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Abstract

We analyze a symmetric n-firm Cournot oligopoly with a heterogeneous popu-
lation of optimizers and imitators. Imitators mimic the output decision of the most
successful firms of the previous round a là Vega-Redondo (1997). Optimizers play
a myopic best response to the opponents’ previous output. Firms are allowed to
make mistakes and deviate from the decision rules with a small probability. Apply-
ing stochastic stability analysis, we find that the long run distribution converges
to a recurrent set of states in which imitators are better off than are optimizers.
This finding appears to be robust even when optimizers are more sophisticated. It
suggests that imitators drive optimizers out of the market contradicting a funda-
mental conjecture by Friedman (1953).
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“Men nearly always follow the tracks made by others and proceed in their

affairs by imitation, even though they cannot entirely keep to the tracks of

others or emulate the prowess of their models. So a prudent man should

always follow in the footsteps of great men and imitate those who have been

outstanding.” Niccolò Machiavelli

1 Introduction

One of the most fundamental assumptions in economics is that firms maximize absolute

profits. However, already Alchian (1950) suggested that firms may maximize relative

profits in the long run rather than absolute profits. In contrast, Friedman (1953) argued

that evolutionary selection forces favor absolute profit maximization. In particular, he

postulated that, although firms may not know their profit functions, we can assume that

they behave as if they maximize profits because otherwise they would be driven out of the

market by firms that do behave as if they maximize profits. Koopmans (1957), p. 140,

remarked that if selection does lead to profit maximization then such an evolutionary

process should be part of economic modeling. Taking Koopmans’ suggestion into consid-

eration, this paper describes an attempt to prove Friedman’s conjecture. This attempt

failed. That is, in the model presented here it turns out that Friedman’s conjecture is

false.

The present paper was partly inspired by Vega-Redondo (1997).1 He shows that, in a

quantity setting symmetric n-firm Cournot oligopoly with imitators, the long run outcome

converges to the competitive output if small mistakes are allowed. Imitators mimic the

output of the most successful firms in the previous round. His result is in sharp contrast to

optimizers, whose outputs are known to converge under certain conditions in the Cournot

tatonnement to the Cournot Nash equilibrium. It seems natural to wonder what happens

if imitators and optimizers are mixed together in a heterogeneous population. According

1See also related work by Schaffer (1989), Rhode and Stegeman (2001), and Alós-Ferrer, Ania, and

Vega-Redondo (1999).
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to Friedman, we should find that optimizers are better off than are imitators, and that

consequently optimizers drive out imitators in any payoff monotone selection dynamics.

However, we find that imitators are strictly better off than are optimizers, which is at

first glance a rather surprising result given that imitators are less sophisticated than

optimizers. In a sense, this result is reminiscent of Stackelberg behavior. That’s why

we name the support of the long run distribution the set of Pseudo-Stackelberg states.

First, imitators and optimizers play roles analogous to those of the “independent” and

the “dependent” firms respectively in von Stackelberg’s (1934) work.2 Optimizers are

“dependent” since by definition they play a best reply. Imitators are “independent”

because they do not perceive any influence on the price but take it as given. Note however,

that they do not conform exactly to the Stackelberg conjecture. Second, analogous

to the profits of von Stackelberg’s independent and dependent firms, every imitator is

better off than every optimizer. Finally, our analysis retains the important aspect of von

Stackelberg’s idea: the modeling of asymmetries and behavioral heterogeneity of firms.

Imitators and optimizers differ with respect to the knowledge required to take their

decisions. Whereas for imitators it is sufficient to know the previous period’s outputs of

every firm and their associated profits, optimizers need to know the total output of their

opponents as well as their own profit function, which involves knowing inverse demand

and costs, in order to calculate the myopic best response. Imitation is often associated

with boundedly rational behavior but note that imitation of successful behavior can be

also viewed as a rational rule of thumb (Vega-Redondo, 1997) when firms and decision

makers have difficulties in perceiving their profit functions. They can easily judge their

performance relative to other firms in the industry. This might be also one reason why a

part of executives’ remuneration-packages is often based on the firm’s stock outperforming

2It is interesting to note that von Stackelberg himself never used the word “leader” in his book but

spoke of the “independent” and the “dependent” firm. Today’s familiar sequential representation of the

Stackelberg game is not due to von Stackelberg. The idea of a game with a first mover advantage was

introduced first without reference to Stackelberg (1934) as the “majorant game” by von Neumann and

Morgenstern (1944), pp. 100. I thank Prof. Selten for pointing me to the “majorant game”.
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the market index or similar means of relative comparison.

In the proofs of our results, we rely on two main concepts, quasi-submodularity of

payoff functions and stochastic stability analysis. Quasi-submodularity (see Topkis, 1998,

pp. 43) is closely related to strategic substitutes (see Bulow, Geanakoplos, and Klem-

perer, 1985) and the dual single-crossing property (see Milgrom and Shannon, 1994). The

intuition for quasi-submodularity in our context is that if a firm prefers a larger quan-

tity to a lower quantity for a given total market quantity, then it prefers also the larger

quantity to the lower quantity for a lower total market quantity. The Cournot oligopoly

satisfies this property by definition (see Lemma 1). A similar version of this property is

used in modern oligopoly theory (see Vives 2000, Amir, 1996, Amir and Lambson, 2000,

etc.). Vega-Redondo’s (1997) result can be generalized to a class of quasi-submodular

games (see Schipper, 2003).

Following Kandori, Rob, and Mailath (1993) and Young (1993), the dynamic analysis

in this paper uses the concept of stochastic stability developed by Freidlin and Wentzel

(1984) (see also Ellison, 2000 and others). The general idea is that mutations select

among absorbing sets of the decision process such that only the most robust absorbing sets

remain in the support of the limiting invariant distribution. There are several alternative

interpretations of the noise in our context. First, firms are assumed to innovate with

a small probability in a sense of experimenting with various output levels. Second,

firms are assumed to be boundedly rational such that there is always a small positive

probability of making mistakes in output decisions. Finally, every period, a small fraction

of the firms is replaced by newcomers who choose their output from tabula rasa. Any

of those interpretations adds some realistic feature to the model. Instead making use

of the graph theoretic arguments developed by Freidlin and Wentzel (1984) as well as

Kandori, Rob, and Mailath (1993) and Young (1993), we employ a simpler necessary

condition for stochastic stability introduced by Nöldeke and Samuelson (1993, 1997) and

Samuelson (1994). They show that a necessary condition for a state to be contained in

the support of the unique invariant limiting distribution is that this state is contained

in the minimal set of absorbing sets that is robust to a single mutation. Such a set is
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called a recurrent set. In our main result we show that the symmetric Cournot Nash

equilibrium, the only absorbing state in which optimizers are as well off as imitators,

is not the unique stochastically stable state. Moreover, we also show in an example

that there are assumptions on the parameters of the game such that the entire set of

Pseudo-Stackelberg states is the unique recurrent set. In any case, the support of the

unique limiting invariant distribution implies that imitators are strictly better off than

are optimizers.

Apart from a pure theoretical interest, the analysis presented here is of practical

relevance since imitation, in the form of “benchmarking” and “best practices”, is widely

used in today’s management. Given that such imitative behavior exists among other

decision rules in today’s business practice, it is only natural for theorists to investigate

imitation as well as the heterogeneity of decision rules.

Conlisk (1980) also analyzes a dynamic model with imitators and optimizers. How-

ever, he takes the cost of optimizing into account, and this cost is a key for obtaining

his results. Our result appears to be stronger since in our work imitators are better off

than are optimizers even without any optimizers’ cost of sophistication. Conlisk’s (1980)

result has a similar flavor to Stahl (1993), who concludes using a different approach that

dumb players may never die out and smart players with maintenance costs may vanish.

Using a different approach, Banerjee and Weibull (1995) study optimizers and players

that are programmed to actions in evolutionary symmetric 2-player games. They show

that long run resting states hold a positive share of programmed players. There has been

extensive research on imitation in game theory. For instance, Schlag (1998) analyzes

various imitation rules in multi-armed bandit problems and shows that a certain type of

imitation rule is optimal. Gale and Rosenthal (1999) study imitators and experimenters

where former mimic to a certain extent the population average. Roughly they find that

the population converges to the Nash equilibrium in various games with a unique equi-

librium, but note that their imitators differ from ours. Kaarbøe and Tieman (1999)

study imitators and myopic optimizers in strict supermodular games and find among

others that the set of absorbing sets corresponds to the set of Nash equilibria. This is
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in contrast with the strict submodular game studied in our paper, for which there are

also other absorbing states than the Nash equilibrium. Research on Friedman’s profit

maximization hypothesis has been done for example by Blume and Easley (2002) and

Sandroni (2000), who find support for it in a general equilibrium context. Dutta and

Radner (1999) show in a model with entrepreneurs and capital markets that other be-

haviors than profit maximization may survive. The present paper is also related to the

literature on interdependent preferences. In particular, Koçkesen, Ok, and Sethi (2002)

found that players who also care about relative payoffs may have a strategic advantage

in a class of symmetric games including the Cournot game. Note that imitators do care

about relative payoffs since their decision rule involves a comparison of profits among

firms.

The paper is organized as follows: Section 2 introduces the model and the decision

rules. It is followed in section 3 by an informal discussion of candidates for solutions.

Section 4 presents the results, which are subsequently discussed in the concluding sec-

tion 5. All proofs are contained in the appendix. The required mathematical tools are

introduced along the way.

2 Basic Model and Decision Rules

This section outlines the basic model in the spirit of Cournot (1838), pp. 79. Consider

a finite number of firms N = {1, 2, ..., n} and a market for a homogeneous good. Inverse

demand is given by a function p : R+ −→ R+. For every total output quantity Q ∈ R+

this function specifies the market clearing price p(Q). By the assumption of symmetry,

every firm i ∈ N faces the same demand and possesses the same production technology.

Hence the cost functions c : R+ −→ R+ are identical. For each firm it is a function of the

quantity qi it produces. Let the total output over all firms be Q :=
∑

i∈N qi. For later

analysis, it will be convenient to write profits as function from the individual quantity
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and the total quantity,

πi(qi, Q) := qip(Q)− c(qi),∀i ∈ N. (1)

We restrict our analysis to a symmetric oligopoly since imitation is more reasonable

if firms face similar conditions of production.

For technical reasons we assume that firms choose output from a common finite grid

Γ = {0, δ, 2δ, ..., νδ}, where both δ > 0 and ν ∈ N are arbitrary. This turns the strategic

situation into a game with a finite action space and allows us to focus on finite Markov

chains later in the dynamic analysis.

In the proofs of our results, the following observation will be crucial. This observation

does not require any additional assumptions (other than Assumption 1) but is a property

of the Cournot oligopoly. Therefore we introduce it here instead later in the text.

Definition 1 (Submodularity) πi is submodular in (qi, Q) on Γ× {0, δ, 2δ, ..., nνδ} if

for all q′′i > q′i, Q′′ > Q′

πi(q
′′
i , Q

′)− πi(q
′
i, Q

′) ≥ πi(q
′′
i , Q

′′)− πi(q
′
i, Q

′′). (2)

It is strictly submodular if Inequality (2) holds strictly.

Assumption 1 (Strictly Decreasing Demand) For all Q,Q′ ∈ {0, δ, 2δ, ..., nνδ}, if

Q′ > Q then p(Q′) < p(Q).

Lemma 1 By Assumption 1, πi is strictly submodular in (qi, Q) on Γ×{0, δ, 2δ, ..., nνδ}.

If Assumption 1 is modified such that p is weakly decreasing then πi is submodular

but not strictly submodular in (qi, Q) on Γ× {0, δ, 2δ, ..., nνδ}.

Remark 1 (Quasi-Submodularity) Submodularity implies that πi is quasi-submodular

in (qi, Q) on Γ× {0, δ, 2δ, ..., nνδ} (but not vice versa), i.e., for all q′′i > q′i, Q′′ > Q′

πi(q
′′
i , Q

′′) ≥ (>)πi(q
′
i, Q

′′) =⇒ πi(q
′′
i , Q

′) ≥ (>)πi(q
′
i, Q

′), (3)

πi(q
′
i, Q

′) ≥ (>)πi(q
′′
i , Q

′) =⇒ πi(q
′
i, Q

′′) ≥ (>)πi(q
′′
i , Q

′′). (4)
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The observation that the payoff function is quasi-submodular in the individual quan-

tity and the total output is used later in the proofs repeatedly. Note that this property

follows directly by the structure of the Cournot game. No additional assumptions on the

game have to be imposed.

The dynamics of the system is assumed to proceed in discrete time, indexed by

t = 0, 1, 2, .... At each t the state of the system is identified by the current output

schedule

ω(t) = (q1(t), q2(t), ..., qn(t)).

Thus, the state space of the system is identical to Γn. Associated with any such state

ω(t) ∈ Γn is the induced profit profile π(t) = (π1(t), π2(t), ..., πn(t)) at t, defined as

follows:

πi(t) := qi(t)p(Q(t))− c(qi(t)),∀i ∈ N. (5)

Assumption 2 (Inertia) At every time t = 1, 2, ..., each firm i ∈ N has regardless of

history an i.i.d. probability ρ ∈ (0, 1) of being able to revise her former output qi(t− 1).

Note that since 0 < ρ < 1 the process has inertia. That is, not every period all firms

adjust output. The idea is that it is too costly to always adjust output. Moreover, it will

become clear later on that with this assumption we rule out cycles of the best response

dynamics.

The finite population of firms N is partitioned into two subpopulations of imitators

and optimizers respectively. Let I be the subset of N that contains all imitators. The

fraction of imitators in the population is denoted by θ = ]I
]N

. The firms in the two

subpopulations are characterized by different decision rules. The idea of a decision rule is

appropriately summarized by Nelson and Winter (1982, p. 165) who write that “...at any

time, firms in an industry can be viewed as operating with a set of techniques and decision

rules (routines), keyed to conditions external to the firm ... and to various internal state

conditions...” Conventional economics focuses mainly on profit maximization. However,
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“benchmarking”, “best practices”, and other imitation rules can be found in today’s

management practice.

Definition 2 (Imitator) An imitator i ∈ I chooses with full support from the set

DI(t− 1) := {q ∈ Γ : ∃j ∈ N s.t. q = qj(t− 1) and ∀k ∈ N, πj(t− 1) ≥ πk(t− 1)}. (6)

Definition 3 (Optimizer) An optimizer i ∈ N\I chooses from the set

DO(t− 1) := {q ∈ Γ : q ∈ b(q−i(t− 1))}, (7)

with q−i :=
∑

j∈N\{i} qj and b : {0, δ, 2δ, ..., (n − 1)νδ} −→ Γ is defined to be firm’s best

reply correspondence

b(q−i) := {q′i ∈ Γ : q′ip(q−i + q′i)− c(q′i) ≥ qip(q−i + qi)− c(qi),∀qi ∈ Γ}. (8)

It is assumed that initially in t = 0 every firm starts with an arbitrary output within

the admissible domain Γ.

The imitation rule is explained as follows: Every period there exists a firm j that

had the highest profit in the previous period. An imitator imitates the previous pe-

riod’s quantity of firm j. It is the same imitation rule as used by Vega-Redondo (1997).

Definition 3 means that an optimizer sets an output level that is a best reply to the

opponents’ total output in the previous period. In the last section we discuss how our

results generalize to more sophisticated optimizers.

The process induced by the decision rules is a n-vector discrete time finite Markov

chain with stationary transition probabilities. Finiteness is provided by the finite state

space Γn. It is a vector process since each ω is a vector in Γn. Due to the myopic decision

rules, the process has the Markov property, namely prob{ω(t + 1)|ω(t), ω(t− 1), ..., ω(t−

k)} = prob{ω(t+1)|ω(t)}. That is, ω(t) contains all the information needed to determine

transition probabilities. Since the decision rules themselves do not change over time, the

process has stationary transition probabilities prob{ω′(t + 1)|ω(t)} = prob{ω′(t + k +

1)|ω(t + k)}, k = 0, 1, ...
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The Markov operator is defined in the standard way as the ]Γn × ]Γn-transition

probability matrix P = (pωω′)ω,ω′∈Γn with pωω′ = prob{ω′|ω}, pωω′ ≥ 0, ω, ω′ ∈ Γn and∑
ω′∈Γn pωω′ = 1, for all ω ∈ Γn. That is, the element pωω′ in the transition probability

matrix P is the conditional probability that the state is in ω′ at t+1 given that it is in ω

at t. According to this definition of a Markov transition matrix, probability distributions

over states are represented by row vectors.

We conclude the model of the decision processes with following assumption:

Assumption 3 (Noise) At every output revision opportunity t, each firm follows her

decision rule with probability (1− ε), ε ∈ (0, a], a being small, and with probability ε she

randomizes with full support Γ.

As a matter of convention, we call a firm mutating at t if it randomizes with full

support at t. The noise has a convenient technical property. Let P (ε) be the Markov

chain P perturbed with the level of noise ε. Then by Assumption 3, P (ε) is regularly

perturbed (Young, 1993, p. 70), i.e., it is an ergodic and irreducible Markov chain on Γn.

This implies that there exists a unique invariant distribution ϕ(ε) on Γn (for standard

results on Markov processes see for example Masaaki, 1997). To put it more intuitively,

the noise makes any state accessible from any other state in finite time. This is sufficient

for the existence of the unique invariant distribution.

The following analysis focuses on the unique limiting invariant distribution ϕ∗ of P

defined by ϕ(ε)P (ε) = ϕ(ε), ϕ∗ := limε→0 ϕ(ε) and ϕ∗P = ϕ∗. In particular, the focus is

on how to characterize this probability vector since it provides a description of the long

run output behavior of the market when the noise goes to zero. For that reason we will

refer to it also as the long run distribution. It determines the average proportion of time

spent in each state of the state space in the long run, or expressed differently, the relative

frequency of a state’s appearance as the time goes to infinity (see Fudenberg and Levine,

1998, or Samuelson, 1997, for an introduction and discussion of this method).
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3 Candidates for Solutions

In this section we informally discuss candidates for solutions. By standard results (e.g. see

Samuelson, 1997, Proposition 7.4) we know that the support of the long run distribution

can only contain states that are elements of absorbing sets of the unperturbed process.

Therefore we consider first the case of no noise, ε = 0, and define an absorbing set A ⊆ Γn

in the standard way by

(i) ∀ω ∈ A, ∀ω′ /∈ A, pωω′ = 0, and

(ii) ∀ω, ω′ ∈ A, ∃m ∈ N, m finite, s.t. p
(m)
ωω′ > 0, p

(m)
ωω′ being the m-step transition

probability from ω to ω′.

Vega-Redondo (1997) showed that a homogeneous population of imitators converges

to the competitive solution.

Definition 4 (Competitive Solution) The competitive solution ω∗ = (q∗1, ..., q
∗
n) is

defined by for all i ∈ N ,

q∗i p(Q∗)− c(q∗i ) ≥ qip(Q∗)− c(qi),∀qi ∈ Γ, (9)

with Q∗ =
∑

i∈N q∗i .

Can the competitive solution be an absorbing state given a heterogeneous population of

imitators and optimizers? Suppose that the competitive solution exists uniquely in the

grid. Consider first the imitators. Every firm plays its share of the competitive solution.

By symmetry all firms make identical profits. Thus nobody is better off and imitators

have no reason to deviate from their output. However, since n is finite, optimizers do not

generally play a best reply. Each optimizer’s share of the competitive output is larger

than the best response. Hence they will deviate to the best response leading to a state

different from the competitive solution. It follows that the competitive solution is not an

absorbing state.
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Consider now a state where every firm sets its symmetric Cournot Nash equilibrium

output assuming that it exists in the grid Γ and that it is unique.

Definition 5 (Cournot Nash Equilibrium) A combination of output strategies ω◦ =

(q◦1, q
◦
2, ..., q

◦
n) ∈ Γn is a Cournot Nash equilibrium if for all i ∈ N ,

q◦i p(Q◦)− c(q◦i ) ≥ qip(Q◦ − q◦i + qi)− c(qi),∀qi ∈ Γ. (10)

It is known that in a homogeneous population of optimizers the Cournot Nash equilibrium

is under certain assumptions guaranteeing global convergence the solution of a sequential

best response process. In a heterogeneous population, imitators do not deviate since all

firms set identical outputs and earn identical profits. Optimizers do not deviate too

since they anyway set their best response quantities. Thus the symmetric Cournot Nash

equilibrium is an absorbing state. However, is it the unique absorbing state? Consider

the following state:3

Definition 6 (Pseudo-Stackelberg Solution) The Pseudo-Stackelberg solution is a

state ωS = (q1, ..., qθn, qθn+1, ..., qn) that satisfies the following conditions:

(i) for all i ∈ I, qi = qS s.t.

qSp(θnqS + (1− θ)nqD)− c(qS) > qp(θnqS + (1− θ)nqD)− c(q),∀q 6= qS, (11)

(ii) for all i ∈ N\I, qi = qD,

qD := b(θnqS + ((1− θ)n− 1)qD). (12)

In the Pseudo-Stackelberg solution all imitators set the identical output. This output

maximizes profits of imitators given that they do not perceive any influence on the price

and the optimizers set the identical best reply. Clearly, this outcome has features of the

3We assume here that the best reply is unique. The uniqueness condition later in Assumption 4

ensures that the best reply to the opponents’ output is indeed a singleton (see Lemma 2).
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competitive solution (for imitators) and the Cournot Nash equilibrium (for optimizers).

If θ = 1, then it is identical to the competitive solution since Inequality (12) becomes vac-

uous. If θ = 0, then it is identical to the Cournot Nash equilibrium since Inequality (11)

becomes vacuous. We call this outcome the Pseudo-Stackelberg Solution because of its

obvious similarities and differences to the notion of Stackelberg solution in the literature.

Analogous to the profits of von Stackelberg’s (1934) independent and dependent firms,

every imitator is strictly better off than is every optimizer since Inequality (11) holds for

for all q ∈ Γ, q 6= qS, so also for qD. I.e., it follows that4

πi(q
S, qD, n, θ) > πj(q

S, qD, n, θ),∀i ∈ I,∀j ∈ N\I.

Every imitator is strictly better off than every optimizer.

Why is the Pseudo-Stackelberg solution an absorbing state? Assume that the Pseudo-

Stackelberg solution exists in Γn.5 Consider first the imitators: every imitator sets the

identical output and is strictly better off than is any optimizer. Hence an imitator has

no reason to deviate from its output. Optimizers do not deviate too from their output

since they play the best response. Thus the Pseudo-Stackelberg solution is an absorbing

state.

In the following text, we will reserve qS to denote the identical individual output of

any imitator in the Pseudo-Stackelberg solution. qI means that the individual quantity

qI is set by each imitator (superscript “I” stands for “independent” or all “imitators”).

Analogously, qD means that the individual quantity qD is set by each optimizer (su-

perscript “D” stands for “dependent”). The analogous notation applies to the profit

functions πI and πD. Generally, a superscript indicates identical individual values for

all firms within a subpopulation whereas a subscript indicates individual not necessarily

4For notational convenience we write πi(q, q′, n, θ) for πi(q, θnq+(1−θ)nq′) if i ∈ I, or for πi(q′, θnq+

(1− θ)nq′) if i ∈ N\I.
5Existence of Pseudo-Stackelberg solution is analogous to existence of competitive solution in Vega-

Redondo (1997). Standard assumptions on costs, i.e., strictly increasing marginal costs and small fixed

costs, suffice. By the strict Inequality (11), quasi-submodularity, and Assumption 4 in the next section,

the Pseudo-Stackelberg solution must be unique if it exists (see Lemma 2 (vi)).
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identical values.

Previous arguments suggest already that the Cournot Nash equilibrium and the

Pseudo-Stackelberg solution may not be the only candidates for solutions. To facilitate

the analysis we define the following set of states:6

Definition 7 (Pseudo-Stackelberg States) The set of Pseudo-Stackelberg states H

consists of all states ω = (q1, ..., qθn, qθn+1, ..., qn) ∈ Γn that satisfy the following proper-

ties:

(i) qi = qI , for all i ∈ I and some qI ∈ Γ,

(ii) qi = qD, for all i ∈ N\I, qD := b(θnqI + ((1− θ)n− 1)qD),

(iii) πI(qI , qD, n, θ) ≥ πD(qI , qD, n, θ),

(iv) πI(qI , qD, n, θ) = πD(qI , qD, n, θ) iff qI = qD.

If condition (i) is not satisfied, then an imitator may mimic a different output decision

from another imitator if the latter happens to have higher profits. If condition (ii) is not

satisfied, all optimizers that don’t play a best reply will have an incentive to deviate. If

condition (iii) is not satisfied, imitators will mimic optimizers. To understand the moti-

vation of (iv) note that by symmetry, qI = qD implies πI(qD, qI , n, θ) = πD(qD, qI , n, θ).

To see the purpose of the other direction note that if πI(qD, qI , n, θ) = πD(qD, qI , n, θ)

and qI 6= qD then imitators would be indifferent between qI and qD thus adding a source

of instability.

In each Pseudo-Stackelberg state, imitators are weakly better off than are optimiz-

ers. In fact, imitators are strictly better off in any Pseudo-Stackelberg state except the

Cournot Nash equilibrium, the only state where optimizers are as well off as imitators.

It is clear that the set of Pseudo-Stackelberg states is nonempty since the Cournot

Nash equilibrium - assume that it exists - belongs to it. Moreover, it is easy to see that

6Again, we assume here that the best reply is unique. The uniqueness condition later in Assumption 4

ensures that the best reply to the opponents’ output is indeed a singleton (see Lemma 2).
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the competitive solution is not a Pseudo-Stackelberg state since optimizers do not set a

best reply in the competitive solution (unless n → ∞ or θ = 1). Finally, if c is strictly

convex then the Pseudo-Stackelberg solution is a Pseudo-Stackelberg state since qS > qD

are such that πI(qS, qD, θ, n) > πD(qS, qD, θ, n). Thus properties (i) to (iv) of Definition 7

of Pseudo-Stackelberg states are satisfied. If c is not strictly convex, then condition (iv)

may be violated. To see this, assume that costs are linear (weakly convex). Imitators

make zero profits when price equals marginal costs. The optimizers’ best response is zero

output. Then imitators are indifferent between zero output and qS. If costs are strictly

convex, then imitators make strict positive profits and optimizers set a positive output

level which is lower than qS. Thus each optimizer makes less profit than any imitator.

4 Results

Before we state and prove the results in this section, we need to introduce formally an

assumption. As before let q−i denote the total output of all firms but i.

Assumption 4 For q′−i < q−i, q′ ∈ b(q′−i), q ∈ b(q−i), we have

0 >
q′ − q

q′−i − q−i

> −1. (13)

This assumptions states that the slopes of the best reply correspondence are strictly

lower than 0 and strictly larger than −1. Former implies by Dubey, Haimanko, and

Zapechelnyuk (2005) that the game is a pseudo-potential game and has a Cournot Nash

equilibrium. Moreover, since it is a pseudo-potential game there exists a finite improve-

ment path such that sequential best reply converges to the Cournot Nash equilibrium.

Note, that the assumption of the existence of a pseudo-potential is weaker than of an

exact, weighted or ordinal potential (Monderer and Shapley, 1996). Most Cournot games

in the literature are games with strategic substitutes and thus pseudo-potential games.

The assumption that the slopes of the best reply correspondence are strictly larger

than −1 is made in order to obtain a unique best reply. Vives (2000, Theorem 2.8) shows
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in a simple proof that if a Cournot Nash equilibrium exists and the above assumption

holds, then it must be unique. Note that the condition is equivalent to if q′−i < q−i then

q′−i+q′ < q−i+q. It means that total output is strictly increasing in the opponents’ output

when the player sets best responses. Since we have a symmetric game, the uniqueness

condition implies that the unique Cournot Nash equilibrium is symmetric (Vives, 2000,

Remark 17) and that the best reply correspondence is in fact a function (see Vives,

2000, p. 43). In Lemma 2 we show that by Assumptions 4, total output is increasing in

imitators output, and that if the Pseudo-Stackelberg solution exists, it must be unique.

We are finally ready to state our results. Let Z be the collection of all absorbing sets

in Γn. Recall that H is the set of all Pseudo-Stackelberg states (Definition 7).

Proposition 1 Under Assumptions 1, 2 and 4, Z = H, whereby each Pseudo-Stackelberg

state is an absorbing state.

Let S denote the support of the long run distribution ϕ∗. By standard results Propo-

sition 1 implies that S ⊆ H.

Corollary 1 Under previous assumptions, in the long run imitators are weakly better

off than are optimizers.

The question we answer next is whether the noise selects among absorbing states.

Theorem 1 If θ ∈ (0, 1] and ωS ∈ H, then under above assumptions it is never true

that S = {ω◦}.

Theorem 1 states that if the Pseudo-Stackelberg solution exists in H then the Cournot

Nash equilibrium is not the unique long run outcome. Note that the Cournot Nash

equilibrium is the only Pseudo-Stackelberg state in which optimizers are as well off as

are imitators. It is worth to put following implication on record:

Corollary 2 If ωS ∈ H then in the long run imitators are strictly better off than are

optimizers.

16



Since the Cournot state ω◦, the only state in which optimizers are as well off as imitators,

is never the unique long run outcome, the long run distribution must put strict positive

weight on some other state in the non-singleton set of Pseudo-Stackelberg states. Hence,

in the long run imitators are strictly better off than are optimizers.

Theorem 1 does not exclude any absorbing states from the support of the long run

distribution. In fact, we prove the following result:

Example 1 Consider for example p(Q) = 10−Q, c(qi) = 1000
501

q2
i +1, θ = 0.2, δ = 0.001,

n = 5 and a sufficiently large ν. Then S = H, i.e., the support of the long run distribution

comprises of the entire set of Pseudo-Stackelberg states (see appendix).

Above example shows that one can find reasonable assumptions on functions p and c

and parameters θ, δ, ν and n that are sufficient for the entire set of Pseudo-Stackelberg

states to be the support of the unique limiting invariant distribution. While the example

appears rather standard (i.e., linear demand, convex cost), it takes quite a bit of proof to

obtain the result (see appendix). In the proof of the example, we show in particular that

if profit functions are strictly quasi-concave and the Pseudo-Stackelberg solution exists,

then we can find a sequence of single mutations by which we can move through the set

of Pseudo-Stackelberg states, starting from the Cournot Nash equilibrium state up to

the Pseudo-Stackelberg solution as well as starting from the Pseudo-Stackelberg state

with the largest output of imitators down to the Pseudo-Stackelberg solution (Lemma

5). For sufficiently large ν we can also show that the Pseudo-Stackelberg solution can

be destabilized by a sufficiently large mutation that leads subsequently back to either

the Cournot Nash equilibrium or the Pseudo-Stackelberg state with the largest output of

imitators (Lemma 7 and 8). Thus the assumptions in the example are sufficient to show

that any Pseudo-Stackelberg state can be connected to any other Pseudo-Stackelberg

state by a sequence of single suitable mutations. Hence, we conclude by a result by

Nöldeke and Samuelson (1993, 1997) and Samuelson (1994) that the set of Pseudo-

Stackelberg states is the unique recurrent set and the support of the long run distribution.
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Note that we obtain known results for homogeneous populations of either imitators

or optimizers as extreme cases. If there is a homogeneous population of optimizers

(θ = 0), then the Pseudo-Stackelberg solution is the Cournot Nash equilibrium. In this

case, the set of Pseudo-Stackelberg states is a singleton containing the Cournot Nash

equilibrium only. Hence Proposition 1 implies that the Cournot Nash equilibrium is the

unique absorbing set. Mutations does not matter since mutations must also select the

unique absorbing set. If there is a homogeneous population of imitators (θ = 1), then

the Pseudo-Stackelberg solution is equivalent to the competitive solution. The proof of

Lemma 4 in the appendix implies Vega-Redondo’s (1997) result.7 I.e., the competitive

solution is the unique long run outcome.

Following simple example illustrates a process with mutations and adjustments.

Example 2 Consider for example three players, n = 3, two imitators 1, 2 and one op-

timizer D. The inverse demand function is given by p(Q) = 10 − qD − q1 − q2 and the

cost function by c(qi) = 1
2
qi, i = 1, 2, D. Following Figure 1 illustrates an example of

process with mutations and adjustments. The upper graph plots the quantities over time,

the lower one the profits. At t = 1 we start in an arbitrary starting state. It happens

that the optimizer makes the highest profit. Thus imitators mimic in period 2. The op-

timizer adjusts in period 3, and we reach an absorbing state, in which the optimizer is

worse off than is any imitator. At period 4, imitator 1 innovates with the quantity of the

Pseudo-Stackelberg solution. Imitator 2 mimics imitator 1 and the optimizer adjusts in

period 5. The optimizer adjusts again in period 6 and we reach the Pseudo-Stackelberg

solution, which is an absorbing state. In the following periods we illustrate that also the

Pseudo-Stackelberg solution can be destabilized by single large mutation and how we reach

another absorbing state in period 12.

7In this case, Inequality (15) holds also for k = n − 1. Thus more than one mutation is needed to

escape the competitive solution.
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Figure 1: Process in Example 2
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5 Discussion

The significance of the previous results stems from the following conclusion: If imitators

are strictly better off than are optimizers, then any payoff monotone selection dynamics

(see for example Weibull, 1995) on the long run profits selects imitators in favor of

optimizers. That is, an evolutionary dynamics reflecting the paradigm of “survival of the

fittest” will show that imitators drive optimizers out of the market. Thus Friedman’s

(1953) conjecture is false in the oldest formal model of market competition in economics,

the Cournot oligopoly (Cournot, 1838). In a working paper version (Schipper, 2002) we

make this argument precise by showing how imitators drive out optimizers in the example

of the discrete time finite population replicator dynamics on the long run profits. The

intuition there is that firms enter each market day with a fixed decision rule and the

market day takes as long as the long run outcome of outputs to emerge. Before markets

are reopened the next day, the “evolutionary hand” chooses for each firm the decision

rule selecting effectively among firms. Alternatively, one can assume that at the end

of each day, the management of every firm holds independently a strategy meeting to

decide on its decision rule for the next day according to the relative performance of their

current decision rule. The market sessions are repeated day for day. One can show that

a homogeneous population of imitators is the unique asymptotically stable population

state. From this evolutionary prospectus we can not assume in economics that firms

behave as if they maximize absolute profits.8 After all Vega-Redondo’s (1997) imitators

are supported by those evolutionary arguments. The same holds for Alchian’s (1950)

suggestion since imitators want to be as well off as others, which is closely related to

relative profit maximization.

There are a few critiques we like to address. First, one may criticize the limitations

of the optimizers. Playing myopic best response is not really sophisticated optimization.

8Alternatively, one may want to extend the Markov chain to a product set of the output space and

the decision rule space. If we assume that the probability of revising the decision rule is sufficiently lower

than the probability of adjusting the output, then the same result is likely to emerge.
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Consider what happens if we make the optimizers more and more sophisticated. Suppose

first that we would allow optimizers to take a longer history of output decisions into

account when deciding which output level to set. Then results are not likely to change

but convergence may be slower since the optimizers’ adjustment process becomes similar

to fictitious play.9 Second, suppose that optimizers are able forecast the behavior of the

imitators. What does it help them if imitators set some large output, which happens in

finite time by the noise assumed? All the optimizers can do is playing best reply against

their beliefs leading them to play a smaller output with smaller profits than imitators.

Even if they could temporarily “low-ball” the imitators with some quantities, imitators

would erase any profit advantage by mimicking those quantities such that it never shows

up in the support of the long run distribution.

In this context it is natural to ask, why optimizers do not just mimic imitators? Sup-

pose they do. Then all firms behave as if they are imitators and Vega-Redondo’s (1997)

result of a competitive solution would emerge. However, in the competitive solution

every optimizer has an incentive to deviate to its lower best reply output since it would

increase its profit although it increases the profits of imitators even more. The imitation

rule is a commitment technology, which the optimizer does not like to adopt, not because

it involves some investment cost but because the optimizer is worse off in absolute terms

when adopting the technology although it can improve its relative standing.

Note that our result is likely to break down if we make imitators more smart. I.e.,

consider imitators that take a longer memory than just one period into account. Then

they may remember that they decreased their absolute profits (although they may in-

creased their relative profits) and return to their former output. Alós-Ferrer (2004) shows

in Vega-Redondo’s (1997) framework that the long run outputs of imitators with longer

(but finite) memory converge to a set of monomorphic states between the Cournot Nash

equilibrium and the competitive solution. An analogous result is likely to hold in our set-

ting with a heterogeneous population of optimizers and imitators with a longer memory.

9Regarding fictitious play refer for example to Fudenberg and Levine (1998), pp. 29.
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However, our arguments in this article suggest that similar to optimizers, such imitators

with longer memory may do worse against imitators with just a single-period memory.

A second critique could aim at the semantics of profit optimization. Obviously in my

setting the optimizers are absolute profit maximizers in regard to their objective but not

in terms of the result. This highlights the ambiguity of profit maximization in Cournot

oligopoly. Aiming to maximize absolute profit may not be the way to actually achieve

the highest relative profit. We show that the standard text book understanding of profit

maximizing firms can not be supported by evolutionary arguments in Cournot oligopoly.

Our awareness of the ambiguity of “profit maximization” in a class of games is an insight

gained from this analysis.

A third possible critique point is of a more technical nature. We use the concept of

stochastic stability developed by Freidlin and Wentzel (1984) as well as Kandori, Rob, and

Mailath (1993) and Young (1993). In many applications of this concept in literature (for

a partial review of the increasing literature using this method see for example Fudenberg

and Levine, 1998, chapter 5), the characterization of the long run distribution involves

a comparison of a multiplicity of highly unlikely mutations. A meaningful application

of this method must address the question about the speed of convergence. How long

does it take for the long run outcome to emerge? The advantage of applying the concept

of recurrent set by Nöldeke and Samuelson (1993, 1997) and Samuelson (1994) is that

one can conclude immediately that just a single suitable mutations is required to trigger

the long run outcome. That is, in our model convergence to the long run outcome is

comparatively rather fast. In Theorem 1 we show that the Cournot Nash equilibrium is

not robust against a single mutation. Instead using stochastic stability as a refinement

tool, we use it as a robustness check. In Example 1 we show that there are reasonable

assumptions on the game such that no proper subsets of absorbing states can be selected

by stochastic stability. Thus we show that the concept of stochastic stability is of limited

use for a refinement of our results in this model.

The key property driving the result is the observation that the payoff functions of
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a Cournot game are quasi-submodular in the individual and the total quantity. This is

closely related to strategic substitutes. It suggests that the same result holds in other

games with strategic substitutes such as Cournot oligopoly with differentiated substitute

products, Bertrand oligopoly with differentiated complementary products, some rent

seeking games, common pool dilemmatas etc. For instance, consider a repeated Nash

demand game10 and suppose that the imitator demands a share larger than 50% of

the pie. What can an optimizer do? It can optimize by demanding the highest share

compatible to the claim of the imitator. If the optimizer demands less then it forgoes

profits. If the optimizer demands more then both make zero profits. Assuming that

the imitator mimics itself in such situation we can conclude that the optimizer can not

manipulate the decision of the imitator in its favor. Hence it appears that also in this

repeated Nash demand game the imitator is better off than is the optimizer. What

is eventually wrong with Friedman’s conjecture is that he does not consider a class of

strategic situations in which “the wise one gives in” (a translated German proverb: “der

Klügere gibt nach”).11 Our result is likely to be generalized to a class of aggregative

quasi-submodular games (for such generalization of Vega-Redondo’s result see Schipper,

2003).

Earlier experimental studies of Cournot oligopoly like the one by Sauermann and

Selten (1959) found some support for the convergence to Cournot Nash equilibrium. Re-

cent studies by Huck, Normann, and Oechssler (1999, 2000) found support for imitative

behavior in experimental Cournot settings. Whereas in former experiments subjects had

profit tables for easy calculation of the best reply available, in later studies subjects

received feedback about the competitors’ profits and output levels. The informational

framework of these experimental designs corresponds closely to the information required

by each of the two decision rules (see also Offerman, Potters, and Sonnemans, 2002, for

further experimental evidence). Since both, imitation behavior as well as best response,

is supported by experimental findings in Cournot markets depending on the information

10I thank Ariel Rubinstein for suggesting this example.
11To be fair, Friedman (1953) had probably only perfectly competitive situations in mind.
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provided to subjects, it is only natural to test whether our results can be supported ex-

perimentally if different information is given to various firms in an oligopoly experiment.

This shall be left to further research.

A Proofs

Proof of Lemma 1.

Let q′′ > q′ and Q′′ > Q′. Since by Assumption 1, p is strictly decreasing

p(Q′) > p(Q′′)

p(Q′)(q′′ − q′) > p(Q′′)(q′′ − q′)

p(Q′)(q′′ − q′)− c(q′′) + c(q′) > p(Q′′)(q′′ − q′)− c(q′′) + c(q′)

π(q′′, Q′)− π(q′, Q′) > π(q′′, Q′′)− π(q′, Q′′)

This completes the proof of Lemma 1. �

For the proofs of the following results it is useful to state following lemma:

Lemma 2 If Assumptions 1 and 4 hold then we conclude the following:

(i) The Cournot oligopoly has a Cournot Nash equilibrium.

(ii) Sequential best reply converges to the Cournot Nash equilibrium in finite time.

(iii) A best reply is unique.

(iv) The Cournot Nash equilibrium is unique and symmetric.

(v) Given θ ∈ (0, 1), let x′, x be total outputs of all imitators. If x′ < x, then x′+(1−θ)nqD′ ≤

x + (1− θ)nqD, with qD = b(x + ((1− θ)n− 1)qD) and qD′
= b(x′ + ((1− θ)n− 1)qD′

).

(vi) If ωS exists, then it is unique.

Proof. For (i) and (ii) see Dubey, Haimanko, and Zapechelnyuk (2005). For (iii) and (iv)

see Vives (2000, p. 43).
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(v) Suppose to the contrary that x′ < x and x′ + (1 − θ)nqD′
> x + (1 − θ)nqD. Last

inequality is equivalent to x′ − x > (1 − θ)n(qD − qD′
). Since by assumption 0 > x′ − x we

conclude that 0 > (1− θ)n(qD − qD′
). Since θ ∈ (0, 1) and n > 1, the last equality is satisfied if

and only if 0 > qD − qD′
. Define q′−i := x′ +((1− θ)n− 1)qD′

and analogously for q−i. Suppose

q′−i > q−i then by Assumption 4 (strictly decreasing best responses) qD′
< qD, a contradiction

to above. Hence we must have q′−i ≤ q−i. Then by Assumption 4, q′−i + qD′ ≤ q−i + qD, a

contradiction to x′ + (1− θ)nqD′
> x + (1− θ)nqD above.

(vi) Let ωS′
and ωS′′

be two Pseudo-Stackelberg solutions with ωS′ 6= ωS′′
. Denote by

QS′
= θnqS′

+ (1 − θ)nqD′
, QS′′

= θnqS′′
+ (1 − θ)nqD′′

, qD′
= b(θnqS′

+ ((1 − θ)n − 1)qD′
),

and qD′′
= b(θnqS′′

+ ((1− θ)n− 1)qD′′
). Inequality 11 implies πi(qS′

, QS′
) > πi(qS′′

, QS′
) and

πi(qS′′
, QS′′

) > πi(qS′
, QS′′

). If qS′′
> qS′

then QS′′ ≥ QS′
by (v). By Assumption 1 (Lemma 2

and Remark 15, quasi-submodularity (upper formula (3)) πi(qS′′
, QS′′

) > πi(qS′
, QS′′

) implies

πi(qS′′
, QS′

) > πi(qS′
, QS′

), a contradiction. Likewise for qS′′
< qS′

(using lower formula (4)).

�

Proof of Proposition 1.

Recall that Z is the collection of all absorbing sets of the unperturbed decision dynamics

when ε = 0. We need to show the following: If Assumptions 1, 2 and 4 hold, then Z = H, with

Z = {{ω} : ω ∈ H}.

First, suppose that some state ω /∈ H, ω ∈ Γn is an element of an absorbing set A. At

least one condition of (i) to (iv) of Definition 7 is violated. Thus there will be an incentive

for some imitators or some optimizers to deviate from their output in ω. By Assumptions 1, 2

(Lemma 2) and 4 we construct an unperturbed adjustment process based on the decision rules

leading in the subsequent periods to a state ω′ ∈ H, noting that by Lemma 2 such ω′ ∈ H

exists.

Second, we show that every absorbing set A ⊆ H is a singleton. Suppose there exists

ω′, ω ∈ A ⊆ H, ω′ 6= ω. By the definition of absorbing set, ∃m ∈ N, m finite s.t. p
(m)
ωω′ > 0.

Consider any imitator i ∈ I. Since in ω ∈ H it follows by Definition 7 (i), (iii), and (iv) that no

imitator i ∈ I wants to deviate form its output in ω ∈ H. Now consider an optimizer i ∈ N \ I.

Since ω ∈ H, it follows by aforesaid Definition 7 (ii) that no optimizer i ∈ N \ I wants to
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deviate from its best reply in ω ∈ H, which is by Lemma 2 uniquely defined. Since both types

of firms do not deviate in ω ∈ H, no firm i ∈ N deviates in any of the following periods. Thus

p
(m)
ωω′ = 0,∀m ∈ N, which contradicts that ω′, ω ∈ A, ω′ 6= ω. It follows that pωω = 1 for each

ω ∈ H such that {ω} = A, ∀ω ∈ H. From the first part of the proof we conclude that there

does not exist a state ω /∈ H s.t. ω ∈ A, A ∈ Z. Hence Z = {{ω} : ω ∈ H}. This completes

the proof of Proposition 1. �

In order to characterize the support of the unique limiting invariant distribution, we consider

perturbations introduced by Assumption 3. We call states ω and ω′ adjacent if exactly one

mutation can change the state from ω to ω′ (and vice versa), i.e., if exactly one firm’s change

of output changes the state ω to the state ω′. The set of all states adjacent to the state ω is the

single mutation neighborhood of ω denoted by M(ω). The basin of attraction of an absorbing

set A is the set B(A) = {ω ∈ Γn|∃m ∈ N,∃ω′ ∈ A s.t. p
(m)
ωω′ > 0}. It is the collection of all

states from which there is a strict positive probability that the (unperturbed) dynamics leads

to the absorbing set A. A recurrent set R is a minimal collection of absorbing sets with the

property that there do not exist absorbing sets A ∈ R and A′ /∈ R such that for all ω ∈ A,

M(ω) ∩ B(A′) 6= ∅. That is, a recurrent set R is a minimal collection of absorbing sets for

which it is impossible that a single mutation followed by the unperturbed dynamics leads to

an absorbing set not contained in R. The importance of the recurrent set stems from below

Lemma 3 by Nöldeke and Samuelson (1993, 1997) and Samuelson (1994).

Lemma 3 (Nöldeke and Samuelson) Given a regularly perturbed finite Markov chain, then

at least one recurrent set exists. Recurrent sets are disjoint. Let the state ω be contained in the

support of the unique limiting invariant distribution ϕ∗. Then ω ∈ R, R being a recurrent set.

Moreover, for all ω′ ∈ R, ϕ∗(ω′) > 0.

A proof of Lemma 3 is contained in Samuelson (1997), Lemma 7.1 and Proposition 7.7.,

proof pp. 236-238.

Proof of Theorem 1.

It is sufficient to show that {ω◦} is not a singleton recurrent set.

Lemma 4 Given previous assumptions, if ωS ∈ H then M(ω)∩B({ωS}) 6= ∅, ∀ω ∈ H \ {ωS}.
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Proof of Lemma. Assume ωS ∈ H. It is sufficient to show that ∀q ∈ Γ, q being a component

of an arbitrary ω ∈ H, ω 6= ωS , k ∈ N, 0 < k ≤ θn,

qSp((θn− k)q + kqS + (1− θ)nqD)− c(qS) > qp((θn− k)q + kqS + (1− θ)nqD)− c(q), (14)

with qD = b((θn− k)q + kqS + ((1− θ)n− 1)qD).

By Lemma 1 and Remark 1, πi is quasi-submodular (formulas (3) and (4)) in (q, Q)

on Γ × {0, δ, 2δ, ..., nνδ}. Set q′′ ≡ qS , q′ ≡ q, Q′ = (θn − k)q + kqS + (1 − θ)nqD′
and

Q′′ = θnqS +(1− θ)nqD′′
with qD′ ≡ qD and qD′′ ≡ b(θnqS +((1− θ)n− 1)qD′′

) being uniquely

defined by Lemma 2. If q′′ > q′ then θnq′′ > (θn− k)q′ + kq′′. By Lemma 2, we conclude that

Q′′ ≥ Q′. If q′′ < q′ then θnq′′ < (θn− k)q′ + kq′′. By Lemma 2, we conclude that Q′′ ≤ Q′. It

follows that if qS > q then the left hand side of “=⇒” in formula (3) is given by Inequality (11)

of Definition 7 of the Pseudo-Stackelberg solution (i). In this case the right hand side of “=⇒”

in formula (3) yields above Inequality (14). If qS < q then the left hand side of “=⇒” in

formula (4) is given by Inequality (11) of Definition 7 of the Pseudo-Stackelberg solution (i).

In this case the right hand side of “=⇒” in formula (4) yields above Inequality (14). Finally,

set k = 1 to see that one suitable mutation only is required to connect every ω ∈ H to ωS ∈ H. �

Since Lemma 4 holds for any absorbing state except the Pseudo-Stackelberg solution, it

holds also for the Cournot Nash equilibrium ω◦. This implies by Lemma 3 the theorem. �

Proof of Example 1.

We show that under certain assumptions on the parameters of the game, we connect all

Pseudo-Stackelberg states by a sequence of single suitable mutations.

Remark 2 The Cournot Nash equilibrium ω◦ ∈ H is the state with the lowest identical output

of imitators in the set of Pseudo-Stackelberg states H.

Denote by ω̄ ∈ H the Pseudo-Stackelberg state with the largest possible identical output of

imitators. I.e., if q̄I is the identical output of imitators in ω̄, then there does not exist a state

ω ∈ H such that if qI is the identical output of imitators in ω we have qI > q̄I .

Let qI
ωj

be the identical output of imitators in the state ωj ∈ H. We call a sequence of

Pseudo-Stackelberg states ω1, ..., ωm ∈ H increasing (decreasing) iff the identical output of

27



each imitator in those Pseudo-Stackelberg states is ordered such that qI
ωj

< qI
ωj+1

(qI
ωj

> qI
ωj+1

),

j = 1, ...,m− 1. Such order on H is the natural order on Γ.

We call πi strictly quasi-concave in qi if for all qi, q
′
i ∈ Γ, qi 6= q′i and for all λ ∈ (0, 1) s.t.

λqi + (1− λ)q′i ∈ Γ,

πi(λqi + (1− λ)q′i, Q) > min{πi(qi, Q), πi(q′i, Q)},∀Q ∈ {0, δ, 2δ, ..., nνδ}. (15)

Lemma 5 Let πi be strictly quasi-concave in qi. Under previous assumptions we conclude:12

(i) If ωS ∈ H, then there exists an increasing sequence ω1, ..., ωm ∈ H with ω1 = ω◦ and

ωm = ωS s.t. M(ωj) ∩B({ωj+1}) 6= ∅, j = 1, ...,m− 1.

(ii) If ωS ∈ H, then there exists a decreasing sequence ω1, ..., ωm ∈ H with ω1 = ω̄ and

ωm = ωS s.t. M(ωj) ∩B({ωj+1}) 6= ∅, j = 1, ...,m− 1.

Proof of Lemma. (i): Let ω1, ..., ωm ∈ H be an increasing sequence of absorbing states with

ω1 = ω◦ and ωm = ωS . In order to show that M(ωj) ∩B({ωj+1}) 6= ∅ for j = 1, ...,m− 1, it is

sufficient to show for 0 < k < θn

qI
ωj+1

p((θn− k)qI
ωj

+ kqI
ωj+1

+ (1− θ)nqD)− c(qI
ωj+1

) >

qI
ωj

p((θn− k)qI
ωj

+ kqI
ωj+1

+ (1− θ)nqD)− c(qI
ωj

), (16)

with qD = b((θn− k)qI
ωj

+ kqI
ωj+1

+ ((1− θ)n− 1)qD), which is uniquely defined by Lemma 2.

By Lemma 1 and Remark 1, π is quasi-submodular. Set q′′ = qI
ωj+1

, q′ = qI
ωj

, Q′ =

(θn − k)qI
ωj

+ kqI
ωj+1

+ (1 − θ)nqD′
and Q′′ = θnqI

ωj+1
+ (1 − θ)nqD′′

, with qD′
= qD and

qD′′
= b(θnqI

ωj+1
+ ((1− θ)n− 1)qD′′

) being uniquely defined by Lemma 2.

For each qI
ωj+1

∈ [q◦, qS ] ∩ Γ there exists a λ ∈ (0, 1) s.t. qI
ωj+1

= λqI
ωj

+ (1 − λ)qS . We

claim that π(qI
ωj

, Q′′) = min{π(qS , Q′′), π(qI
ωj

, Q′′)}. We know that π(qS , QS) > π(qI
ωj

, QS) by

definition. Since qI
ωj+1

≤ qS we know by Lemma 2 that QS ≥ Q′′. By quasi-submodularity

(upper formula (3)) π(qS , Q′′) > π(qI
ωj

, Q′′) and the claim follows. By strict quasi-concavity

π(qI
ωj+1

, Q′′) > π(qI
ωj

, Q′′). It implies Inequality (16) by quasi-submodularity (upper for-

mula (3)). (i) follows from setting k = 1 in Inequality (16).

12Lemma 5 provides also an alternative proof of Theorem 1 under the additional assumption of strict

quasi-concavity of πi in qi.
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(ii) The proof is analogous to (i). Set q′ = qI
ωj+1

, q′′ = qI
ωj

, Q′′ = (θn−k)qI
ωj

+kqI
ωj+1

+(1−

θ)nqD′′
and Q′ = θnqI

ωj+1
+(1−θ)nqD′

, with qD′′
= qD and qD′

= b(θnqI
ωj+1

+((1−θ)n−1)qD′
)

and use the lower formula (4) of quasi-submodularity.

This completes the proof of Lemma 5. �

Lemma 6 Let q◦2 ∈ Γ be a firm’s Cournot duopoly equilibrium output.13 Given Assumptions 1

and 4 are satisfied, there exist p, c, θ, δ, ν, and finite n such that

q◦p((2n− 3)q◦)− c(q◦) ≤ 0, (17)

(n− 1)q◦p((n− 1)q◦)− c((n− 1)q◦) ≤ 0, (18)

π(q, νδ) < 0,∀q > 0, (19)

q◦2 ≡ q̄I , (20)

πi is strictly quasi-concave in qi, and ωS ∈ Γn exists uniquely.

Proof of Lemma. Consider p, c, θ, δ, ν, and n in Example 1, i.e., p(Q) = 10 − Q, c(qi) =
1000
501 q2

i +1, θ = 0.2, δ = 0.001, n = 5, and sufficiently large ν (e.g. ν = 30000). Straight forward

calculations verify that formulas (17) to (20) as well as Assumptions 1 and 4 hold, and that ωS

exists uniquely. Moreover, since πi is strictly concave in qi, it is strictly quasi-concave. �

Lemma 7 Given previous assumptions, let p, c, θ, δ, ν, and n such that the properties of

Lemma 6 hold. Then M(ω) ∩B({ω◦}) 6= ∅, ∀ω ∈ H.

Proof of Lemma. Suppose in t any arbitrary state ω(t) ∈ H. By Lemma 2 such state exists

and is uniquely defined. W.l.o.g. suppose by Assumptions 2 and 3 that in t + 1 a mutation by

one firm i ∈ N occurs such that qi(t + 1) = (n − 1)q◦. Note that by Lemma 2 the Cournot

Nash equilibrium output q◦ ∈ Γ exists and is unique. Since ω(t) ∈ H, we have Q(t + 1) ≥

(n− 1)q◦ + (n− 1)q◦ = (2n− 2)q◦ > (2n− 3)q◦. By Lemma 6, Inequality (17), πj(t + 1) < 0,

∀j ∈ N . W.l.o.g. assume that by Assumption 2 a firm k ∈ N\I, k 6= i and only a firm k

has the opportunity to adjust output in t + 2. Since DO(t + 1) = 0, we have qk(t + 2) = 0.

13The Cournot duopoly equilibrium is a special case of the Cournot Nash equilibrium (Definition 5)

for n = 2.
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Q(t + 2) ≥ (2n − 3)q◦. By Lemma 6, Inequality (17), πj(t + 1) < 0, ∀j ∈ N\{k}. W.l.o.g.

assume that by Assumption 2 and DO(t+2) = DI(t+2) = 0 all j ∈ N\{i} adjust output in t+3

such that Q(t+3) = qi(t+3) = qi(t+2) = qi(t+1) = (n− 1)q◦. By Lemma 6, Inequality (18),

πi(t + 3) ≤ 0. W.l.o.g. assume that by Assumption 2, 4, and DO(t + 3) = b((n − 1)q◦) = q◦

another firm k ∈ N\I has the opportunity to adjust output in t+4. Since πk(t+4) > πj(t+4),

j ∈ N\{k} we can assume w.l.o.g. that by Assumption 2 and DI(t + 4) = q◦ all j ∈ I adjust

output. By Assumptions 2 let all remaining optimizers adjust output in the subsequent periods

such that with positive probability ω◦ is reached in finite time (by Lemma 2). Since we started

in any arbitrary absorbing state ω(t) ∈ H (in particular it also includes ωS if ωS ∈ H) we have

shown that M(A) ∩B({ω◦}) 6= ∅, ∀A ∈ Z. �

Lemma 8 Given previous assumptions, let p, c, θ, δ, ν and n such that the properties of

Lemma 6 hold. Then M(ω) ∩B({ω̄}) 6= ∅, ∀ω ∈ H.

Proof of Lemma. Suppose in t any arbitrary state ω(t) ∈ H. W.l.o.g. assume that by Assump-

tions 2 and 3 in t+1 a mutation by an imitator i ∈ I occurs setting a large quantity νδ such that

by Lemma 6, Inequality (19) πj(t + 1) < 0, ∀j ∈ N . W.l.o.g. assume that by Assumption 2 all

optimizers in N\I have the opportunity to adjust output in t+2. Since DO(t+1) = 0, we have

qD(t + 2) = 0 with πD(t + 2) = 0. By Inequality (19), we have πI(t + 2) < πD(t + 2). W.l.o.g.

assume that by Assumption 2 all imitators in I adjust output in t+3 to DI(t+2) = qI(t+3) = 0.

Hence, Q(t + 3) = 0. W.l.o.g. assume now that by Assumption 2 in t + 4 two optimizers and

only two optimizers adjust output such that by Lemma 2 we reach a market output of 2q◦2

in finite time, i.e. at t + k. W.l.o.g. assume that by Assumptions 2 in the following period

all imitators in I adjust output such that DI(t + k) = q◦2(t + k + 1). Let all optimizers in

N\I adjust output in the subsequent periods such that by Assumptions 2 and Lemma 2 a state

ω◦2 = (q◦21 , ..., q◦2θn, qD
θn+1, ..., q

D
n ) is reached in finite time. Since by Lemma 6, q̄I = q◦2, we have

that ω◦2 = ω̄. �

In Lemma 5 we showed that we can connect the Pseudo-Stackelberg states by an increasing

(starting with the Cournot Nash equilibrium) or decreasing sequence (starting with the Pseudo-

Stackelberg state with the largest output of imitators) of single suitable mutations followed
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by the decision dynamics to the Pseudo-Stackelberg solution if the profit functions are quasi-

concave. In Lemma 7 and 8 we showed that we can connect by single suitable mutations followed

by the decision dynamics any Pseudo-Stackelberg state to the Cournot Nash equilibrium and

the Pseudo-Stackelberg state with the largest output of imitators if the properties of Lemma 6

hold. In particular we can also connect the Pseudo-Stackelberg solution ωS ∈ H to the Cournot

Nash equilibrium and the Pseudo-Stackelberg state with the largest output of imitators. Hence

there exists a sequence of single suitable mutations by which we can move through the entire

set of Pseudo-Stackelberg states. It follows that H is the unique recurrent set. By Lemma 3 it

follows that S = H. This completes the proof of Example 1. �
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[30] Nöldeke, G. and Samuelson, L., 1993. An evolutionary analysis of backward and forward

induction, Games and Economic Behavior 5, 425-454.

[31] Offerman, T., Potters, J. and Sonnemans, J., 2002. Imitation and belief learning in an

oligopoly experiment, Review of Economic Studies 69, 973-997.

[32] Rhode, P. and Stegeman, M., 2001. Non-Nash equilibria of darwinian dynamics with ap-

plications to duopoly, International Journal of Industrial Organization 19, 415-453.

[33] Samuelson, L., 1997. Evolutionary games and equilibrium selection, The MIT Press, Cam-

bridge, M.A.

33



[34] Samuelson, L., 1994. Stochastic stability in games with alternative best replies, Journal of

Economic Theory 64, 35-65.

[35] Sandroni, A., 2000. Do markets favor agents able to make accurate predictions?, Econo-

metrica 68, 1303-1341.

[36] Sauermann, H. and Selten, R., 1959. Ein Oligopolexperiment, Zeitschrift für die gesamten

Staatswissenschaften 115, 427-471.

[37] Schaffer, M. E., 1989. Are profit-maximizers the best survivors?, Journal of Economic

Behavior and Organization 12, 29-45.

[38] Schipper, B. C., 2003. Submodularity and the evolution of Walrasian behavior, Interna-

tional Journal of Game Theory 32, 471-477.

[39] Schipper, B. C., 2002. Imitators and optimizers in symmetric n-firm Cournot oligopoly,

mimeo., University of Bonn.

[40] Schlag, K., 1998. Why imitate, and if so, How? A bounded rational approach to multi-

armed bandits, Journal of Economic Theory 78, 130-156.

[41] von Stackelberg, H., 1934. Marktform und Gleichgewicht, Verlag von Julius Springer, Wien.

[42] Topkis, D. M., 1998. Supermodularity and complementarity, Princeton University Press,

Princeton, N.J.

[43] Vega-Redondo, F., 1997. The evolution of Walrasian behavior, Econometrica 65, 375-384.

[44] Vives, X., 2000. Oligopoly pricing: old ideas and new tools, The MIT Press, Cambridge,

M.A.

[45] Weibull, J. W., 1995. Evolutionary game theory, The MIT Press, Cambridge, M.A.

[46] Young, H. P., 1993. The evolution of conventions, Econometrica 61, 57-84.

34


	53t.pdf
	c4_imops13.pdf

