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Abstract

We study the alternating-offers bargaining problem of assigning an indivisible and

commonly valued object to one of two players in return for some payment among

players. The players are asymmetrically informed about the object’s value and have

veto power over any settlement. There is no depreciation during the bargaining

process which involves signalling of private information. We characterise the per-

fect Bayesian equilibrium of this game which is essentially unique if offers are re-

quired to be strictly increasing. Equilibrium agreement is reached gradually and non-

deterministically. The better informed player obtains a rent. (JEL C73, C78, D44, D82,

J12. Keywords: Sequential bargaining, Common values, Incomplete information, Repeated

games.)

Introduction

We study an alternating-offers bargaining situation where a privately informed player

signals his information to the uninformed opponent through his bargaining behaviour.

There is an indivisible object that is of either high or low value. Both players know these

possible values. Only one player (P1) knows the true state of Nature, ie. the true value of
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Financial support from the German Science Foundation through SFB/TR 15 is gratefully acknowledged.



the object, while all the other player (P2) knows is a probability distribution over the pos-

sible values. The players are infinitely patient and possess similar bargaining power as

offers are made alternatingly. In the essentially unique equilibrium, the informed player

obtains an information rent even when the object is worthless and the uninformed player

finds it interim individually rational to participate.

Many economic applications lend themselves to our interpretation of bargaining. Our

study of non-depreciating common values complements the analysis of depreciating pri-

vate values by Ståhl (1972) or Rubinstein (1982). Their assumption of depreciation typi-

cally leads to immediate or temporally finely tuned agreement in subgame perfect equi-

librium. This phenomenon, however, is often not observed in bargaining situations in

which signalling of private information matters. Some examples captured within our

framework are: (1) A partnership dissolution problem where two asymmetrically in-

formed players jointly own a firm. (2) A fight for control between two owners of a single

firm. (3) Agreeing on a profit sharing rule between two firms involved in a joint venture.

(4) The ‘buying out’ of parties holding dispersed property rights (or patents) needed for

the production of some good or service. (5) Deciding whether to spin-off some yet-to-be-

proven innovation (‘selling the project to the manager’) or developing it inside the firm.

(6) Splitting an inheritance (eg. an Amish farm or company) under the provision of main-

taining it as a unit. (7) Agreeing on payments for hosting some airport or waste disposal

site in one community although two or more communities profit from it.1

Bargaining models under incomplete information are typically plagued by a plethora

of equilibria. One might expect that the signalling aspect introduced by the common

value nature of the object further accentuates this problem. This is, however, incorrect.

Indeed, we argue that the finite version of our game where a player’s offer must be strictly

higher than his previous offer2 has an essentially unique perfect Bayesian equilibrium:3

1 This involves an economic ‘bad’ taking a negative value in its ‘high’ state. Consequently players can
offer payments for the opponent to accept the object. Here it suffices to analyse the game with absolute
high value and then reverse the sign on the outcome.

2 We are grateful to an anonymous referee for pointing out that the requirement for strictly increasing
offers corresponds to the “bargaining in good faith” stipulation present in many countries’ labour codes.
These are often interpreted as not allowing a party to withdraw offers or to at least restrict a party’s
ability to make offers which get worse as time passes.

3 We call an equilibrium ‘essentially’ unique if, roughly, all stage actions but P1’s final action are unique
and beliefs are uniquely determined whenever they can lead to the uninformed player’s continuation.
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When the value of the object is high, the informed P1 keeps increasing his offers by the

minimal unit at a time up to approximately half the true value of the object and then

quits. When the value is low, P1 keeps increasing his offers with probability 1 up to ap-

proximately a quarter of the high value of the object (this depends on P2’s prior). After

that, he mixes between minimally increasing his offer and quitting until he reaches the

stage where also the high type P1 quits. The uninformed P2 mixes between minimally

increasing her offer and quitting over the same range of stages and increases minimally

with probability 1 before. With minor modifications, this equilibrium remains an equi-

librium of the extended game where we allow also for non-increasing bids. Uniqueness,

though, is lost in this potentially infinite game.

The reason for the essential equilibrium uniqueness in the finite game is that P1 cannot

use an equilibrium action which induces beliefs which cause an action by the uninformed

P2 which is beneficial only to a certain type of P1 (eg. immediate quitting after a jump-

bid). For at each stage where P2 moves, it is beneficial for the high-type P1 to induce

P2 to quit immediately and it is beneficial for the low-type P1 to induce P2 to continue

with probability one. Hence the only belief about the value of the object which does

not separate states through the induced belief is when P2 is exactly indifferent between

quitting and continuing. Thus observing any on- or off-equilibrium-path action by the

informed P1, the uninformed P2’s equilibrium response must contain a belief which makes

her indifferent between accepting the current offer by quitting and continuing to make a

(minimally) higher own offer. There are only exceptions to this rule when such beliefs

do not exist. This suffices to force essentially unique on- and off-equilibrium-path beliefs.

The eventual agreement is reached gradually and stochastically over a stretch of multiple

rounds of offers and counteroffers. The same logic applies to the infinite game but there,

inserting any finite or infinite sequence of non-increasing offers at any stage, may still

constitute an equilibrium.

Our departures from the standard model are threefold: (i) we analyse incomplete in-

formation over a commonly valued pie, (ii) there is no depreciation of the object’s value

during the bargaining process, and (iii) the finite game assumes strictly increasing offers.

The first assumption focusses attention on the signalling of private information during
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the bargaining process. To that end, introducing a private value element changes noth-

ing. The second assumption—shared with Calcagno and Lovo (2006)—is made because

we are mainly interested in situations where the object’s value does not change signifi-

cantly during the negotiation period. The final departure from the literature—our ‘activ-

ity rule’—is made for technical reasons. As pointed out above, however, there is a class

of “bargaining in good faith” applications where the requirement for strictly increasing

offers is natural in its own right. At any rate, we relax the third assumption in the analysis

of the infinite game where we allow for general offers.

Related literature

Our dynamic game can be interpreted as a repeated game of incomplete information as

defined by Aumann and Maschler (1966) and subsequently developed by Mertens, Sorin,

and Zamir (1994). Indeed, our model poses questions similar to those addressed there.

That literature, however, typically derives average payoffs from long interactions which

do not arise naturally in our context. Nevertheless we use repeated game terminology

throughout.

There is a rich literature on bargaining with incomplete information. Most contri-

butions such as Grossman and Perry (1986) or Watson (1994), however, are concerned

with the players’ incomplete information over the opponents discount rate and not over

the pie itself for which valuations are usually taken to be independent. Hence incom-

plete information bargaining is typically very sensitive to discounting considerations. If

a (sequential) bargaining model considers private information on the pie—such as So-

bel and Takahashi (1983), Cramton (1984), Fudenberg, Levine, and Tirole (1987), Evans

(1989), or Deneckere and Liang (2006)—the problem of strategic communication is usu-

ally avoided by allowing offers only by the uninformed players. Ausubel and Deneckere

(1989) are an exception in characterising the full set of sequential equilibria of seller-offer,

buyer-offer and alternating-offer bargaining games with one-sided incomplete informa-

tion. They consider private values while imposing ex-post individual rationality on bar-

gaining mechanisms. Our setting features incomplete information over a common value
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and interim individual rationality. A full survey of this literature is Ausubel, Cramton,

and Deneckere (2002) but, to date, there is no full analysis of bargaining under incomplete

information over an object’s pure common value with alternating offers by both players.

Compte and Jehiel (2004) study complete information gradual bargaining and contri-

bution games where players can opt out at each stage of bargaining. They obtain history

dependent quitting payoffs by assuming that these outside options depend on the play-

ers’ bargaining concessions. Our game also has a certain war of attrition flavour with the

difference that the loser is not typically paid the winning bid in a war of attrition. The

common element, however, is that parties mix over quitting or remaining with probabili-

ties balanced such as to keep the opponent indifferent.

A bargaining game can be viewed as an auction with balanced budget among par-

ticipants. Thus our game can be interpreted as an ascending auction where the highest

bidder wins the object and pays his bid to the loser. From this point of view, our anal-

ysis addresses questions similar to those explored by Milgrom and Weber (1982) and

Engelbrecht-Wiggans, Milgrom, and Weber (1983) who characterise the incentives for ad-

ditional information acquisition (or communication) in a standard two-bidder, sealed-bid

auction.4 In contrast to their setting, players have mutual veto power here as results, for

instance, from joint ownership. Introducing such considerations into the auction context

leads to effects reminiscent of the study of auctions with toeholds as discussed by Bulow,

Huang, and Klemperer (1999) or Ettinger (2003). There, a bidder with a toehold bids more

aggressively than without because his bid is at the same time an offer for the remaining

part of the object and a demand for his own holdings.

We share our interest in strategic information transmission in repeated bidding games

with a number of recent papers: Deneckere and Liang (2006) analyse an infinite horizon

bargaining game with an information structure similar to ours but offers by the unin-

formed player only. They allow for interdependent players’ valuations and analyse the

4 Similarly, our mechanism relates to Japanese (ascending-clock) auctions. The main problem in formu-
lating an ascending-clock auction in our framework is the case where both players quit simultaneously
because this is a fundamentally non-bargaining event. Sákovics (1993) illustrates that even in the one-
shot, complete-information case, simultaneous offers permit any outcome. If this problem is resolved
by the auctioneer alternatingly giving preference to one of the players, we are back in the current setup
(without jump-bids).
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efficiency of their generically unique stationary equilibrium outcome in comparison to

the literature on the Coase conjecture. They find that the limiting bargaining outcome

may be worse than even the outcome of the one-period bargaining game. Calcagno and

Lovo (2006) are concerned with strategic information transmission between informed and

uninformed market makers through a finite sequence of bid-ask quotes and the resulting

inventory optimisation problem. In our setup, this corresponds to sharing the undis-

counted common value of a set of stocks between two asymmetrically informed players.

In strategic terms their result is similar to ours: the informed player profits from equilibria

in semi-separating strategies. Hörner and Jamison (2003) analyse an infinitely repeated

sequence of first-price auctions where a common value object is sold at every stage and

players maximise their discounted average payoffs. For the case of incomplete informa-

tion on one side, they find that all information is gradually revealed in finite time and,

surprisingly, that the uninformed player is doing better than the informed bidder. This

result, however, cannot be readily compared to ours because their bidders’ payoffs stem

only from the value of the objects and not also from payments between bidders as in our

case.

1 The model

We consider two identical, risk-neutral players {P1,P2} and two possible common values

for an indivisible object θ ∈ {θ, θ̄}, θ̄ ∈ R. We normalise θ = 0 and assume θ̄ ≥ 3 to avoid

trivialities. P1 is assumed to know the realisation of θ. We denote the high-type informed

player by P1 and the low-type by P1. P2 only has a public prior of ϕ0
2 = pr(θ = θ̄) = 1/2.5

This prior is refined into P2’s beliefs ϕt
2 on the basis of P1’s observed bids.

The game starts with P1 offering a payment o1
1 (subscripts are players, superscripts

time periods) to P2 for sole ownership of the object.6 Pure offers ot
i, i ∈ {1, 2}, t > 0

are restricted to the set of admissible bids B = {0, 1, . . . , B̄} ⊂ N where B̄ > θ̄ (‘all the

money in the world’). This defines the minimal offer increase to be 1 (currency unit). The

5 This prior is chosen for simplicity; increasing P2’s prior reduces P1’s information rent through (A.18).
6 Since only P1 holds private information, having P2 start the game just inserts a trivial stage at the be-

ginning.
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terms offers and bids are used synonymously. If P−i accepts Pi’s offer, Pi pays the offered

amount to P−i, Pi gets the object and the game is over. If P−i does not accept Pi’s offer,

nothing is paid, and P−i makes an own offer. Players go on making alternating offers

until one player accepts an offer by quitting.

We set o0
2 = o−1

1 = 0 equal to the low value of the object and, for the finite game Q,

we require offers to be strictly increasing over time, ie. all continuation increments over

the last own offer ot
i − ot−2

i > 0. Conversely, ot
i − ot−2

i ≤ 0 is interpreted as quitting and

denoted ‘q’. We define a jump bid jt
i = ot

i − ot−2
i − 1 as an offer which increases the last

own offer by more than the minimal amount. We keep a running sum of player i’s jump

bids as J t
i =

∑(t+i)/2

t̂=i
j2t̂−i
i . Mixed offers attach probability αt

i to the pure continuation

bid ot
i and the complementary probability to quitting. We denote such mixed actions by

βt
i = [αt

i : ot
i, q].

7 The requirement for offers to be strictly increasing is lifted for the infinite

game Q∞. Non-increasing offers are then denoted by ‘0’ and a succession of ‘0’-bids by

both players is called a cycle.

Pi’s (repeated game) strategy βi consists of the sequence of potentially mixed stage

actions for each possible plan of the opponent. Players observe the opponents’ realised

offers and enjoy perfect recall. The players’ final expected payoffs are written ui(β|θ) and

consist of the object’s value minus payment made for the winner of the object and the

payment received for the loser. Player i’s quitting payoff when accepting an offer at t is

written as ut
i(q).

To sum up, our ‘queto’ model is a standard alternating-offer bargaining game with

incomplete information over common values and no discounting.8 We now state the

definitions required to formulate our results in section 3. There, we first analyse the game

with strictly increasing bids and then extend our results to the infinite game allowing for

non-increasing offers. All proofs and details are presented in appendix A, an example is

shown in appendix B.

7 We refrain from a more general definition of a mixed stage action (over a larger support of pure actions)
because lemma 6 shows that we need nothing more complicated than the above.

8 The name derives from the player’s stage actions of either quitting or vetoing the current proposal. The
idea of our game is similar to the quitting games introduced by Vieille and Solan (2001) in the context of
complete information stochastic games. They define quitting games as sequential games in which, at
any stage, each player has the choice between a single continuation bid and quitting.
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Definition 1. A perfect Bayesian equilibrium is called essentially unique if it comprises of (i)

arbitrary beliefs at information sets where every equilibrium prescribes quitting for any belief, (ii)

uniquely determined beliefs at every other information set of P2, and (iii) an arbitrary final stage

equilibrium action for P1 if ⌊θ̄⌋ = θ̄.9

Definition 2. The informed agent’s strategy is called non-separating if, at every decision node of

P1, there is no pure continuation bid which is in the support of the strategy of one type and not of

the other. Conversely, the informed agent’s strategy is called separating if, at some stage, it reveals

the informed player’s type with probability one.

Definition 3. A strategy is called minimal-increment strategy if all its constituent continuation

actions increase the previous own bid by the minimal admissible amount.

2 Equilibrium definition and discussion

In this section we define the perfect Bayesian equilibrium candidate β∗ which we will

analyse in the following section. Since the formal definition (1) is rather involved, we

first state the most important equilibrium (path) properties of β∗ verbally: (1) Starting

with o1
1 = 1, both players keep increasing their last offer ot

i by the minimum admissible

increment of 1 with probability 1 until P2’s quitting payoff exceeds her prior-based payoff

expectation from β∗. The period before, P1 starts mixing with probability αts
1 between his

minimal-increment continuation and quitting. (We call this period ts and the periods

t ∈ [1, ts) the ‘preplay’-phase.) This and all following mixture probabilities are such as to

induce next-period beliefs for P2 which make her precisely indifferent between quitting

and bidding her minimal-increment continuation bid. (2) P1 bids his minimal-increment

continuation bid with probability 1 as long as his quitting payoff ot−1
2 is below what he

can get if P2 quits the following period (ie. θ̄ − ot
1). Thus as soon as ot−1

2 > θ̄ − ot
1, both

players quit with probability 1. As soon as P1 starts mixing, the uninformed P2 is made

indifferent between quitting and minimally increasing her offer. Hence she is willing to

mix with precisely the probability α2 which P1 requires to mix himself.

9 The notation ⌊x⌋ denotes the next integer below x. Similarly, ⌈x⌉ is the integer directly above x.
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The above is an informal definition of the equilibrium path. It is made precise by

lemma 7 and, in particular, (A.13) on P2’s mixtures, (A.14) on P1’s mixtures and (A.15)

on P2’s beliefs as part of the equilibrium β∗. Notice that these probabilities apply both

on and off-equilibrium-path. The continuation payoff ut+1
2 (β∗|θ̄) is defined, on and off-

equilibrium-path, in (A.19) and the quitting payoff is just last period’s offer ut
i(q) = ot−1

−i .

The definition is not circular because P2’s beliefs and payoffs—and thus P1’s mixture

probabilities—are defined from the last stage of the game forward while P1’s payoffs—

and thus P2’s mixture probabilities—are defined from the first stage backwards. The

point in time where both meet determines when P1 starts to mix. Thus we define the

equilibrium profile β∗ = (β∗
1 , β

∗
2), for all t > 0 and ot

i ∈ B, as

β∗
1(θ̄) =







ot
1 = ‘q’ . . . if ot−2

1 + ot−1
2 > θ̄ − 1,

ot
1 = ot−2

1 + 1 . . . otherwise,

β∗
1(θ) =







ot
1 = ‘q’ . . . if ot−2

1 + ot−1
2 ≥ θ̄ − 2,

βt
1 =

[
αt

1 : ot
1 = ot−2

1 + 1, q
]

. . . if ut+1
2 (q) > 1/2u

t+1
2 (β∗|θ̄) + 1/2u

t
2(q),

ot
1 = ot−2

1 + 1 . . . otherwise,

β∗
2(θ) =







ot
2 = ‘q’ . . . if ot−2

2 + ot−1
1 ≥ θ̄ − 1 for any ϕt

2,

βt
2 =

[
αt

2 : ot
2 = ot−2

2 + 1, q
]

. . . if ut
2(β

∗) = ut
2(q) and ϕt

2 is given by (A.15),

ot
2 = ot−2

2 + 1 . . . if ut
2(β

∗) > ut
2(q) and ϕt

2 = ϕ0
2.

(1)

Notice that, in equilibrium, P2’s beliefs are uniquely defined at each information set. Her

beliefs are not fully defined, however, when she quits with probability 1 for any belief.

This situation cannot occur in equilibrium: P2 only quits with probability 1 following a

fully separating action by P1 which implies that ϕ2 = 1 if a continuation is observed. Off-

equilibrium-path, this situation cannot be ruled out and we set ϕ2 = 1 at all information

sets where any belief leads to quitting, ie. where P2’s beliefs do not matter.

An equilibrium argument removes a related problem in the preplay-phase. If P2 ob-

serves an off-equilibrium-path bid, her beliefs cannot be deduced from Bayes’ rule. But

as long as P2’s continuation payoff is larger than her current quitting payoff for any belief

ϕ2 (which is the definition of the preplay-phase), then mixing by P1 (over any set of pure
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actions) cannot be an equilibrium action since it is not followed by mixing of P2. Hence

the only equilibrium response consistent with P2 not mixing is that neither of P1’s types

mixes. But then P2 does not update her belief and ϕ2 = ϕ0
2 throughout the preplay-phase.

Thus equilibrium preplay-beliefs are pinned down uniquely.

The equilibrium candidate of the infinite game β∗
∞ extends β∗ with reactions to a non-

increasing bid (denoted by ‘0’) by the opponent—all other actions are identical to β∗. (β∗
∞

is defined in proposition 3.) Thus non-increasing bids are never made along the equilib-

rium path of the infinite game. The main idea of these reactions is that, following ot
i = ‘0’,

P−i plays ‘0’ as well which takes the game exactly to the point where the first deviation

occurred. Since there is no depreciation, any number of such cycles gives just the contin-

uation payoff which follows the cycles, ie. the equilibrium payoff. Thus players’ simply

ignore any non-increasing offer. To fully define payoffs we need an assumption about the

payoff of playing ‘0’ forever. We define this payoff as the limit of what is obtained from

any number of finite cycles.

3 Results

In the course of solving our bargaining game, the first group of lemmata determines

properties of any equilibrium of the game. Lemma 6 employs these for constructing a

path through the game based on a terminal quitting condition for P1. Proposition 1 then

shows that this path is the equilibrium β∗ defined in (1) and, moreover, shows that β∗

is the essentially unique equilibrium of Q. Proposition 2 determines when the informed

player starts signalling his type and calculates payoffs. Up to the final proposition 3 we

only deal with the finite game and strictly increasing offers.

The first lemma shows that the sum of the two bidders’ most recent offers determines

when each (type of) player quits with probability one.10

Lemma 1. In any equilibrium of Q, (i) P1 quits wp1 at t̂ if ot̂−1
2 + ot̂−2

1 > θ̄− 1, (ii) P2 quits wp1

at t̂ if ot̂−2
2 + ot̂−1

1 ≥ θ̄ − 1, and (iii) P1 quits wp1 at t̂ if ot̂−1
2 + ot̂−2

1 ≥ θ̄ − 2.

10 The abbreviations wp1 and wpp are used for ‘with probability one’ and ‘with positive probability,’
respectively.
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Notice that in the equilibrium definition (1), P1’s final action is to continue if his quit-

ting and continuation payoffs are identical. However, any mixture between quitting and

minimally increasing his last bid is compatible with the above lemma and can be an equi-

librium. This is the reason for point (iii) in definition 1 of essential uniqueness.

In the next lemma, we show that there is only one possible separating equilibrium

in the game. It occurs when P2 would quit wp1 next period which is preempted by P1.

No other separating equilibria can exist. To see this intuitively, assume that the contrary

is true and that there is a separating equilibrium involving separating strategies by P1

β̂1(θ) = (q, . . .) and β̂1(θ̄) = (1, . . .) with full revelation at t = 1. Then, whenever P1

finds himself in θ—where β̂ gives a payoff of zero—he will optimally deviate from the

β̂-prescribed action q to mimicking his high-type by bidding 1—securing a payoff strictly

higher than zero—and leading P2 astray. This contradicts β̂1 being part of an equilibrium.

Lemma 2. There exists a separating equilibrium with first separating action by P1 at t̂, if

θ̄ − 1 ≥ ot̂−1
2 + ot̂−2

1 ≥ θ̄ − 2. (2)

There is no other separating equilibrium.

The previous lemma also shows that the only revealing equilibrium action which can

be played by P1 is quitting. The next lemma ascertains that there is a positive probability

of reaching the ‘final’ periods of the game determined in lemma 1 above.

Lemma 3. In no equilibrium, Pi quits wp1 at t̂ if

ot̂−1
−i + ot̂−2

i < θ̄ − 2. (3)

Based on lemma 1, the next lemma shows that P1 quits wpp iff the sum of P2’s current

offer and his own minimally increased offer exceeds θ̄ − 1. That is, he quits as soon

as his next minimally increased offer to P2 gives him a necessarily lower payoff than

P2’s current offer. On the equilibrium path, this is the case as soon as both players offer

roughly half the object’s high value.
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Lemma 4. In no equilibrium, P1 quits wpp at t̂ unless

ot̂−1
2 + ot̂−2

1 ≥ θ̄ − 1. (4)

The next lemma shows that the uninformed player’s beliefs are uniquely determined

on and off the equilibrium path. The reason is that, at each stage where P2 moves, it is

beneficial for P1 to induce P2 to quit immediately and it is beneficial for P1 to induce

P2 to continue with probability one. Hence the only belief about the value of the object

which does not separate states (through the induced belief) is when P2 is exactly indif-

ferent between quitting and continuing. This is true at each stage where P2 can be made

indifferent, ie. as soon as her priors do not induce an expected continuation payoff which

is strictly above the quitting payoff. (We call this initial phase of play the preplay-phase.)

Notice that P2’s equilibrium mixture after the preplay-phase precisely makes P1—whose

mixing determines her belief—indifferent between quitting and continuing.

Lemma 5. In every equilibrium and as long as ot̂−1
1 + ot̂−2

2 < θ̄−1 at t̂, if P2’s prior belief ϕ0
2 does

not imply her continuation wp1, she must be indifferent between quitting and continuation.

The above lemma establishes an essentially unique belief-structure accompanying β∗.

We stress that this result is rather surprising and a feature not commonly found in (re-

peated) signalling games. It simplifies our analysis considerably.

The following lemma makes the case against jump bidding. It consists of an induc-

tion argument which starts at a terminal node and constructs an essentially unique path

through the game to the initial node. We keep—based on the terminal equilibrium quit-

ting condition which must hold at any terminal node—the continuation game fixed when

checking for the optimal action and assigning a compatible history. We thus, step by

step, further restrict the set of possible histories by unravelling the game from the last

equilibrium action.

Lemma 6. In any equilibrium β, both P1 and P2 use minimal-increment strategies.

Notice that lemma 2 shows that the only revealing action P1 can use is quitting and

lemma 4 shows that P1 never quits wpp before the ‘last’ stage defined in lemma 1. More-
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over, since there are no separating equilibria before the final move by P1, the above lemma

6 allows us to conclude that the only mixing P1 can undertake in equilibrium is over quit-

ting and minimally increasing. As claimed, there are no complicated mixed equilibrium

actions over more than one continuation action. The next lemma completes our char-

acterisation of the equilibrium of the game. It states the essentially unique equilibrium

mixtures and beliefs which we used to define β∗.

Lemma 7. Equilibrium mixture probabilities and beliefs are essentially uniquely determined.

Proposition 1 summarises existence and uniqueness using the above arguments.

Proposition 1. The profile β∗ in (1) is the essentially unique perfect Bayesian equilibrium of Q.

Next we compute the payoffs from β∗ and find an expression for the start of mixing t∗s.

Proposition 2. In equilibrium β∗, P1 starts mixing at the first odd period following ts =
⌊θ̄⌋ − 3

4
.

The following corollary states the payoffs obtained as a consequence of proposition 2

and also provides a convenient approximation of the general result.11 Its main virtue is to

summarise P1’s emerging information rent over splitting the object’s value half-half and

the fact that the informed player benefits from refining the bidding grid.

Corollary 1. For t∗s defined as the first odd period after
⌊θ̄⌋ − 3

4
and odd ⌊θ̄⌋, payoffs are given

by12

u(β∗|θ) =

(
t∗s − 1

2
,−t∗s − 1

2

)

≈
(

θ̄ − 7

8
,− θ̄ − 7

8

)

,

u(β∗|θ̄) =







θ̄ − u2(β
∗|θ̄), 1 − ts

2
+ 2

Γ(
⌊θ̄⌋ + 2

2
)

Γ(
⌊θ̄⌋ + 1

2
)

Γ(
ts + 1

2
)

Γ(
ts
2

)







≈
(

5θ̄ − 11

8
,
3θ̄ + 11

8

)

.
(5)

Next we show that our equilibrium is preserved under much more general condi-

tions than those assumed above. Proposition 3 shows that a variant of the equilibrium

β∗ remains to be an equilibrium of the infinite game allowing for non-increasing bids.

11 The approximation is imprecise for low values of θ̄ and stated for convenience only.
12 The corresponding payoffs for even ⌊θ̄⌋ can be easily calculated from proposition 2.
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Uniqueness, however, is lost. We denote a bid which does not strictly increase the previ-

ous bid by ‘0’. A problem arising with this extended game is to assign payoffs to an infi-

nite sequence of ‘0’. There are two obvious options: one is to view this case as bargaining

breakdown and assign some exogenous payoff and the other is to derive the payoff as a

limit of finite cycles. We take the latter route and denote a strategy profile following β

up to some period, then cycling ‘0’ x times, and then continuing β by β ∪ {‘0’}x. In the

below proposition we reset the period counter to the period where the initial deviation

was made after each complete cycle. Hence we do not count cycles.

Assumption 1. ‘0’-Deviations from β∗
∞ are believed to be made with probability one.

Assumption 2. The payoffs from following β∗ up to some period s and then cycling infinitely by

each player offering ‘0’ (with probability one) are given by the limit of finite cycles13

lim
x−→∞

u(β∗ ∪ {‘0’}x) = u(β∗).

Proposition 3. We extend the bargaining game Q by allowing for general bids and propose the

equilibrium β∗
∞ of this game: for all t > 0 and any history of play, the moving Pi bids

βt
i =







∗βt
i . . . if ot−1

−i ≥ ∗ot−1
−i ,

∗βt
i . . . if (ot−1

−i = ‘0’ ∧ ot−2
i = ‘0’

︸ ︷︷ ︸

complete ‘0’-cycle

) ∧ ot−3
−i ≥ ∗ot−3

−i ; reset t = t − 2,

‘0’ . . . otherwise

(6)

where i=1,2, ∗βt
i is the (mixed) stage action prescribed by β∗ and o0

2 = ∗o0
2. The outcome of the

infinite game following β∗
∞ equals that from β∗ in Q.

Conclusion

We analyse an alternating-offers, common value bargaining problem with asymmetrically

informed players. Both the informed and uninformed player make offers. The special

13 Introducing any exogenous breakdown payoff of up to and including this limit leaves our results un-
changed and may fit infinite-game depreciation considerations better than the above limit.
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assumptions on priors, possible bids and preferences extend easily. The implications of

allowing for incomplete information on both sides change the problem fundamentally

and are therefore studied separately. Generalising the type space to a larger set retains

the result in the sense that some informed types always mimic the highest possible type

with positive probability. Introducing depreciation is possible but numerical examples

suggest that jump-bidding cannot be ruled out any more and the simple intuition of the

presented equilibrium is lost.

Appendix A

Lemma 1. In any equilibrium of Q, (i) P1 quits wp1 at t̂ if ot̂−1
2 + ot̂−2

1 > θ̄ − 1, (ii) P2 quits

wp1 at t̂ if ot̂−2
2 + ot̂−1

1 ≥ θ̄ − 1, and (iii) P1 quits wp1 at t̂ if ot̂−1
2 + ot̂−2

1 ≥ θ̄ − 2.

Proof of lemma 1. As we are only interested in the highest possible bids here, we just con-

sider the case of θ = θ̄. Since B is bounded from above and given that no player has quit

yet, offers in the finite game must eventually reach this upper bound B̄. Suppose that Pi,

i = 1, 2 makes the last admissible continuation bid ot̂
i = B̄ > θ̄ at some period t̂. Then, at

t̂+1, P−i must accept Pi’s offer through quitting wp1. Payoffs at t̂+1 are then ui = θ̄− ot̂
i

and u−i = ot̂
i. Since

ui = θ̄ − ot̂
i = θ − B̄ < 0,

however, Pi can do better by quitting at t̂ and accepting P−i’s offer ot̂−1
−i > 0. Knowing

that P−i will also quit if her time t − 1 quitting payoff exceeds her time t continuation

payoff, we obtain Pi’s quitting condition at t̂ wp1 as

θ̄ − ot̂
i < ot̂−1

−i or ot̂−1
−i + ot̂

i > θ̄. (A.1)

Since the minimal admissible increment for continuation is 1, this corresponds to the

quitting condition at t̂ wp1 as

P1 : ot̂−1
2 + ot̂−2

1 > θ̄ − 1,

P2 : ot̂−1
1 + ot̂−2

2 ≥ θ̄ − 1
(A.2)

if ϕt̂
2 < 1. In the zero-sum branch of the game, P1 will only continue wpp if P2 continues

wpp at the following stage. Thus his quitting condition corresponds to looking at P2’s

condition above and checking whether she quits necessarily next period. Thus P1 will

quit at t̂ wp1 if

ot̂−1
2 + ot̂

1 ≥ θ̄ − 1 or ot̂−1
2 + ot̂−2

1 ≥ θ̄ − 2. (A.3)

Thus no equilibrium continuation bid can be higher than θ̄ − 1.

15



Lemma 2. There exists a separating equilibrium with first separating action by P1 at t̂, if

θ̄ − 1 ≥ ot̂−1
2 + ot̂−2

1 ≥ θ̄ − 2.

There is no other separating equilibrium.

Proof of lemma 2. The first part of the statement follows from the previous lemma because

if P1 gets to bid at t̂, then P1 quits while P1 continues. This reveals θ = θ̄. For the

second claim we show that in every other candidate separating equilibrium, there exists

a profitable deviation for P1. Let the first separating action by P1 happen at t̂.

a) The only equilibrium of the complete information, zero-sum game for θ = 0 is for

P1 to quit immediately and for P2 to quit whatever P1 offers. The same is true in the

continuation game after the revelation of θ. Thus any strategy which reveals P1’s

type as θ = θ must end with P1 quitting at t̂ wp1 because, otherwise, P2 would quit

wp1 at t̂+1 which cannot be optimal for P1 in a zero-sum game. Therefore, the only

possible continuation separating action must reveal the value of the object as high.

The players’ payoff expectation from the low-value separating equilibrium branch

is u(θ) = (ot̂−1
2 ,−ot̂−1

2 ).

b) So P1 continues at t̂ and we know from (A.1) that ot̂
1+ot̂−1

2 ≤ θ̄. If, at t̂+1, P2 finds that

ot̂
1+ot̂−1

2 ≥ θ̄−1, she quits wp1 and we are in the separating equilibrium described by

(2). Since we are looking for other separating equilibria, it must be the case that there

is an admissible ôt̂+1
2 such that ot̂

1 + ôt̂+1
2 < θ̄. But then P2 will continue at t̂ + 1 wp1

because by offering ôt̂+1
2 , she can get at least either ut̂+2

2 (q) = θ̄ − ôt̂+1
2 > ot̂

1 = ut̂+1
2 (q)

or ut̂+3
2 (q) = ot̂+2

2 > ot̂
1 = ut̂+1

2 (q). Thus after the high-value state is revealed, P2’s

continuation payoff is necessarily higher than her quitting payoff at that stage. But

given that P2 continues wp1, P1 will mimic P1’s action to obtain ot̂
2 > ot̂−2

2 and this

cannot be an equilibrium.

Lemma 3. In no equilibrium, Pi quits wp1 at t̂, if

ot̂−1
−i + ot̂−2

i < θ̄ − 2.

Proof of lemma 3. a) If P2 quits wp1 at t̂ while (3) holds, then P1 quits wp1 at t̂ − 1

although ot̂−1
1 + ot̂−2

2 < θ̄ − 2 and thus P1 continues wp1. Hence this is a separating

equilibrium which violates condition (2) and can therefore not exist. The same is

true if P1 quits at t̂ wp1 while (3) holds.

b) If P1 quits at t̂ wp1 while (3) holds, he gets ot̂−1
2 . But since P2 continues wpp, he can

get at least his strictly higher t̂ + 2 quitting payoff of

(1 − αt̂+1
2 )(θ̄ − ot̂

1) + αt̂+1
2 (ot̂−1

2 + j t̂+1
2 + 1) > ot̂−1

2 .
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Lemma 4. In no equilibrium, P1 quits wpp at t̂ unless

ot̂−1
2 + ot̂−2

1 ≥ θ̄ − 1.

Proof of lemma 4. Lemma 1 shows that P1 quits wp1 only under (A.2). We now prove that

P1 never quits wpp before the weak inequality version of the same condition holds. The

reason is that each of P1’s stage payoffs following t̂ is strictly larger than ot̂−1
2 as long as

ot̂−1
2 + ot̂−2

1 > θ̄ − 1: This is apparent for accepting P2’s offers because her offers must be

strictly increasing. For P1’s own choice of quitting, we have

ut̂+1
1 (q) = θ̄ − ot̂

1 > ot̂−1
2

and the same is true at each period where P1 contemplates quitting as long as (4) is not

true. Since P1’s both time t̂+1 and t̂+2 quitting payoffs are strictly higher than ut̂
1(q) = ot̂−1

2

(and so is any mixture between the two), P1 will not quit wpp before ot̂−1
2 + ot̂−2

1 = θ̄ − 1

is reached. If this is indeed the case at t̂, any mixture between the minimal increase ôt̂
1

and quitting is equally good and thus an equilibrium may prescribe quitting for P1 wpp.

Below we disregard this equality case because we are looking only for essentially unique

equilibria which leave the P1’s final equilibrium action undefined. (This is condition (iii)

in definition 1.)

Lemma 5. In every equilibrium and as long as ot̂−1
1 + ot̂−2

2 < θ̄ − 1 at t̂, if P2’s prior belief

ϕ0
2 does not imply her continuation wp1, she must be indifferent between quitting and

continuation.

Proof of lemma 5. a) Every equilibrium belief which would induce P2 to quit wp1 at t̂

implies that P1 quits wp1 at t̂− 1 which is a fully separating action because we now

from the previous lemma that P1 will not quit wpp. But we know from lemma 3

that there cannot exist a separating equilibrium as long as ot̂−1
1 + ot̂−2

2 < θ̄ − 1.

b) Every belief which would induce P2 to continue wp1 at t̂ implies that, in equilib-

rium, P1 continues wp1 at t̂ − 1 as well. Hence there is no updating of P2’s beliefs

because P1 continues wp1 as well (lemma 4). But then P2’s beliefs are such that she

prefers her continuation payoff to her quitting payoff based on her unchanged prior

belief ϕt̂−2
2 .

If P2 was indifferent between quitting and continuing based on the same prior at t̂−
2, then she must prefer her necessarily increased quitting payoff at t̂, contradicting

her continuing wp1. (Since both players continue wp1, P2’s continuation payoff is

the same at t̂ and t̂− 2.) Hence she must have continued wp1 at t̂− 4 as well and P1

did not mix at t̂ − 5 either. This argument can be repeated until we reach P2’s prior

ϕ0
2.
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Lemma 6. In any equilibrium β, both P1 and P2 use minimal-increment strategies.

Proof of lemma 6. Our argument proceeds by induction over time t, starting with the ter-

minal equilibrium condition (A.2) without specifying offers. The idea is that we start

at any terminal node of the game where a player quits wp1 in equilibrium and proceed

forward—keeping this terminal action fixed—by choosing the stage action which maximises

the payoff in the continuation game. Then, again keeping the continuation game fixed, we

go a further period ahead and determine the optimal response to this fixed continuation

game. Proceeding forward, this gives a unique equilibrium path through the game what-

ever terminal node we start at.

a) First consider the equilibrium case where P1 quits first wp1 at t̂.

t̂: As implied by lemmata 1 and 4, P1 quits at t̂ wp1 iff ot̂−1
2 + ot̂−2

1 > θ̄− 1. In such

an equilibrium, payoffs are

ut̂(q) = (ot̂−1
2 , θ − ot̂−1

2 ). (A.4)

t̂ − 1: ot̂−1
2 = ot̂−3

2 + 1 + j t̂−1
2 . Since P1 quits at t̂ (ie. the node at t̂ is a terminal node), it

must be the case that ot̂−2
1 + ot̂−3

2 < θ̄ − 1 (otherwise t̂ − 1 would be a terminal

node). In case P2 quits at t̂ − 1, payoffs are

ut̂−1(q) = (θ̄ − ot̂−2
1 , ot̂−2

1 ) (A.5)

and for a continuation bid, payoffs are given by the ϕt̂−1
2 -weighted (A.4). Since

P2’s payoff is clearly decreasing in j t̂−1
2 , P2 will choose to minimally increase

her bid, ie. set j t̂−1
2 = 0. She is indifferent between this pure bid ot̂−1

2 and quit-

ting (and thus willing to mix with any αt̂−1
2 ) if

ot̂−2
1 = ϕt̂−1

2 (θ̄ − ot̂−1
2 ) + (1 − ϕt̂−1

2 )(−ot̂−1
2 ) ⇒ ϕt̂−1

2 =
ot̂−2
1 + ot̂−1

2

θ̄
. (A.6)

As is easily verified, this is the terminal equilibrium belief prescribed by (A.16).

t̂ − 2: ot̂−2
1 = ot̂−4

1 + 1 + j t̂−2
2 . Since P1 does not quit wpp at t̂ − 2, his continuation

payoff is

ut̂−2
1 (β) = (1 − αt̂−1

2 )(θ̄ − ot̂−2
1 ) + αt̂−1

2 ut̂
1(q) (A.7)

where αt̂−1
2 is such that P1 mixes, ie. as prescribed by (A.13). Since the con-

tinuation probability (A.13) is increasing in ot̂−2
1 , the probability of obtaining

the next stage quitting payoff θ̄ − ot̂−2
1 > ot̂−1

2 = ut̂
1(q) is decreased. Thus P1’s

continuation payoff ut̂−2
1 (β) is decreasing in ot̂−2

1 and again j t̂−2
1 = 0.
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t̂ − 3: ot̂−3
2 = ot̂−5

2 + 1 + j t̂−3
2 . In case P2 quits at t̂ − 3, payoffs are

ut̂−3(q) = (θ̄ − ot̂−4
1 , ot̂−4

1 ) (A.8)

and for a continuation bid, payoffs are given by

ut̂−3
2 (β) = ϕt̂−3

2 (ot̂−2
1 ) + (1 − ϕt̂−3

2 )
(

(1 − αt̂−2
1 )(−ot̂−3

2 ) + αt̂−2
1 ot̂−2

1

)

. (A.9)

Equalisation of (A.8) and (A.9) imply indifference and give both P1’s time t̂− 4

equilibrium mixture condition (A.14) and the general indifference condition

on beliefs (A.15). Increasing j t̂−3
2 > 0 directly reduces P2’s time t̂ − 2 stage

payoff by the full amount of j t̂−3
2 . Likewise, since now the quitting condition

ot̂−1
2 + ot̂−2

1 > θ̄ − 1 is reached with lower ot
1, the continuation payoff in (A.9)

is weakly decreased. Since P1 mixes at each stage he moves—and thus always

gets his conditional stage payoff—this cannot increase P2’s payoff. (Inserting a

jump-bid in (A.19) confirms this.)

t: At general 0 < t < t̂ − 3, both P1’s and P2’s problems are similar to the above

and the arguments there apply unchanged. The game’s initial node is reached

when ot−1
i + ot−2

−i = 0.

b) Now consider the second possible case where P2 quits before P1 wp1 in a separating

equilibrium at t̂; thus ot̂−2
2 +ot̂−1

1 > θ̄−1. The only difference to the case of P2 moving

at t̂ − 1 discussed in a) is that P2’s continuation payoff at t̂ − 2 is now given by

ut̂−2
2 (β) = (1 − ϕt̂−2

2 )(−ot̂−2
2 ) + ϕt̂−2

2 (ot̂−1
1 ) (A.10)

and not by the ϕt̂−1
2 -weighted (A.4). This corresponds to the case where terminal

beliefs are given by (A.17) for θ̄ − 1 ≥ ot̂−3
1 + ot̂−2

2 ≥ θ̄ − 2. The induction chain then

proceeds as in case a) with all arguments unchanged.

Lemma 7. Equilibrium mixture probabilities and beliefs are essentially uniquely deter-

mined.

Proof of lemma 7. We start with any equilibrium preplay-phase in which, at odd t and

given P1’s offer at t, P2’s next period quitting payoff is lower than her expected equi-

librium continuation payoff for any belief ϕt+1
2 ∈ [1/2, 1]: ut+1

2 (q) < 1/2u
t+1
2 (β∗|θ̄) + 1/2u

t
2(q).

This means that P2 will continue wp1 at t+1 and thus P1 will not mix or else his expected

payoffs are necessarily reduced. Since P1 never mixes, P2’s posterior equals her prior.

Consider any deviation from β∗ by P1 which leaves P2 with a higher observed offer

than expected. If there are beliefs ϕt+1
2 ∈ (ϕt−1

2 , 1] for which it is possible that

ut+1
2 (q) > ϕt+1

2 ut+1
2 (β∗|θ̄) + (1 − ϕt+1

2 )ut
2(q) (A.11)
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then P1 must mix (ie. increase ϕt+1
2 ) in order to make P2 indifferent. Because there cannot

be a separating equilibrium unless (2) holds (which means that the game is over after the

next move), this is only possible if P2 is indifferent between her equilibrium continuation

bid and quitting. Hence her belief ϕt+1
2 is uniquely defined (as part of her equilibrium

strategy) as the belief which makes (A.11) hold with equality. There is only one mixture

probability which P1 can use to generate these beliefs through his observed actions and

Bayes’ rule—and P2 has no choice but to assume that P1 uses exactly this continuation

probability.

As soon as P1 starts to mix, the equilibrium probabilities are obtained by inserting the

equilibrium quitting payoffs into the stage indifference conditions. The players’ time-t

offers—and thus their opponents’ following period quitting payoffs—are given through

summation as

ot
1 = ut+1

2 (q) =
t + 1

2
+ J t

1, ot
2 = ut+1

1 (q) =
t

2
+ J t

2. (A.12)

Thus αt
2 is given at even t from P1 mixing with any αt−1

1 ∈ (0, 1) if ut
1(β

∗|θ) = ut−1
1 (q) or

(1 − αt
2)u

t
1(q) + αt

2u
t+1
1 (β∗|θ) = ut−1

1 (q)

(1 − αt
2)
(
−ot−1

1

)
+ αt

2 (ot
2) = ot−2

2

∗αt
2 =

ot−2
2 + ot−1

1

ot
2 + ot−1

1

=
t + J t−1

1 + J t−2
2 − 1

t + J t−1
1 + J t

2

=
t − 1

t
for Ji = 0

(A.13)

while αt+1
1 , ϕt

2 are given for even t from P2 mixing with any αt
2 ∈ (0, 1) iff ut+1

2 (β∗|θ) =

ut
2(q), or

(1 − ϕt
2)
[
(1 − αt+1

1 )ut+1
2 (q|θ) + αt+1

1 ut+2
2 (β∗|θ)

]
+ ϕt

2u
t+2
2 (β∗|θ) = ut

2(q)

(1 − ϕt
2)
[
(1 − αt+1

1 ) (−ot
2) + αt+1

1

(
ot+1
1

)]
+ ϕt

2

(
ot+1
1

)
= ot−1

1

∗αt+1
1 =

(1 − ϕt
2)(o

t+1
1 + ot

2) − 1 − jt−1
1

(1 − ϕt
2)(o

t+1
1 + ot

2)
=

(1 − ϕt
2)(t + J t−1

1 + J t+1
2 ) − ϕt

2(1 + jt+1
1 )

(1 − ϕt
2)(t + J t+1

1 + J t+1
2 + 1)

=
t − ϕt

2(t + 1)

t − ϕt
2(t + 1) + 1

for Ji = 0

(A.14)

where P2 beliefs ϕt
2 evolve according to Bayes’ rule

∗ϕt
2 =

(1 − αt+1
1 )(ot+1

1 + ot
2) − jt−1

1 − 1

(1 − αt+1
1 )(ot+1

1 + ot
2)

(A.15)

implying P2’s terminal equilibrium beliefs for the non-separating equilibrium (even ⌊θ̄⌋)

as

∗ϕt̂−1
2 =

ot̂−2
1 + ot̂−1

2

θ̄
if θ̄ ≥ ot̂−2

1 + ot̂−1
2 > θ̄ − 1 (A.16)
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and for the separating equilibrium (odd ⌊θ̄⌋) as

∗ϕt̂−2
2 =

ot̂−3
1 + ot̂−2

2

ot̂−1
1 + ot̂−2

2

if θ̄ − 1 ≥ ot̂−3
1 + ot̂−2

2 ≥ θ̄ − 2. (A.17)

Hence on and off-equilibrium-path beliefs including P2’s final move are uniquely de-

fined. As soon as ot−1
1 + ot−2

2 ≥ θ̄ − 1 at t, P2 quits wp1 for any belief. Since then the

previous equilibrium action by P1 is to quit wp1, P2’s belief is ϕ2 = 1 and thus uniquely

defined as well. The only problem is after an off-equilibrium jump by P1 which leads

P2 to quit for any belief. However, our definition of essential uniqueness allows us to

disregard this case.

Proposition 1. The profile β∗ in (1) is the essentially unique perfect Bayesian equilibrium

of Q.

Proof of proposition 1. Equilibrium existence is a direct consequence of the previous lem-

mata. Uniqueness follows from the fact that, in equilibrium, Q can only end wp1 when

(A.2) is reached. Although there are many possible histories leading to this condition,

lemma 6 shows that only the minimal-increase profile is compatible with both (A.2) and

maximisation at each stage. Lemma 7 supplies the essentially unique mixture probabil-

ities and beliefs which turn the minimal-increase profile from lemma 6 into the equilib-

rium β∗. The only source of non-uniqueness of equilibria is at the terminal stage which

definition 1 allows us to disregard.

Proposition 2. In equilibrium β∗, P1 starts mixing at the first odd period following ts =
⌊θ̄⌋ − 3

4
.

Proof of proposition 2. Denote the (odd-valued) period where P1 starts mixing by ts. In

equilibrium β∗, ts + 1 is the first period in which P2’s prior-based payoff expectation from

β∗ is lower than her sure payoff from quitting. Therefore, P1 must mix at ts in order to

manipulate P2’s beliefs or else she will quit at ts + 1. Therefore, on the equilibrium path

P2 quits at ts + 1 if

uts+1
2 (q) = ots

1 =
ts + 1

2
> ϕ0

2u
ts+3
2 (β∗|θ̄) − (1 − ϕ0

2)o
ts+1
2 =

1

2
uts+3

2 (β∗|θ̄) − ts + 1

4
= uts+1

2 (β∗).

(A.18)

Choosing a higher prior for P2 will increase her payoff expectation, increase t∗s and thus

decrease (increase) P1’s (P1’s) information rent. P2’s expected continuation payoff uts+3
2 (β∗|θ̄)

given a high valued object is obtained recursively

uts+3
2 (β∗|θ̄) = (1 − αts+3

2 )uts+3
2 (q) + αts+3

2 uts+5
2 (β∗|θ̄).
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For odd ⌊θ̄⌋, it is more convenient to rewrite this in the form

uts+1
2 (β∗|θ̄) =

⌊θ̄⌋−ts

2∑

τ=1

(
τ−1∏

t=1

α2t+ts−1
2

)

u2τ+ts−1
2 (q)(1 − α2τ+ts−1

2 ) +






⌊θ̄⌋−ts

2∏

t=1

α2t+ts−1
2




u

⌊θ̄⌋
2 (q)

(A.19)

where P2’s quitting payoffs and mixture probabilities are given by (A.12) and (A.13) for

Ji = 0. Plugging these into (A.19) gives the following equivalent and exact payoff formu-

lations14,15

uts+1
2 (β∗|θ̄) =

1

2

⌊θ̄⌋−ts

2∑

τ=1

(
τ−1∏

t=1

2t + ts − 2

2t + ts − 1

)

+






⌊θ̄⌋−ts

2∏

t=1

2t + ts − 2

2t + ts − 1






⌊θ̄⌋ + 1

2

=
1

2
+

(ts − 1)!!

2(ts − 2)!!

⌊θ̄⌋−3

2∑

t= ts+1

2

(2t − 1)!!

(2t)!!
+

(⌊θ̄⌋ − 2)!!

(⌊θ̄⌋ − 1)!!

((ts − 1)!!

((ts − 2)!!

⌊θ̄⌋ + 1

2

=
1 − ts

2
+ 2ts−⌊θ̄⌋−1 (⌊θ̄⌋ + 1)!

((
⌊θ̄⌋+1

2

)

!
)2

((
ts−1

2

)
!
)2

(ts − 1)!

⌊θ̄⌋ + 1

2
(A.20)

=
1 − ts

2
+ 2ts−⌊θ̄⌋−1

(⌊θ̄⌋ + 1
⌊θ̄⌋+1

2

)(
ts − 1

ts−1
2

)−1 ⌊θ̄⌋ + 1

2

=
1 − ts

2
+ 2

Γ( ⌊θ̄⌋+2
2

)

Γ( ⌊θ̄⌋+1
2

)

Γ( ts+1
2

)

Γ( ts
2
)

.

Notice the appearance of the central binomial coefficient (and its equivalents) in the

above. Since no closed form representation of this binomial coefficient is known, we

use Stirling’s approximation n! ≈
√

2πnnne−n to approximate the above central binomial

coefficient as16
(

2n

n

)

=
(2n)!

n!2
≈ 4n

√
n
√

π
.

Using this, we approximate (A.20) as

uts+1
2 (β∗|θ̄) ≈ 1 − ts

2
+

2
√

ts − 1
√

⌊θ̄⌋ + 1

⌊θ̄⌋ + 1

2
. (A.21)

14 The notation !! denotes the double factorial. For even n ≥ 0, it is defined as n!! = n(n − 2)(n − 4)(n −
6) . . . (4)(2), and for odd n ≥ 1 the trailing term is replaced by . . . (3)(1).

15 The expression for even ⌊θ̄⌋ is similar and given by replacing ⌊θ̄⌋ by ⌊θ̄⌋ + 1 in (A.20) and changing the

last term from ⌊θ̄⌋+1
2 to 3⌊θ̄⌋−2θ̄+2

2 .
16 The asymptotic error involved in Stirling’s approximation is of order 1/n, so it vanishes as θ̄ gets large.
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Plugging this approximation back into (A.18)—for uts+3
2 (β∗|θ̄)—gives

ts + 1

2
>

1

2

(

1 − (ts + 2)

2
+

2
√

(ts + 2) − 1
√

⌊θ̄⌋ + 1

⌊θ̄⌋ + 1

2

)

− 1

2

(
ts + 1

2

)

⇒ t∗s >
⌊θ̄⌋ − 3

4
.

As P2 will quit at ts + 1 if her beliefs are not adjusted by a mixed action of P1 at the first

possible ts, the equilibrium value of ts is indeed given by the first odd period after the

above t∗s.17

Corollary P2’s payoff u2(β
∗|θ̄) is derived in alternative, precise formulations in (A.20).

Because the high-value game is ex-post θ̄-sum, P1’s payoff is just u1(β
∗|θ̄) = θ̄ − u2(β

∗|θ̄).
P1’s payoff is given by t∗s through u1(β

∗|θ) = u
t∗s
1 (q) = o

t∗s−1
2 = t∗s−1

2
because all pure actions

in the support of P1’s first mixed action must give the same payoff. Since this branch of

the game is ex-post zero-sum, u2(β
∗|θ) = −u1(β

∗|θ). Thus for odd ⌊θ̄⌋ and t∗s defined as

the first odd period after ⌊θ̄⌋−3
4

, payoffs are indeed given by 5. The approximations are ob-

tained by setting θ̄ ≈ ⌊θ̄⌋, ignoring the required rounding up of t∗s to the next odd integer

period and plugging ts = θ̄−3
4

into the approximation (A.21). The resulting approximation

is imprecise for low θ̄ but conveniently summarises the obtained information rents over

splitting the object’s value half-half.

Proposition 3. We extend the bargaining game Q by allowing for general bids and pro-

pose the equilibrium β∗
∞ of this game: for all t > 0 and any history of play, the moving Pi

bids

βt
i =







∗βt
i . . . if ot−1

−i ≥ ∗ot−1
−i ,

∗βt
i . . . if (ot−1

−i = ‘0’ ∧ ot−2
i = ‘0’

︸ ︷︷ ︸

complete ‘0’-cycle

) ∧ ot−3
−i ≥ ∗ot−3

−i ; reset t = t − 2,

‘0’ . . . otherwise

where i=1,2, ∗βt
i is the (mixed) stage action prescribed by β∗ and o0

2 = ∗o0
2. The outcome of

the infinite game following β∗
∞ equals that from β∗ in Q.

Proof of proposition 3. We start by interpreting ‘0’ as repeating the previous own offer. In

17 One may be concerned that the error of approximation contained in the computation of t∗s adversely

influences the result. This is not the case. In equilibrium, our approximation gives t∗s = ⌊θ̄⌋−3
4 and thus

2
√

t∗
s
+1√

⌊θ̄⌋+1
≡ 1 in (A.21) for period ts + 3. Inserting any similar linear candidate ts = θ̄/4 ± ǫ, ǫ ≥ 0 into the

decisive term in (A.20) confirms t∗s as solution because

2t∗
s
−⌊θ̄⌋+1

(⌊θ̄⌋ + 1
⌊θ̄⌋+1

2

)(
ts + 1
ts+1

2

)−1

−→
θ̄→∞

1 ≡ 2
√

t∗s + 1
√

⌊θ̄⌋ + 1
.

The deviation of the left hand term from 1 is a measure of the error of our approximation. It is never
bigger than 18% (for θ̄ = 3) and is below 1% for θ̄ > 75. Solving (A.18) gives the condition ts >
2u

ts+3

2
(β∗|θ̄)−3
3 which is easily checked for some low θ̄ = 3, 5, 7, . . . against the prediction ⌊θ̄⌋−3

4 . As the
error of approximation diminishes, verifying the first few θ̄ ensures that our result is precise for all θ̄.
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order to confirm β∗
∞ as an equilibrium of the infinite game, we first confirm optimality

of the prescribed actions on the equilibrium path, then on any deviation path and then

show that no deviations from the deviation path are profitable.

1. Given β∗
∞, bidding ‘0’ wp1 cannot be a profitable deviation from the equilibrium

path because this is (in equilibrium) followed by the opponent bidding ‘0’ (wp1)

which leaves the game in precisely the state before entering the ‘0’-cycle. Thus bid-

ding ‘0’ gives the equilibrium payoffs. The same is true for any finite repetition,

and, through assumption 2, for any infinite repetition of cycles as well.

2. Conforming to β∗
∞ and bidding ‘0’ after the initial ‘0’ is optimal because any higher

bid would constitute a jump bid which was shown previously not to be profitable.

3. Conforming to β∗
∞ and bidding ∗βt

i after a full ‘0’-cycle is optimal because any higher

bid would constitute a jump bid and entering another ‘0’-cycle cannot be profitable

because any cycle gives the same payoff as the equilibrium action.

As no individual cycle has any implication on payoffs or beliefs, strategies comprising

more complicated deviations than the above single-stage deviations cannot have any im-

plication either. Since β∗
∞ prescribes the same stage actions as β∗ in the finite game, the

payoffs are the same. Reinterpreting ‘0’ as any non-increasing bid does not change the

above argument. Existence of β∗
∞ does not follow from our (backward) induction argu-

ments for the finite game. It follows, however, from general arguments developed by

Aumann and Maschler (1966), Mertens, Sorin, and Zamir (1994), and Simon, Spież, and

Toruńczyk (1995).

Remark: This remark attempts to elucidate the appearance of the Euler Γ-function in the

above (A.20). (There are equivalent formulations based on the rising factorial and the

central binomial coefficient.) From (A.17), P2’s period-⌊θ̄⌋-1 equilibrium path beliefs for

odd ⌊θ̄⌋ are given by ϕ
⌊θ̄⌋−1
2 = ⌊θ̄⌋−1

⌊θ̄⌋
. Using Bayes’ rule and the equilibrium continuation

probability ∗αt
1 from (A.14), this can be folded back to general t. Using the Pochhammer

notation Pochhammer(a, n) = Γ(a+n)
Γ(a)

, P2’s belief is given by

∗ϕt
2

=

((((⌊θ̄⌋ − 1

⌊θ̄⌋

) ⌊θ̄⌋ − 3

⌊θ̄⌋ − 2

) ⌊θ̄⌋ − 5

⌊θ̄⌋ − 4

)

· · ·
⌊θ̄⌋−t

2
times

)

=

⌊θ̄⌋−t+1

2∏

τ=1

⌊θ̄⌋ − 2τ + 1

⌊θ̄⌋ − 2τ + 2
=

Pochhammer

(
1 − ⌊θ̄⌋

2
,
⌊θ̄⌋ − t + 1

2

)

Pochhammer

(

−⌊θ̄⌋
2

,
⌊θ̄⌋ − t + 1

2

) .

(A.22)

Thus the belief process itself contains the Γ-function (or its equivalents) in an irreducible

way.
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Appendix B

Consider the simple case of Θ = {0, 3.1} in the finite game.18 Recall that the possible bids

are non-negative integers bounded by some large number B̄ > 3.1. It is easy to see (and

argued in lemma 1) that in this case, no player bids in excess of 2. Thus only equilibrium

offers of {0, 1, 2} are considered below.

In principle, there could be fully revealing (‘separating’) equilibria corresponding to

situations where, for instance, P1 bids 1 and and P1 always quits. This, however, is not

the case. If the above were equilibrium strategies, P1 would use the same action in the

low-value state and thus fool P2 into believing to be in the high-value state. But this

cannot be equilibrium behaviour and hence all strategies which deterministically reveal

the value of the object cannot be equilibria as long as P2 can still condition her response

on this information (lemma 2).

Applied to the present example, the gradually revealing, semi-separating equilibrium

β∗ defined in the main text is

β∗
1(θ) = ([α1 = 1/2 : 1, q], q)

β∗
1(θ̄) =

{

(1, 2, q) if b2
2 = 1

(1, q) if b2
2 > 1

β∗
2(θ) =







([α2 = 1/2 : 1, q], q), ϕ = 2/3 if b1
1 = 1

([α′
2 = 2/3 : 1, q], q), ϕ′ = 3/3.1 if b1

1 = 2

(q), ϕ = 1 if b1
1 > 2

(B.1)

where P1 chooses α1 such that P2, given her equilibrium beliefs ϕ, is indifferent between

continuing and quitting after his bid. P2 can only condition on the offer and chooses the

equilibrium mixture probabilities α2, α′
2, which allow P1 to mix. In case P2 gets to move

again, she quits. Thus β∗ prescribes the following sequence of play:

t=0: Nature decides on θ and sends a fully revealing signal to P1 and no signal to P2.

t=1: P1’s minimum continuation offer not ending the game is o1
1 = 1. Depending on the

object’s value, P1 uses the type-dependent lottery [α1 : 1, q] to mix between offering

1 and quitting in case of θ = 0. He bids 1 wp1 in case of θ = 3.1. Because P1 plays

a mixed action, he must be indifferent between the payoffs of all pure actions in the

support of this mixed action, and, in particular, his quitting payoff of zero. This

translates into P1’s mixture requirement (A.13), or

0 = (1 − α2)(−1) + α2(1) ⇔ α2 = 1/2. (B.2)

After observing an offer of 1, P2 uses the conditional mixture probability embedded

18 This simple example shows the intuition and dynamics of the equilibrium and illustrates the emergence
of P1’s information rent which is positive for θ̄ > 3. The latter is confirmed by the payoffs u(β∗|θ̄ = 5) =
(25/8, 15/8) and u(β∗|θ̄ = 7) = (77/16, 35/16) and for higher θ̄ where our payoff approximation (5) is
approached. Notice, however, that this approximation is worst for very coarse bidding grids as in this
example. Notice further that the informed player benefits from a refinement of the bidding grid. The
example of Θ ∈ {0, 2, 3} with ϕH = ϕM = ϕL = 1/3 illustrates a generalisation of our setup to more than
two types.
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in P1’s equilibrium strategy to compute her posterior. At t = 1, these are pr(o1
1 =

1|θ = 0) = α1, pr(o1
1 = q|θ = 0) = 1 − α1 and pr(o1

1 = 1|θ = 3.1) = 1, pr(o1
1 = q|θ =

3.1) = 0. They thus prescribe that P1 should bid o1
1 = 1 with probability α1 (and quit

otherwise) and for P1 to bid 1 wp1. Upon observing P1’s bid of 1, this induces P2 to

use Bayes’ rule to revise her prior ϕ0
2 = 1/2 to

pr(θ = 3.1|o1
1 = 1) =

pr(o1
1 = 1|θ = 3.1) pr(θ = 3.1)

pr(o1
1 = 1)

=
1

1 + α1

= ϕ. (B.3)

t=2: P2’s minimum continuation offer is 1. Given her posterior of ϕ, P2 plays the mixed

action [α2 : 1, q] for any α2 ∈ [0, 1] because—through the appropriately chosen mix-

ture α1—she is made indifferent between her quitting payoff of one and her contin-

uation payoff ϕ(2)+(1−ϕ)(−1). In particular she is willing to play the mixed action

[α2 = 1/2 : 1, q] which makes P1 indifferent between quitting and bidding 1 as re-

quired by (B.2). For the α1-generated ϕ to be optimal, it has to satisfy P2’s equality of

payoffs for all pure actions in the support of her mixed action 1 = ϕ(2)+(1−ϕ)(−1)

in addition to ϕ resulting from the application of Bayes’ rule (B.3). This implies

(α1, ϕ) = (1/2,
2/3). Notice that ϕ is calculated backwards from the last stage.

t=3: Observing P2’s offer of o2
2 = 1, P1 finds it optimal to quit. P1 is indifferent between

his minimal-increment bid of o3
1 = 2, quitting, or any mixture between the two.19

Thus P1 reveals the value of θ at this stage using a separating action.

t=4: Observing P1’s continuation, P2 quits.

The outcome from (B.1) is

u(β∗|θ) =

{

(1.6, 1.5) given θ̄ = 3.1

(0, 0) otherwise
ex-ante u(β∗) = (0.8, 0.75) .

For observed off-equilibrium-path bids by P1, P2’s response (ie. her action complete with

equilibrium mixture probability and belief) is part of her equilibrium strategy. Her beliefs

are undetermined by the solution concept alone. But we know that P2 must be indiffer-

ent between quitting and continuing or else she could deduce the object’s value from P1’s

choice of action: if he chooses a (mixed) action which makes her prefer quitting, this is

beneficial only to P1 while continuation wp1 is beneficial only to P1. Since P1 cannot credi-

bly reveal the state in this fashion, P2 must be indifferent between continuing and quitting

in equilibrium. This determines her unique equilibrium belief and, in turn, the convic-

tion that the observed jump-bid was taken by P1 with the probability α′
1 determined from

her belief through Bayes’ rule. In case of observing o1
1 = 2 in the example, this gives

ϕ′ = 3/3.1, α′
2 = 2/3 and α′

1 = 1/30. To P1 this gives a payoff expectation of 3.1/3 < 3.2/2

19 This indifference is the reason for the ‘essential’ uniqueness-provision in our result: the last potential
move by P1 is arbitrary for integer θ̄.
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which renders his jump unprofitable.20 Part of the example’s extensive form is shown in

θ̄ = 3.1

θ = 0

N

(2,−2)

P2(ϕ′)

[α′
1 : 2, q]3

q

(−2, 2)

(−3, 3)
[α′

2 : 1, q]

q

(1,−1)

P1

q

(0, 0)

P1

[α1 : 1, q]

3

(−3, 3)

q

(−1, 1)

[α2 : 1, q]

P2(ϕ)

2

(2,−2)

q

(1,−1)

P1

2
q

(−2, 2)

2

P2

(2, 1.1)2

q

(1.1, 2)

(0.1, 3)
[α′

2 : 1, q]3

q

(1, 2.1)

P1

q

(0, 3.1)

P1

1

3

(0, 3.1)

q

(2.1, 1)

[α2 : 1, q]

2

(2.1, 1)

q

(1, 2.1)

P1

2

q

(1.1, 2)

2

Figure 1: A partial game tree of the example of θ ∈ {0, 3.1} and equal priors.

fig. 1 where vertices on the equilibrium path are dotted and greyed triangles symbolise

the range of mixed actions. The tree to the left of Nature’s move shows the deviation path

after P1’s b1
1 = 2. Checking for other deviations confirms (B.1) as an equilibrium.

Finally, we extend our example by allowing for the previous offer to be repeated in-

definitely. We generically denote the repetition of the last own bid by ‘0’. Based on the

equilibrium (B.1), for all t, any previous bidding history and for i=1,2, we examine the

following equilibrium candidate β∗
∞ of the infinite game:21

βt
i =







∗βt
i . . . if the previous continuation bid ot−1

−i was an equilibrium or jump bid,
∗βt

i . . . after a complete ‘0’-cycle started by Pi (resetting t to before the cycle),

‘0’ . . . otherwise, ie. when in a cycle.

Repeating the last own offer (wp1, whatever the own type) is always followed by a rep-

etition of the opponent’s last offer (again wp1). Hence, after any cycle of repetitions, the

game is in exactly the same state as it was before entering the ‘0’-cycle and especially all

beliefs are unchanged. Thus, in β∗
∞, bidding ‘0’ at any stage carries the same payoff as

20 Because ot−1
1 + ot

2 > θ̄ after any higher jumps ot−1
1 ≥ 3, P2 quits wp1 for any belief. Thus her off-

equilibrium-path beliefs after observing such a jump-bid are undefined. Nevertheless, our equilibrium
is essentially unique because definition 1 does not pin down her (terminal) beliefs when any belief leads
to quitting.

21 For a discussion of infinite deviation paths see assumption 2 in the main text.

27



the equilibrium action β∗
t at that stage. Therefore any mixture between the (mixed) equi-

librium stage action of the finite game β∗
t and playing ‘0’ is another equilibrium action of

the game. (All leading, however, to the same outcome.) To increase one’s own bid after a

repetition by the opponent cannot be optimal as this would, in essence, constitute a jump

bid.

A similar argument applies to allowing decreasing bids: if the above β∗
∞ is extended

such that ‘0’-offers denote not only the repetition of the last offer but any offer ot
i ≤ ∗ot−1

i ,

then the equilibrium β∗ can again be recovered. The equilibrium-player then simply waits

by playing ‘0’ until the expected offer ∗βt
i is made upon which play commences as before.
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