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Abstract

We show that the optimal prize structure of symmetric n-player Tullock tournaments assigns
the entire prize pool to the winner, provided that a symmetric pure strategy equilibrium exists.
If such an equilibrium fails to exist under the winner-take-all structure, we construct the
optimal prize structure which improves existence conditions by dampening efforts. If no such
optimal equilibrium exists, no symmetric pure strategy equilibrium induces positive efforts.
(JEL C7, D72, J31. Keywords: Tournaments, Incentive structures, Rent seeking.)

1 Introduction

It is well known that “an income maximizing contest administrator obtains the most rent-seeking

contributions when he makes available a single, large prize” Clark and Riis (1998b). Less, however,

is known about effort maximizing prizes in Tullock contests when an equilibrium supporting this

winner-take-all structure does not exist or if non-linear costs accompany the outlays of more than

two contestants. Unfortunately, both these cases typically arise in practical applications. We show

that with symmetric players, the winner-take-all prize structure induces maximal efforts regardless

of the number of players or their effort cost, provided that a symmetric pure strategy equilibrium

exists. In cases where such an equilibrium fails to exist under the winner-take-all prize structure,

we construct optimal prizes which improve existence conditions by dampening excessive efforts. If

no such equilibrium exists, no symmetric pure strategy equilibrium induces positive efforts. As any

optimal equilibrium leaves zero utility to the contestants in order to maximize efforts, the highest

achievable equilibrium effort is the same for all symmetric equilibria. This aspect of our results
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Mylovanov. Financial support from the German Science Foundation through SFB/TR 15 is gratefully acknowledged
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resembles what was shown by Barut and Kovenock (1998) for the fully discriminating, complete

information all-pay auction (which is the limit case of our setup). Since utility is zero for any effort

choice in the support of their mixed equilibria, they derive—in contrast to our results—the near

total arbitrariness of prize structures. Adding incomplete information to the all-pay auction setup,

Moldovanu and Sela (2001) show that more than one prize is optimal when contestants have convex

costs. It may thus come as a surprise that our optimal prize structures are independent of the

curvature of costs. The reason for this disparity is that their heterogenous players have private

effort costs which affect bidding behavior. Intuitively, a second prize in an asymmetric contest can

be desirable for the maximization of total efforts because a single first prize may undermine the

incentives of both weak contestants expecting not to win and of strong contestants believing to be

able to win with little effort. Szymanski and Valletti (2005) confirm this intuition in an asymmetric

Tullock contest.1 We show that, as such, multiple prizes are not optimal in symmetric Tullock

contests but multi-prize configurations may be attractive in order to dampen incentives to obtain

equilibrium existence when equilibria do not exit under the winner-take-all configuration.

2 Model and results

We consider a set N of n > 1 symmetric, risk neutral players engaging in a contest where any player

i ∈ N exerts effort ei ∈ [0,∞). There is a fixed prize pool P > 0 from which prizes P 1, P 2, . . . , P n,

P =
∑

l P
l, awarded to the contest winner, second etc. are taken. The contest satisfies limited

liability and the designer sets P l ≥ 0, l = 1, . . . , n in order to maximize the sum of efforts. Denote

the vector of all players’ efforts by ê = (e1, e2, . . . , en). Then the winning probability of player i

exerting effort ei with her opponents choosing ê−i is given by the Tullock success function as2

f 1
i (ê) =

er
i

∑

j∈N er
j

for r > 0.

We define f 1
i (0) = 1/n for completeness. The probabilities of winning the second, third prize etc.

f 2
i , f 3

i , . . . are given by the nested Tullock success function, i.e. by recursively applying the above

success function to the set of players without the winners of the previous stages. Hence player i

chooses her effort ei in order to maximize her utility

arg max
ei

n∑

l=1

(
f l

i (ei, ê−i)P
l
)
− c(ei) (1)

where we assume c(ei) to be monotonic. Assuming the existence of a symmetric equilibrium in pure

strategies, our first result shows that the winner-take-all structure induces the highest efforts for

1 A recent and comprehensive review of the tournaments literature including the Tullock contest is Konrad (2008).
It allows us to omit all but the most relevant references here.

2 Skaperdas (1996) argues that the Tullock form is less special than one might believe. In particular, he shows that
it is the only ratio-based function fulfilling a small set of intuitive desiderata.
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arbitrary costs.3 All proofs can be found in the appendix.

Proposition 1. Given equilibrium existence, the Tullock tournament which induces the highest sum

of equilibrium efforts from symmetric contestants assigns the whole prize pool to the winner.

In the second proposition we generalize Clark and Riis (1998b) in deriving an equilibrium existence

condition for the winner-take-all prize structure. From now on, we restrict attention to cost functions

of the form c(e) = aeb with a, b > 0 for expositional simplicity.4

Proposition 2. Existence of a symmetric pure strategy equilibrium under the winner-take-all prize

structure P 1 = P is ensured if and only if

r

b
≤

n

n − 1
. (2)

We now analyze the optimal symmetric pure strategy equilibrium in cases where the winner-

take-all prize structure P 1 = P causes excessive efforts destroying the equilibrium. We show that a

more evenly distributed prize structure dampens efforts and extends the range of parameters where

existence can be obtained.

Proposition 3. There is a monotonic prize structure for which a symmetric pure strategy equilibrium

inducing positive efforts exists, if and only if 5

r

b
≤

n − 1
∑n

k=2
1
k

. (3)

The above proposition identifies a prize structure which ensures equilibrium existence. The next

proposition shows that the following (similar) prize structure is also optimal: The highest possible

effort in any symmetric equilibrium is e∗ = c−1(P/n). Given that (3) is satisfied, the designer can

implement maximal equilibrium efforts e∗ by trying first P 1 = P , then P 1 = P 2 = P/2, then

P 1 = P 2 = P 3 = P/3 and so forth until the resulting efforts ẽ eventually sink below e∗. For the

first such uniform prize structure he then shifts some ε > 0 away from the last prize k and subdivides

it equally among the k−1 prior prizes until the efforts ẽ exactly equal e∗. The following proposition

formalizes this idea.

Proposition 4. For n ≥ 3, if (2) is violated but (3) holds, then there exists an integer 2 ≤ k < n

and a real number 0 ≤ ε < 1
k
P such that the prize structure

(
1

k
P +

1

k − 1
ε,

1

k
P +

1

k − 1
ε, . . . ,

1

k
P +

1

k − 1
ε

︸ ︷︷ ︸

k−1 times

,
1

k
P − ε, 0, . . . , 0) (4)

is optimal, i.e. induces efforts e∗ = c−1(P/n) =
(

1
a

P
n

) 1

b .

3 We concentrate attention on symmetric equilibria in pure strategies. Alternatives are discussed, among others,
by Baye, Kovenock, and de Vries (1994), Szymanski and Valletti (2005), and Cornes and Hartley (2005).

4 The analysis can be done for more general cost but then no explicit existence threshold values can be derived.
5 Since (2) and (3) coincide for n = 2, existence conditions cannot be improved in this well known case.
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3 Discussion

No symmetric equilibrium inducing positive efforts exists for monotonic prizes if (3) fails. If the

designer benefits from retaining part of the prize pool and an equilibrium exists, he can balance this

prize reduction with the lower extracted efforts without affecting existence. The following picture

illustrates the interplay of the above propositions. It shows the utility Ui(ei; e
∗) of a player unilaterally

Ui(ei; e
∗)

ei
ei = e∗

U(e∗; e∗) = P/n − c(e∗)

P n = P/n − ε

P n = 0
r
b

= n
n−1

(P−n = P/(n − 1), P n = 0)

(P 1 = P, P−1 = 0)

(P 1 = P, P−1 = 0)

(P/n, . . . , P/n)

n
n−1

< r
b

< n−1
∑

1/k

⇑

⇑

Figure 1: Unilateral deviations from symmetric equilibrium for different prize structures and values of r/b.

deviating from e∗. The blue downward sloping curve depicts the locus of possible symmetric equilibria

where utility is given by P/n − c(e∗). There are two things to note: First, softening incentives

through suboptimal multi-prize structures increases the players’ equilibrium utility and therefore

reduces equilibrium efforts (shifting from the green dashed utility levels to the red dotted utilities).

Second, we can reach the maximum effort equilibrium (on the abscissa) in two ways, either through
r
b

= n
n−1

under the winner-take-all prize structure P 1 = P (the solid blue utility level), or through
n

n−1
< r

b
< n−1

∑
n

k=2
1/k

under an optimal multi-prize structure, i.e. by moving from the dashed green

utility level (below the abscissa) up to the red dotted utility level. If r
b

< n
n−1

, the designer should

strive to reduce the contestant’s equilibrium utility through a more precise ranking, i.e. by increasing

r. If r
b

> n
n−1

, the agent’s utility in the symmetric equilibrium candidate for a single prize is below her

zero effort utility. The designer can then increase the agent’s equilibrium utility by either introducing

more noise into the success function (reducing r) or by dampening incentives through offering more

than one prize. This multiplicity of prizes is dictated, however, not by optimality as such but solely

by existence. Finally, the optimal prize structure (4), which enables the designer to collect maximal

efforts, consists of no more than three distinct prizes. The highest and lowest prizes, however, may

optimally be awarded to multiple players.
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Appendix: Proofs

Proof of proposition 1. Denote the probability of player i winning the lth prize among s agents by

f l
i (e1, e2, . . . , es). Denote also by (ê/{j1, j2, . . . , jl−1}) a vector of efforts of all players other than

{j1, j2, . . . , jl−1}. Then the probability of player i winning prize l ≥ 2 is given by

f l
i (·) =

∑

{j1,j2,...,jl−1}⊆N\{i}

Pr









i wins P l|

jl−1 wins P l−1,
...

j1 wins P 1









Pr







jl−1 wins P l−1|
...

j1 wins P 1







· · ·Pr
(
j1 wins P 1

)

=
∑

{j1,j2,...,jl−1}⊆N\{i}

f 1
i (ê/{j1, j2, . . . , jl−1}) f 1

jl−1
(ê/{j1, j2, . . . , jl−2}) · · · f

1
j1

(ê)

where the sums are taken over all ordered sets of l − 1 players different from i. Notice that f l
i (·)

only involves simple Tullock winning probabilities f 1
j (·). Since Player i maximizes (1), symmetric

equilibrium efforts ê = (e, e, . . . , e) satisfy the f.o.c.

c′(e) =

n∑

l=1

(
αl(ê)P

l
)
, αl(ê) =

∂

∂e
f l(ê) (5)

where we define αl(0) = 0. If the sequence α1, α2, . . . is decreasing in all efforts for a given prize

structure, then the symmetric players’ utility will be maximized by P 1 = P . Coefficients α1, α2, and

the general αl are calculated w.l.o.g. for player 1. The α∗
l are the symmetric equilibrium versions.

P 1: For the first prize
∂

∂e1

er
1

∑
er

P 1 =
err (n − 1) er−1

1

((n − 1) er + er
1)

2

︸ ︷︷ ︸

=α1

P 1 and for e1 = e, α∗
1 =

1

e

(n − 1) r

n2
.

P 2:
∂

∂e1

(
er
1

((n − 2) er + er
1)

(n − 1)er

((n − 1) er + er
1)

)

P 2 =
r (n − 1) erer−1

1 (e2r (n − 2) (n − 1) − e2r
1 )

((n − 2) er + er
1)

2 ((n − 1) er + er
1)

2

︸ ︷︷ ︸

=α2

P 2,

⇔
e1=e

α∗
2 =

1

e

(n2 − 3n + 1) r

(n − 1)n2
. (6)

P l: More generally, for prize l ≤ n, we get

∂

∂e1

(
er
1

((n − l) er + er
1)

(n − l + 1) er

((n − l + 1) er + er
1)

· · ·
(n − 1) er

((n − 1) er + er
1)

P l

)

=

∂

∂e1

(

er
1

((n − l) er + er
1)

l−1∏

x=1

(n − x) er

((n − x) er + er
1)

P l

)

=














r (n − l) erer−1
1

((n − l) er + er
1)

2

l−1∏

x=1

(n − x) er

((n − x) er + er
1)

−
l−1∑

x=1

er
1

((n − l) er + er
1)

r (n − x) erer−1
1

((n − x) er + er
1)

2

l−1∏

y=1,y 6=x

(n − y) er

((n − y) er + er
1)

︸ ︷︷ ︸

=αl














P l. (7)
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Using the identity
l−1∏

x=1

(n − x)

(n − x + 1)
=

(n − l + 1)

n
, we find the symmetric equilibrium expression as

α∗
l =

1

e

r

n

(

n − l

n − l + 1
−

n∑

k=n−l+2

1

k

)

(8)

which is decreasing in l because the derivative of the first term in parenthesis is negative and, for

constant n and r, the sum is increasing for l > 2. Notice, moreover, that the last coefficient αn

must be negative since, for l = n, the above equals −1
e

r
n

∑n
k=2

1
k
.6

Hence the derivatives of the prize coefficients α are decreasing and P 1 = P induces the contes-

tant’s highest equilibrium utilities. Since equilibrium efforts depend on the prize structure, however,

it may be the case that equilibrium efforts are higher for some other prize structure (not maximiz-

ing the players’ utilities). In order to show that this is not the case, we define effort independent

coefficients βl = eαl for l = 1, . . . , n and obtain the f.o.c.

c′(e)e =

n∑

l=1

βlP
l. (9)

Taking equilibrium existence as given, we assume that the s.o.c. holds locally at e∗, i.e.

−
1

e2

n∑

l=1

βlP
l − c′′(e) < 0. (10)

The solution e∗ is then defined implicitly by
1

e

n∑

l=1

βlP
l = c′(e) or

1

e
k − c′(e) = 0, where k is a

constant parameter. Therefore

de∗

dk
= −

∂
(

1
e
k − c′(e)

)

∂k
∂
(

1
e
k − c′(e)

)

∂e

= −
1
e

− 1
e2 k − c′′(e)

=
e

k + e2c′′(e)
(11)

and since we assume that the s.o.c. holds at e∗, we know that k + e2c′′(e) > 0 and e
k+e2c′′(e)

> 0.

Thus we conclude that if e∗ is a solution to player’s i maximization problem (i.e. both f.o.c. and

s.o.c. hold locally at e∗) then it is also true that e∗ is monotonically increasing in k and an increase

in
∑

βlP
l increases e∗.

Proof of proposition 2. We show that if all players other than player i ∈ N exert effort e∗, then

player i’s best response is e = e∗. Player i’s utility is then

U(e; e∗) =
er

er + (n − 1)(e∗)r
P − aeb where e∗ =

(
1

ab

(n − 1)r

n2
P

) 1

b

(12)

6 Thus assigning a positive prize to the contest loser reduces efforts. The same extends to all cases where (8) is
negative. Approximately, for large n, αl < 0 when ln(n)− ln(n− l+2) > n−l

n−l+1
or roughly l > 2e−n+en

e
≈ 0.63n

(e is the exponential constant in this footnote).
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while, by playing e∗, the player gets U(e∗; e∗) = 1
n
P − a (e∗)b = 1

n

(

1 − 1
b

(n−1)r
n

)

P . It is easy to

show that both the first and second order conditions hold at e∗ when (2) holds.7 Assume that a

critical point x exists where d
de

U(e; e∗)

∣
∣
∣
∣
e=x

= 0.

a) We first show that if 0 ≤ x < e∗, then U(x; e∗) < U(e∗; e∗). Derive

d

de
U(e; e∗) =

(n − 1)(e∗)rrer−1

(er + (n − 1)(e∗)r)2
P − abeb−1 (13)

which equals at a critical point x

abxb−1 =
(n − 1) (e∗)rrxr−1

(xr + (n − 1) (e∗)r)2 P. (14)

Plugging the critical xb from (14) into the player’s objective (12), we obtain

U(x; e∗) =
xr

xr + (n − 1) (e∗)r
P − axb =

xr (bxr + (n − 1) (e∗)r (b − r))

b (xr + (n − 1) (e∗)r)2 P. (15)

Now, U(x; e∗) < U(e∗; e∗) implies that

xr (bxr + (n − 1)(e∗)r(b − r))

b (xr + (n − 1)(e∗)r)2 P <
1

n

(

1 −
1

b

(n − 1) r

n

)

P (16)

which rearranges into

((e∗)r − xr) (n − 1) (xr (r + bn) + (e∗)r (n − 1) (bn − (n − 1) r)) > 0 (17)

which is true for 0 ≤ x < e∗ precisely if (2) holds.

b) For e > e∗, we proceed to show that U(e; e∗) − U(e∗; e∗) < 0 or

er

er + (n − 1) (e∗)r
P − aeb −

1

n

(

1 −
1

b

(n − 1) r

n

)

P < 0. (18)

Taking derivatives of U(e; e∗) − U(e∗; e∗) w.r.t. e gives

er(e∗)r(n − 1)Pr − abeb (er + (e∗)r(n − 1))2

e (er + (e∗)r(n − 1))2 (19)

7 Deriving U(e; e∗) with respect to e gives d

de
U(e; e∗) as

rer−1 (er + (n − 1) (e∗)r) − re2r−1

(er + (n − 1) (e∗)r)
2

P − abeb−1 =
(n − 1) (e∗)rrer−1

(er + (n − 1) (e∗)r)
2
P − abeb−1.

The second derivative gives d
2

de2 U(e; e∗)|e=e∗ as

r (e∗)
3r−2

(n − 1) ((r − 1) (n − 1) − (1 + r))

n3 (e∗)
3r

P − ab (b − 1) (e∗)
b−2

=
r (n − 1)

n3 (e∗)
2

P ((n − 2) r − nb)

and (n − 2) r − nb < 0 ⇔ r

b
< n

n−2
which holds because we require r

b
≤ n

n−1
< n

n−2
.
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which is negative—and hence there is no further critical point for e > e∗—if

r(n − 1)

abn2
P <

eb(er + (e∗)r(n − 1))2

n2er(e∗)r
. (20)

Since the l.h.s. equals (e∗)b this can be rearranged to n
√

(e∗)r+ber−b < er + (n − 1)(e∗)r. Define

h(e) = n
√

(e∗)r+ber−b and g(e) = er +(n−1)(e∗)r—both strictly increasing functions in e. Notice

that h and g intersect at e = e∗. Moreover,
d

de
(g(e) − h(e)) equals

rer−1 −
1

2
(r − b)n(e∗)

1

2
(r+b)e

1

2
(r−b)−1 > 0 ⇔

1

2r
(r − b)n <

( e

e∗

) 1

2
(b+r)

. (21)

Since for r ≤ n
n−1

b the l.h.s is smaller than 1, this is true for all e > e∗, thus g(e)−h(e) > 0 and (18)

holds for all e > e∗. As, given any prize structure, the symmetric equilibrium effort is unique, we also

have the “only if” part. More precisely, if a symmetric equilibrium exists then U(e∗; e∗) ≥ U(0; e∗)

only if
1

n

(

1 −
1

b

(n − 1) r

n

)

P ≥ 0 ⇔ r ≤
n

n − 1
b.

Proof of proposition 3. Assume a monotonic prize structure P 1 ≥ P 2 ≥ . . . ≥ P n ≥ 0,
∑

l P
l = P ,

for which a symmetric pure strategy equilibrium inducing positive efforts exists. We claim that if we

change prizes to
(

1
n−1

(P − P n) , . . . , 1
n−1

(P − P n) , P n
)
, then equilibrium efforts decrease, i.e.

1

n − 1
(P − P n)

n−1∑

l=1

βl + βnP n ≤
n∑

l=1

βlP
l. (22)

This is true as we ‘shift effort’ from the first few prizes—with high weights β—to lower prizes.

Formally, there exists an index s, 1 ≤ s < n− 1, such that P l ≥ 1
n−1

(P − P n) for any l = 1, . . . , s

and P l < 1
n−1

(P − P n) for l = s + 1, . . . , n − 1.8 Now,

1

n − 1
(P − P n)

n−1∑

l=1

βl + βnP n ≤
n∑

l=1

βlP
l ⇔

n−1∑

l=1

βl

(

P l −
1

n − 1
(P − P n)

)

≥ 0. (23)

Since
n−1∑

l=1

βl

(

P l −
1

n − 1
(P − P n)

)

equals

s∑

l=1

βl

(

P l −
1

n − 1
(P − P n)

)

−
n−1∑

l=s+1

βl

(
1

n − 1
(P − P n) − P l

)

(24)

and
s∑

l=1

βl

(

P l −
1

n − 1
(P − P n)

)

≥ βs

s∑

l=1

(

P l −
1

n − 1
(P − P n)

)

while

n−1∑

l=s+1

βl

(
1

n − 1
(P − P n) − P l

)

≤ βs

n−1∑

l=s+1

(
1

n − 1
(P − P n) − P l

)

,

(25)

8 If s = n − 1, then this was already the original prize structure and we are done.
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we know that

s∑

l=1

(

P l −
1

n − 1
(P − P n)

)

−
n−1∑

l=s+1

(
1

n − 1
(P − P n) − P l

)

= 0 (26)

and thus finally obtain that
∑n−1

l=1 βl

(
P l − 1

n−1
(P − P n)

)
≥ 0. Since for the original prize structure

U(e∗; e∗) = P
n
− c(e∗) ≥ P n = U(0; e∗), we have the same inequality for the new prize structure

(recall that c(e) is monotonically increasing). For this new prize structure—using the facts that
∑

βl = 09 and P n ≤ 1
n
P—we have

P

n
− c(e∗) ≥ P n ⇒

P

n
−

1

b

(

(P − P n)

n − 1

n−1∑

l=1

βl + βnP n

)

≥ P n

⇒
1

n

(

1 −
1

b

n

n − 1
(−βn)

)

P −
1

b

n

n − 1
βnP n ≥ P n

⇒
1

n

(

1 +
1

b

n

n − 1
βn

)

P ≥ P n

(

1 +
1

b

n

n − 1
βn

)

⇒

(

1 +
1

b

n

n − 1
βn

)

≥ 0

⇒
r

b
≤

n − 1
∑n

k=2
1
k

.

Assume now that (3) holds. We show that we can find a prize structure ‘close’ to ( 1
n
P, . . . , 1

n
P )

for which a symmetric pure strategy equilibrium inducing positive efforts exists. Recall that a given

prize structure induces a unique symmetric equilibrium effort that solves (9), i.e.

c′(e)e =
n∑

l=1

βlP
l ⇔ e∗ =

(

1

ab

n∑

l=1

βlP
l

)1

b

⇔ c (e∗) =
1

b

n∑

l=1

βlP
l (27)

where the coefficients βl are functions of n and r (independent of e and P ). Choose a small positive

ε ≤ 1
n
P and consider the prize structure ( 1

n
P + 1

n−1
ε, . . . , 1

n
P + 1

n−1
ε, 1

n
P − ε). If a symmetric pure

strategy equilibrium exists under this prize structure, then it induces a positive effort of

e∗ =

(

1

ab

(
n−1∑

l=1

βl

(
1

n
P +

1

n − 1
ε

)

+ βn

(
1

n
P − ε

)))
1

b

. (28)

Since (3) holds, we indeed get that by exerting an effort of e∗ the player achieves a higher utility

than what she can achieve by exerting zero effort (while all other players exert e∗ > 0), i.e.

U(e∗; e∗) =
P

n
− c(e∗) ≥

1

n
P − ε = U(0; e∗). (29)

This can be shown by expressing c (e∗) = 1
b

(∑n−1
l=1 βl

(
1
n
P + 1

n−1
ε
)

+ βn

(
1
n
P − ε

))
and again

employing that
∑

βl = 0. Then (29) is equivalent to 1
b

(
1

n−1
(−βn) − βn

)
≤ 1 which, by substituting

9 Since

n∑

l=1

βl =
(n − 1) r

n2
+

n∑

l=2

r

n

(

n − l

n − l + 1
−

n∑

k=n−l+2

1

k

)

=
r

n

(

n − 1

n
+

n−1∑

k=1

k − 1

k
−

n∑

k=2

k − 1

k

)

= 0.
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βn = − r
n

∑n
k=2

1
k

gives r
b

1
n−1

∑n
k=2

1
k
≤ 1 which is true since (3) holds.

To ensure a global maximum we need to show that for every e /∈ {0, e∗}, U(e; e∗) < U(e∗; e∗) where

U(e∗; e∗) =
P

n
−c(e∗) =

P

n
−

1

b

(
n−1∑

l=1

βl

(
1

n
P +

1

n − 1
ε

)

+ βn

(
1

n
P − ε

))

=
P

n
−

r

b

1

n − 1

n∑

k=2

1

k
ε.

a) We wish to show that for e > e∗, d
de

U(e; e∗) < 0 implies

dU(e; e∗)

de
=

(
n

n − 1
ε

)
(n − 1)!rer−1 (e∗)r(n−1)

∏n−1
j=1 (er + (n − j) (e∗)r)

(
n−1∑

l=1

1

(er + (n − l) (e∗)r)

)

−abeb−1 < 0. (30)

By rearranging and multiplying by
∑n

k=2
1
k

we get

rε

ab (n − 1)

n∑

k=2

1

k
<

eb−r
∏n−1

j=1 (er + (n − j) (e∗)r)
∑n

k=2
1
k

n! (e∗)r(n−1)
(
∑n−1

l=1
1

(er+(n−l)(e∗)r)

) (31)

and using the fact that (e∗)b =
rε

ab(n − 1)

n∑

k=2

1

k
we obtain

(e∗)b+r(n−1) <
eb−r

∏n−1
j=1 (er + (n − j) (e∗)r)

∑n
k=2

1
k

n!
(
∑n−1

l=1
1

(er+(n−l)(e∗)r)

) . (32)

Now, for e > e∗

eb−r
∏n−1

j=1 (er + (n − j) (e∗)r)
∑n

k=2
1
k

n!
(
∑n−1

l=1
1

(er+(n−l)(e∗)r)

) > eb−r (e∗)rn (33)

and

(e∗)b+r(n−1) < eb−r(e∗)rn ⇔

(
e∗

e

)b−r

< 1 (34)

which is indeed true for e > e∗. b) For e < e∗, showing that
d

de
U(e; e∗) > 0 involves exactly the

same steps (30)–(34) as under a) for the reversed inequality.

Proof of proposition 4. We define k as the smallest integer such that the prize structure (4) induces

a symmetric equilibrium effort (27) which is smaller or equal to the optimal effort c−1
(

P
n

)
. Thus

k is the smallest integer such that 1
k

∑k
l=1 βl ≤

b
n
. We know that such an integer exists since the

l.h.s. is decreasing in k (for k < n)

1

k

k∑

l=1

βl ≥
1

k + 1

k+1∑

l=1

βl ⇔
1

k

k∑

l=1

βl ≥ βk+1 (35)

and since βl is decreasing with l we have 1
k

∑

l βl > 1
k

∑

l βk = βk > βk+1 and we establish (35).

Moreover, for k = 1 we have β1 = (n−1)r
n2 > b

n
since (2) is violated, and since (3) holds, we know

that, for k = n − 1, it is true that 1
k

∑k
l=1 βl ≤

b
n
. We thus need to show that given k we can find

10



an 0 ≤ ε < 1
k
P such that the prize structure (4) induces the optimal effort i.e.

e∗(k) =

(

1

ab

(
k−1∑

l=1

βl

(
P

k
+

1

k − 1
ε

)

+ βk

(
1

k
P − ε

)))
1

b

=

(
1

a

P

n

) 1

b

. (36)

We find ε by ensuring that the utility of the players is minimized and equal to zero, i.e.

(k − 1)
1

n

(
P

k
+

1

k − 1
ε

)

+
1

n

(
P

k
− ε

)

−
1

b

(
k−1∑

l=1

βl

(
P

k
+

1

k − 1
ε

)

+ βk

(
1

k
P − ε

))

= 0

1

b

(

1

k − 1

k−1∑

l=1

βl − βk

)

ε =

(

1

n
−

1

bk

k∑

l=1

βl

)

P.

We also know that 1
k−1

∑k−1
l=1 βl > b

n
and that 1

k

∑k
l=1 βl = 1

k

∑k−1
l=1 βl + 1

k
βk ≤ b

n
. Thus

(

1

k − 1

k−1∑

l=1

βl − βk

)

≥ k

(

1

k − 1

k−1∑

l=1

βl −
b

n

)

> 0. (37)

Therefore we have

ε =

(
b
n
− 1

k

∑k
l=1 βl

)

(
1

k−1

∑k−1
l=1 βl − βk

)P > 0. (38)

Finally we need to show that ε < 1
k
P implying that

b

n
−

1

k

k∑

l=1

βl <
1

k

(

1

k − 1

k−1∑

l=1

βl − βk

)

⇔
b

n
<

1

k − 1

k−1∑

l=1

βl (39)

which follows from the definition of k. Using this in (36), we obtain efforts e∗(k) as




1

ab





k−1∑

l=1

βl




1

k
+

1

k − 1

(
b
n
− 1

k

∑k
l=1 βl

)

(
1

k−1

∑k−1
l=1 βl − βk

)



+ βk




1

k
−

(
b
n
− 1

k

∑k
l=1 βl

)

(
1

k−1

∑k−1
l=1 βl − βk

)







P





1

b

=

(

1

ab

b

n

(
1

k−1

∑k−1
l=1 βl − βk

1
k−1

∑k−1
l=1 βl − βk

)

P

) 1

b

=

(
1

a

P

n

) 1

b

.
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