly smaller than the right-hand side of (16),
hence smaller than 3 − SH . This proves that p ∗∗H > p∗H + (z − 1)p∗F . Similarly, evaluating the right-hand
side of (24) with p ∗∗H replaced by zp∗H yields an expression that is easily seen to be strictly larger than the
right-hand side of (16), and so p ∗∗H < zp∗H . All inequalities are reversed if z < 1.

Proof of Proposition 3: We rely on the fact that in state x∗, a household’s endowment index i fully
determines its state variables w and h at age 2 and 3.

We set pF (x∗) = p ∗∗F and pH(x∗) = p+
H , and define the decision rules

h1(i, x∗) =





∅ if i < i+F ,
F if γp+

H > ze1(1) and i ≥ i+F ,
or γp+

H ≤ ze1(1) and i+F ≤ i < i+H ,
H if γp+

H ≤ ze1(1) and i ≥ i+H ,

(A.16)
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h2(i, h, w, x∗) =
{

F if i < min{i ∗F , i+∅H} or i ∗F ≤ i < i+FH ,
H if min{i ∗F , i+∅H} ≤ i < i ∗F or i ≥ i+FH ,

(A.17)

h3(i,m, h, w, x∗) =
{

F if m < m+
H ,

H if m ≥ m+
H ,

(A.18)

h4(i, h, w, x∗) = ∅ for housing consumption, and c1(i, x∗) = c2(i, h, w, x∗) = c3(i,m, h, w, x∗) = 0,
c4(i,m, h,w, x∗) = e4(i) + p+

h + w for non-housing consumption. By the budget equations, they uniquely
determine decision rules w1(i, x∗), w2(i, h, w, x∗), w3(i, m, h, w, x∗) and w4(i,m, h,w, x∗) = 0 for next-period
non-housing wealth. By equation (30), the decision rules for housing are market clearing. Via the mapping
defined in part (c) of the definition of recursive equilibrium, the decision rules for housing consumption and
non-housing wealth yield a state φ(x∗) which we denote by x1.

Next, we set pF (x1) = p ∗∗F and pH(x1) = p ∗∗H , and define the decision rules

h1(i, x1) =





∅ if i < i ∗∗F ,
F if γp ∗∗H > ze1(1) and i ≥ i ∗∗F ,

or γp ∗∗H ≤ ze1(1) and i ∗∗F ≤ i < i ∗∗H ,
H if γp ∗∗H ≤ ze1(1) and i ≥ i ∗∗H ,

(A.19)

h2(i, h, w, x1) =
{

F if i < min{i+F , i ∗∗∅H} or i+F ≤ i < i ∗∗FH ,
H if min{i+F , i ∗∗∅H} ≤ i < i+F or i ≥ i ∗∗FH ,

(A.20)

h3(i,m, h,w, x1) =
{

F if m < m ∗∗
H ,

H if m ≥ m ∗∗
H ,

(A.21)

h4(i, h, w, x1) = ∅ for housing consumption, and c1(i, x1) = c2(i, h, w, x1) = c3(i,m, h,w, x1) = 0,
c4(i,m, h,w, x1) = e4(i) + p ∗∗h + w for non-housing consumption. By the budget equations, they uniquely
determine decision rules for next-period non-housing wealth. As i+F = i ∗∗F , equation (24) implies that the
decision rules for housing clear the markets. Via the mapping defined in part (c) of the definition of re-
cursive equilibrium, the decision rules for housing consumption and non-housing wealth yield a state φ(x1)
which we denote by x2.

Setting pF (x2) = p ∗∗F and pH(x2) = p ∗∗H , imposing the same decision rules in state x2 as in state
x1 and arguing as above, we obtain a state φ(x2) that we denote by x3. The distribution functions
M∅,2,MF,2,MH,2,M∅,3, MF,3 and MH,3 in state x3 are identical to their counterparts in state x∗∗. There-
fore, setting pF (x3) = p ∗∗F and pH(x3) = p ∗∗H , imposing the same decision rules in state x3 as in states x1

and x2, and proceeding as above, we obtain the state φ(x3) = x∗∗.
For x ∈ X and h ∈ {F, H}, let ηh(x) = (1 + r)ph(x) − ph(φ(x)). By continuity of the property prices

ph(x) in z, the following statements, that we obtained for z = 1 in the proof of Proposition 1, also hold
for all z sufficiently close to 1 and all x ∈ X: (1 + r)2η ∗F (x) < ∆, (1 + r)2[η ∗H(x) − η ∗F (x)] < u( 1

2 ), and
∆ − (1 + r)2η ∗F (x) > u( 1

2 ) − (1 + r)[η ∗H(φ(x)) − η ∗F (φ(x))]; all agents of age 3 are unconstrained in their
choice of housing; all agents of age 2 can afford a flat; and any property affordable at age 1 continues to be
affordable at age 2. The same arguments as in the proof of Proposition 1 establish that the actions assigned
to households via the above decision rules are indeed optimal.

If z > 1, finally, the right-hand side of (30) with p+
H replaced by p∗H is smaller than the right-hand side

of (16), hence smaller than 3 − SH , which establishes p+
H > p∗H . In the same way, we see that p+

H < p∗H if
z < 1.

Proof of Proposition 4: If all house purchases are repeat purchases, equation (30) for the house price
p+

H simplifies to

2− SH = e−1
+

(
(1 + r)p∗F − p ∗∗F + γp+

H

)
+ u−1

(
(1 + r)p+

H − p ∗∗H − rp ∗∗F

)
, (A.22)

and equation (24) for the new steady-state house price p ∗∗H simplifies to

2− SH = e−1
(
z−1[rp ∗∗F + γp ∗∗H ]

)
+ u−1(r[p ∗∗H − p ∗∗F ]). (A.23)

31



Now suppose z > 1, so that p ∗∗H > p∗H . We have p+
H > p ∗∗H if and only if the right-hand side of (A.22)

with p+
H replaced by p ∗∗H is smaller than the left-hand side. By (A.23), this is the case if and only if

e−1
+ ((1 + r)p∗F − p ∗∗F + γp ∗∗H ) < e−1

(
z−1[rp ∗∗F + γp ∗∗H ]

)
. (A.24)

Noting that the term on the right-hand side of this inequality equals i ∗∗FH , we see that p+
H > p ∗∗H if and only

if

(1 + r)p∗F − p ∗∗F + γp ∗∗H < (1 + r)e1(i ∗∗FH) + ze2(i ∗∗FH). (A.25)

As (1+r)ze1(i ∗∗FH)+ze2(i ∗∗FH) = rp ∗∗F +γp ∗∗H and p ∗∗F = zp∗F , we can simplify this inequality to e1(i ∗∗FH) < p∗F ,
which is the same as (38). If z < 1, the result is obtained by the same steps, with the two inequalities
(A.24)–(A.25) reversed.

That overshooting implies changes of transaction volumes in the same direction as the changes in prices
is shown in the main text.

Proof of Proposition 5: Consider the case z > 1 and p+
H > zp∗H . Comparing transactions taking

place in the transition from period 0 to period 1 to those in the initial steady state, we see more purchases
of flats at age 1 (i+H > i ∗H), age 2 (min{iF, i+∅H} ≥ min{iF, i ∗∅H}), and age 3 (m+

H > m ∗
H). The volume

of transactions of flats rises with prices. By the market clearing condition for houses, on the other hand,
i ∗FH − i+FH − (i+H − i ∗H) − (min{iF, i+∅H} − min{iF, i ∗∅H}) = m+

H − m ∗
H , so not only are there more house

purchases by flat owners of age 2 (i ∗FH > i+FH), but the increase i ∗FH − i+FH in these purchases is great
enough to outweigh the loss of i+H − i ∗H and min{iF, i+∅H} −min{iF, i ∗∅H} first-time house purchases at age
1 and 2, respectively, as well as the loss of (min{iF, i ∗∅H} + i ∗FH − iF )(m+

H −m ∗
H) repeat purchases at age

3. The volume of transactions of houses rises as well. The case of z < 1 and p+
H < zp∗H is dealt with in

exactly the same way.
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Ortalo-Magné, François, and Sven Rady (1999): “Boom in, bust out: Young households
and the housing price cycle,” European Economic Review, 43:755-766.
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