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Abstract

We analyze a two-stage game between two heterogeneous players.
At stage one, common risk is chosen by one of the players. At stage
two, both players observe the given level of risk and simultaneously
invest in a winner-take-all competition. The game is solved theoreti-
cally and then tested by using laboratory experiments. We find three
effects that determine risk taking at stage one — an effort effect, a like-
lihood effect and a reversed likelihood effect. For the likelihood effect,
risk taking and investments are clearly in line with theory. Pairwise
comparison shows that the effort effect seems to be more relevant than
the reversed likelihood effect when taking risk.
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1 Introduction

In many real-world situations, competition can be characterized as a winner-

take-all contest or tournament. Typically, in sports contests there is only one

winner who gets the high winner prize (Szymanski (2003)). When arrang-

ing a singing contest, only one participant wins the final round (Amegashie

(2007)). In job-promotion tournaments, workers compete for a more attrac-

tive and better paid position at the next hierarchy level (Baker et al. (1994)).

Firms and individuals invest in external or internal rent-seeking contests

(Gibbons (2005)). In politics, individuals compete for being elected. Firms

often compete in R&D (Loury (1979), Zhou (2006)) and invest resources for

advertising to become the market leader (Schmalensee (1976), Schmalensee

(1992)). Moreover, firms are involved in litigation contests for brand names

or patent rights (Waerneryd (2000)). Finally, oligopolistic competition in

new markets often looks like a tournament: only the firm that implements a

new technical standard as a first-mover can realize substantial profits from

network externalities (Besen and Farrell (1994)).

Most of the models on winner-take-all competition either build on the semi-

nal work by Tullock (1980) or that by Lazear and Rosen (1981). These con-

test or tournament models usually focus on the effort or investment choices

of the contestants: the higher the effort/investment of a single player rela-

tive to those of his opponents, the more likely he will win the tournament.

However, in real tournaments, players also choose the risk of their strate-

gic behavior. For example, politicians do not only invest resources during

the election campaign, but also decide on the composition and, therefore,

on the risk of their agenda. Athletes decide whether to switch to a new —

and often more risky — training method or not. Prior to the choice of their

advertising expenditures, firms have to decide on the introduction of a new

product, which would be a more risky strategy than keeping the old product

line. In many tournaments, contestants first have the choice between using

a standard technique or solution (low risk) or switching to a new one (high
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risk); thereafter they decide on effort or, more generally, on input to win the

tournament.

In our paper, we analyze such a two-stage tournament with risk taking at the

first stage and effort or investment choices at the second stage. We consider

an asymmetric tournament game1 with discrete choices to derive several hy-

potheses which are tested in a laboratory experiment. In our tournament

model, a more able player (the "favorite") competes against a less able one

(the "underdog"). At first sight, one would expect that the favorite does

not prefer a high risk which can jeopardize his favorable position, whereas

the underdog strictly benefits from a high risk since he has nothing to lose

but good luck may compensate for the lower ability. Our theoretical results

show that this first guess is not necessarily true. Considering the risk choice

of the favorite we can differentiate between three effects that determine risk

taking: first, risk taking at stage 1 of the game may influence the equilibrium

efforts at stage 2 (effort effect). According to this effect, both players prefer

a high-risk strategy in order to minimize effort and, hence, effort costs at the

second stage. Here, high risk serves as a commitment device for the players

at the effort stage, leading to a kind of implicit collusion. Second, the choice

of risk also influences the players’ likelihood of winning. If equilibrium ef-

forts do not react to risk taking the favorite will prefer a low-risk strategy

to hold his predominant position (likelihood effect). Third, if equilibrium ef-

forts do react to risk taking, the favorite may choose a high risk to maximize

his winning probability (reversed likelihood effect). In this situation, high

risk discourages the underdog at the effort stage since now the underdog can

hardly influence the outcome of the tournament by his effort choice. Such

discouragement is very attractive for the favorite when the gain of winning

the tournament — as measured by the difference of winner and loser prize —

is rather large.

1Note that we do not analyze a principal-agent model where the principal optimally
designs the tournament game.
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Our experimental analysis focuses on risk taking by the favorite and the sub-

sequent effort choices by both players. For each effect we ran one treatment

with two sessions — labeled reversed likelihood treatment, effort treatment,

and likelihood treatment. Descriptive results indicate that, contrary to the

reversed likelihood effect, both the effort effect and the likelihood effect are

relevant for the subjects when choosing risk. The results from non-parametric

tests and probit regressions reveal that the likelihood effect turns out to be

very robust. The two other effects are not confirmed by a Binomial test,

but a pairwise comparison of the treatments shows that the findings for the

effort effect are more in line with theory than our results for the reversed like-

lihood effect. As theoretically predicted, favorites choose significantly more

effort than underdogs in the reversed likelihood treatment and the likelihood

treatment. In the effort treatment, players’ behavior does not significantly

differ given low risk, which follows theory, but for high risk underdogs exert

clearly more effort than favorites, which contradicts theory. The subjects’

effort choices as reactions to given risk are very often in line with theory.

Again, the likelihood treatment offers very robust findings. Interestingly, in

the two other treatments, favorites tend to react more sensitive to given risk

than underdogs although subjects change their roles after each round.

Previous work on risk taking in tournaments either fully concentrates on

the players’ risk choices by skipping the effort stage, or considers symmetric

effort choices within a two-stage game. The first strand of this literature bet-

ter refers to risk behavior of mutual fund managers or other players that can

only influence the outcome of a winner-take-all competition by choosing risk

(see, for example, Gaba and Kalra (1999), Hvide and Kristiansen (2003) and

Taylor (2003)). The second strand of the risk-taking literature is stronger

related to our paper. Hvide (2002) and Kräkel and Sliwka (2004) consider a

symmetric two-stage tournament with risk taking at stage 1 and subsequent

effort choices at stage 2. However, symmetry of the equilibrium at the effort

stage eliminates one of the three main effects of risk taking, namely the re-
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versed likelihood effect. Nieken (2007) experimentally investigates the effort

effect of the symmetric setting. On the one hand, her results show that sub-

jects rationally reduce their efforts when risk increases. On the other hand,

subjects do not behave according to the effort effect very well as only about

50% (instead of 100%) of the players choose high risk.

Our paper is most strongly related to Kräkel (forthcoming) who analyzes all

three effects in an asymmetric two-stage tournament model. We simplify the

analysis of Kräkel to make the theoretical findings testable in the laboratory.

In particular, we assume that only one of the two players decides on risk at

stage 1. Thereafter, both players observe the common risk and simultane-

ously decide on their effort choices. This simplification can be justified for at

least two reasons. First, subjects in the lab seem to be overstrained in a more

complex setting with simultaneous risk choices at stage 1 (see Nieken (2007)).

Second, our simple model primarily serves to test the main topic addressed

by Kräkel (forthcoming): given asymmetric competition, how relevant are

the three theoretical effects of risk taking for real players? In our discrete

model, we can clearly discriminate between these three effects by choosing

certain parameter constellations. In a further step, these constellations have

been tested in different experimental treatments.

The paper is organized as follows. The next section introduces the game

and the corresponding solution. In Section 3, we point out the three main

effects of risk taking — the effort effect, the likelihood effect, and the reversed

likelihood effect. In Section 4, we describe the experiment. Our testable

hypotheses are introduced in Section 5. The experimental results are pre-

sented in Section 6. We discuss three puzzling results in Section 7. Section

8 concludes.
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2 The Game

We consider a two-stage tournament game with two risk neutral players. At

the first stage (risk stage), one of the players chooses the variance of the un-

derlying probability distribution that characterizes risk in the tournament.

At the second stage (effort stage), both players observe the chosen risk and

then decide simultaneously on their efforts. The player with the better rela-

tive performance is declared the winner of the tournament and receives the

high prize w1, whereas the other one gets the loser prize w2 with 0 ≤ w2 < w1

and prize spread ∆w := w1−w2. Relative performance does not only depend
on the effort choices but also on the realization of the common underlying

noise term.

The two players are heterogeneous in ability. These ability differences are

modeled via the players’ effort costs. The more able player F ("favorite") has

low effort costs, whereas exerting effort entails rather high costs for player

U ("underdog"). In particular, both players can only choose between the

two effort levels ei = eL and ei = eH > 0 (i = F,U) with eH > eL and

∆e := eH − eL > 0. The choice of ei = eL leads to zero effort costs for player

i, but choosing high effort ei = eH involves positive costs ci (i = F,U) with

cU > cF > 0. Relative performance of player i is described by

RPi = ei − ej − ε (i, j = F,U ; i 6= j) (1)

with ε as common noise term which follows a symmetric distribution around

zero with cumulative distribution function G (ε;σ2) and variance σ2. At the

risk stage, the active player has to decide between two variances or risks. He

can either choose a high risk σ2 = σ2H or a low risk σ
2 = σ2L with 0 < σ2L < σ2H .

Player i is declared winner of the tournament if and only if RPi > 0. Hence,

his winning probability is given by

prob{RPi > 0} = G
¡
ei − ej;σ

2
¢
= 1−G

¡
ej − ei;σ

2
¢

(2)
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where the last equality follows from the symmetry of the distribution. In

analogy, we obtain for player j’s winning probability:

prob{RPj > 0} = 1−G
¡
ei − ej;σ

2
¢
= G

¡
ej − ei;σ

2
¢
. (3)

The symmetry of the distribution has two implications: first, each player’s

winning probability will be G (0;σ2) = 1
2
if both choose the same effort level.

Second, if both players choose different effort levels, the one with the higher

effort has winning probability G (∆e;σ2) > 1
2
, but the player choosing low

effort only wins with probability G (−∆e;σ2) = 1−G (∆e;σ2) < 1
2
. Let

∆G
¡
σ2
¢
:= G

¡
∆e;σ2

¢− 1
2

(4)

denote the additional winning probability of the player with the higher effort

level compared to a situation with identical effort choices by both players.

Note that ∆G (σ2) ∈ ¡0, 1
2

¢
. We assume that increasing risk from σ2L to

σ2H shifts probability mass from the mean to the tails so that G (∆e;σ2L) >

G (∆e;σ2H), implying

∆G
¡
σ2L
¢
> ∆G

¡
σ2H
¢
. (5)

When looking for subgame-perfect equilibria by backward induction we start

by considering the effort stage 2. Here, both players observe σ2 ∈ {σ2L, σ2H}
and simultaneously choose their efforts according to the following matrix

game:

eF = eH eF = eL

eU = eH
∆w

2
−cU ,

∆w

2
−cF ∆wG (∆e;σ2)−cU ,

∆wG (−∆e;σ2)

eU = eL
∆wG (−∆e;σ2) ,

∆wG (∆e;σ2)−cF
∆w

2
,
∆w

2
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For brevity, we skipped the loser prize w2 in each matrix cell for both play-

ers since strategic behavior only depends on the prize spread ∆w.2 The

first (second) payoff in each cell refers to player U (F ) who chooses rows

(columns).

Note that (eU , eF ) = (eH , eL) can never be an equilibrium at the effort stage

since

∆wG
¡−∆e;σ2

¢ ≥ ∆w

2
− cF ⇔ cF ≥ ∆w

µ
1

2
−G

¡−∆e;σ2
¢¶

⇔ cF ≥ ∆w

µ
1

2
− £1−G

¡
∆e;σ2

¢¤¶⇔ cF ≥ ∆G
¡
σ2
¢
∆w

and

∆wG
¡
∆e;σ2

¢− cU ≥ ∆w

2
⇔ ∆G

¡
σ2
¢
∆w ≥ cU

lead to a contradiction as cU > cF . Combination (eU , eF ) = (eH , eH) will be

an equilibrium at the effort stage if and only if

∆w

2
− ci ≥ ∆wG

¡−∆e;σ2
¢⇔ ∆G

¡
σ2
¢
∆w ≥ ci

holds for player i = F,U . In words, each player will not deviate from the

high effort level if and only if, compared to ei = eL, the additional expected

gain ∆G (σ2)∆w is at least as large as the additional costs ci. Similar con-

siderations for (eU , eF ) = (eL, eL) and (eU , eF ) = (eL, eH) yield the following

result:

Proposition 1 At the effort stage, players U and F will choose

(e∗U , e
∗
F ) =


(eH , eH) if ∆G (σ2)∆w ≥ cU

(eL, eH) if cU ≥ ∆G (σ2)∆w ≥ cF

(eL, eL) if ∆G (σ2)∆w ≤ cF

(6)

2Note that, in any case, each player receives the lump sum w2, either directly as loser
prize or as part of the winner prize. Hence, only the additional prize money ∆w leads to
incentives in the tournament.
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Our findings are quite intuitive: the favorite chooses at least as much effort

as the underdog because of higher ability and, hence, lower effort costs. If the

additional expected gain ∆G (σ2)∆w is sufficiently large, it will pay off for

both players to choose a high effort level. However, for intermediate values

of ∆G (σ2)∆w only the favorite will prefer high effort, and for small values

of ∆G (σ2)∆w neither player exerts high effort.

At the risk stage 1, one of the two players is active and chooses common

risk σ2. Equations (2) and (3) show that risk taking directly influences the

players’ winning probabilities. Furthermore, Proposition 1 points out that

risk also determines the players’ effort choices at stage 2. We obtain the

following proposition:

Proposition 2 (i) If ∆w ≤ cF
∆G(σ2L)

or ∆w ≥ cU
∆G(σ2H)

, then both play-

ers will be indifferent between σ2 = σ2L and σ2 = σ2H. (ii) Let ∆w ∈µ
cF

∆G(σ2L)
, cU
∆G(σ2H)

¶
. When F is the active player at stage 1, he will choose

σ2 = σ2L if ∆w < cU
∆G(σ2L)

, and σ2 = σ2H otherwise. When U is the active

player at stage 1, he will always choose σ2 = σ2H.

Proof: See Appendix.
The result of Proposition 2(i) shows that risk taking becomes unimportant

if the prize spread ∆w is very small or very large. In the first case, it never

pays for the players to choose a high effort level, irrespective of the underlying

risk. In the latter case, both players prefer to exert high effort for any risk

level since winning the tournament is very attractive. Hence, the risk-taking

decision is only interesting for moderate prize spreads that do not correspond

to one of these extreme cases.

Proposition 2(ii) deals with the situation of a moderate prize spread. Here,

the underdog always prefers the high risk. The intuition for this result comes

from the fact that U is in an inferior position at the effort stage according to

Proposition 1, irrespective of the chosen risk level. Therefore, he has nothing

to lose and unambiguously gains from choosing the high risk: in case of good
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luck, he may win the competition despite his inferior position; in case of bad

luck, he will not really worsen his position as he has already a rather small

winning probability. The favorite is in a completely different situation when

being the active player at the risk stage. According to Proposition 1, he is

the presumable winner of the tournament and does not want to jeopardize

his favorable position. However, Proposition 2(ii) shows that F ’s preference

for low risk will only hold if the prize spread is smaller than a certain cut-off

value. If ∆w is rather large, then it will pay for the favorite to choose high

risk at stage 1. By this, he strictly gains from discouraging his rival U : given

σ2 = σ2L, we have (e
∗
U , e

∗
F ) = (eH , eH) at the effort stage, but σ

2 = σ2H induces

(e∗U , e
∗
F ) = (eL, eH).

3 Effort Effect, Likelihood Effect and Reversed

Likelihood Effect

The results of Proposition 2 have shown that the behavior of player U is

rather uninteresting in this simple discrete setting as he has a (weakly) dom-

inant strategy when being the active player at stage 1.3 Therefore, the re-

mainder of this paper focuses on the strategic risk taking of player F .

Recall that risk taking may influence both the players’ effort choices and their

winning probabilities. As alreadymentioned in the introduction, in particular

three main effects determine a player’s risk choice at stage 1. The first effect

can be labeled effort effect. In our discrete setting, this effect will determine

F ’s risk choice if cU
∆G(σ2L)

< ∆w < cF
∆G(σ2H)

.4 In this situation, σ2 = σ2L leads

to (e∗U , e
∗
F ) = (eH , eH) at stage 2, but σ2 = σ2H implies (e∗U , e

∗
F ) = (eL, eL).

Hence, in any case the winning probability of either player will be 1
2
, but

only under low risk each one has to bear positive effort costs. Consequently,

3In a model with continuous effort choices, there are also situations in which the un-
derdog prefers low risk; see Kräkel (forthcoming).

4See the proof of Proposition 2 in the Appendix.
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each player prefers high risk at stage 1 to commit himself (and his rival) to

choose minimal effort at stage 2. Concerning the effort effect, both players’

interests are perfectly aligned as each one prefers a kind of implicit collusion

in the tournament, induced by high risk.

The second effect arises when cF
∆G(σ2H)

< ∆w < cU
∆G(σ2L)

.5 In this situation, the

outcome at the effort stage is (e∗U , e
∗
F ) = (eL, eH), no matter which risk level

has been chosen at stage 1. Here, risk taking only determines the players’

likelihoods of winning so that this effect is called likelihood effect. If F chooses

risk, he will unambiguously prefer low risk σ2 = σ2L. Higher risk taking would

shift probability mass from the mean to the tails. This is detrimental for the

favorite, since bad luck may jeopardize his favorable position at the effort

stage. By choosing low risk, his winning probability becomes G (∆e;σ2L)

instead of G (∆e;σ2H) (< G (∆e;σ2L)). A technical intuition can be seen from

Figure 1.

[Figure 1 about here]

There, the cumulative distribution function given high risk, G (·;σ2H), is ob-
tained from the low-risk cdf , G (·;σ2L), by flattening and clockwise rotation
in the point

¡
0, 1

2

¢
. Note that at ∆e the cdf describes the winning proba-

bility of player F , whereas U ’s likelihood of winning is computed at −∆e.

Thus, by choosing low risk instead of high risk, the favorite maximizes his

own winning probability and minimizes that of his opponent.

The third effect is called reversed likelihood effect : if F ’s incentives to win the

tournament are sufficiently strong, that is if ∆w > max

½
cF

∆G(σ2H)
, cU
∆G(σ2L)

¾
,

he wants to deter U from exerting high effort. Now the favorite’s preference

for low risk is just reversed. From the proof of Proposition 2, we know

that low risk σ2L leads to (e
∗
U , e

∗
F ) = (eH , eH), but high risk σ2H induces

(e∗U , e
∗
F ) = (eL, eH). Hence, when choosing high risk at stage 1, the favorite

completely discourages his opponent and increases his winning probability

5See again the proof of Proposition 2.
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by G (∆e;σ2H)− 1
2
= ∆G (σ2H), compared to low risk. This effect is shown in

Figure 2.

[Figure 2 about here]

Low risk makes high effort attractive for both players since effort has still

a real impact on the outcome of the tournament, resulting into a winning

probability of 1
2
for each player. Switching to a high-risk strategy σ2H now

increases the effort difference by ∆e, which raises F ’s likelihood of winning

by ∆G (σ2H).

To sum up, the analysis of risk taking by the favorite points to three differ-

ent effects at the risk stage of the game. These three effects were tested in

a laboratory experiment which will be described in the next section. There-

after, we will present the exact hypotheses to be tested and our experimental

results.

4 Experimental Design and Procedure

We designed three different treatments corresponding to our three effects

— the effort effect, the likelihood effect, and the reversed likelihood effect.

For each treatment we conducted two sessions, each including 5 groups of

6 participants. Each session consisted of a testing phase and 5 rounds of

the two-stage game. During each round, pairs of two players were matched

anonymously within each group. After each round new pairs were matched

in all groups. The game was repeated five times so that each player inter-

acted with each other player exactly one time within a certain group. This

perfect stranger matching was implemented to prevent reputation effects. Al-

together, for each treatment we have 30 independent observations concerning

the first round (15 pairs, 2 sessions) and 10 independent observations based

on all rounds.

Before the 5 rounds of each session started, each participant got the chance

to test the complete two-stage game of Section 2 for 10 rounds. Thus each

12



participant had time to become familiar with the course of the experiment.

During the testing phase, a single player had to make all decisions on his own

so that he learned the role of the favorite as well as that of the underdog.

Within the 5 rounds of the experiment the participants got alternate roles.

Hence, each individual either played three rounds as a favorite and two rounds

as an underdog or vice versa.

For each session, we used a uniformly distributed noise term ε which was

either distributed between −2 and 2 ("low risk"), or between −4 and 4
("high risk").6 Hence, we had ∆G (σ2L) =

1
4
and ∆G (σ2H) =

1
8
. We also

used the same tournament prizes (w2 = 0 and w1 = 100) and the same

alternative effort levels (eL = 0 and eH = 1) for each session. However,

we varied the effort costs between the treatments. In the effort treatment

(testing the effort effect) we had cU = 24 and cF = 22, in the likelihood

treatment (dealing with the likelihood effect) we had cU = 60 and cF = 8,

and in the reversed likelihood treatment (focusing on the reversed likelihood

effect) we used cU = 24 and cF = 8. It can easily be checked that these

three different parameter constellations satisfy the three different conditions

for the prize spread corresponding to the effort effect, the likelihood effect

and the reversed likelihood effect, respectively.

The experiment was conducted at the Cologne Laboratory of Economic Re-

search at the University of Cologne in January 2008. Altogether, 180 stu-

dents participated in the experiment. All of them were enrolled in the Fac-

ulty of Management, Economics, and Social Sciences. The participants were

recruited via the online recruitment system by Greiner (2003). The experi-

ment was programmed and conducted with the software z-tree (Fischbacher

(2007)). A session approximately lasted one hour and 15 minutes and sub-

jects earned on average 13.82 Euro.

At the outset of a session the subjects were randomly assigned to a cubical

where they took a seat in front of a computer terminal. The instructions

6Random draws were rounded off to two decimal places.
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were handed out and read aloud by the experimenters.7 Thereafter, the

subjects had time to ask clarifying questions if they had any difficulties in

understanding the instructions. Communication — other than with the ex-

perimental software — was not allowed. To check for their comprehension,

subjects had to answer a short questionnaire. After each of the subjects

correctly solved the questions, the experimental software was started.

At the beginning of each session, the players got 60 units of the fictitious

currency "Taler". Each round of the experiment then proceeded according

to the two-stage game described in Section 2. It started with player F ’s

risk choice at stage 1 of the game. He could either choose a random draw

out of the interval [−2, 2] ("low risk") or from the interval [−4, 4] ("high
risk"). When choosing risk, player F knew the course of events at the next

stage as well as both players’ effort costs. At the beginning of stage 2, both

players were informed about the alternative that had been chosen by player

F before. Then both players were asked about their beliefs concerning the

effort choice of their respective opponent. Thereafter, each player i (i = U,F )

chose between score 0 (at zero costs) and score 1 (at costs ci) as alternative

effort levels. Next, the random draw was executed. The final score of player

F consisted of his initially chosen score 0 or 1 plus the realization of the

random draw, whereas the final score of player U was identical with his

initially chosen score 0 or 1. The player with the higher final score got the

winner prize w1 = 100 and the other one w2 = 0. Both players were informed

about both final scores, whether the guess about the opponent’s choice was

correct, and about the realized payoffs. Then the next round began.

Each session ended after 5 rounds. At the end of the session, one of the 5

rounds was drawn by lot. For this round, each player got 15 Talers if his

guess of the opponent’s effort choice was correct and zero Talers otherwise.

The winner of the selected round received w1 = 100 Talers and the loser

w2 = 0 Talers. Each player had to pay zero or ci Talers for the chosen score

7The translated instructions can be found in the Appendix.
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0 or 1, respectively. The sum of Talers was then converted into Euro by a

previously known exchange rate of 1 Euro per 10 Talers. Additionally, each

participant received a show up fee of 2.50 Euro independent of the outcome

of the game. After the final round, the subjects were requested to complete a

questionnaire including questions on gender, age, loss aversion and inequity

aversion. Furthermore, the questionnaire contained questions concerning the

risk attitude of the subjects. These questions were taken from the German

Socio Economic Panel (GSOEP) and deal with the overall risk attitude of a

subject.

The language was kept neutral at any time. For example, we did not use

terms like "favorite" and "underdog", or "player F" and "player U", but

instead spoke of "player A" and "player B". Moreover, we simply described

the pure random draw out of the two alternative intervals without speaking

of low or high risk. Instead favorites chose between "alternative 1" and

"alternative 2".

5 Hypotheses

We tested seven hypotheses, six of them deal with the risk behavior and one

of them with the players’ behavior at the effort stage.

The first three hypotheses directly test the relevance of the reversed likeli-

hood effect, the effort effect and the likelihood effect at stage 1 of the game.

Since we designed three different constellations by changing one of the cost

parameters, respectively, each effect could be separately analyzed in a single

treatment. The effort treatment was obtained from the reversed likelihood

treatment by increasing the favorite’s cost parameter, whereas the design of

the likelihood treatment results from increasing the underdog’s cost parame-

ter in the reversed likelihood treatment.

Hypothesis 1: In the reversed likelihood treatment, (most of) the favorites
choose the high risk.
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Hypothesis 2: In the effort treatment, (most of) the favorites choose the
high risk.

Hypothesis 3: In the likelihood treatment, (most of) the favorites choose
the low risk.

In a next step, we compared the risk choices in the different treatments. We

expected that risk taking clearly differs among the three treatments. The

corresponding behavioral hypotheses can be described as follows:

Hypothesis 4: The favorites’ risk taking in the effort treatment does not
differ from that in the reversed likelihood treatment.8

Hypothesis 5: The favorites choose higher risk in the reversed likelihood
treatment than in the likelihood treatment.

Hypothesis 6: The favorites choose higher risk in the effort treatment than
in the likelihood treatment.

Finally, we tested the players’ effort choices at the second stage of the game.

Since in any equilibrium at the effort stage the favorite does not choose less

effort than the underdog, we have the following hypothesis:

Hypothesis 7: The favorites choose at least as much effort as the under-
dogs.9

8Of course, we cannot test whether risk taking is identical in both treatments, but we
can test whether significant differences between the treatments do exist.

9Our hypotheses are stated in terms of "higher" risk and effort, but tests will deal
with the frequency of the appearence of the two risk and effort levels. However, the
interpretation does not change. If we observe, for example, that there is a significant
higher proportion of favorites than underdogs choosing the high effort level, this also
means that the average effort chosen by the favorites is higher.
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6 Experimental Results

6.1 The Risk Stage

We tested the hypotheses with the data from our experiment, starting with

Hypotheses 1−3. Contrary to the reversed likelihood treatment, the findings
on the favorites’ risk choices in the effort and the likelihood treatments are

in line with our theoretical predictions on average (see Figure A1 in the

Appendix): favorites more often choose high risk (low risk) than low risk

(high risk) in the effort treatment (likelihood treatment). However, when

applying the one-tailed Binomial test we cannot reject the hypothesis that

favorites randomly choose between high and low risk in the effort treatment

in the first round. To check whether we can pool the data over all rounds,

we ran different regressions (see Tables A1 to A3 in the Appendix). As the

subjects play the game 5 times the observations are not independent from

each other. Therefore, we computed robust standard errors clustered by

subjects and checked for learning effects by including round dummies. We do

not find any significant learning effects over time in all treatments since there

is no significant influence of a certain round on risk taking. Additionally, we

compared risk taking in round 1 with the risk taking of rounds 2 − 5 for
each treatment but did not find significant differences. We think that the

relatively long testing phase of 10 rounds at the beginning of the experiment

helped the subjects to study the consequences of different strategies. If there

were any learning effects, these should only be relevant in the test phase.

Thus, we pooled our data over the 5 rounds. In the following we present the

results of the first round and additionally our results with pooled data.

The results of the one-tailed Binomial tests concerning Hypotheses 1 to 3

can be summarized as follows:10

10Table entries indicate the predicted risk choices.
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risk choice

reversed

likelihood

treatment

effort

treatment

likelihood

treatment

first round high risk high risk low risk∗∗

pooled data high risk high risk low risk∗∗∗

(∗0.05 < α ≤ 0.1; ∗∗0.01< α ≤0.05; ∗∗∗α ≤0.01)

Table 1: Results on risk taking (one-tailed Binomial tests)

Observation on Hypotheses 1 to 3: Favorites more often choose low risk
than high risk in the likelihood treatment, whereas the findings on high

risk taking in the reversed likelihood and the effort treatments are not

significant.

In a next step, we pairwise compared the three treatments.

Observation on Hypothesis 4: Favorites’ risk taking in the effort treat-
ment significantly differs from that in the reversed likelihood treatment

(Fisher test, two-tailed; first round: α ≤ 0.01; pooled data: α ≤ 0.01)

Whereas the Binomial test shows that favorites do not prefer high risk sig-

nificantly more than low risk in the effort treatment, the relative comparison

supports the initial impression from Figure A1: in the effort treatment, the

proportion of favorites choosing the high risk is higher than in the reversed

likelihood treatment so that Hypothesis 4 can be clearly rejected. Therefore,

the effort effect seems to be more relevant for subjects when choosing risk

than the reversed likelihood effect. In addition, we ran a probit regression,

using our pooled data set (see Table A1 in the Appendix). Here, the dummy

variable for the effort treatment is highly significant which confirms our result

from the Fisher test.
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Observation on Hypothesis 5: Favorites’ risk taking in the reversed like-
lihood treatment is not significantly higher than that in the likelihood

treatment (one-tailed Fisher test).

The observation on Hypothesis 5 holds for the first round as well as for the

pooled data set and is in line with our previous findings: in the likelihood

treatment, favorites choose low risks as theoretically expected. Since, con-

trary to theory, they also often choose low risk in the reversed likelihood

treatment, risk taking is not significantly higher in the reversed likelihood

treatment. Again, we ran a probit regression with the pooled data, but did

not find a significant result for the treatment dummy (see Table A2 in the

Appendix).

Observation on Hypothesis 6: Favorites’ risk taking is significantly higher
in the effort treatment than in the likelihood treatment (Fisher test, one-

tailed; first round: 0.01 < α ≤ 0.05; pooled data: α ≤ 0.01)

Again, the Fisher test supports the general impression of Figure A1: favorites

choose significantly higher risk in the effort treatment compared to the risk

behavior in the likelihood treatment. Further confirmation comes from a

respective probit regression (see Table A3 in the Appendix). Note that all

three probit regressions show that risk aversion does not have a significant

influence on the favorites’ risk taking.

6.2 The Effort Stage

Given the favorite’s risk choice at stage 1, the underdog and the favorite have

to decide on their efforts at the second stage of the game. According to the

subgame perfect equilibria, we would expect that the favorite chooses a higher

effort level than the underdog in the reversed likelihood and the likelihood

treatments, whereas both players’ efforts should be the same in the effort
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treatment. Altogether, favorites should exert more effort than underdogs on

average.11

Recall that in the reversed likelihood and the effort treatments different risk

levels lead to different equilibria at the effort stage. Since both risk levels

have been chosen at stage 1, we can test whether players rationally react to

a given risk level. An overview on the aggregate effort choices is given by

Figures A2 to A10 in the Appendix: in the reversed likelihood treatment,

the favorite should always choose the large effort level independent of given

risk, whereas the underdog should prefer small (large) effort if risk is high

(low). Figures A2 to A4 show that the experimental findings are roughly

in line with our theoretical predictions. For high risk, the subjects even

perfectly react to given risk in round 5 — all underdogs choose low effort,

but all favorites prefer the high effort level. In the effort treatment, theory

predicts that both types of players choose small efforts under high risk, but

large efforts under low risk. Figures A5 to A7 illustrate that subjects on

average indeed react as predicted. Interestingly, favorites are more sensitive

to risk than underdogs although subjects change their roles after each round.

In the likelihood treatment, for both risk levels favorites (underdogs) should

choose large (small) effort. As for the risk stage, in the likelihood treatment

subjects’ behavior seems to follow theoretical predictions also most closely

when choosing effort, compared to the other treatments (see Figures A8 to

A10).

Next, we used a one-tailed Binomial test to check if most of the subjects

of a certain type choose the predicted effort level under a given risk against

the hypothesis that subjects randomly decide between the two effort levels.

Again, we can pool our data over the 5 rounds because regressions includ-

ing round dummies (see Tables A4 to A6 in the Appendix) as well as tests

comparing the effort in round 1 with the effort of rounds 2− 5 for a certain
11Uneven tournaments in the notion of O’Keeffe et al. (1984) were also considered in the

experiments by Bull et al. (1987), Schotter and Weigelt (1992) and Harbring et al. (2007).
In each experiment, favorites choose significantly higher effort levels than underdogs.
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type and certain risk do not reveal any significant learning effects at the ef-

fort stage. The following table presents all first-round observations and the

results for pooled data (a table entry illustrates the predicted effort level):

player: data

reversed

likelihood

treatment

effort

treatment

likelihood

treatment

high

risk

F : 1st round

F : pooled

U : 1st round

U : pooled

eF = 1

eF = 1
∗∗∗

eU = 0
∗

eU = 0
∗∗∗

eF = 0
∗∗

eF = 0
∗∗∗

eU = 0

eU = 0

eF = 1

eF = 1
∗∗∗

eU = 0
∗∗

eU = 0
∗∗∗

low

risk

F : 1st round

F : pooled

U : 1st round

U : pooled

eF = 1
∗∗∗

eF = 1
∗∗∗

eU = 1

eU = 1

eF = 1

eF = 1
∗∗∗

eU = 1
∗

eU = 1
∗∗

eF = 1
∗∗∗

eF = 1
∗∗∗

eU = 0
∗

eU = 0
∗∗∗

(∗0.05 < α ≤ 0.1; ∗∗0.01< α ≤0.05; ∗∗∗α ≤0.01)

Table 2: Results on effort choices (one-tailed Binomial tests)

The column corresponding to the reversed likelihood treatment reveals that

favorites’ reactions to risk taking is quite in line with theory as they choose

high efforts for both risk levels. However, the underdogs’ behavior is not

significantly different from a random draw under low risk, but in line with the

theoretical prediction under high risk. The column for the effort treatment

confirms the initial impression from Figures A5 to A7. Whereas favorites

react fairly well to different risk levels, the underdogs often choose high efforts

even under high risk, which contradicts theory. The last column reports the

findings for the likelihood treatment. Our results point out that subjects

behave rationally at the effort stage with the exception of the favorites’ effort

choices in the first round given high risk.
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Finally, we tested the favorites’ effort choices against the underdogs’ behav-

ior. We either used a one-tailed Fisher test to check if the proportion of

favorites choosing the high effort is significantly larger than that of the un-

derdogs if theory predicts a higher effort level of the favorite (eF > eU), or

a two-tailed Fisher test to check if there are any (unpredicted) differences

between the proportion of types in the two effort categories. We have differ-

entiated between three cases when comparing efforts — ignoring the given risk

level (first panel of the table), only considering high-risk situations (second

panel), only considering low-risk situations (third panel):

data

reversed

likelihood

treatment

effort

treatment

likelihood

treatment

both

risks

1st round

pooled

one-tailed∗∗∗

one-tailed∗∗∗
two-tailed

two-tailed

one-tailed∗∗∗

one-tailed∗∗∗

high

risk

1st round

pooled

one-tailed∗

one-tailed∗∗∗
two-tailed

two-tailed∗∗∗
one-tailed∗∗

one-tailed∗∗∗

low

risk

1st round

pooled

two-tailed

two-tailed∗∗∗
two-tailed

two-tailed

one-tailed∗∗∗

one-tailed∗∗∗

(∗0.05 < α ≤ 0.1; ∗∗0.01< α ≤0.05; ∗∗∗α ≤0.01)

Table 3: Results on effort comparisons (Fisher test)

Following the theoretical predictions, in the reversed likelihood treatment

favorites should only exert more effort than underdogs if risk is high. The

second panel of the table fits well with this prediction for the first round and

pooled data, but according to the third panel subjects’ behavior seems to be

even different under low risk: considering the pooled data, favorites choose

a significantly different effort than underdogs, thus contradicting theory. In-

specting the data reveals that the proportion of favorites choosing the high

effort is even significantly higher than the respective proportion of underdogs
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under low risk. In both the effort treatment and the likelihood treatment,

the effort difference eF − eU should be independent of the risk level. eF − eU

should be zero under the effort treatment, but strictly positive under the like-

lihood treatment. Again, the findings for the likelihood treatment are pretty

in line with theory. For the effort treatment, the second panel of the table

shows that the different types of players choose significantly different effort

levels under high risk (pooled data). Here, the underdogs exert clearly more

effort than the favorites which is in line with our observations in Figures A5

and A7 and the findings for the Binomial test, but contrary to theory.

Finally, we ran probit regressions on the effort comparison between favorites

and underdogs for the three different treatments (see Tables A4 to A6 in

the Appendix). The regression results clearly support our findings for the

Fisher test: whereas the player-type dummy is (highly) significant and in line

with theory for the reversed likelihood and the likelihood treatments, it is

not significant or even significantly different from theoretical predictions in

the effort treatment. Furthermore, we checked if a player’s risk attitude

influences his behavior at the effort stage. However, only in 1 out of 6

regressions (reversed likelihood treatment under low risk) the risk aversion

dummy is weakly significant and positive.

Altogether, we can summarize our findings for the effort stage as follows:

Observation on Hypothesis 7: In the reversed likelihood treatment and
the likelihood treatment, favorites choose significantly more effort than

underdogs. In the effort treatment, players’ behavior does not signif-

icantly differ given low risk, but for high risk underdogs exert clearly

more effort than favorites.

7 Discussion

The experimental results of Section 6 point to three puzzles, which should be

discussed in the following: (1) favorites choose significantly more often the
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low risk than the high risk in the reversed likelihood treatment; (2) given low

risk in the reversed likelihood treatment, favorites exert significantly more

effort than underdogs; (3) given high risk in the effort treatment, underdogs

choose significantly more effort than favorites.

Inspection of the players’ beliefs concerning their opponents’ efforts shows

that puzzles (1) and (2) seem to be interrelated. It turns out that in the low-

risk state of the reversed likelihood treatment, favorites’ equilibrium beliefs

differ from their reported beliefs in each of the five rounds of the repeated

game. In the first and in the last round, 11 out of 23 favorites expect un-

derdogs to choose a low effort level although theory predicts a high effort

choice. The proportion of favorites with this belief is even higher in round 2

(10 out of 18), round 3 (10 out of 20) and round 4 (12 out of 21). Actually,

about one half of the underdogs choose a low effort. Given that the favorites

already had these beliefs when taking risk at stage 1, both puzzles (1) and

(2) can be easily explained together: now, a favorite expecting a low effort by

an underdog in both a low-risk and a high-risk state, should unambiguously

prefer a high effort level in both states. The results of our Binomial test from

Subsection 6.1 shows that indeed favorites highly significantly react in this

way. This explains puzzle (2). When the favorites decide on risk taking at

stage 1 and anticipate (eU , eF ) = (0, 1) under both risks, the underlying re-

versed likelihood problem turns into a perceived likelihood problem from the

viewpoint of the favorites.12 Given a perceived likelihood problem, the fa-

vorites should optimally choose a low risk in order to maximize their winning

probability (see Figure 1), which explains puzzle (1).

Concerning puzzle (3), inspection of the players’ beliefs does not lead to

clear results. Similarly, controlling for risk aversion, loss aversion, inequity

aversion and the history of the game does not yield new insights either.

Most surprisingly seems to be the missing explanatory power of the players’

history in the game: intuitively, subjects might react to the outcomes of

12See also the observation on Hypothesis 5 in Subsection 6.1.
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former rounds when choosing effort in the actual round. However, our results

do not show a clear impact of experienced success or failure in previous

tournaments. Maybe, underdogs react too strongly to the close competition

with the favorites. In the effort treatment, costs for exerting high effort were

cU = 24 and cF = 22. Hence, the cost difference is rather small — in particular

compared to the two other treatments —, and the underdogs might have

chosen high efforts due to perceived homogeneity in the tournament. The

underdogs’ beliefs about the favorites’ effort choices indicate that this effect

might be relevant under high risk. In the first and third round, 7 (out of 18

and 15 respectively), and in the fourth round 8 (out of 19) underdogs expect

favorites to choose high efforts, too.13 However, in the concrete situation

given σ2 = σ2H and eF = 1, an underdog should prefer eU = 1 to eU = 0 if

and only if ∆w
2
− cU > ∆wG (−∆e;σ2H) ⇔ ∆G (σ2H)∆w > cU , and for our

chosen parameter values this condition (12.5 Talers > 24 Talers) is clearly

violated.14 To sum up, as we can see from Figures A5 and A6 underdogs

reduce their efforts when risk increases, which is qualitatively in line with the

effort effect, but it remains puzzling why underdogs do not react as strong

as favorites to different risks although subjects change their roles after each

round in the experiment.

8 Conclusion

In many winner-take-all situations, players first decide whether to use a more

or less risky strategy and then choose their investments or efforts. In this

case, risk taking at the first stage of the game determines both the optimal

investment or effort levels at stage two and the players’ likelihood of winning

13In the other two rounds the proportion of underdogs who believe the favorite to choose
the high effort is somewhat lower: second round: 3 out of 13; last round: 4 out of 17.
14Note that in terms of converted money payments, subjects have to compare 1.25 Euro

to 2.40 Euro. Given eF = 0, high effort would only be rational for the underdog if 10 Euro
> 19.20 Euro which is clearly not satisfied.
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the competition. We find three effects that mainly determine risk taking

— an effort effect, a likelihood effect, and a reversed likelihood effect. Our

experimental findings point out that the impact of risk taking on the like-

lihood of winning (i.e. the likelihood effect) is very important for subjects

at stage one. Moreover, also optimal investments for given risk are clearly

in line with theory under the likelihood effect. Furthermore, in most of the

rounds even the beliefs of the favorites seem to follow the theoretical beliefs

in the likelihood treatment. Moreover, the beliefs of the underdogs are in

line with the theory in all rounds. We obtain mixed results for the effort ef-

fect and the reversed likelihood effect, but pairwise comparison of treatments

reveals that the effort effect seems to be more relevant for subjects than the

reversed likelihood effect. Interestingly, the players very often react to given

risk according to theory when investing into the winner-take-all competition.

As a by-product, the results of our questionnaire point to an important find-

ing on the concept of inequity aversion15 as introduced by Fehr and Schmidt

(1999) in the literature. Grund and Sliwka (2005) applied this concept to

rank-order tournaments. If one player has a higher (lower) payoff than an-

other player, the first (second) realizes a disutility from compassion (envy).

In a tournament, players typically compare their relative payoffs and the tour-

nament winner (loser) will feel some compassion (envy) when being inequity

averse. Both Fehr-Schmidt and Grund-Sliwka assumed that envy is at least

as strong as compassion. This assumption is central for the results in Grund

and Sliwka (2005) since it directly implies that inequity averse contestants ex-

ert more effort than players who are not inequity averse. Using a sign test,16

our findings point out that in each treatment subjects feel significantly more

15We used the same two games as Dannenberg et al. (2007) to measure the subjects’
inequity preferences. In contrast to Dannenberg et al. (2007), not all subjects received
a payoff for their decisions. After the subjects indicated their decisions, we randomly
determined for which game and which row of that particular game two randomly selected
subjects received a payoff according to their decisions. Furthermore, the respective player
role of the selected subjects was randomly determined.
16Subjects with inconsistent behavior were excluded from the analysis.
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compassion than envy (one-tailed, reversed likelihood treatment: α ≤ 0.01,
effort treatment: α ≤ 0.01, likelihood treatment: α ≤ 0.01).17 According to
this result, inequity aversion would not lead to stronger competition in tour-

naments. On the contrary, competition would be weakened as any contestant

anticipates to suffer from strong compassion in case of winning.

17A similar finding is made by Dannenberg et al. (2007) running experiments on public
good games.
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Appendix

Proof of Proposition 2 :

(i) We can rewrite (6) as

(e∗U , e
∗
F ) =


(eH , eH) if ∆w ≥ cU

∆G(σ2)

(eL, eH) if cU
∆G(σ2)

≥ ∆w ≥ cF
∆G(σ2)

(eL, eL) if ∆w ≤ cF
∆G(σ2)

.

(6’)

Since we have two risk levels, σ2L and σ2H , there are four cutoffs with
cF

∆G(σ2L)
being the smallest one and cU

∆G(σ2H)
the largest one because of (5). Hence,

both players will always (never) choose high effort levels if ∆w ≥ cU
∆G(σ2H)

(∆w ≤ cF
∆G(σ2L)

), irrespective of risk taking in stage 1.

(ii) We have to differentiate between two possible rankings of the cutoffs:

scenario 1:
cF

∆G (σ2L)
<

cF
∆G (σ2H)

<
cU

∆G (σ2L)
<

cU
∆G (σ2H)

scenario 2:
cF

∆G (σ2L)
<

cU
∆G (σ2L)

<
cF

∆G (σ2H)
<

cU
∆G (σ2H)

.

If ∆w < min

½
cF

∆G(σ2H)
, cU
∆G(σ2L)

¾
, then in both scenarios the choice of σ2L

will imply (e∗U , e
∗
F ) = (eL, eH) at stage 2, whereas σ2 = σ2H will lead to

(e∗U , e
∗
F ) = (eL, eL). In this situation, F prefers σ2 = σ2L since

∆wG
¡
∆e;σ2L

¢− cF >
∆w

2
⇔ ∆w >

cF
∆G (σ2L)

is true. However, U prefers σ2 = σ2H because of

∆w

2
> ∆wG

¡−∆e;σ2L
¢
.

If ∆w > max

½
cF

∆G(σ2H)
, cU
∆G(σ2L)

¾
, then in both scenarios the choice of σ2L
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will result into (e∗U , e
∗
F ) = (eH , eH) at stage 2, but σ2 = σ2H will induce

(e∗U , e
∗
F ) = (eL, eH). In this case, player F prefers the high risk σ2H since

∆wG
¡
∆e;σ2H

¢− cF >
∆w

2
− cF .

Player U has the same preference because

∆wG
¡−∆e;σ2H

¢
>

∆w

2
− cU ⇔ cU

∆G (σ2H)
> ∆w

is true.

Two cases are still missing. Under scenario 1, we may have that

cF
∆G (σ2H)

< ∆w <
cU

∆G (σ2L)
.

Then any risk choice leads to (e∗U , e
∗
F ) = (eL, eH) at stage 2 and F prefers σ

2
L

because of

∆wG
¡
∆e;σ2L

¢− cF > ∆wG
¡
∆e;σ2H

¢− cF ,

but U favors σ2H since

∆wG
¡−∆e;σ2H

¢
> ∆wG

¡−∆e;σ2L
¢
.

Under scenario 2, we may have that

cU
∆G (σ2L)

< ∆w <
cF

∆G (σ2H)
.

Here, low risk σ2L implies (e
∗
U , e

∗
F ) = (eH , eH), but high risk σ2H leads to

(e∗U , e
∗
F ) = (eL, eL). Obviously, each player prefers the choice of high risk

when being active at stage 1. Our findings are summarized in Proposition

2(ii).
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Figure 1: likelihood effect 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 2: reversed likelihood effect  
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Figure A1: Comparison of the favorite’s risk choices over treatments  
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 (1) (2) 

Dummy effort Treatment 0.643*** 0.621*** 

 (0.20) (0.20) 

Dummy risk aversion  -0.144 

  (0.21) 

Dummy Round 2 0.00849 -0.00352 

 (0.24) (0.24) 

Dummy Round 3 0.00517 0.00442 

 (0.20) (0.20) 

Dummy Round 4 0.136 0.126 

 (0.17) (0.17) 

Dummy Round 5 -0.0449 -0.0494 

 (0.21) (0.21) 

Constant -0.546*** -0.473** 

 (0.19) (0.22) 

Observations 300 300 

Pseudo R2 0.0479 0.0500 

Log Pseudolikelihood -194.61582 -194.1782 

Robust standard errors in parentheses are calculated by 

clustering on subjects 

*** p<0.01, ** p<0.05, * p<0.1 

 
Table A1: Probit regression Hypothesis 4  
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 (1) (2) 

Dummy likelihood Treatment -0.0584 -0.0580 

 (0.22) (0.22) 

Dummy risk aversion  0.0251 

  (0.22) 

Dummy Round 2 0.145 0.147 

 (0.24) (0.24) 

Dummy Round 3 0.192 0.192 

 (0.19) (0.19) 

Dummy Round 4 0.146 0.148 

 (0.19) (0.19) 

Dummy Round 5 -0.161 -0.161 

 (0.23) (0.23) 

Constant -0.593*** -0.606*** 

 (0.20) (0.23) 

Observations 300 300 

Pseudo R2 0.0080 0.0081 

Log Pseudolikelihood -179.19263 -179.17939 

Robust standard errors in parentheses are calculated by 

clustering on subjects 

*** p<0.01, ** p<0.05, * p<0.1 

 
Table A2: Probit regression Hypothesis 5 
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 (1) (2) 

Dummy effort Treatment 0.707*** 0.701*** 

 (0.21) (0.21) 

Dummy risk aversion  -0.0431 

  (0.22) 

Dummy Round 2 -0.321 -0.329 

 (0.24) (0.25) 

Dummy Round 3 -0.0868 -0.0902 

 (0.19) (0.19) 

Dummy Round 4 0.0896 0.0872 

 (0.17) (0.17) 

Dummy Round 5 -0.186 -0.191 

 (0.21) (0.21) 

Constant -0.488** -0.464** 

 (0.20) (0.23) 

Observations 300 300 

Pseudo R2 0.0637 0.0639 

Log Pseudolikelihood -190.44806 -190.41028 

Robust standard errors in parentheses are calculated 

by clustering on subjects 

*** p<0.01, ** p<0.05, * p<0.1 

 
Table A3: Probit regression Hypothesis 6 
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                        Number of players choosing high effort  

 round 1 round 2 round 3 round 4 round 5 
underdog 1 out of 7 5 out of 12 3 out of 10 2 out of 9 0 out of 7 
favorite 5 out of 7 10 out of 12 8 out of 10 6 out of 9 7 out of 7 

 
Figure A2: Effort choices in the reversed likelihood treatment with high risk 
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                        Number of players choosing high effort 

 round 1 round 2 round 3 round 4 round 5 
underdog 12 out of 23 10 out of 18 9 out of 20 13 out of 21 12 out of 23 
favorite 18 out of 23 15 out of 18 17 out of 20 17 out of 21 21 out of 23 

 
Figure A3: Effort choices in the reversed likelihood treatment with low risk 
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                         Number of players choosing high effort 
 high risk low risk 
underdog 11 out of 45 56 out of 105
favorite 36 out of 45 88 out of 105
 
Figure A4: Effort choices in the reversed likelihood treatment with pooled data 
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 round 1 round 2 round 3 round 4 round 5 

underdog 8 out of 18 5 out of 13 7 out of 15 11 out of 19 6 out of 17 
favorite 5 out of 18 2 out of 13 1 out of 15 4 out of 19 5 out of 17 

 
Figure A5: Effort choices in the effort treatment with high risk 
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                         Number of players choosing high effort 
 round 1 round 2 round 3 round 4 round 5 

underdog 9 out of 12 9 out of 17 11 out of 15 6 out of 11 7 out of 13 
favorite 7 out of 12 13 out of 17 12 out of 15 6 out of 11 10 out of 13 

 

Figure A6: Effort choices in the effort treatment with low risk 
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                         Number of players choosing high effort 
 high risk low risk 

underdog 37 out of 82 42 out of 68 
favorite 17 out of 82 48 out of 68 

 

Figure A7: Effort choices in the effort treatment with pooled data 
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                         Number of players choosing high effort 

 round 1 round 2 round 3 round 4 round 5 
underdog 1 out of 9 1 out of 7 1 out of 10 2 out of 10 0 out of 6 
favorite 6 out of 9 6 out of 7 8 out of 10 7 out of 10 4 out of 6 

 

Figure A8: Effort choices in the likelihood treatment with high risk 
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                         Number of players choosing high effort 

 round 1 round 2 round 3 round 4 round 5 
underdog 7 out of 21 4 out of 23 6 out of 20 4 out of 20 3 out of 24 
favorite 20 out of 21 23 out of 23 19 out of 20 20 out of 20 24 out of 24 

 

Figure A9: Effort choices in the likelihood treatment with low risk 
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                         Number of players choosing high effort 

 high risk low risk 
underdog 5 out of 42 24 out of 108 
favorite 31 out of 42 106 out of 108

 

Figure A10:  Effort choices in the likelihood treatment with pooled data 
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 High risk High risk Low risk Low risk 

Dummy Favorite 1.580*** 1.601*** 0.907*** 0.899*** 

 (0.33) (0.33) (0.25) (0.26) 

Dummy risk aversion  0.173  0.563* 

  (0.38)  (0.31) 

Dummy Round 2 0.664 0.660 0.132 0.155 

 (0.46) (0.45) (0.27) (0.27) 

Dummy Round 3 0.415 0.434 0.00406 -0.0234 

 (0.39) (0.40) (0.21) (0.21) 

Dummy Round 4 0.0635 0.0722 0.186 0.179 

 (0.50) (0.49) (0.20) (0.21) 

Dummy Round 5 0.247 0.247 0.220 0.236 

 (0.40) (0.40) (0.23) (0.24) 

Constant -1.037*** -1.134** -0.0249 -0.257 

 (0.38) (0.46) (0.22) (0.24) 

Observations 90 90 210 210 

Pseudo R2 0.2600 0.2626 0.0931 0.1254 

Log Pseudolikelihood -46.098419 -45.936982 -118.55264 -114.33533 

Robust standard errors in parentheses are calculated by clustering on subjects 

*** p<0.01, ** p<0.05, * p<0.1 

 
Table A4: Probit regression Hypothesis 7: reversed likelihood treatment 
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 High risk High risk Low risk Low risk 

Dummy Favorite -0.704*** -0.706*** 0.247 0.244 

 (0.20) (0.21) (0.23) (0.22) 

Dummy risk aversion  0.262  0.396 

  (0.34)  (0.34) 

Dummy Round 2 -0.281 -0.263 -0.0463 -0.0559 

 (0.30) (0.31) (0.31) (0.32) 

Dummy Round 3 -0.306 -0.311 0.304 0.341 

 (0.27) (0.28) (0.30) (0.30) 

Dummy Round 4 0.0858 0.0888 -0.314 -0.325 

 (0.22) (0.22) (0.34) (0.34) 

Dummy Round 5 -0.101 -0.0944 -0.0278 -0.0316 

 (0.27) (0.27) (0.28) (0.29) 

Constant -0.0219 -0.102 0.306 0.177 

 (0.25) (0.27) (0.26) (0.27) 

Observations 164 164 136 136 

Pseudo R2 0.0641 0.0704 0.0235 0.0389 

Log Pseudolikelihood -97.256424 -96.602822 -84.97257 -83.639756 

Robust standard errors in parentheses are calculated by clustering on subjects 

*** p<0.01, ** p<0.05, * p<0.1 

 
Table A5: Probit regression Hypothesis 7: effort treatment 
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 High risk High risk Low risk Low risk 

Dummy Favorite 1.859*** 1.877*** 2.856*** 2.856*** 

 (0.35) (0.35) (0.36) (0.35) 

Dummy risk aversion  -0.212  -0.00462 

  (0.41)  (0.32) 

Dummy Round 2 0.422 0.479 -0.236 -0.235 

 (0.51) (0.47) (0.38) (0.39) 

Dummy Round 3 0.223 0.246 -0.0915 -0.0912 

 (0.44) (0.42) (0.35) (0.35) 

Dummy Round 4 0.240 0.274 -0.160 -0.160 

 (0.53) (0.51) (0.31) (0.31) 

Dummy Round 5 -0.265 -0.241 -0.385 -0.385 

 (0.45) (0.43) (0.40) (0.40) 

Constant -1.352*** -1.285*** -0.592* -0.590* 

 (0.44) (0.48) (0.31) (0.32) 

Observations 84 84 216 216 

Pseudo R2 0.3259 0.3294 0.5415 0.5415 

Log Pseudolikelihood -38.67116 -38.466101 -66.571261 -66.571085 

Robust standard errors in parentheses are calculated by clustering on subjects 

*** p<0.01, ** p<0.05, * p<0.1 

 
Table A6: Probit regression Hypothesis 7: likelihood treatment 
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Instructions (here: for the reversed likelihood treatment): 
 

 

 

Welcome to this experiment! 
 

You are taking part in an economic decision making experiment. All decisions are 

anonymous, that means that none of the other participants gets to know the identity of 

someone having made a certain decision. The payment is also anonymous, that is none of the 

participants gets to know how much others have earned. Please read the instructions of the 

experiment carefully. If you do not understand something, look at the instructions again. If 

you are still having questions then give us a hand signal. 

 

Overview about the experiment 
 
The experiment consists of 5 rounds. Before the experiment starts, you have the possibility to 

get familiar with it in ten sample rounds. These sample rounds have no influence on your 

payment and conduce to a better understanding of the experiment. 

Each round consists of two stages: Stage 1 and Stage 2. In each round of the experiment you 

play together with a second person. All participants are divided into groups of 6 persons, out 

of which pairs for one round are chosen. If you have played together with a particular person 

in one round, you cannot meet this person in any further round again. Please notice that you 

are only paid for one of the 5 rounds. The computer randomly selects the round for which 

you are paid. Therefore please think carefully about your decisions because each round might 

be selected. Your decisions and the decisions of the other person with whom you play 

influence your payment. All payments resulting of the experiment are described in the 

fictitious currency Taler. The exchange rate is 1 Euro for 10 Talers. 

 

In the beginning of the experiment, an amount of 60 Talers will be credited to your 

experiment account. If you get further payments out of the randomly selected round, they will 

be added to your account and the whole sum will be paid out. If your payoff from the selected 

round is negative, it will be offset with your initial payment. 
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In the experiment there are 2 different player roles, player role A (player A in the following) 

and player role B (player B in the following). In the beginning, you are randomly assigned to 

one of these roles. In each round, you can be assigned to another role. You are then playing 

with a person who has the other player role. For both persons a score is counted at the end 

of each round. The player’s score, depending on the player role, is influenced by several 

components which are presented in the following: 

 

In case of player A: 
Your score at the end of a round (after stage 2) is calculated as following:               

Score A = ZA + x 

ZA is a number that you select as player A in stage 2. You can choose between ZA = 0 and  ZA 

= 1. The selected value will be taken into account for the calculation of your score. Dependent 

on the choice of ZA , several costs occur: If you choose ZA = 0, this costs you nothing. If you 

choose ZA = 1, this costs you CA = 8 Talers.  

 

Influence of x: 
As player A you decide between two alternatives at stage 1: 

 

Alternative 1:          

If you choose alternative 1, x is randomly selected out of the interval from -2 to 2 (each value 

between -2 and 2 has the same probability). The randomly chosen x is specified on two 

decimal places. 

 

Alternative 2: 

If you choose alternative 2, x is randomly selected out the interval from -4 to 4 (each value 

between -4 and 4 has the same probability). The randomly chosen x is specified on two 

decimal places. 

 

The randomly selected x influences your score at stage 2 (see above). 
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In case of player B: 
If you act as player B, you do not make any decision in stage 1. 

Your score at the end of stage 2 is calculated as following: 

                                                     Score B = ZB 

ZB is a number that you select at stage 2. You can choose between ZB = 0 and ZB = 1. The 

selected value will be taken into account for the calculation of your score. If you choose          

ZB = 0, this costs you nothing. If you choose ZB = 1, this costs you CB = 24 Talers.  

 

At the end of stage 2, the scores of both players are compared. The person with the higher 

score gets 100 Talers. The other person gets zero Talers. If both persons have the same 

score, the higher one will be determined at random. In any case the costs of a chosen number 

will be subtracted from the already achieved Talers. 

 

Course of a round  
 

Stage 1: 

First you get the following information: 

- which of the roles A and B is assigned to you 

- in case of acting as player A: Information about your own costs CA which occur if  

                                                   you choose ZA = 1 at stage 2 and about the costs CB    

                                                              of the other player that occur if he chooses ZB = 1 at  

                                                              stage 2. 

- in case of acting as player B: Information about your own costs CB which occur if 

                                                  you choose ZB = 1 at stage 2 and about the costs CA .. 

                                                  of the other player that occur if he chooses ZA = 1 at  

                                                  stage 2. 

 

If you act as player A, at stage 1 you will be asked which of the alternatives 1 or 2 you want 

to choose. After you have selected one of the alternatives, stage 2 of the experiment begins. 
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Stage 2: 

At stage 2, both players are informed about the chosen alternative of player A. 

 

After that, you and the other player are asked what you think, which number Z the other one 

will choose. If your guess is correct you will get 15 Talers, otherwise nothing. 

 

Then both players choose a number Z. 

 - in case of being player A, you can choose between ZA = 0 and ZA = 1. This     

              influences your score. If you choose ZA = 1, costs of CA occur. 

 - in case of being player B, you can choose between ZB = 0 and ZB = 1. This       

              influences your score. If you choose ZB = 1, costs of CB occur. 

 

After that, you and the other player are informed about the decisions and the scores, x is 

randomly selected and the player with the higher score is announced. In addition, you get 

informed how many Talers you would earn if this round were selected later. Hence, you get 

the following information: 

 

 

                                           Your score:  

                                           Score of the other player: 

 

The player with the higher score is player___. 

Your guess was correct/false. Additionally, you would get ___ Talers.  

Altogether, you would get ___ Talers in this round. 

  

Then the next round begins with the same procedure. Altogether you play 5 rounds. At the 

end of round 5, it is randomly chosen which round to be paid out. Thereafter, a questionnaire 

appears on the screen which you are to answer. 

 

 

 

 

 

 



 18

Overview about the possible payments:  

 

Payment for the player with the higher 

score:  

Payment for the player with the lower 

score: 

 

   100 Talers 

-  costs CA or CB respectively, if Z = 1  

    was chosen  

+ 15 Talers for a correct guess of the 

    other player’s choice of Z  

 

    0 Talers 

-   costs CA or CB respectively, if Z = 1  

    was chosen 

+  15 Talers for a correct guess of the 

    other player’s choice of Z 

 

The payments will be added to your experiment account.  In addition you are paid 2.50 Euro 

for participating in our experiment. 

Now please answer the comprehension questions below. As soon as all participants have 

answered them correctly, the 10 sample rounds will start. 

 

Please stay on your seat at the end of the experiment until we invoke your cabin number. 

Bring this instruction and your cabin number to the front. Only then the payment for your 

score can begin. 

 

Thanks a lot for participating and good luck! 


