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Abstract

This note demonstrates how performance measure congruity and noise

determine an agency’s total surplus within an linear agency framework with

multiple tasks. It provides a decomposition of agency costs, leading back

to a congruity index previously proposed in the literature. In addition, it

generalizes this index to a more general cost function, thereby highlight-

ing the context specificity of the original criterion. Finally, it suggests a

redefinition of tasks under which the criterion prevails.
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1 Introduction

Over the last 15 years, the linear principal-agent framework has become an in-

creasingly popular device for studying a variety of questions concerning the pro-

vision of incentives. Its main attraction is its analytical tractability, which allows

for closed form solutions even in situations for which results are hardly derived

in the standard principal agent model. One such situation is the now familiar

multi-task agency model, in which the agent provides a diversity of actions. By

the analysis of such situations, the aspect of performance measure congruity—

which is absent in the single-action standard agency framework—has become an

important subject in the performance measurement literature. Starting with the

work of Feltham and Xie (1994), several papers (Baker (2000, 2002); Datar et al.

(2001)) have used the setting, thereby deriving metrics of (in-)congruity. All of

these metrics try to capture the welfare effects due to the misalignment of per-

formance measures with the principal’s objective, some of them in absolute and

some in relative terms. All of them, however, build on a specific cost function

in which actions are independent and marginal costs are equal among tasks. In

particular, they are capable of identifying the lowest misallocation of effort only

for this class of cost functions (Schnedler (2003)).

We take up this deficiency and derive a more general measure of congruity

that adjusts and generalizes the measure previously proposed by Baker (2000,

2002). We show that this measure naturally arises from a decomposition of the

agency’s net surplus. We then return to the initial objection and show that under

an alternative representation of the agency problem, the shortcoming no longer

endures. The main feature of this adaptation is a redefinition of task, restoring

the separability of the cost function.
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The remainder of this note is organized as follows. Section 2 recapitulates

the linear agency framework to derive an adjusted version of Baker’s measure

of congruity. Section 3 generalizes this model to incorporate interactive actions,

thereby deriving a generalized measure of congruity. Section 4 finally provides a

redefinition of the agent’s tasks to restore the initial measure of congruity. Section

5 concludes.

2 Independent tasks and an intuitive metric of congruity

Consider a situation in which an agent influences the net present value of his

principal by exerting a multidimensional a ∈ R
n which cannot be legally enforced.

Neither the principal’s net present value V (a) = d′a =
∑n

i=1
diai of this activity

nor the cost C(a) accruing to the agent is verifiable. In this section, we assume

that the agent’s cost of taking action a is given by:

C(a) =
1

2
a′a =

1

2

n
∑

i=1

a2

i . (1)

This cost function is used in most linear agency models, merely for mathematical

convenience. In the next section, we present a more general cost function. It

then becomes apparent that the metrics of congruity proposed in the literature

build on the specific cost function of (1).

To motivate the agent for the activity, the principal has to rely on a per-

formance measure P (a) = y′a + ε =
∑n

i=1
yiai + ε, where yi ∈ R denotes the

performance measure’s sensitivity with respect to action ai, and ε ∼ N(0, σ2) is

a normal error term reflecting the uncertainty related to measure P .

The agent is effort- and risk-averse, which is reflected by an exponential utility

function U(S, a) = − exp (−r(S − C(a)), where S is any transfer received and r
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is the Arrow–Pratt measure of absolute risk aversion. Given this specification,

the agent’s preferences can equally be represented by his certainty equivalent

CE(S, a) = S − C(a) − r
2
σ2. The principal remunerates the agent using a linear

compensation scheme S = s0 + sP . The reservation level of the agent’s certainty

equivalent is CER.

The principal’s contracting problem in this model is a special case of that an-

alyzed by Feltham and Xie (1994), who allow for multiple performance measures.

By choosing s, the principal maximizes the expected total surplus V (a)−C(a)−
r
2
σ2, subject to the the incentive compatibility constraint a = sy. The optimal

contract parameter is s = d′y

y′y+rσ2 , from which the agency’s net total surplus

ΠSB
RA =

1

2

(d′y)2

y′y + rσ2
(2)

can be derived (Feltham and Xie 1994, p. 433).

Using this simple framework, measures of congruity and risk can easily be

derived by ceteris paribus comparisons. In detail, we compare:

1. The net total surplus of the agency under first-best to that under second-

best with a risk-neutral agent. This comparison provides a measure of

congruity.

2. The net total surplus under second-best with a risk-neutral agent to that

under second-best with a risk-averse agent. From this we derive an index

of the risk incorporated in the performance measure.

Since both measures are defined as ratios of total surplus numbers, the second-

best surplus equals the first-best surplus, multiplied by the respective measures

of congruity and risk. The measures are computed as follows:
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1. Congruity: The total surplus under first-best conditions,

ΠFB =
(d′d)

2
, (3)

results from (2) with y = d and r = 0. The total surplus

ΠSB
RN =

(d′y)2

2y′y
(4)

under second-best and risk neutrality results from r = 0 and arbitrary

sensitivities y. Relating (4) to (3), a measure

φ(d,y) =
ΠSB

RN

ΠFB
=

(d′y)2

(y′y)(d′d)
= (cos(β))2 (5)

of congruity can be defined, where β is the angle between the vectors d

and y. The cosine of β has already been promoted by Baker (2000, 2002)

as a measure of congruity. By reference to the squared cosine, the present

measure is scaled to the unit interval and monotonically relates congruity

to surplus numbers.

2. Risk: Relating the total surplus (4) under second-best and risk neutrality

to the second-best total surplus (2) under risk aversion, a measure ψ of risk

can be defined by

ψ(y, σ2) =
ΠSB

RA

ΠSB
RN

=
(y′y)

(y′y) + rσ2
=

1

1 + r σ2

y′y

.

Using the term σ2

y′y
in the denominator of ψ, the signal’s variance is normal-

ized with respect to the marginal products y of the performance measure.

Referring to Banker and Datar (1989), it can be denoted as the signal’s
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intensity with respect to a. Borrowing from the engineering terminology,

its reciprocal value is also referred to as the signal-to-noise ratio of y (e.g.

Baker 2002, p. 732).

Applying the above definitions, the total surplus of an agency in the linear

model with a separable quadratic cost function can be decomposed in the follow-

ing manner:

ΠSB
RA = ΠFBφ(d,y)ψ(y, σ2).

The metrics φ(d,y) and ψ(y, σ2) quantify the performance measure’s relative

effectiveness with respect to congruity and precision.

3 Interactive tasks

The cost function in (1) assumes that the agent’s actions are completely indepen-

dent. To capture interaction between tasks, a generalized quadratic cost function

Ĉ(a) = a′Ka (6)

can be used, where K denotes a positive definite and symmetric (n × n)-matrix.

Ĉ(a) is identical to C(a) for K = I/2. Moreover, the quadratic form in (6) is

capable of covering almost any degree of complementarity and substitutability.

With regard to marginal cost, it provides a linear approximation of any convex

cost function, as considered by Holmström and Milgrom (1991). From the gen-

eralized cost function, the agent’s action choice becomes a(s,K,y) = s
2
K−1y.

Substitution in the principal’s optimization problem yields a net total surplus of

ΠSB
RA =

1

4

(d′K−1y)2

y′K−1y + 2rσ2
. (7)
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Applying the above measure of risk to the modified model, a paradox seem-

ingly emerges: under the generalized cost function, an unbiased performance

measure in general does not maximize total surplus in a class of performance

measures with identical signal-to-noise ratio (Schnedler 2003). The paradox is

exemplified by the following example:

Example 1 Let d = (1, 0)′ determine the result of the agent’s two-dimensional

effort. We compare two performance measures, P 1 = d′a + ε1 and P 2 = y′a +

ε2, with y = (1, 1)′, ε1 ∼ N(0, 1) and ε2 ∼ N(0, 2). Thus, (i) P 1 is perfectly

congruent with the principal’s objective, whereas P 2 is distorted; and (ii) both

measures exhibit the same signal-to-noise ratio d′d/σ2
1 = y′y/σ2

2 = 1. According

to the above measures φ and ψ, P 1 should be preferred to P 2.

Now consider the agent’s cost of effort (6) with

K =







1 −1

2

−1

2
1






.

The two tasks are complements: The marginal cost of one action decreases the

level of the other. Consequently, the actions under both performance measures

tend to balance the two tasks. Optimization yields a(s,K,d) = s
(

2

3
, 1

3

)

′

and

a(s,K,y) = s (1, 1)′. The modified cost function alleviates the consequences of

the incongruity of P 2. Nevertheless, the action under P 2 is still distorted, whereas

under P 1 the first-best action
(

2

3
, 1

3

)

′

can be induced.

Inspection of the second-best solutions

ΠSB,P 1

RA =
1

4
·

(

4

3

)2

4

3
+ 2r

and ΠSB,P 2

RA =
1

4
· 22

4 + 4r
,

however, reveals that for a sufficiently risk-averse agent, the principal prefers
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P 2 to P 1: for r > 2 the principal’s second-best profit is strictly less under the

unbiased performance measure P 1.

The example seems to conflict with the proposed decomposition of congruity

and risk effects: if risk effects can be expressed as a function of the signal-to-noise

ratio, then signals of identical signal-to-noise relation should be comparable with

respect to the above measure of congruity. The example contradicts this intuition.

The discrepancy arises from the definition of risk associated with a perfor-

mance measure. This becomes clear when we take a similar approach to that

in the preceding section in order to separate the effects of congruity and risk.

Working along the lines of Section 2, we obtain:

1. Congruity: The net total surplus under first-best now equals

ΠFB =
(d′K−1d)

4
.

Relating this to the net total surplus under second-best and risk neutrality,

ΠSB
RN =

(d′K−1y)2

4y′K−1y
, (8)

a modified measure of congruity can be defined as

φ̂(d,K,y) =
ΠSB

RN

ΠFB
=

(d′K−1y)2

(y′K−1y)(d′Kd)
. (9)

Comparing φ̂(d,K,y) to φ(d,y), it emerges that the cosine interpretation

is no longer apparent under the generalized cost function. Congruity is now

a function not only of marginal products d and y, but also of the agent’s

cost function determined by K. The reason for this change is quite obvious:
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what really matters is not a performance measure’s degree of alignment with

the principal’s objective per se, but the alignment of the resulting efforts

with the first-best action choice. If all actions are independent and equally

costly [as in the cost function (1)], the two comparisons yields identical

results because aFB = d and aSB = sy. Under the general cost function

(6), however, the first-best action aFB = 1

2
K−1d as well as the second best

action aSB = s
2
K−1y depends on K. A substitution of aFB and aSB for d

and y in the cosine formula (5) yields the generalized measure (9), which

therefore describes the squared cosine of the angle γ between the first-best

and second-best effort vectors.

This effect is illustrated in Figure 1, which takes up the data of example

1.

[Figure 1 about here.]

Here, the original cosine criterion highly underestimates the alignment of

Performance measure P 2 with the principal’s interests. While Baker’s con-

gruity index φ(d,y) = 1

2
refers to the angle β between the vectors d and

y, the modified measure φ̂ = 3

4
refers to the smaller angle γ between the

first-best and the second-best action. Obviously, γ indicates a much greater

congruity than β.

Note that despite the modification of φ, an unbiased performance mea-

sure with y = d still leads to the maximal congruity of 1. This is worth

mentioning because of the paradox described in the example. Since in the

present decomposition the principal’s profit monotonically increases in the

congruity measure φ̂, the conflict must arise from the definition of risk.
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2. Risk: Relating the net total surplus in (8) under second-best and risk neu-

trality to the respective net total surplus (7) under risk aversion, the mea-

sure of risk becomes

ψ̂(y,K, σ2) =
ΠSB

RN

ΠFB
=

(y′Ky)

(y′Ky) + 2rσ2
=

1

1 + 2σ2

y′Ky

, (10)

which obviously is not in line with the signal-to-noise ratio described above.

Different to the case of a separable quadratic cost function of equally costly

tasks, the signal’s variance is normalized with respect to the marginal prod-

uct y of the performance measure, related to the respective marginal cost

of effort. Therefore, performance measures of equal signal-to-noise ratio

are no longer equally risky in the modified notion of risk. A justification

of the risk measure in (10) is straightforward: if the marginal cost of a

particular action is high, the agent will spend only low effort on this task.

Consequently, a performance measure’s sensitivity with respect to this task

should have only a minor impact on a risk metric associated with that task.

Similar to congruity, what matters is not a performance measure’s risk per

se, but the risk resulting from the agent’s consequential action. This is

exactly accounted for by rescaling the variance σ2 by y′K−1y instead of

y′y.

In the example, the original signal-to-noise ratio overestimates the risk as-

sociated with performance measure P 2, compared to that of P 1. Applying

the risk metric (10), the modified signal-to-noise ratio y′K−1y/σ2
2 = 4 of

P 2 is higher than that of P 1, which amounts to d′K−1d/σ2
1 = 8/3. Thus,

P 1 and P 2 do not belong to the same risk class under the modified cost

function. Since P 2 is now “less risky” than P 1, for a sufficiently risk-averse
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agent the higher precision outweighs its lower incongruity, and the principal

is better off using the distorted measure.

4 Redefinition of tasks and independent actions

Since the difference in the congruity indexes in (5) and (9) is caused by the

matrix K determining the agent’s cost of effort, it is worthwhile inspecting how

K relates the cost functions (1) and (6). If K is a scalar matrix (proportionate

to the identity matrix I), all actions are independent and equally costly. The

initial cost function (1) can then be derived from the generalized cost function

(6) by simple rescaling. If K is diagonal, the different actions are independent,

but of different marginal cost. In this case, the initial cost function is obtained by

rescaling the different actions by their respective marginal cost. These two cases

are obvious and have already been treated in the literature (Schnedler 2003).

If the matrix K is not diagonal, however, the marginal cost of one action in

principle depends on the chosen level of another, and the cost function C cannot

be obtained by simply rescaling.

It can be restored, however, by a proper redefinition of tasks: Since K is pos-

itive definite and symmetric, it is diagonalizable, i.e., there exists an orthogonal

(n × n)-matrix U such that:

K = UQU−1, (11)

where Q is a diagonal matrix, the elements of which are the eigenvalues of K

(Sydsaeter et al. 1999, p. 137). This can be used to give an alternative presen-

tation of the principal’s optimization problem with independent actions. To this
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end, we substitute the diagonalized matrix K in the general cost function (6),

Ĉ(a) = a′UQU−1a = a′UQU′a,

where the equality follows from the property UU′ = I of orthogonal matrices

(Sydsaeter et al. 1999, p. 141). By defining actions ã = U′a, we obtain a

separable cost function

Ĉ(ã) = ã′Qã.

In a second step, actions can be rescaled to â = Q
1

2 ã in order to generate a cost

function of the form given in (1):

Ĉ(â) = â′â.

Redefining tasks, however, requires rewriting of the principal’s gross benefit and

the agent’s performance measure. From the two steps of the redefinition of tasks,

we have â = Q
1

2U′a or a = UQ−
1

2 â. Substitution yields

V (â) = d′a = d′UQ−
1

2 â = d̂′â,

where d̂ = Q−
1

2U′d denotes the marginal products of the redefined tasks. Simi-

larly, ŷ = Q−
1

2U′y can be defined as the sensitivities of the performance measures

with respect to these tasks, yielding a performance measure P (â) = ŷ′â + ε.

Application of this procedure to the example renders

Q =







3

2
0

0 1

2






and U =

1√
2







−1 1

1 1






.
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The redefined tasks are â1 =
√

3 (a2 − a1) /2 and â2 = (a1 + a2) /2. After

redefining marginal products d̂ = Q−
1

2U′d =
(

1/
√

3, 1
)′

and sensitivities ŷ =

Q−
1

2U′y = (0, 2)′, the original cosine criterion in fact is in line with the above

definition of congruity:

φ(d̂, ŷ) =
(d̂′ŷ)2

(ŷ′ŷ)(d̂′d̂)
=

(0 + 2)2

(0 + 4)
(

1

3
+ 1

) =
3

4
.

On inspection of the example, a shortcoming of the redefinition of tasks be-

comes obvious: the redefined action â1 =
√

3 (a2 − a1) /2 is not naturally in-

terpretable as a combination of different tasks because it includes negative lev-

els of action a1. This fact holds for any redefinition as described above: since

{â1, . . . , ân} form an orthonormal basis for the action space R
n, any such basis

different from the natural basis [which is given for the separable cost function

(1)] will comprise negative entries in its base vectors.1 Consequently, at least one

action cannot be interpreted as ‘doing parts of the original tasks’.

5 Conclusion

This note has revisited the subject of performance measure congruity in a linear

agency setting. Building on the previous work of Baker (2000, 2002), a geometric

interpretation of congruity under a separable cost function could be based on the

squared cosine of marginal product vectors. For more general cost functions, the

measure had to be generalized or the agent’s action space had to be refined. The

latter, however, resulted in tasks that are not easily explained in terms of elemen-

tary tasks because they include negative levels of the initial actions. Therefore,

while the cosine measure can be formally restored as a metric of congruity, even

1This fact is illustrated best by a geometrical argument: the redefinition described is simply
a rotation of the natural basis.
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under effort interaction, an economic interpretation seems to require the more

general metric of congruity proposed in this paper.

Probably the most important fact revealed by considering task interdependen-

cies is that performance measure congruity, as measured by the metrics proposed

in the literature, is not the primary goal in performance measure selection, even

in the absence of risk sharing issues. It is only useful by the extent to which it

supports the alignment of the agent’s action with the principal’s objectives.
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