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Abstract

We study a game of strategic experimentation with two-armed bandits where

the risky arm distributes lump-sum payoffs according to a Poisson process. Its

intensity is either high or low, and unknown to the players. We consider Markov

perfect equilibria with beliefs as the state variable. As the belief process is piece-

wise deterministic, payoff functions solve differential-difference equations. There

is no equilibrium where all players use cut-off strategies, and all equilibria exhibit

an ‘encouragement effect’ relative to the single-agent optimum. We construct

asymmetric equilibria in which players have symmetric continuation values at

sufficiently optimistic beliefs yet take turns playing the risky arm before all ex-

perimentation stops. Owing to the encouragement effect, these equilibria Pareto

dominate the unique symmetric one for sufficiently frequent turns. Rewarding

the last experimenter with a higher continuation value increases the range of

beliefs where players experiment, but may reduce average payoffs at more opti-

mistic beliefs. Some equilibria exhibit an ‘anticipation effect’: as beliefs become

more pessimistic, the continuation value of a single experimenter increases over

some range because a lower belief means a shorter wait until another player takes

over.
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1 Introduction

When firms cooperate in a research joint venture, each faces a dynamic problem in

which it can perform repeated costly experiments (that is, spend time, effort and

money on the purported innovation) but also learn from the experimental observations

of the others. Such a game of strategic experimentation arises in a variety of eco-

nomic contexts; besides firms’ research and development activities, consumer search

or experimental consumption of a new product are prominent examples. Academic

researchers pursuing a common research agenda or simply working on a joint paper are

also effectively engaged in strategic experimentation.

In this paper we analyze a game of strategic experimentation where a finite number

of players face identical two-armed bandit problems. There is a safe arm that offers a

known and constant flow payoff and a risky arm whose lump-sum payoffs are driven

by a Poisson process of unknown intensity. The risky arm can be either ‘good’ or

‘bad’: if it is good, the lump-sums arrive more frequently than if it is bad. While all

risky arms are of the same type (all good, or all bad), lump-sums arrive independently

across players. Each player is endowed with a stream of one unit of a perfectly divisible

resource and, at each point in time, must decide how to split this resource between the

two arms. Players’ actions and outcomes are publicly observed, so there are perfect

informational spillovers between players.

With Poisson bandits, news arrives in a ‘lumpy’ fashion. For concreteness, we

focus on a situation where this news is good. Examples would be the occasional

‘breakthrough’ in research and development, a completed research paper in a longer-

term research agenda, or one of a sequence of crucial proofs in a paper. Beliefs jump

to a more optimistic level whenever a ‘news event’ or ‘success’ occurs, whereas they

gradually become more pessimistic in between such events.

A single success on the risky arm does not fully reveal its type. This stands in

marked contrast to the experimentation model of Keller, Rady and Cripps (2005).

There, a good risky arm also generates lump-sum payoffs according to some Poisson

process, but a bad risky arm never generates any payoffs, so the belief jumps all the

way to certainty as soon as the first lump-sum arrives, irrespective of the belief held

immediately before. In the present model, there is never certainty about the state of

the risky arm, and the belief held immediately after a success varies with the belief

held immediately before. As a consequence, when the players in our model use Markov

strategies with the posterior belief as the state variable, their payoff functions solve

first-order differential-difference equations. Despite this technical complication, these

equations can be analyzed by elementary methods and admit closed-form solutions.
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While all Markov perfect equilibria of the experimentation game are inefficient

because of free-riding, we show that they always exhibit an ‘encouragement effect’: the

presence of other players encourages at least one of them to continue experimenting

with the risky arm at beliefs where a single agent would already have given up. This

effect was first described by Bolton and Harris (1999) in a model where the risky arm

yields a flow payoff with Brownian noise. Focusing on the symmetric MPE of their

model, however, they obtain the encouragement effect for this particular equilibrium

only. In contrast, we are able to establish this effect for all MPE of the Poisson model.

The unique symmetric MPE of the Poisson model shares the main features with its

counterpart in the Bolton-Harris model. All players use the risky arm exclusively when

they are sufficiently optimistic, the safe arm when they are sufficiently pessimistic,

and both arms simultaneously at intermediate beliefs. Further, the acquisition of

information is slowed down so severely near the lower bound of the intermediate range

that the players’ beliefs cannot reach this bound in finite time.

This strongly suggests that asymmetric equilibria where a last experimenter keeps

the rate of information acquisition bounded away from zero at pessimistic beliefs ought

to be more efficient than the symmetric one. Bolton and Harris (2000), who study

the undiscounted limit of the Brownian model, and Keller, Rady and Cripps (2005)

confirm this by constructing a variety of asymmetric MPE that dominate the symmetric

one in terms of aggregate payoffs. However, they do so in environments without the

encouragement effect. In fact, the existence and structure of asymmetric equilibria

with an encouragement effect has remained an open question in the literature so far.

The present paper fills this gap.

We show first that there is no MPE in which all players use cut-off strategies, i.e.

use the risky arm exclusively when the probability they assign to the risky arm being

good is above some cut-off, and the safe arm when it is below. In fact, the player who

is supposed to use the least optimistic cut-off in a purported MPE in cut-off strategies

always has an incentive to deviate to the safe action at the second least optimistic

cut-off, where one of the other players is supposed to switch action.

We then construct, for an arbitrary number of players, asymmetric Markov perfect

equilibria that generate a higher aggregate payoff than the symmetric MPE. They do

so by combining behavior as in the symmetric equilibrium (at optimistic beliefs) with

other behavior (at more pessimistic beliefs) where players take turns, one at a time,

to play the risky arm exclusively while all others free-ride. As in Keller, Rady and

Cripps (2005), the gain in aggregate payoffs stems from the fact that, owing to this

alternation, the intensity of experimentation is bounded away from zero immediately
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above the belief where all experimentation stops. Because of the encouragement effect,

this alternation can actually be performed in a way that leads to a Pareto improve-

ment over the symmetric equilibrium. With sufficiently frequent switching between the

roles of experimenter and free-rider, every player’s payoff function closely approaches

the average payoff function, making even the last experimenter better off than in the

symmetric MPE.

While these equilibria require players to use interior allocations of their resource over

some intermediate range of beliefs, we also construct what we call ‘simple’ equilibria,

that is, MPE where at each belief, each player allocates his entire resource to one

or other of the two arms. We do so for two players and under the assumption that

the frequency of lump-sums on a bad risky arm is sufficiently low, which implies that

after the arrival of a lump-sum payoff, all players revert to exclusive use of their risky

arms. This allows us in particular to study the robustness of the simple equilibria in

Keller, Rady and Cripps (2005) to the introduction of breakthroughs that are not fully

revealing.

In a last step, we give examples of equilibria where the two players have asymmetric

continuation values after a success on a risky arm; all MPE constructed up to that

point actually have symmetric post-success continuation values. Introducing these

asymmetries allows us to reward the last experimenter. We find that this raises the

average payoff at relatively pessimistic beliefs, but lowers them at optimistic beliefs.

The local increase in average payoffs is once more a consequence of the encouragement

effect; in Keller, Rady and Cripps (2005), where the encouragement effect is not present,

making the players’ equilibrium payoffs less symmetric at optimistic beliefs uniformly

lowers the average payoff.

We also find a new ‘anticipation effect’ in the alternation phase of the examples

we calculate: for some parameter values, the value function of a lone experimenter is

decreasing in the current belief over some range. The intuition for this effect is that,

conditional on no impending success on his own risky arm, the player will soon be able

to enjoy a free-ride, and the lower the current belief, the sooner this time will come.

The Poisson model is a natural analog in continuous time of the two-outcome bandit

model in Rothschild (1974), the first paper to use the bandit framework in economics;

see Bergemann and Välimäki (2008) for a survey of the ensuing literature. Through its

focus on bandit learning as a canonical model of strategic experimentation in teams,

our paper is most closely related to Bolton and Harris (1999, 2000) and Keller, Rady

and Cripps (2005), sharing with them the assumption that the players face risky arms

of a common type. Klein and Rady (2008) and Klein (2009), by contrast, consider two
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players who face risky arms of opposite types, one good and one bad, with uncertainty

about who has the good arm. Strulovici (2008) studies majority voting in a collective

decision problem where the type of the risky arm also varies across individuals.

Our paper is further related to a strand of the industrial organization literature

that studies R&D investment games under learning. Malueg and Tsutsui (1997) in-

vestigate a model of a patent race with learning where the arrival time of an inno-

vation is exponentially distributed given the stock of knowledge, implying the same

deterministic belief revision prior to the innovation as our model exhibits in between

lump-sums. Building on the exponential bandit framework of Keller, Rady and Cripps

(2005), Besanko and Wu (2008) study the effects of post-innovation market structure

on cooperative and competitive R&D investments, respectively. Décamps and Mari-

otti (2004), Hopenhayn and Squintani (2008) and Moscarini and Squintani (2007) all

analyze models where news arrives in the form of the increments of a (compound)

Poisson process; as they consider stopping games with private information, however,

the resulting strategic interactions are very different from that in our model.

The remainder of the paper is organized as follows. Section 2 sets up the Pois-

son bandit model. Section 3 establishes the efficient benchmark. Section 4 introduces

the strategic problem and establishes the encouragement effect. Section 5 presents

the unique symmetric MPE. Section 6 proves the impossibility of cut-off equilibria

and constructs asymmetric equilibria. Section 7 studies simple equilibria for two play-

ers. Section 8 contains concluding remarks. Some of the proofs are relegated to the

Appendix.

2 Poisson Bandits

The set-up of the model is similar to that of Keller, Rady and Cripps (2005), the

principal difference being that here a bad risky arm yields positive payoffs (as opposed

to zero), which means that a success does not reveal the risky arm to be good. For

mathematical details on Poisson bandits, see Presman (1990) or Presman and Sonin

(1990); for the optimal control of piecewise deterministic processes more broadly, see

Davis (1993).

Time t ∈ [0,∞) is continuous, and the discount rate is r > 0. There are N ≥ 1

players, each of them endowed with one unit of a perfectly divisible resource per unit

of time, and each facing a two-armed bandit problem. Lump-sums rewards on the

risky arm R are independent draws from a time-invariant distribution on IR++ with a

known mean h. If a player allocates the fraction kt ∈ [0, 1] of her resource to R over
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an interval of time [t, t + dt[ , and consequently the fraction 1 − kt to the safe arm S,

then she receives the expected payoff (1 − kt)s dt from S, where s > 0 is a constant

known to all players. The probability that she receives a lump-sum payoff from R at

some point in the interval is ktλθ dt, where θ = 1 if R is good, θ = 0 if R is bad, and

λ1 > λ0 > 0 are constants known to all players. Therefore, the overall expected payoff

increment conditional on θ is [(1− kt)s + ktλθh] dt. We assume that λ0h < s < λ1h, so

each player prefers R to S if R is good, and prefers S to R if R is bad.

However, players do not know whether the risky arm is good or bad; they start with

a common prior belief about θ. Thereafter, all players observe each other’s actions and

outcomes, so they hold common posterior beliefs throughout time. With pt denoting

the subjective probability at time t that players assign to the risky arm being good,

a player’s expected payoff increment conditional on all available information is [(1 −

kt)s + ktλ(pt)h] dt with

λ(p) = pλ1 + (1 − p)λ0.

Given a player’s actions {kt}t≥0 such that kt is measurable with respect to the informa-

tion available at time t, her total expected discounted payoff, expressed in per-period

units, is

E
[∫ ∞

0
r e−r t [(1 − kt)s + ktλ(pt)h] dt

]

,

where the expectation is over the stochastic processes {kt} and {pt}. We note that a

player’s payoff depends on others’ actions only through their effect on the evolution of

beliefs, which constitute a natural state variable.

To derive the law of motion of beliefs, suppose that over the interval of time [t, t+∆t[

player n allocates the constant fraction kn,t of her resource to her risky arm. The sum

Kt =
∑N

n=1 kn,t measures how much of the overall resource is allocated to risky arms;

we will call this number the intensity of experimentation. Conditional on the type of

the risky arm, the arrival of lump-sums is independent across players. If the risky arms

are good, the probability of none of the players receiving a lump-sum payoff is e−Ktλ1∆t,

and if they are bad, this probability is e−Ktλ0∆t. Therefore, given no lump-sum payoff

arriving in [t, t + ∆t[, the belief at the end of that time period is

pt+∆t =
pt e

−Ktλ1∆t

(1 − pt) e−Ktλ0∆t + pt e−Ktλ1∆t

by Bayes’ rule. As long as no lump-sum arrives, the belief thus evolves smoothly with

infinitesimal increment dpt = −Kt∆λ pt(1 − pt) dt where ∆λ = λ1 − λ0. However, if

any of the players receives a lump-sum at time t, the belief jumps up from pt− (the
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limit of beliefs held before the arrival of the lump-sum) to

pt = lim
∆t↓0

pt− [1 − e−Ktλ1∆t]

(1 − pt−) [1 − e−Ktλ0∆t] + pt− [1 − e−Ktλ1∆t]
=

λ1pt−

λ(pt−)
,

which is independent of the intensity of experimentation. We write

j(p) =
λ1p

λ(p)

for the function that describes beliefs after a success on a risky arm.

We restrict players to Markovian strategies kn : [0, 1] → [0, 1] with the left limit

belief pt− as the state variable, so that the action player n takes at time t is kn(pt−).1

We impose the following restrictions on these strategies: (i) kn is left-continuous; (ii)

there is a finite partition of [0, 1] into intervals of positive length on each of which

kn is Lipschitz-continuous. By standard results, each profile (k1, k2, . . . , kN) of such

strategies induces a well-defined law of motion for players’ common beliefs and well-

defined payoff functions. A simple strategy is one that takes values in {0, 1} only,

meaning that the player uses one arm exclusively at any given point in time. Finally, a

strategy kn is a cut-off strategy if there is a belief p̂ such that kn(p) = 1 for all p > p̂,

and kn(p) = 0 otherwise.

As a benchmark, a myopic agent would simply weigh the short-run payoff from

playing the safe arm, s, against what he expects from playing the risky arm, λ(p)h. So

he would use the cut-off belief

pm =
s − λ0h

∆λh
,

playing R for p > pm, and S for p ≤ pm.

3 Joint Maximization of Average Payoffs

Consider N players jointly maximizing their average expected payoff. By the same

arguments as in Keller, Rady and Cripps (2005), the value function for the cooperative,

expressed as average payoff per agent, satisfies the Bellman equation

u(p) = s + max
K∈[0,N ]

K {b(p, u) − c(p)/N} ,

1By definition, p0− = p0. Note that pt− = pt at almost all t. Working with pt− instead of pt

merely enforces the informational restriction that the action taken at time t cannot be conditioned on

the arrival of a lump-sum at that time.
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where K is the intensity of experimentation,

c(p) = s − λ(p)h

is the opportunity cost of playing R, and

b(p, u) = [λ(p) (u(j(p)) − u(p)) − ∆λ p(1 − p)u′(p)]/r

is the expected benefit of playing R. The latter has two parts: a discrete improvement

in the overall payoff after a success, and a marginal decrease otherwise.2

If the shared opportunity cost of playing R exceeds the full expected benefit, the

optimal choice is K = 0 (all agents use S exclusively), and u(p) = s. Otherwise,

K = N is optimal (all agents use R exclusively), and u satisfies the first-order ordinary

differential-difference equation (henceforth ODDE)

∆λ p(1 − p)u′(p) − λ(p)[u(j(p)) − u(p)] + r
N

u(p) = r
N

λ(p)h. (1)

A particular solution to this equation is u(p) = λ(p)h, the expected per capita payoff

from all agents using the risky arm forever.

The option value of being able to change to the safe arm is then captured by the

solution to the homogeneous equation, for which we try u0(p) = (1− p)Ω(p)µ for some

µ > 0 to be determined, where

Ω(p) =
1 − p

p

is the odds ratio.3 Now,

u′
0(p) = −

µ + p

p(1 − p)
u0(p) and u0(j(p)) =

λ0

λ(p)

(

λ0

λ1

)µ

u0(p).

Inserting these into the homogeneous equation and simplifying leads to the requirement

2Infinitesimal changes of the belief are always downward, so it is in fact the left-hand derivative of

the value function that matters here. This observation will turn out to be of relevance in asymmetric

equilibria of the strategic experimentation game.
3This guess can be obtained by ‘extrapolation’ from the limiting case λ0 = 0 studied in Keller,

Rady and Cripps (2005). In this case, j(p) = 1 and u(j(p)) = λ1h, so (1) becomes a linear differential

equation; the above function u0 is easily seen to solve the corresponding homogeneous equation for

µ = r/(Nλ1). A more systematic approach relies on a change of the independent variable from p to

lnΩ(p). This transforms (1) into a linear ODDE with constant delay to which results from Bellman

and Cooke (1963) can be applied.
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that
r

N
+ λ0 − µ∆λ = λ0

(

λ0

λ1

)µ

. (2)

As a function of µ, the left-hand side of (2) is a negatively sloped straight line which

cuts the vertical axis at r
N

+λ0. The right-hand side is a decreasing exponential function

which tends to 0 as µ → +∞, tends to ∞ as µ → −∞, and cuts the vertical axis at

λ0. Thus the above equation in µ has two solutions, one positive and one negative; we

write µN for the positive solution, which obviously lies between r
N∆λ

(the value of µ

where the left-hand side of (2) equals λ0) and r
N∆λ

+ λ0

∆λ
(the value of µ where it equals

0). As the left-hand side of (2) rises with r
N

, we also see that µN is increasing in the

discount rate and decreasing in the number of agents.

The solution to the ODDE for K = N is thus

VN(p) = λ(p)h + C (1 − p) Ω(p)µN , (3)

where C is a constant of integration.4

Proposition 1 (Cooperative solution) In the N-agent cooperative problem, there

is a cut-off belief p∗N < pm given by

p∗N =
µN(s − λ0h)

(µN + 1)(λ1h − s) + µN(s − λ0h)
(4)

such that below the cut-off it is optimal for all to play S exclusively and above it is

optimal for all to play R exclusively. The value function V ∗
N for the N-agent cooperative

is given by

V ∗
N(p) = λ(p)h + c(p∗N)

(

1 − p

1 − p∗N

) (

Ω(p)

Ω(p∗N)

)µN

(5)

when p > p∗N , and V ∗
N(p) = s otherwise.

Proof: The expression for p∗N and the constant of integration in (5) are obtained by

imposing V ∗
N(p∗N) = s (value matching) and (V ∗

N)′(p∗N) = 0 (smooth pasting). Then,

b(p, V ∗
N) falls short of c(p)/N to the left of p∗N , coincides with it at p∗N , and exceeds

it to the right of p∗N . So V ∗
N solves the Bellman equation, with the maximum being

achieved at the intensity of experimentation stated in the proposition.

4The planner’s solution in Bolton and Harris (1999) has the same structure. Only the expression

for the expected current payoff from a risky arm and the exponent of the odds ratio differ across

set-ups. Cohen and Solan (2008) show that this continues to be true when the risky arm generates

payoffs according to a Lévy process (that is, a continuous-time process with stationary independent

increments) with a binary prior on its characteristics.
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The above proposition determines the efficient strategies. As in Bolton and Harris

(1999) and Keller, Rady and Cripps (2005), it is efficient to use a common cut-off

strategy; the cut-off increases in s and µN (and hence in r
N

). The efficient intensity of

experimentation exhibits a bang-bang feature, being maximal when the current belief

is above p∗N , and minimal when it is below.

4 The Strategic Problem

From now on, we assume that there are N ≥ 2 players acting non-cooperatively. Our

solution concept is Markov perfect equilibrium with the common belief as the state

variable.

With K¬n(p) =
∑

ℓ6=n kℓ(p), and b(p, un) and c(p) as defined in Section 3 above,

player n’s payoff function un is continuous, piecewise differentiable, and satisfies

un(p) = s + K¬n(p) b(p, un) + kn(p) {b(p, un) − c(p)}

on [0, 1], with the second term on the right-hand side measuring the benefit of the

information generated by the other players.

A strategy k∗
n for player n is a best response against his opponents’ strategies if and

only if the resulting payoff function un solves the Bellman equation

un(p) = s + K¬n(p) b(p, un) + max
kn∈[0,1]

kn {b(p, un) − c(p)}

on [0, 1], and k∗
n(p) achieves the maximum on the right-hand side at each belief p.

It is straightforward to show that if player n plays a best response, his benefit of

experimentation b(p, un) is non-negative at all beliefs, and his payoff function un is

non-decreasing in the other players’ experimentation schedule, K¬n. Standard results

further imply that a best-response payoff function un is once continuously differentiable

at any point of continuity of K¬n.

At the boundaries of the unit interval, the obvious optimal actions are k∗
n(0) = 0 and

k∗
n(1) = 1, which implies un(0) = s and un(1) = λ1h for the player’s payoff function.

More generally, player n’s best response is obtained by comparing the opportunity cost

of playing R with the expected private benefit. If c(p) > b(p, un), then k∗
n(p) = 0,

and the Bellman equation implies un(p) = s + K¬n(p) b(p, un) < s + K¬n(p) c(p). If

c(p) = b(p, un), then k∗
n(p) is arbitrary in [0, 1], and un(p) = s + K¬n(p) c(p). Finally,

if c(p) < b(p, un), then k∗
n(p) = 1, and un(p) = s + (K¬n(p) + 1) b(p, un) − c(p) >
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s + K¬n(p) c(p). Thus, exactly as in Keller, Rady and Cripps (2005), player n’s best

response to a given intensity of experimentation K¬n depends on whether in the (p, u)-

plane, the point (p, un(p)) lies below, on, or above the line

DK¬n = {(p, u) ∈ [0, 1] × IR+ : u = s + K¬n c(p)}.

For K¬n > 0 this is a downward sloping diagonal that cuts the safe payoff line u = s

at the myopic cut-off pm; for K¬n = 0, it coincides with the safe payoff line.

The following two observations also carry over verbatim from Keller, Rady and

Cripps (2005). First, no profile of Markov strategies can generate an average payoff that

exceeds V ∗
N , and the payoff of a player using a best response to her opponents’ strategies

cannot fall below V ∗
1 . The upper bound follows immediately from the fact that the

cooperative solution maximizes the average payoff. The intuition for the lower bound

is that an agent can only benefit from the information generated by others. Second, all

Markov perfect equilibria are inefficient. Along the efficient experimentation path, the

benefit of an additional experiment tends to 1/N of its opportunity cost as p approaches

p∗N . A self-interested player compares the benefit of an additional experiment with the

full opportunity cost and so has an incentive to deviate from the efficient path by using

S instead of R.

It is obvious that in any Markov perfect equilibrium, at least one player must be

using the risky arm at any belief above the single-agent optimum p∗1. The interesting

question is whether experimentation continues below p∗1, i.e. whether there is an en-

couragement effect. This effect rests on two conditions: the experimentation by any

‘pioneer’ contemplating the use of the risky arm below p∗1 must increase the likelihood

that other players will return to the risky arm in the future, and these future actions

must be valuable to the pioneer. In Keller, Rady and Cripps (2005), the encourage-

ment effect is absent since the first success on the risky arm is fully revealing and so

the second condition fails.

Bolton and Harris (1999) show that the encouragement effect is present in the

symmetric Markov perfect equilibrium of their model. The next result shows that all

MPE of our model exhibit the encouragement effect.

Proposition 2 (Encouragement effect) In any Markov perfect equilibrium, at least

one player experiments at some beliefs below p∗1.

Proof: Suppose to the contrary that all players play S at all beliefs p ≤ p∗1.

Then each player’s payoff function satisfies un(p∗1) = s with the left-hand derivative
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u′
n(p∗1−) = 0. For S to be optimal we must have b(p∗1, un) ≤ c(p∗1) = b(p∗1, V

∗
1 ), and

hence un(j(p∗1)) ≤ V ∗
1 (j(p∗1)), which must in fact hold as an equality. Thus, the dif-

ference un − V ∗
1 assumes its minimum (of 0) at j(p∗1), which implies u′

n(j(p∗1)−) ≤

(V ∗
1 )′(j(p∗1)−). As un(j2(p∗1)) ≥ V ∗

1 (j2(p∗1)), this implies b(j(p∗1), un) ≥ b(j(p∗1), V
∗
1 )

and hence b(j(p∗1), un) > c(j(p∗1)). So all players must use R at the belief j(p∗1). By

the ODDE for V ∗
1 and the explicit solution in Proposition 1, we have b(j(p∗1), V

∗
1 ) =

V ∗
1 (j(p∗1))− s + c(j(p∗1)) = V ∗

1 (j(p∗1))− λ(j(p∗1))h > 0. Each player’s Bellman equation

now yields

un(j(p∗1)) = s + N b(j(p∗1), un) − c(j(p∗1))

≥ s + N b(j(p∗1), V
∗
1 ) − c(j(p∗1))

> s + b(j(p∗1), V
∗
1 ) − c(j(p∗1))

= V ∗
1 (j(p∗1)),

which contradicts the equality un(j(p∗1)) = V ∗
1 (j(p∗1)) derived earlier.

The idea behind the proof is that the only way that all experimentation could stop

at p∗1 is for the ‘jump-benefit’ to be the same for each of the N players as for a lone

agent, given the same opportunity cost and the same ‘slide-disbenefit’; but this would

imply that un and V ∗
1 matched in value not only at p∗1 but also at j(p∗1). This is not

possible, since at j(p∗1) the benefit of a further jump up is no less and the disbenefit

of a slide down is no worse for player n than for a lone agent, and if a lone agent has

an incentive to experiment then so do each of the N players, the positive externality

resulting in a higher value at j(p∗1).

We now turn to a detailed investigation of Markov perfect equilibria.

5 Symmetric Equilibrium

A symmetric Markov perfect equilibrium admits three possible cases at any given belief.

First, when all players play S exclusively, the common payoff is u(p) = s. Second, when

all players play R exclusively, the common payoff function u satisfies (1), hence is of

the form VN given in (3). Third, when all players divide the resource between S and

R, the indifference condition b(p, u) = c(p) implies that the common payoff function

solves the ODDE

∆λ p(1 − p)u′(p) − λ(p)[u(j(p)) − u(p)] = rλ(p)h − rs. (6)

11



In the (p, u)-plane, the region where all players use the risky arm exclusively and

the region where they use both arms simultaneously are separated by the diagonal

DN−1. Given the post-jump value u(j(p)), we have smooth pasting of the solutions to

(1) and (6) along DN−1. Smooth pasting also occurs at the boundary of the region

where all players use S exclusively with the region where they use both arms. In other

words, u must be of class C1. To see this, suppose we had a symmetric equilibrium

with a payoff function that hits the level s at the belief p̃ with slope u′(p̃+) > 0. Then,

at beliefs immediately to the right of p̃, we would have b(p, u) = c(p) or

λ(p)[u(j(p)) − u(p)]/r = c(p) + ∆λ p(1 − p)u′(p)/r

implying

λ(p̃)[u(j(p̃)) − s]/r = c(p̃) + ∆λ p̃(1 − p̃)u′(p̃+)/r > c(p̃)

by continuity. Immediately to the left of p̃, continuity of u(j(p)) and the fact that

u′(p) = 0 would then imply b(p, u) = λ(p)[u(j(p)) − s]/r > c(p), so there would be an

incentive to deviate from S to R.

Proposition 3 (Symmetric equilibrium) The N-player experimentation game has

a unique symmetric Markov perfect equilibrium with the common posterior belief as the

state variable. The corresponding payoff function is the unique function WN : [0, 1] →

[s, λ1h] of class C1 with the following properties: WN(p) = s on an interval [0, p̃N ]

with p∗N < p̃N < p∗1; WN(p) > s on ]p̃N , 1]; WN solves (6) on an interval ]p̃N , p†N [

with p̃N < p†N < pm, and (1) on ]p†N , 1[ . The players’ common equilibrium strategy is

continuous in the posterior belief and satisfies k(p) = 0 for p ≤ p̃N ,

k(p) =
1

N − 1

WN(p) − s

c(p)
∈ ]0, 1[

for p̃N < p < p†N , and k(p) = 1 for p ≥ p†N . WN is increasing on [p̃N , 1], and k on

[p̃N , p†N ].

Proof: We first show that there is at most one symmetric MPE. Suppose that we

have two symmetric equilibria with different payoff functions u and û, respectively,

both of which must be of class C1. Let u − û assume a negative global minimum

at the belief p, which by necessity must lie in the open unit interval. At this belief,

u′(p) = û′(p) and u(j(p))− û(j(p)) ≥ u(p)− û(p), so b(p, u) ≥ b(p, û). We cannot have

both u(p) and û(p) above DN−1 since in this region both u and û are of the form (3)

and the difference u − û is increasing to the right of DN−1. Further, if û(p) is above

DN−1 and u(p) is on or below, then b(p, û) > c(p) = b(p, u) in contradiction to what
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we derived before. Consequently, we must have both û(p) and u(p) on or below DN−1,

so b(p, û) = c(p) = b(p, u). This in turn yields u(j(p)) − û(j(p)) = u(p) − û(p), so

the difference u − û is also at its minimum at the belief j(p). Iterating the argument

until we get to the right of pm (and hence to the right of DN−1), we obtain another

contradiction, which proves that u ≥ û. By the same arguments, û− u cannot assume

a negative global minimum either, and so u = û.

Next, we sketch the construction of the symmetric equilibrium; for details, see

the Appendix. Varying the point of intersection with the diagonal DN−1, one first

constructs a family of candidate value functions that solve the ODDE (1) (N players

using R exclusively) above DN−1, and the ODDE (6) (indifference between R and S)

below. Using an intermediate-value argument, one then establishes the existence of one

such function that reaches the level s with zero slope as we move down from p = pm

to lower beliefs. This function is easily seen to solve each player’s Bellman equation.

Finally, the identity un(p) = s+K¬n(p) c(p) uniquely determines the common intensity

of experimentation in the range of beliefs where the value function lies below DN−1 but

above the level s.

We can represent the equilibrium payoff function WN in closed form up to some

constants of integration that are implicitly determined by p†N .

Corollary 1 Define intervals J0 = [p†N , 1] and Ji = [j−i(p†N), j−(i−1)(p†N)[ for i =

1, 2, . . .. If µN 6= λ0/∆λ,5 then

WN(p) = λ(p)h + i
[

r
λ1

(λ1h − s)p − r
λ0

(s − λ0h)(1 − p)
]

+ C(0)

(

λ0 (λ0/λ1)
µN

λ0 − µN∆λ

)i

(1 − p) Ω(p)µN

+
i−1
∑

η=0

C(i−η)

η!



−
λ0 (λ0/λ1)

λ0/∆λ

∆λ
ln

[

(λ0/λ1)
η−1 Ω(p)

]





η

(1 − p) Ω(p)λ0/∆λ

on Ji ∩ {p : WN(p) > s} for some constants C(i−η) (η = 0, . . . i − 1), chosen to ensure

continuity of WN . The constant C(0) ensuring that (p†N ,WN(p†N)) ∈ DN−1 is given by

C(0) = N c(p†N) (1 − p†N)−1 Ω(p†N)−µN .

Proof: See the Appendix. The proof shows how the constants C(i) can be calculated

recursively given C(0).

5The proof makes it obvious how one has to modify this result in the knife-edge case where µN =

λ0/∆λ.
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Figure 1: Intensity of experimentation in the symmetric equilibrium

Figure 1 depicts the intensity of experimentation in the symmetric equilibrium

(solid curve). The dotted step function is the efficient intensity.

The symmetric equilibrium of the Poisson model shares the main features with its

counterpart in the Brownian model of Bolton and Harris (1999). First, because of

the incentive to free-ride, experimentation stops for good inefficiently early (the lower

threshold p̃N is above the cooperative cut-off p∗N), and the intensity of experimentation

is inefficiently low at any belief between p∗N and p†N . Second, there is the encouragement

effect (p̃N is below the single-agent cut-off p∗1). Third, both the incentive to free-ride

and the encouragement effect become stronger as the number of players increases.6

Fourth, the acquisition of information is slowed down so severely near p̃N that the

players’ beliefs cannot reach this threshold in finite time.

Corollary 2 Starting from a prior belief above p̃N , the players’ common posterior

belief never reaches this threshold in the symmetric Markov perfect equilibrium.

6As N increases, each player obtains a higher payoff at all beliefs where the risky arm is used some

of the time, and p̃N falls. The diagonal DN−1 rotates clockwise, tending to increase p†
N

, but since the

payoff function shifts upward, the overall effect on p†
N

is ambiguous.
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Proof: Close to the right of p̃N , the dynamics of the belief p given no success are

dp = −∆λ
N

N − 1

WN(p) − s

c(p)
p (1 − p) dt.

(A success merely causes a delay before the belief decays to near p̃N again.) As WN is

of class C2 to the right of p̃N with WN(p̃N) = s, W ′
N(p̃N) = 0 and W ′′

N(p̃N+) ≥ 0, we

can find a positive constant C such that

∆λ
N

N − 1

WN(p) − s

c(p)
p (1 − p) < C (p − p̃N)2

in a neighborhood of p̃N . Starting from an initial belief p0 > p̃N in this neighborhood,

consider the dynamics dp = −C (p − p̃N)2 dt. The solution with initial value p0,

pt = p̃N +
1

Ct + (p0 − p̃N)−1
,

does not reach p̃N in finite time. Since the modified dynamics decrease faster than the

original ones, this result carries over to the true evolution of beliefs.

This result strongly suggests that asymmetric equilibria where a last experimenter

keeps the rate of information acquisition bounded away from zero before all experi-

mentation ceases ought to be more efficient than the symmetric one. The next section,

in which we construct a variety of asymmetric MPE, confirms this conjecture.

6 Asymmetric Equilibria

We first address the possibility of finding equilibria where all players use cut-off strate-

gies; by Proposition 3, these would necessarily be asymmetric. After deriving a lower

bound on the equilibrium payoff of a last experimenter, we then construct asymmet-

ric Markov perfect equilibria with symmetric continuation values after any success on

a risky arm. We show that this can be done in a way that Pareto improves on the

symmetric MPE.

6.1 Non-Existence of Equilibria in Cut-Off Strategies

In Keller, Rady and Cripps (2005), the non-existence of equilibria where all players

use cut-off strategies when λ0 = 0 emerges from the explicit construction of all Markov
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perfect equilibria in the two-player case. Here, we provide a direct proof.

Proposition 4 (No MPE in cut-off strategies) In any Markov perfect equilibrium,

at least one player uses a strategy that is not of the cut-off type.

Proof: Suppose to the contrary that there is an MPE where all players use a cut-off

strategy. For n = 1, . . . , N , let pn denote the belief at which player n switches from

using R exclusively to using S exclusively. Clearly, pn ≤ pm for all n. Without loss of

generality, we can assume that p1 ≤ p2 ≤ . . . ≤ pN−1 ≤ pN . Moreover, we must have

p1 < pm since each player would have an incentive to deviate to the optimal strategy

of a single player otherwise.

Suppose that p1 = p2. Immediately to the right of this cut-off, both u1 and u2 must

then lie below D1, so players 1 and 2 playing R are not best responses. This proves

that p1 < p2.

Now, u2 must lie below D1 immediately to the left of p2 (as player 2 finds it optimal

to free-ride on one opponent who plays R) and above D1 immediately to the right of

p2 (as player 2 finds it optimal to join in with at least one opponent who plays R), so

u2 crosses D1 at p2. (In fact, one can iterate this argument to establish that all cut-offs

are different, and that un crosses Dn−1 at pn.)

Since a player’s payoff function is weakly increasing in the intensity of experimen-

tation provided by the other players, we have u1 ≤ u2, and so u1 is either below or

exactly on D1 at p2. In the first case, there is an interval ]p2, p2 + ǫ[ where player 1

(who is assumed to play R) is not responding optimally to the other players’ combined

intensity of experimentation K¬1 = 1. In the second case, u1 = u2 on [p2, 1] and

u′
1(p2−) ≥ u′

2(p2−), hence b(p2, u1) ≤ b(p2, u2). But then, u2(p2) = s + b(p2, u2) >

s + b(p2, u1) − c(p2) = u1(p2), a contradiction.

This result forces us to construct equilibria in strategies that are more complex than

cut-off strategies. The following subsection prepares the ground for this construction.

6.2 A Lower Bound on the Payoff of the Last Experimenter

We say that a Markov perfect equilibrium has a last experimenter if, with p̄ = inf{p :

K(p) > 0}, there is a player n and an ǫ > 0 such that kn = 1 and K¬n = 0 on ]p̄, p̄+ ǫ].

Any simple MPE (that is, an equilibrium where all players use simple strategies as

defined in Section 2) has a last experimenter. In fact, by the continuity of the players’
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payoff functions, all points (p, un(p)) lie below the diagonal D1 in (p, u)-space as p

approaches p̄ from the right, so exactly one player must be playing risky on ]p̄, p̄ + ǫ]

for some ǫ > 0 while all other players play safe.

The following proposition derives a lower bound on the post-success equilibrium

payoff of a last experimenter.

Proposition 5 (Last experimenter) In a Markov perfect equilibrium where the last

experimenter irrevocably switches to the safe arm at belief p̄, his payoff at the belief

j(p̄) is at least as high as that of any of his opponents.

Proof: Optimal behavior of the last experimenter (player 1, say) requires c(p̄) =

b(p̄, u1) = λ(p̄)[u1(j(p̄)) − s]/r as the left derivative u′
1(p̄) = 0. If there were another

player (player 2, say) with u2(j(p̄)) > u1(j(p̄)), we would have b(p̄, u2) = λ(p̄)[u2(j(p̄))−

s]/r > c(p̄). So player 2 would act suboptimally on [p̄ − ǫ, p̄] for some ǫ > 0.

When λ0 = 0, Proposition 5 still holds but does not impose any restriction because

all players’ values jump to the same level, λ1h, when a lump-sum arrives. This al-

lows Keller, Rady and Cripps (2005) to construct simple equilibria in which the last

experimenter’s payoff is below his opponents’ at all beliefs where the intensity of exper-

imentation is non-zero. In particular, they provide an algorithm for the construction

of the most inequitable (and least efficient) equilibrium for any number of players, and

show that even this ‘worst’ asymmetric equilibrium dominates the symmetric one in

terms of the players’ average payoffs.7

The algorithm in Keller, Rady and Cripps (2005) exploits the absence of the en-

couragement effect when λ0 = 0 and uses a backward induction approach anchored at

the single-agent cut-off. In view of Propositions 2 and 5, we cannot use this approach

here. The following section offers an alternative.

6.3 Constructing Asymmetric Equilibria

Our construction of asymmetric Markov perfect equilibria rests on two ideas. The

first is to give the players a common continuation value after any success on a risky

7While Proposition 5 implies that this most inequitable equilibrium has no counterpart in the

present setting, Section 7.2 below will make it clear that by rewarding the last experimenter and

letting him enjoy an ever longer free-ride before the last leg, one can obtain Markov perfect equilibria

with a degree of payoff asymmetry approaching that in the most inequitable MPE of Keller, Rady

and Cripps (2005).
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arm; the second is to let them alternate between the roles of experimenter and free-

rider before all experimentation stops. Assigning symmetric continuation values after

successes allows us to construct the players’ average payoff function before assigning

individual strategies. Letting players take turns playing risky allows us to achieve an

overall intensity of experimentation higher than in the symmetric equilibrium, yielding

higher equilibrium payoffs.

In fact, for points (p, u) below the diagonal D1−1/N , the common action that keeps

all players indifferent between R and S and gives them u as the common continuation

value, k = (u− s)/[(N − 1)c(p)], implies an intensity of experimentation K = Nk < 1.

In contrast, the equilibria we construct will have K = 1 over some range of beliefs

where the graph of the average payoff function lies below D1−1/N . We achieve this by

partitioning the range in question into a finite number of intervals on each of which

exactly one player plays risky.

If the last of these ‘lone experimenters’ stops using the risky arm at the belief p̄,

his value function u satisfies λ(p̄)[u(j(p̄)) − s]/r = c(p̄); cf. the proof of Proposition 5.

When all players have a common continuation value after a success on a risky arm, this

equation also holds for the players’ average payoff function ū, and so λ(p̄)[ū(j(p̄)) −

s]/r = c(p̄). Varying p̄, we can trace out the locus D̄ of all possible post-jump points

(j(p̄), ū(j(p̄))) in the (p, u)-plane that satisfy this condition:

D̄ = {(p, u) ∈ [0, 1] × IR+ : λ(j−1(p))[u − s]/r = c(j−1(p))}.

Using the fact that λ(j−1(p)) = λ0λ1/[pλ0 + (1 − p)λ1], it is straightforward to show

that D̄ is a downward sloping straight line through the points (0, s + r[s − λ0h]/λ0)

and (j(pm), s).

To ensure both a common continuation value after any success and an increase in the

intensity of experimentation relative to the symmetric MPE, we start our construction

of the average equilibrium payoff function at some point (p♯, u) on the lower envelope

D̄ ∧D1−1/N of the diagonals D̄ and D1−1/N . This lower envelope coincides with D1−1/N

if and only if r
λ0

≥ 1 − 1
N

, so D̄ is relevant for sufficiently high λ0 only, that is, for

sufficiently small jumps of beliefs after successes. To the right of p♯, we proceed as in

the construction of the symmetric MPE. To the left of p♯, we solve for the average payoff

function when one player out of N is playing risky. Varying p♯, we then ensure that

the average payoff hits the level s at a belief p♭ where the last experimenter is indeed

indifferent between playing risky and playing safe. If the point (p♯, u) thus determined

lies below D̄ (and hence on D1−1/N), we have j(p♭) > p♯; if this point lies on D̄, we have

j(p♭) = p♯. In either case, a success at any belief to the right of p♭ makes the belief jump

18



Belief
0 p♭ p♯ p‡ pm

Value

s ¡
¡

¡
¡

¡
¡

¡
¡
¡

D1
D1/2

D̄ ∧ D1/2

K = 0

K < 1

K = 1

1<K<2 K = 2

Figure 2: Intensity of experimentation in a two-player asymmetric equilibrium, and
possible equilibrium payoffs

to the right of p♯, where the equilibrium involves symmetric actions and continuation

payoffs that coincide with the average. Between p♭ and p♯, moreover, the graph of the

average payoff function lies below D1−1/N , and so an intensity of experimentation equal

to 1 is indeed more than would be compatible with symmetric behavior.

For N = 2, Figure 2 illustrates the payoff functions that can arise in the equilibria

we construct and gives the corresponding intensity of experimentation in various regions

of the (p, u)-plane. The faint straight lines ending in (pm, s) are the diagonals D1 and

D1/2, the faint straight line ending on D1/2 is the part of D̄ ∧D1/2 that lies below D1/2,

the solid kinked line is the myopic payoff. The solid curves are the graphs of the players’

payoff functions. The equilibrium intensity of experimentation varies along the graph

of the average equilibrium payoff function. The intensity is 2 when the graph is above

D1, between 1 and 2 when the graph lies between D1/2 and D1, etc. The intensity of

experimentation is continuous in beliefs at p♯ if the graph crosses D̄ ∧ D1/2 on D1/2,

as in the figure. If the graph crosses D̄ ∧ D1/2 below D1/2, the intensity jumps at the

belief p♯.

For arbitrary N , we have the following result.
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Proposition 6 (Asymmetric MPE) The N-player experimentation game admits

Markov perfect equilibria with three thresholds, p♭
N , p♯

N and p‡N , where p∗N < p♭
N <

p♯
N < p‡N < pm and j(p♭

N) ≥ p♯
N , such that: on [p♯

N , 1], the players have a common pay-

off function; on [p‡N , 1], all players play R; on ]p♯
N , p‡N [ , the players allocate a common

interior fraction of the unit resource to R, and this fraction increases in the belief; on

]p♭
N , p♯

N ], the intensity of experimentation equals 1 with players taking turns playing R

on consecutive subintervals; on [0, p♭
N ], all players play S. The intensity of experimen-

tation is continuous in beliefs on ]p♭
N , 1] with the possible exception of a jump at p♯

N .

The average payoff function is increasing on [p♭
N , 1] and once continuously differentiable

on the unit interval except for the beliefs p♭
N and, if the intensity of experimentation

has a jump there, p♯
N . On ]p♭

N , 1[ , the average payoff is higher than in the symmetric

MPE.

Proof: We just sketch the construction of the equilibrium here; details can be found

in the Appendix. First, we construct the players’ average payoff function ū in the

purported equilibria, using an approach similar to the proof of Proposition 3. This

function is increasing on [p♭
N , 1]. Its graph crosses D̄ ∧ D1−1/N at p♯

N and DN−1 at

p‡N . It has a kink at p♯
N with ū′(p♯

N−) > ū′(p♯
N+) if and only if the intersection with

D̄∧D1−1/N is below D1−1/N . It satisfies ū(p) = s+b(p, ū)−c(p)/N between p♭
N and p♯

N ,

solves the indifference ODDE (6) between p♯
N and p‡N , and is of the form (3) above p‡N .

The average jump benefit λ(p♭
N)[ū(j(p♭

N)) − s]/r exactly equals the opportunity cost

c(p♭
N). As all players’ payoff functions will have a zero left-hand derivative at p♭

N and

a common value of ū(j(p♭
N)) at j(p♭

N), each player will therefore be indifferent between

R and S at p♭
N .

Second, we construct the players’ payoff functions and strategies. To this end, we

split the interval ]p♭
N , p♯

N ], in finitely many subintervals ]pℓ,i, pr,i] and in turn partition

each of them in N intervals I1,i, . . . , IN,i. We let player n use R on all intervals In,i, and

S on ]p♭
N , p♯

N ]\
⋃

i In,i. Using intermediate-value arguments, we can choose the intervals

I1,i, . . . , IN,i such that each player’s payoff function coincides with ū at the boundaries

of each subinterval ]pℓ,i, pr,i]. By increasing the number and reducing the size of these

subintervals, moreover, we can ensure that the vertical distance |un − ū| remains below

some given real number δ > 0 for all n.

Third, we verify that for sufficiently small δ, that is, for sufficiently frequent alter-

nation between the roles of free-rider and experimenter on ]p♭
N , p♯

N ], the strategies we

have constructed are mutually best responses.

As to the comparison of the average payoff function ū with that of the symmetric

equilibrium, WN , suppose that ū − WN assumes a negative global minimum at the
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belief p in the open unit interval. Note that ū must be differentiable there since a kink

with ū′(p♯
N−) > ū′(p♯

N+) is incompatible with even a local minimum of ū − WN at

p♯
N . At the belief p, therefore W ′

N(p) = ū′(p) and ū(j(p))−WN(j(p)) ≥ ū(p)−WN(p),

so b(p, ū) ≥ b(p,WN). We cannot have both WN(p) and ū(p) above D1 since in this

region both WN and ū are of the form (3) and so the difference ū − WN is increasing

there. Further, if WN(p) is above D1 and ū(p) is on or below that diagonal, then

b(p,WN) > c(p) ≥ b(p, ū) in contradiction to what we derived before (to the left of

p♯
N , ū(p) = s + b(p, ū) − c(p)/N < s + (1 − 1/N)c(p) and hence b(p, ū) < c(p) there).

Consequently, we must have both WN(p) and ū(p) on or below D1, which translates

into b(p,WN) = c(p) ≥ b(p, ū) and hence, by what we saw above, b(p,WN) = b(p, ū).

This in turn yields ū(j(p)) − WN(j(p)) = ū(p) − WN(p), so the difference ū − WN is

also at its minimum at the belief j(p). Iterating the argument until we get to the right

of pm (and hence to the right of D1), we again obtain a contradiction. This establishes

ū ≥ WN . Now, if we had ū(p) = WN(p) at some p ∈ ]p♭
N , 1[ , this would again imply

b(p, ū) = b(p, WN) at a global minimum of ū − WN and, by the iterative argument

just given, lead to another contradiction. This proves that ū > WN on ]p♭
N , 1[ . In

particular, p♭
N lies to the left of the belief p̃N at which all experimentation stops in the

symmetric MPE.

The gain in average payoffs relative to the symmetric equilibrium stems from the

fact that, owing to the alternation between the roles of single experimenter and free-

rider, the intensity of experimentation is bounded away from zero immediately above

the belief where all experimentation stops. In the symmetric equilibrium, a player

who deviates to the safe action slows down the gradual slide of beliefs towards more

pessimism; as the opponents’ strategies are increasing functions of the level of optimism,

the deviation causes them to experiment more than they would on the equilibrium path.

When players use beliefs to coordinate their alternation between experimentation and

free-riding, by contrast, a deviation from the risky to the safe action freezes the belief

in its current state and delays the time at which another player takes over the burden

of experimentation. Deviations are thus more attractive under symmetric strategies

than under alternation. This explains why the equilibrium intensity under the latter

can be higher.

For beliefs above p♯
N , the players’ common payoff function permits an explicit rep-

resentation of the form given in Corollary 1. For beliefs between p♭
N and p♯

N , we have

the following result.

Corollary 3 For p ∈ ]p♭
N , p♯

N ], let ι be the smallest integer such that jι+1(p) ≥ p‡N , i.e.

ι + 1 consecutive successes would result in all the players playing R exclusively. Then,

21



with kn = 1 for an experimenter and kn = 0 for a free-rider, the payoff functions are

un(p) = λ(p)h + (ι + kn − 1)
[

r
r+λ1

(λ1h − s)p − r
r+λ0

(s − λ0h)(1 − p)
]

+ C(0)

(

λ0 (λ0/λ1)
µN

λ0 − µN∆λ

)ι
λ0 (λ0/λ1)

µN

r + λ0 − µN∆λ
(1 − p) Ω(p)µN

+
1

r







ι−1
∑

η=0

C(ι−η)

η!



−
λ0 (λ0/λ1)

λ0/∆λ

∆λ





η

λ0 (λ0/λ1)
λ0/∆λ

×





η
∑

γ=0

(

∆λ

r

)η−γ
η!

γ!
(ln [(λ0/λ1)

γ Ω(p)])
γ











(1 − p) Ω(p)λ0/∆λ

+ C(ι+1)
n (1 − p) Ω(p)(r+λ0)/∆λ ,

for appropriately chosen constants of integration C(ι+1)
n ; the constants C(i), i = 0, . . . , ι,

are from the common payoff function for beliefs above p♯
N .

Proof: See the Appendix.

6.4 Pareto Improvements over the Symmetric Equilibrium

With sufficiently frequent turns between the roles of experimenter and free-rider, the

players’ payoff functions in the equilibria of Proposition 6 become arbitrarily close to

the average payoff function. This leads to a Pareto improvement over the symmetric

equilibrium.

Proposition 7 (Pareto improvement over the symmetric MPE) The N-player

experimentation game admits Markov perfect equilibria as in Proposition 6 in which

each player’s payoff exceeds the symmetric equilibrium payoff on ]p♭
N , 1[ .

Proof: Let δ = 1
2
maxp̃N≤p≤p♯

N
[ū(p) − WN(p)], where ū is the average payoff function

associated with the equilibria of Proposition 6, and WN is the players’ common payoff

function in the symmetric equilibrium. Choose the subintervals ]pℓ,i, pr,i] such that

|un − ū| is bounded above by δ for all n. Then un > s = WN on ]p♭
N , p̃N ], un ≥ ū− δ >

WN on ]p̃N , p♯
N ], and un = ū > WN on ]p♯

N , 1] .

It deserves to be stressed that it is the encouragement effect which permits Pareto

improvements over the symmetric equilibrium. Without it, the last experimenter quits

at the same belief (the single-agent cut-off) at which all players stop experimenting in

the symmetric equilibrium; bearing all the costs of experimentation on his own, the
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last experimenter is then necessarily worse off than under symmetry immediately to

the right of this cut-off.

There clearly is scope for further improvements in players’ equilibrium payoffs, over

and above those embodied in the equilibria of Proposition 6. Moving down from the

diagonal DN−2+1/N to DN−2, for example, the intensity of experimentation in these

equilibria gradually falls from N − 1 to N(N − 2)/(N − 1). Using exactly the same

approach as on the interval ]p♭
N , p♯

N ] above, we could instead let players take turns be-

tween the roles of experimenter and free-rider such that the intensity of experimentation

remained constant at level N − 1 in between these diagonals. Similar improvements

are possible at lower intensities of experimentation, but since they do not add to the

insights already gained, we do not pursue them here.

7 Simple Equilibria

Keller, Rady and Cripps (2005) show how to construct a variety of simple equilibria for

the exponential bandit model (λ0 = 0). Our next aim is to investigate simple equilibria

in the Poisson model as λ0 approaches zero. The similarities and differences between

the two frameworks already become apparent in the two-player case, so we will restrict

our attention to this case in what follows.

We start with the observation that for λ0 sufficiently close to zero, any success on

a risky arm makes the players so optimistic that playing risky is the dominant action

for all of them. More precisely, as any two-player MPE must have an average payoff

function in between the single-agent optimum V ∗
1 and the cooperative solution V ∗

2 , the

infimum of the set {p : K(p) > 0} must be at least p∗2. If j(p∗2) ≥ pm, a success on

any risky arm will make players optimistic enough for all of them to revert to exclusive

use of the risky arm, and the players’ post-jump equilibrium payoffs as well as their

average will be of the form V2(j(p)) with V2 as given in (3).

A necessary and sufficient condition for j(p∗2) ≥ pm is that µ2/(µ2 + 1) ≥ λ0/λ1 or,

equivalently, that µ2 ≥ λ0/∆λ. Using (2) with N = 2, this holds if and only if

λ0

(

λ0

λ1

)

λ0

∆λ

≤
r

2
. (7)

Clearly, since λ0/λ1 < 1 and λ0/∆λ > 0, a sufficient condition for (7) is that λ0 ≤ r/2.

When (7) holds, the same approach as in the previous section allows us to construct

simple equilibria.
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0 1p̄ ps p̂ pm

Value

s

λ1h

¶
¶

¶
¶

¶
¶

¶
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¶
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¶¶
D1

S dominant

R dominant

S/R
mutual
best responses

Figure 3: Best responses for N = 2, and possible payoffs in a simple equilibrium

7.1 Simple MPE with Common Values after a Success

Figure 3 shows the best response correspondence for N = 2 and illustrates the simplest

possible configuration of payoff functions that can arise in the type of equilibrium we

construct.

Proposition 8 (Simple MPE for N = 2) Under condition (7), the two-player ex-

perimentation game admits simple Markov perfect equilibria with the following features.

There are two thresholds, p̄ and p̂, with p∗2 < p̄ < p̂ < pm, such that: on ]p̂, 1], both

players play R and their payoff functions coincide; on ]p̄, p̂], the intensity of experi-

mentation equals 1, and there is at least one belief in the interior of this interval where

both players change action; on [0, p̄], they both play S.

Proof: We just sketch the proof here; details can be found in the Appendix. First,

we construct the two players’ average payoff function ū in the purported equilibria,

proceeding along the same lines as in the proof of Proposition 6. This function is

increasing on [p̄, 1]. Varying the belief p̂ at which the function crosses the diagonal

D1, and exploiting the large-jumps condition (7), we ensure that the jump benefit

λ(p̄)[ū(j(p̄)) − s]/r exactly equals the opportunity cost c(p̄). As both players’ payoff
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functions will have a zero left-hand derivative at p̄, they will thus both be indifferent

between R and S at this belief.

Second, we construct the players’ payoff functions and strategies. To this end, we

split the interval ]p̄, p̂] in finitely many subintervals ]pℓ,i, pr,i] and select a switchpoint

ps,i in the interior of each. On ]pℓ,i, ps,i], we let player 1 play R and player 2 play

S; on ]ps,i, pr,i], we let player 1 play S and player 2 play R. An intermediate-value

argument shows that the switchpoints ps,i can be chosen such that both players’ payoff

functions coincide with ū at the boundaries of each subinterval. By construction, u1

satisfies smooth pasting at p̄. We show that u1 ≤ ū ≤ u2. We also establish that u1 is

increasing on [p̄, 1], and u2 at least on all intervals [pℓ,i, ps,i] and [p̂, 1]. We cannot rule

out the possibility that u2 is decreasing on some interval [ps,i, ps,i + ǫ], where player 2

is the experimenter.8

Third, we establish that the left-hand derivative of u2 at p̂ satisfies u′
2(p̂) > −∆λh.

This allows us to choose the above subintervals so that (despite a possible lack of

monotonicity) u2 stays below D1 to the left of p̂; by increasing the number and reducing

the size of the subintervals, moreover, we can ensure that the vertical distance u2 − u1

never exceeds some given real number δ > 0.

Fourth, we verify that the strategies so constructed are mutual best responses. In

view of the monotonicity of u1, this is very easy for player 1. If u2 is not monotonic,

we obtain the best-response property for player 2 by taking δ small enough, that is,

by imposing sufficiently frequent alternation between the roles of experimenter and

free-rider.

Figure 3 illustrates the case where one switchpoint ps in ]p̄, p̂[ suffices to construct

an equilibrium as just outlined with a monotonic payoff function u2 (the higher of

the two payoff functions). This case arises for example with the parameter values

r = 1, s = 1.5, h = 2, λ0 = 0.5, λ1 = 1.5. With these values, p̄ < p̃2, the belief

where all experimentation stops in the symmetric equilibrium, and the average payoff

function is greater than the common payoff function in the symmetric equilibrium; this

improvement stems again from the fact that the intensity of experimentation remains

constant at the level 1 just below D1/2, whereas the symmetric equilibrium intensity

falls below 1 as soon as D1/2 is crossed.9

8For more on the non-monotonicity of u2, see the remarks about ‘anticipation’ in the next subsection

on numerical solutions.
9However, it is not the case that each player is individually better off than in the symmetric MPE

– in fact, the last experimenter (the player with the lower of the two payoff functions) is worse off in

a neighborhood of the switchpoint. Below, we will present simple equilibria for the above parameter

25



Using condition (7), we can give the following explicit representations for the two

players’ payoff functions in the equilibria of Proposition 8.

Corollary 4 On ]p̂, 1], where both players experiment, their common payoff function

is

u(p) = λ(p)h + C(0)(1 − p) Ω(p)µ2 ,

the constant C(0) being given by

C(0) = 2 c(p̂) (1 − p̂)−1 Ω(p̂)−µ2 .

On ]p̄, p̂], where one player experiments and the other free-rides, and with kn = 1 for

an experimenter and kn = 0 for a free-rider, the payoff functions are

un(p) = λ(p)h + (kn − 1)
[

r
r+λ1

(λ1h − s)p − r
r+λ0

(s − λ0h)(1 − p)
]

+ C(0)

(

λ0 (λ0/λ1)
µ2

r + λ0 − µ2∆λ

)

(1 − p) Ω(p)µ2 + C(1)
n (1 − p) Ω(p)(r+λ0)/∆λ ,

with appropriately chosen constants of integration C(1)
n .

Proof: See the Appendix.

For λ0 = 0, the results of Keller, Rady and Cripps (2005) imply that equilibria

as in Proposition 8 generate, at any belief, the highest average payoff achievable in a

simple two-player MPE with a last experimenter. As the following subsection shows,

this result does not generalize to λ0 > 0.

7.2 Rewarding the Last Experimenter

So far, we have constructed equilibria where the continuation value immediately after

a success on any risky arm is the same for both players, which means in particular that

both players are indifferent between R and S at the belief p̄ where the last experimenter

quits. Maintaining assumption (7), suppose now we give the last experimenter a higher

payoff at j(p̄) than the other player. This has two effects. On the one hand, we can

no longer achieve the maximal intensity of 2 immediately to the right of the belief

at which the graph of the average payoff function crosses D1, which lowers average

payoffs. On the other hand, the last experimenter is now willing to continue playing R

values that are better than the symmetric one for both players.
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somewhat to the left of p̄, which increases average payoffs. Our final goal is to explore

this trade-off numerically.

We refer to the last experimenter as player 1 and the last free-rider as player 2,

and continue to let p̄ denote the belief where all experimentation stops, and ps the

switchpoint where both players change actions; however, as their payoff functions cross

D1 at different points, we let p̂1 and p̂2 denote the corresponding beliefs.

Construction of equilibria

The strategies for the players are: on ]p̂2, 1] both players play R; on ]p̂1, p̂2] player 1

plays R and player 2 plays S; on ]ps, p̂1] player 1 plays S and player 2 plays R; on

]p̄, ps] player 1 plays R and player 2 plays S; on [0, p̄] both players play S. We need to

determine p̄ < ps < p̂1 < p̂2, and to build continuous functions u1 and u2 that (a) con-

nect the points (0, s) and (1, λ1h) in the (p, u)-plane, that (b) satisfy the appropriate

ODDEs, and that (c) have the following properties: u1 is above D1 on ]p̂1, 1], below

D1 but above s on ]p̄, p̂1], at s on [0, p̄], and is smooth at p̄; u2 is above D1 on ]p̂2, 1],

below D1 but above s on ]p̄, p̂2], and at s on [0, p̄].

Relative to the upper threshold p̂ and the average payoff function ū from Proposi-

tion 8, choose a point (p̂2, ǔ) in [0, 1] × [s, λ1h] with p̂2 to the right of p̂ and ǔ above

ū(p̂2). First, we construct player 1’s payoff function piecewise.

On ]p̂2, 1] both players play R, so u1 is of the form given in equation (3) with

N = 2, the constant of integration being chosen so that u1(p̂2) = ǔ. The belief p̄

where player 1 quits can now be determined from equation (1) with N = 1, using

value matching (u1(p̄) = s) and smooth pasting (u′
1(p̄) = 0), and knowing the form of

u1(j(p̄)) since j(p̄) > p̂2. Just to the left of p̂2, player 1 is the only one playing R, so u1

is of the form given in Corollary 4, the constant of integration being chosen to ensure

continuity at p̂2; p̂1 is the belief to the left of p̂2 where u1 crosses D1. On an interval

to the left of that, player 1 is free-riding, u1 is again of the form given in Corollary 4,

and the constant of integration is chosen to ensure continuity at p̂1. Further, on an

interval to the right of p̄, player 1 is again the lone experimenter and now the constant

of integration is chosen to ensure that u1(p̄) = s. Player 1’s switchpoint is where the

graph of u1 coming down and to the left from (p̂1, u1(p̂1)) intersects the curve going up

and to the right from (p̄, s).

Player 2’s payoff function is also constructed piecewise. On ]p̂2, 1], u2 is also of the

form given in equation (3) with N = 2, the constant of integration being chosen so

that u2(p̂2) is on D1. Between p̄ and p̂2, u2 is of the form given in Corollary 4: player 2
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is free-riding on the interval ]p̂1, p̂2] and we ensure continuity at p̂2; on an interval to

the left of that, player 2 is the lone experimenter and we ensure continuity at p̂1; on an

interval to the right of p̄, player 2 free-rides and the constant of integration is chosen

to ensure that u2(p̄) = s. Player 2’s switchpoint is where the graph of u2 coming down

and to the left from (p̂1, u2(p̂1)) intersects the curve going up and to the right from

(p̄, s).

For this to be an equilibrium we need to have the players switching at the same

belief – this involves adjusting (p̂2, ǔ) and iterating until the switchpoints coincide.

Findings

Using the same parameter values we referred to in the discussion of Figure 3 after

Proposition 8 (namely, r = 1, s = 1.5, h = 2, λ0 = 0.5, λ1 = 1.5), we numerically solved

for six equilibria as well as the simple one with common payoffs above D1 (the ‘base

case’), giving the last experimenter progressively higher payoffs above D1. Figure 4

illustrates the players’ payoffs in the base case and in three of these equilibria, the tick

labels on the belief axis being for the base case (which exhibits the lowest equilibrium

payoffs for the last experimenter and highest for the last free-rider.)

We find that as we improve player 1’s post-jump payoff, the fall in p̄ is about 5 times

smaller than the shifts in p̂1 and p̂2, with p̂1 moving to the left and p̂2 moving to the

right. (The drop in the switchpoint is more dramatic, being about 25 times that of p̄.)

The net effect is that the interval of beliefs where exactly one player is experimenting

widens, and although the average payoff is higher on an interval to the right of p̄, it

dips below that of the base case very close to p̂1 and remains there at all higher beliefs.

Player 1 is progressively better off than in the base case at all beliefs to the right of p̄,

but player 2 is progressively worse off at beliefs greater than approximately ps, and the

absolute differences between the average payoff in the base case and those in the other

six equilibria become more pronounced as the asymmetry increases. Indeed, in the

two most asymmetric of the equilibria that we calculated, player 2’s payoff function

is below the payoff function in the symmetric equilibrium in a neighborhood of p̂1,

whereas the payoffs in the other four intermediate equilibria are Pareto improvements

on the symmetric equilibrium. Moreover, in the most asymmetric of these equilibria,

player 2’s payoff function is decreasing in an interval immediately to the right of the

switchpoint (although this is hard to discern visually).

Put another way, in this very asymmetric equilibrium as the players approach the

switchpoint from the right, where player 2 is experimenting alone, beliefs are becoming
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Figure 4: Equilibrium payoffs of the last experimenter (upper panel) and the last
free-rider (lower panel)
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more pessimistic, yet player 2’s payoff is going up – if we put this down to the fact that,

conditional on no impending success, player 2 will soon be able to enjoy a free-ride,

then we can call this an ‘anticipation effect’.10

8 Concluding Remarks

The asymmetric equilibria that we constructed in the Poisson framework raise the

question whether similar equilibria exist in the Brownian model of Bolton and Harris

(1999). The elementary constructive method that we used here is likely to apply to the

Brownian case as well. Our proof of the result that there exist no equilibria in cut-off

strategies should also carry over. We intend to explore this in future work.

Our model can easily be adapted to situations where an event is bad news: a

‘breakdown’ rather than a ‘breakthrough’. For example, we can interpret s as the

expected flow cost of keeping the current safe machine running. Players have access to

new risky machines that break down and thereby cause lump-sum costs at exponentially

distributed times; a high failure rate of λ1 would favor the old machine, a low rate of

λ0 < λ1 the new one. The aim is to minimize the expected sum of discounted costs

of breakdowns. The longer the machines do not fail, the more optimistic the players

become about their reliability, but whenever one does fail, the belief jumps to more

pessimistic levels. Given enough pessimism, another failure will be the ‘last straw’.

Thus, the continuous part of the belief dynamics always keeps the state variable in

the continuation region where at least some player uses the new machine, whereas the

discontinuous part can cause the state variable to jump into the stopping region. As

a consequence, the principle of smooth pasting does not apply. Despite the superficial

symmetry between the ‘good-news’ and the ‘bad-news’ versions of the model, therefore,

the formal analysis of the single-agent optimum, the efficient benchmark and best

responses is rather different from that in the present paper. We defer such analysis to

a separate paper.

By constructing simple asymmetric equilibria, our work also prepares the ground

for an analysis of strategic experimentation by asymmetric players who might differ

for example with respect to their innate abilities to achieve breakthroughs, the average

size of lump-sum payoffs, or their outside options. This is again left to future work.

10This effect is also evident in the equilibria with infinitely many switches in Keller, Rady and

Cripps (2005); cf. their Proposition 6.4 and Figure 3.
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Appendix

Proof of Proposition 3: Let p̂N,N−1 denote the belief where the graph of V ∗
N cuts DN−1,

and p̂1,N−1 denote the belief where the graph of V ∗
1 cuts DN−1. By continuity, there is an

open interval I ⊃ [p̂N,N−1, p̂1,N−1] such that for all p̂ ∈ I, the unique solution to (1) that

crosses DN−1 at the belief p̂ has positive slope there.

Fix a belief p̂ ∈ I and let (p̂, û) be the corresponding point on the diagonal DN−1. On

[p̂, 1], we define u(0) as the unique solution to (1) that assumes the value û at belief p̂. Now

consider the ordinary differential equation

∆λ p(1 − p)u′(p) + λ(p)u(p) = rλ(p)h − rs + λ(p)u(0)(j(p)). (A.1)

Standard results imply that this ODE has a unique solution u(1) on [j−1(p̂), p̂] with u(1)(p̂) =

u(0)(p̂) and, by construction, (u(1))′(p̂) = (u(0))′(p̂).

Iterating this step, we construct functions u(i+1) defined on [j−(i+1)(p̂), j−i(p̂)] for i =

1, 2, 3, . . . by choosing u(i+1) as the unique solution of the ODE

∆λ p(1 − p)u′(p) + λ(p)u(p) = rλ(p)h − rs + λ(p)u(i)(j(p)) (A.2)

subject to the condition u(i+1)(j−i(p̂)) = u(i)(j−i(p̂)). Setting up̂(p) = u(i)(p) whenever

j−(i+1)(p̂) ≤ p < j−i(p̂), we thus obtain a function up̂ of class C1 on ]0, 1] that solves (6) to

the left of p̂, and (1) to the right of p̂. Standard results imply that up̂ depends in a continuous

fashion on p̂. In particular, M(p̂), the minimum of up̂ on [p∗N , pm], is continuous in p̂.

For p̂ ∈ I with p̂ < p̂N,N−1, the function up̂ lies above V ∗
N on at least [p̂, 1[ . If up̂ and V ∗

N

assumed the same value at some belief pℓ ∈ [p∗N , p̂[ , then the restriction of up̂ − V ∗
N to [pℓ, 1]

would have a positive global maximum at some belief pr ∈ ]pℓ, 1[ . In fact, we would have

pr ∈ ]pℓ, p̂[ since up̂−V ∗
N , being the difference of two functions of the form (3), has a negative

first derivative on [p̂, 1[ . As (up̂)
′(pr) = (V ∗

N )′(pr) and up̂(j(pr))−V ∗
N (j(pr)) ≤ up̂(pr)−V ∗

N (pr),

we would thus have b(pr, V
∗
N ) ≥ b(pr, up̂) = c(pr), hence V ∗

N (pr) = s + Nb(pr, V
∗
N ) − c(pr) ≥

s+(N−1)c(pr), which is inconsistent with the fact that V ∗
N is below DN−1 at pr. Consequently,

up̂ lies above V ∗
N on [p∗N , 1[ .

By continuity, ûN , the function up̂ obtained for p̂ = p̂N,N−1, lies weakly above V ∗
N on

[p∗N , 1]. While the two functions are identical on [p̂N,N−1, 1] by construction, they cannot

be identical on the whole of [p∗N , p̂N,N−1[ as V ∗
N does not solve (A.1) immediately to the

left of p̂N,N−1, for example. Arguing exactly as in the previous paragraph, we see that the

restriction of ûN − V ∗
N to [p∗N , 1] must assume its positive global maximum at p∗N . This

establishes ûN (p∗N ) > V ∗
N (p∗N ) = s. As V ∗

N (p) > s for p > p∗N , we thus have ûN > s on [p∗N , 1],

hence M(p̂N,N−1) > s.

For p̂ ∈ I with p̂ > p̂1,N−1, the function up̂ lies below V ∗
1 in a neighborhood of p̂. If up̂

and V ∗
1 assumed the same value at some belief pℓ ∈ [p∗1, p̂[ , then the restriction of V ∗

1 − up̂ to

[pℓ, 1] would have a positive global maximum at a belief pr ∈ ]pℓ, 1[ . As (V ∗
1 )′(pr) = (up̂)

′(pr)

and V ∗
1 (j(pr)) − up̂(j(pr)) ≤ V ∗

1 (pr) − up̂(pr), we would thus have b(pr, up̂) ≥ b(pr, V
∗
1 ). As
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s < V ∗
1 (pr) = s + b(pr, V

∗
1 ) − c(pr), this would imply b(pr, up̂) > c(pr) and pr > p̂. But then

up̂(pr) = s + Nb(pr, up̂) − c(pr) > s + b(pr, V
∗
1 ) − c(pr) = V ∗

1 (pr), which is a contradiction.

Consequently, up̂ lies below V ∗
1 on [p∗1, p̂].

By continuity, û1,N , the function up̂ obtained for p̂ = p̂1,N−1, lies weakly below V ∗
1 on

[p∗1, p̂1,N−1]. While the two functions are identical at p̂1,N−1 by construction, they cannot be

identical on the whole of [p∗1, p̂1,N−1[ . Arguing exactly as in the previous paragraph, we see

that the restriction of V ∗
1 − û1,N to [p∗1, 1] must assume its positive global maximum at p∗1.

In particular, û1,N (p∗1) < V ∗
1 (p∗1) = s, hence M(p̂1,N−1) < s.

So there exists a p†N ∈ ]p̂N,N−1, p̂1,N−1[ such that M(p†N ) = s. With u† denoting the

solution up̂ corresponding to p̂ = p†N , let p̃N be the highest belief in [p∗N , pm] at which u†

assumes the value s. By construction, p̃N < p†N < pm. Define the function WN by WN (p) = s

on [0, p̃N ] and by WN (p) = u†(p) > s on ]p̃N , 1]. This is the common payoff function when

all players use the strategy k described in the proposition. As a consequence, WN ≤ V ∗
N and

in particular p̃N ≥ p∗N .

If we had p̃N = p∗N , then WN (p∗N ) = s = V ∗
N (p∗N ), WN (j(p∗N )) ≤ V ∗

N (j(p∗N )) and

W ′
N (p∗N−) = 0 = (V ∗

N )′(p∗N ), implying b(p∗N , V ∗
N ) ≥ b(p∗N ,WN ). As b(p∗N , V ∗

N ) = c(p∗N )/N ,

b(p∗N ,WN ) = c(p∗N ) and c(p∗N ) > 0, this is a contradiction. So we have p∗N < p̃N < pm, hence

W ′
N (p̃N+) = (u†)′(p̃N ) = 0 because the minimum of u† on [p∗N , pm] is achieved at an interior

point. Thus, the function WN is of class C1.

It is straightforward to check from the explicit representation of WN above DN−1 that this

function is convex and increasing on [p†N , 1]. Suppose WN is not increasing on [p̃N , p†N ]. Then

it must assume both a local maximum and a local minimum in the interior of that interval, and

there exist beliefs p′ < p′′ in ]p̃N , p†N [ such that W ′
N (p′) = W ′

N (p′′) = 0, WN (p′) ≥ WN (p′′),

and WN is weakly decreasing on [p′, p′′] and increasing on [p′′, 1]. We now have b(p′,WN ) =

λ(p′)[WN (j(p′)) − WN (p′)]/r = c(p′) > 0, hence WN (j(p′)) > WN (p′) and j(p′) > p′′. As

a consequence, WN (j(p′′)) > WN (j(p′)) and b(p′′,WN ) = λ(p′′)[WN (j(p′′)) − WN (p′′)]/r >

λ(p′)[WN (j(p′)) − WN (p′)]/r = c(p′) > c(p′′), which is a contradiction. This establishes that

WN is increasing on [p̃N , 1], and k is increasing on [p̃N , p†N ].

We thus have b(p,WN ) > c(p) on ]p†N , 1], b(p,WN ) = c(p) on [p̃N , p†N ], and, because of the

monotonicity of WN on [p̃N , 1], b(p,WN ) < c(p) on [0, p̃N [ . So all players using the strategy

k constitutes an equilibrium. Finally, p̃N < p∗1 by Proposition 2.

Uniqueness has already been shown in the main text.

Proof of Corollary 1: With u(0)(p) = λ1hp + λ0h(1 − p) + C(0) (1 − p) Ω(p)µ (see (3)),

we seek a sequence of functions u(i+1) for i = 0, 1, . . ., defined recursively as solutions to the

ODE (A.2). Let α = λ0/∆λ, and, for i ≥ 0, let

u(i)(p) = d
(i)
1 p+d

(i)
0 (1−p)+m(i)(1−p)Ω(p)µ +(1−p)Ω(p)α

i−1
∑

η=0

l(i−η)
(

ln
[

(λ0/λ1)
η−1 Ω(p)

])η

where d
(i)
1 , d

(i)
0 , m(i), l(i−η) are constants to be determined – we will show that the functions
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u(i) form just such a sequence. Clearly we need

d
(0)
1 = λ1h, d

(0)
0 = λ0h, and m(0) = C(0)

with C(0) being the constant that fixes payoffs above the diagonal where everyone plays R.

The final (summed) term in the above equation defining u(i) is vacuous for i = 0.

First note that

u(i)(j(p)) = d
(i)
1

λ1

λ(p)
p + d

(i)
0

λ0

λ(p)
(1 − p) + m(i) λ0

λ(p)

(

λ0

λ1

)µ

(1 − p)Ω(p)µ

+
λ0

λ(p)

(

λ0

λ1

)α

(1 − p)Ω(p)α
i−1
∑

η=0

l(i−η) (ln [(λ0/λ1)
η Ω(p)])η ,

so that the right-hand side of (A.2) becomes

G(i)(p) = D
(i)
1 p+D

(i)
0 (1−p)+M (i)(1−p)Ω(p)µ +(1−p)Ω(p)α

i−1
∑

η=0

L(i−η) (ln [(λ0/λ1)
η Ω(p)])η

where

D
(i)
1 = d

(i)
1 λ1 + r(λ1h − s), D

(i)
0 = d

(i)
0 λ0 − r(s − λ0h)

and

M (i) = m(i)λ0 (λ0/λ1)
µ , L(i−η) = l(i−η)λ0 (λ0/λ1)

α .

The homogeneous equation, ∆λ p(1 − p)u′(p) + λ(p)u(p) = 0, has the solution

u0(p) = (1 − p)Ω(p)α.

Using the method of variation of constants, we now write u(p) = a(p)u0(p) so that

∆λ p(1 − p)u′(p) + λ(p)u(p) = ∆λ p(1 − p)u0(p)a′(p).

The ODE thus transforms into the following equation for the first derivative of the unknown

function a:

∆λ a′(p) =
G(i)(p)

p(1 − p)u0(p)

= D
(i)
1 Ω(p)−α(1 − p)−2 + D

(i)
0 Ω(p)−α+1(1 − p)−2 + M (i) Ω(p)µ−α+1(1 − p)−2

+ Ω(p)(1 − p)−2
i−1
∑

η=0

L(i−η) (ln [(λ0/λ1)
η Ω(p)])η .

Make the substitution ω = Ω(p) and define A(ω) = a(p), so a′(p) = −A′(ω)/p2. Then

−∆λA′(ω) = D
(i)
1 ω−α−2 + D

(i)
0 ω−α−1 + M (i) ωµ−α−1 + ω−1

i−1
∑

η=0

L(i−η) (ln [(λ0/λ1)
η ω])η ,
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so

A(ω) =
D

(i)
1

λ1
ω−α−1 +

D
(i)
0

λ0
ω−α +

M (i)

λ0 − µ∆λ
ωµ−α

−
i−1
∑

η=0

L(i−η)

(η + 1)∆λ
(ln [(λ0/λ1)

η ω])η+1 + C(i+1),

where C(i+1) is a constant of integration (and assuming µ 6= α, else we have another loga-

rithmic term). Multiplying by u0(p) = (1 − p)ωα and substituting ω = Ω(p) leads to

u(i+1)(p) =
D

(i)
1

λ1
p +

D
(i)
0

λ0
(1 − p) +

M (i)

λ0 − µ∆λ
(1 − p)Ω(p)µ

+ (1 − p)Ω(p)α
i

∑

η=1

−L(i+1−η)

η ∆λ

(

ln
[

(λ0/λ1)
η−1 Ω(p)

])η
+ (1 − p)Ω(p)αC(i+1).

The above iterative step shows that

d
(i+1)
1 = d

(i)
1 + r

λ1
(λ1h− s), d

(i+1)
0 = d

(i)
0 − r

λ0
(s−λ0h), and m(i+1) = m(i)

(

λ0 (λ0/λ1)
µ

λ0 − µ∆λ

)

and so, in general,

d
(i)
1 = λ1h + r

λ1
(λ1h− s) i , d

(i)
0 = λ0h− r

λ0
(s− λ0h) i , and m(i) = C(0)

(

λ0 (λ0/λ1)
µ

λ0 − µ∆λ

)i

.

After a little algebra, we find that the constants in the summation are given by

l(i−η) =
C(i−η)

η!

(

−
λ0 (λ0/λ1)

α

∆λ

)η

for η = 0, . . . , i − 1.

The constants C(i−η) (η = 0, . . . i − 1) are chosen to ensure continuity. In particular,

writing ̂−i for j−i(p†N ), C(i+1) is chosen such that u(i+1)(̂−i) = u(i)(̂−i) for i ≥ 0, and

satisfies

C(i+1) (1 − ̂−i)Ω(̂−i)α

= − r
λ1

(λ1h − s) ̂−i + r
λ0

(s − λ0h) (1 − ̂−i)

+ C(0)
(

1 −
λ0 (λ0/λ1)

µ

λ0 − µ∆λ

) (

λ0 (λ0/λ1)
µ

λ0 − µ∆λ

)i

(1 − ̂−i)Ω(̂−i)µ

+







i−1
∑

η=0

C(i−η)

[

1

η!

(

−
λ0 (λ0/λ1)

α

∆λ
ln

[

(λ0/λ1)
η−1 Ω(̂−i)

]

)η

−
1

(η + 1)!

(

−
λ0 (λ0/λ1)

α

∆λ
ln

[

(λ0/λ1)
η Ω(̂−i)

]

)η+1
]}

(1 − ̂−i)Ω(̂−i)α.
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Proof of Corollary 3: The proof follows the same lines as in Corollary 1. Here we

consider the case where exactly 1 of the N players is playing R, and where a success results

in the players playing symmetrically as in that corollary. The relevant ODE is

∆λ p(1 − p)u′(p) + [r + λ(p)]u(p) = krλ(p)h + (1 − k)rs + λ(p)w(j(p))

with k = 0 for a free-rider and k = 1 for an experimenter, and where w is the function u(ι)

derived in Corollary 1.

We obtain equations for un of the form

un(p) = d
(ι+1)
1 (kn) p + d

(ι+1)
0 (kn) (1 − p) + m(ι+1) (1 − p)Ω(p)µN

+
1

r

ι−1
∑

η=0

l(ι−η)λ0 (λ0/λ1)
λ0/∆λ

×





η
∑

γ=0

(

∆λ

r

)η−γ η!

γ!
(ln [(λ0/λ1)

γ Ω(p)])γ



 (1 − p)Ω(p)λ0/∆λ

+ C(ι+1)
n (1 − p)Ω(p)(r+λ0)/∆λ ,

where

d
(ι+1)
1 (k) = λ1

r+λ1

[

λ1h + r
λ1

(λ1h − s) ι
]

+ r
r+λ1

[kλ1h + (1 − k)s] ,

d
(ι+1)
0 (k) = λ0

r+λ0

[

λ0h − r
λ0

(s − λ0h) ι
]

+ r
r+λ0

[kλ0h + (1 − k)s] ,

m(ι+1) = C(0)
(

λ0 (λ0/λ1)
µ

λ0 − µ∆λ

)ι λ0 (λ0/λ1)
µ

r + λ0 − µ∆λ
,

and l(ι−η) =
C(ι−η)

η!

(

−
λ0 (λ0/λ1)

λ0/∆λ

∆λ

)η

for η = 0, . . . , ι − 1.

This leads to the representation stated in the corollary.

Proof of Proposition 6: Let p̂N,N−1 denote the belief where the graph of V ∗
N cuts DN−1,

and consider I = [p̂N,N−1 − ǫ, pm] with ǫ > 0 small enough that for all p̂ ∈ I, the unique

solution to (1) that crosses DN−1 at the belief p̂ has positive slope there.

Step 1: Construction of the average payoff function. Fix a belief p̂ ∈ I. On [p̂, 1], we define

up̂ as the unique solution to (1) that starts on DN−1 at p̂. Starting from this initial condition,

we then proceed iteratively as in the proof of Proposition 3, solving ‘forward’ towards lower

beliefs and eventually to p∗N . Between DN−1 and D̄∧D1−1/N , we solve the indifference ODDE

(6); below D̄ ∧ D1−1/N , we solve the ODDE

∆λ p(1 − p)u′(p) = λ(p)[u(j(p)) − u(p)] − r[u(p) − s] + r
N [λ(p)h − s].

In this manner, we obtain a continuous function up̂ on [p∗N , 1] such that: (i) up̂(p) = s +

Nb(p, up̂) − c(p) and b(p, up̂) > c(p) on ]p̂, 1]; (ii) b(p, up̂) = c(p) at all beliefs p ∈ ]p∗N , p̂]
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where the point (p, up̂(p)) lies on or below DN−1 and above D̄ ∧ D1−1/N ; (iii) up̂(p) = s +

b(p, up̂)− c(p)/N and b(p, up̂) ≤ c(p) at all beliefs p ∈ ]p∗N , p̂] where (p, up̂(p)) lies on or below

D̄ ∧ D1−1/N .

Again proceeding as in the proof of Proposition 3, one establishes the existence of a

p̂ ∈ ]p̂N,N−1, p
m[ such that the corresponding function up̂ has an interior global minimum

equal to s at some belief p̆ ∈ ]p∗N , p̂[ . As u′
p̂(p̆) = 0, we have λ(p̆) [up̂(j(p̆))− s]/r = b(p̆, up̂) =

c(p̆)/N < c(p̆). For p̂ = pm, on the other hand, the corresponding function up̂ assumes

value s at pm. As its slope there is positive and c(pm) = 0, we have λ(pm) [up̂(j(p
m)) −

s]/r > b(pm, up̂) = c(pm)/N = c(pm). By continuity of up̂ with respect to p̂, there exists

p‡N ∈ ]p̂N,N−1, p
m[ such that u

p‡
N

, the function up̂ obtained for p̂ = p‡N , has the following

property: there is a belief p♭
N ∈ ]p̆, p‡N [ such that u

p‡
N

(p♭
N ) = s, u

p‡
N

(p) > s for p > p♭
N , and

λ(p♭
N ) [u

p‡
N

(j(p♭
N )) − s]/r = c(p♭

N ).

We define a function ū on [0, 1] by taking ū = u
p‡

N

on [p♭
N , 1], and ū = s everywhere

else. We want to establish that ū is increasing on [p♭
N , 1]. The explicit representation (3)

makes this obvious on [p‡N , 1]. Moreover, the argument given in the proof of Proposition

3 shows that ū is also increasing on [p♯
N , p‡N ] where p♯

N is the rightmost belief at which

the graph of ū crosses D̄ ∧ D1−1/N . Suppose now that ū is not increasing on [p♭
N , p♯

N ].

Then there exist beliefs p′ < p′′ in ]p♭
N , p♯

N ] such that ū′(p′−) ≥ 0, ū′(p′′−) ≤ 0, and ū is

weakly decreasing on [p′, p′′]. As j(p′′) > j(p′) > j(p♭
N ) ≥ p♯

N , we have ū(j(p′′)) > ū(j(p′)),

hence ū(j(p′′)) − ū(p′′) > ū(j(p′)) − ū(p′) and b(p′′, ū) > b(p′, ū). This implies ū(p′) =

s + b(p′, ū) − c(p′)/N < s + b(p′′, ū) − c(p′′)/N = ū(p′′) – a contradiction.

Monotonicity immediately implies that ū is the average payoff function associated with the

following intensity of experimentation: K(p) = N for p ≥ p‡N ; K(p) = Nū(p)/[(N −1)c(p)] <

N for p♯
N < p < p‡N ; K(p) = 1 for p♭

N < p ≤ p♯
N ; and K(p) = 0 for p ≤ p♭

N . Using the

explicit form of the relevant ODDE to the left and right of p♯
N , respectively, we see that

∆λ p♯
N (1−p♯

N )[ū′(p♯
N+)− ū′(p♯

N−)] = r[ū(p♯
N )−s− (1− 1

N )c(p♯
N )], so ū has a kink at p♯

N with

ū′(p♯
N−) > ū′(p♯

N+) if and only if the intersection with D̄∧D1−1/N is below D1−1/N ; this kink

then corresponds to a jump in the intensity of experimentation with K(p♯
N−) = 1 > K(p♯

N+).

By construction, K always jumps at p♭
N , and ū always has a kink there. At all other beliefs,

K is continuous, and ū once continuously differentiable.

Step 2: Construction of the players’ payoff functions and strategies. We define

b̄(p, u) = [λ(p) (ū(j(p)) − u(p)) − ∆λ p(1 − p)u′(p)]/r

for any left-differentiable real-valued function u on ]0, 1]. (This is the benefit of experimen-

tation when the value after a success is given by the payoff function ū.)

Fix any two beliefs pℓ < pr in [p♭
N , p♯

N ] and consider the four functions uℓF , uℓE , urF

and urE on [pℓ, pr] that are uniquely determined by the following properties: uℓF (pℓ) =

uℓE(pℓ) = ū(pℓ); urF (pr) = urE(pr) = ū(pr); on ]pℓ, pr], uℓF and urF solve the free-rider ODE

u(p) = s+ b̄(p, u), while uℓE and urE solve the experimenter ODE u(p) = s+ b̄(p, u)−c(p). By
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construction, [(N − 1)uℓF + uℓE ]/N coincides with ū at pℓ and solves the same ODE as ū on

]pℓ, pr], namely u(p) = s + b̄(p, u) − c(p)/N , so it must coincide with ū on [pℓ, pr]. The same

argument applies to [(N − 1)urF + urE ]/N . We can thus conclude that (N − 1)uℓF + uℓE =

(N − 1)urF + urE on [pℓ, pr].

Next, we have u′
ℓF (pℓ+) > ū′(pℓ+) since limp↓pℓ

b̄(p, uℓF ) = b̄(pℓ, ū) − c(pℓ)/N < b̄(pℓ, ū)

and limp↓pℓ
[ū(j(p)) − uℓF (p)] = ū(j(pℓ)) − ū(pℓ). Thus, uℓF (p) > ū(p) immediately to the

right of pℓ. Now, there cannot exist a belief p′ ∈ ]pℓ, pr] such that uℓF (p′) = ū(p′) and

u′
ℓF (p′) ≤ ū′(p′), because we would then have c(p′)/N = b(p′, ū) − b̄(p′, uℓF ) = −∆λ p′(1 −

p′)[ū′(p′)− u′
ℓF (p′)]/r ≤ 0 – a contradiction. This implies that uℓF > ū on the entire interval

]pℓ, pr]. Analogous arguments establish that uℓE < ū on ]pℓ, pr] as well as urF < ū and

urE > ū on [pℓ, pr[ .

In particular, there exists a belief p ∈ ]pℓ, pr[ such that uℓE(p) = urF (p). Let p1 denote

the lowest such belief and define a continuous function u1(· | pℓ, pr) on [pℓ, pr] by setting

u1(· | pℓ, pr) = uℓE on [pℓ, p1] and u1(· | pℓ, pr) = urF on [p1, pr]. Using the identity (N −

1)uℓF +uℓE = (N −1)urF +urE , we see that urE(p1)−uℓF (p1) = (N −2)[uℓF (p1)−urF (p1)].

If N = 2, we define a continuous function u2(· | pℓ, pr) on [pℓ, pr] by setting u2(· |pℓ, pr) = uℓF

on [pℓ, p1] and u2(· |pℓ, pr) = urE on [p1, pr].

If N > 2, we consider the function u[2] that coincides with uℓF at p1 and solves the

experimenter ODE u(p) = s + b̄(p, u) − c(p) on ]p1, pr]. As urE(p1) > uℓF (p1), there is

a belief p ∈ ]p1, pr[ such that u[2](p) = urF (p). Let p2 denote the lowest such belief and

define a continuous function u2(· | pℓ, pr) on [pℓ, pr] by setting u2(· | pℓ, pr) = uℓF on [pℓ, p1],

u2(· | pℓ, pr) = u[2] on [p1, p2] and u2(· | pℓ, pr) = urF on [p2, pr]. By the same argument as

above, (N − 2)uℓF + u[2] + urF = (N − 1)urF + urE on [p1, p2], which is easily seen to imply

urE(p2) − uℓF (p2) = (N − 3)[uℓF (p2) − urF (p2)]. If N = 3, we define a continuous function

u3(· | pℓ, pr) on [pℓ, pr] by setting u3(· | pℓ, pr) = uℓF on [pℓ, p2] and u3(· | pℓ, pr) = urE on

[p2, pr].

If N > 3, we proceed as in the previous paragraph to determine a belief p3 ∈ ]p2, pr[ and

a continuous function u3(· |pℓ, pr) that coincides with uℓF on [pℓ, p2], solves the experimenter

ODE on ]p2, p3] and coincides with urF on [p3, pr]. Performing as many steps as necessary,

we end up with beliefs p0 = pℓ < p1 < p2 < . . . < pN−1 < pN = pr and continuous

functions u1(· |pℓ, pr), . . . , uN (· |pℓ, pr) on [pℓ, pr] such that un(· |pℓ, pr) coincides with uℓF on

[pℓ, pn−1], solves the experimenter ODE on ]pn−1, pn] and coincides with urF on [pn, pr]. By

construction, the average of these N functions coincides with ū.

Now consider a finite family of contiguous intervals ]pℓ,i, pr,i] whose union equals ]p♭
N , p♯

N ].

For each of these intervals, let pn,i denote the corresponding belief pn as determined in the

previous paragraph. Define functions u1, . . . , uN on the unit interval by setting un = s on

[0, p♭
N ], un = un(· | pℓ,i, pr,i) on ]pℓ,i, pr,i] and un = ū on ]p♯

N , 1]. For n = 1, . . . , N , define

a strategy kn as follows: kn(p) = 1 if p lies in ]p‡N , 1] or one of the intervals ]pn−1,i, pn,i];

kn(p) = 0 if p lies in [0, p♭
N ] or one of the intervals ]pℓ,i, pn−1,i] and ]pn,i, pr,i]; kn(p) =

ū(p)/[(N − 1)c(p)] everywhere else. Clearly, un is player n’s payoff function associated with

37



the strategy profile (k1, . . . , kN ), and ū is the corresponding average payoff function. Note

that by construction, u1 is differentiable at p♭
N with u′

1(p
♭
N ) = 0.

Step 3: Ensuring mutually best responses. The following arguments establish that player n

plays a best response against K¬n as implied by the strategy profile constructed in Step 2.

First, the graph of un is above DN−1 on ]p‡N , 1], so playing R is optimal against K¬n(p) =

N −1 there. Second, b(p, un) = c(p) on ]p♯
N , p‡N ], making kn(p) = ū(p)/[(N −1)c(p)] trivially

optimal on this interval. Third, after increasing the number and reducing the size of the

intervals ]pℓ,i, pr,i] if necessary, the graph of un is above level s and below D1 on ]p♭
N , p♯

N [ ,

so it is optimal for player n to play R whenever all other players play S, and to play S

whenever one other player plays R. Fourth, we have b(p♭
N , un) = λ(p♭

N ) [un(j(p♭
N )) − s]/r =

λ(p♭
N ) [ū(j(p♭

N )) − s]/r = c(p♭
N ) as the left-hand derivative of un at p♭

N is zero, so playing S

is optimal at this belief. Fifth, un(j(p)) is at least weakly increasing and c(p) decreasing on

[0, p♭
N [ , therefore b(p, un) < c(p) on this interval, again implying optimality of S.

Proof of Proposition 8: The proof proceeds in four steps, two of which are simpler

versions of the corresponding steps in the proof of Proposition 6. Let p̂2,1 denote the belief

where the graph of V ∗
2 cuts D1, and consider I = [p̂2,1 − ǫ, pm] with ǫ > 0 small enough that

for all p̂ ∈ I, the unique solution to (1) with N = 2 that crosses D1 at the belief p̂ has positive

slope there.

Step 1: Construction of the average payoff function. Fix a belief p̂ ∈ I. On [p̂, 1], we define

up̂ as the unique solution to (1) with N = 2 that starts on D1 at p̂. On [p∗2, p̂[ , we define up̂

as the unique solution to the ODE

∆λ p(1 − p)u′(p) + [r + λ(p)]u(p) = r
2 [s + λ(p)h] + λ(p)up̂(j(p))

that ends on D1 at p̂. By construction, up̂ is continuous, up̂(p) = s+2b(p, up̂)− c(p) on ]p̂, 1],

and up̂(p) = s + b(p, up̂) −
1
2c(p) on ]p∗2, p̂].

Proceeding as in the proof of Proposition 6, one establishes the existence of a p̂ ∈ ]p̂2,1, p
m[

such that the corresponding function up̂ has the following property: there is a belief p̄ ∈ ]p∗2, p̂[

such that up̂(p̄) = s, up̂(p) > s for p > p̄, and λ(p̄) [up̂(j(p̄)) − s]/r = c(p̄).

We define a function ū on [0, 1] by taking ū equal to the function up̂ just determined on

[p̄, 1], and ū = s everywhere else. We want to establish that ū is increasing on [p̄, 1]. The

explicit representation (3) makes this obvious on [p̂, 1]. Suppose now that ū is not increasing

on [p̄, p̂]. Then there exist beliefs p′ < p′′ in ]p̄, p̂] such that ū′(p′−) ≥ 0, ū′(p′′−) ≤ 0,

and ū is weakly decreasing on [p′, p′′]. As j(p′′) > j(p′) > pm, we have ū(j(p′′)) > ū(j(p′)),

hence ū(j(p′′)) − ū(p′′) > ū(j(p′)) − ū(p′) and b(p′′, ū) > b(p′, ū). This implies ū(p′) =

s + b(p′, ū) − c(p′)/2 < s + b(p′′, ū) − c(p′′)/2 = ū(p′′) – a contradiction.

Step 2: Construction of the players’ payoff functions and strategies. We define

b̄(p, u) = [λ(p) (ū(j(p)) − u(p)) − ∆λ p(1 − p)u′(p)]/r
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for any left-differentiable real-valued function u on ]0, 1].

For any two beliefs pℓ < pr in [p̄, p̂], Step 2 in the proof of Proposition 6 yields a belief

ps ∈ ]pℓ, pr[ (denoted by p1 there) as well as continuous functions u1(· |pℓ, pr) and u2(· |pℓ, pr)

on [pℓ, pr]. Both functions coincide with ū at the beliefs pℓ and pr; u1(· | pℓ, pr) solves

u(p) = s + b̄(p, u) − c(p) on ]pℓ, ps] and u(p) = s + b̄(p, u) on ]ps, pr]; u2(· | pℓ, pr) solves

u(p) = s+ b̄(p, u) on ]pℓ, ps] and u(p) = s+ b̄(p, u)− c(p) on ]ps, pr]; the average of these two

functions coincides with ū on all of [pℓ, pr].

It is easily seen that u1(· | pℓ, pr) < ū < u2(· | pℓ, pr) on ]pℓ, pr[ . Moreover, using similar

arguments as for the average payoff function, it is straightforward to show that u1(· |pℓ, pr) is

increasing on [pℓ, pr], and u2(· |pℓ, pr) on [pℓ, ps]. However, these arguments do not preclude

the possibility that the function u2 is decreasing on some interval [ps, ps + ǫ].

Now consider a finite family of contiguous intervals ]pℓ,i, pr,i] whose union equals ]p̄, p̂].

For each of these intervals, let ps,i denote the corresponding belief ps as determined above.

Define functions u1 and u2 on the unit interval by setting un = s on [0, p̄], un = un(· |pℓ,i, pr,i)

on ]pℓ,i, pr,i], and un = ū on ]p̂, 1]. Define a simple strategy k1 by setting k1(p) = 1 if and

only if p lies in ]p̂, 1] or one of the intervals ]pℓ,i, ps,i], and a simple strategy k2 by setting

k2(p) = 1 if and only if p lies in ]p̂, 1] or one of the intervals ]ps,i, pr,i]. Clearly, u1 and u2

are the payoff functions associated with the strategies k1 and k2, and ū is the corresponding

average payoff function. By construction, u1 is differentiable at p̄ with u′
1(p̄) = 0.

Step 3: Establishing that u′
2(p̂) > −∆λh. Unlike u1, the function u2 is not necessarily

increasing on [p̄, p̂], so we do not know whether its graph lies below the diagonal D1 to the

left of p̂, which will be important to establish the mutual best-response property in Step 4

below. Our next aim, therefore, is to show that u′
2(p̂) > −∆λh, implying that u2 stays below

D1 to the immediate left of p̂.

We have u2(p̂) = s+b̄(p̂, u2)−c(p̂) = s+c(p̂), hence b̄(p̂, u2) = 2c(p̂) and ∆λp̂ (1−p̂)u′
2(p̂) =

λ(p̂)[ū(j(p̂))− s− c(p̂)]− 2rc(p̂). As ū(p) = λ(p)h + 2c(p̂)1−p
1−p̂

(

Ω(p)
Ω(p̂)

)µ2

on [p̂, 1], equation (2)

for N = 2 implies λ(p̂)ū(j(p̂)) = λ2
1hp̂+λ2

0h(1− p̂)+ 2
[

r
2 + λ0 − µ2∆λ

]

c(p̂). Straightforward

computations now reveal that

u′
2(p̂) = ∆λh − 2

(

µ2 +
r

2∆λ
+ p̂

)

c(p̂)

p̂ (1 − p̂)

and that u′
2(p̂) > −∆λh if and only if p̂ is larger than

p+ =
(s − λ0h)(µ2 + r

2∆λ)

λ1h − s + ∆λh (µ2 + r
2∆λ)

,

which is easily seen to lie between p∗2 and pm. As p̂ > p̂2,1 (the belief where the graph of

V ∗
2 cuts D1), a sufficient condition for u′

2(p̂) > −∆λh is that p̂2,1 ≥ p+ or, equivalently,

V ∗
2 (p+) ≤ s + c(p+). Further computations show that the latter is the case if and only if
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µ2 + r
2∆λ + 1

µ2 + 1

(

µ2

µ2 + 1

µ2 + r
2∆λ + 1

µ2 + r
2∆λ

)µ2

≤ 2.

Now, since r
2∆λ < µ2 and the function h(x) = (µ2 + x + 1)µ2+1(µ2 + x)−µ2 is increasing for

x ≥ 0, the left-hand side of this inequality is bounded above by

2µ2 + 1

µ2 + 1

(

µ2

µ2 + 1

2µ2 + 1

2µ2

)µ2

,

which is clearly smaller than 2.

Step 4: Ensuring mutually best responses. As u1 is increasing on [p̄, 1], player 1 is easily

seen to play a best response against k2, irrespective of the choice of intervals [pℓ,i, pr,i]. First,

u1 is above D1 on ]p̂, 1]. Second, it is above s and below D1 on ]p̄, p̂[ . Third, we have

b(p̄, u1) = λ(p̄) [u1(j(p̄)) − s]/r = λ(p̄) [ū(j(p̄)) − s]/r = c(p̄) as the left-hand derivative of

u1 at p̄ is zero. Fourth, u1(j(p)) is at least weakly increasing and c(p) decreasing on [0, p̄[ ,

therefore b(p, u1) < c(p) on this interval.

Turning to player 2, the fact that u′
2(p̂) > −∆λh allows us to choose a finite family of

intervals [pℓ,i, pr,i] for any δ > 0 such that the graph of u2 is below the diagonal D1 on ]p̄, p̂[

and the vertical distance u2−u1 is at most δ at any belief in this interval (and hence on [0, 1]).

If we take δ sufficiently small, player 2 is now also seen to play a best response. On [p̄, 1], the

arguments are exactly the same as for player 1. On [j−1(p̂), p̄[ , u2(j(p)) = ū(j(p)) is increasing

and c(p) decreasing, hence b(p, u2) < c(p). On [0, j−1(p̂)[ , finally, u2(j(p)) ≤ u1(j(p))+δ and

b(p, u1) ≤ b(j−1(p̂), u1) < c(j−1(p̂)), hence b(p, u2) ≤ b(p, u1) + λ(p) δ/r < c(j−1(p̂)) < c(p)

for δ sufficiently small.

Proof of Corollary 4: The proof parallels that of Corollary 1. Here we consider the

general case where K of the N players are playing R, for which the relevant ODE is

∆λ p(1 − p)u′(p) + [ r
K + λ(p)]u(p) = k r

K λ(p)h + (1 − k) r
K s + λ(p)u(0)(j(p))

with k = 0 for a free-rider and k = 1 for an experimenter. As in the proof of Corollary 1, we

take u(0)(p) = λ(p)h+C(0) (1−p)Ω(p)µN with C(0) being the constant that fixes payoffs above

the diagonal where everyone plays R. Having noted that under condition (7) the recursion

ends after just one iteration, i.e. with u(1), we obtain equations for un of the form

un(p) =

(

λ1h
λ1

rK−1 + λ1
+

rK−1

rK−1 + λ1
[kn(p)λ1h + (1 − kn(p))s]

)

p

+

(

λ0h
λ0

rK−1 + λ0
+

rK−1

rK−1 + λ0
[kn(p)λ0h + (1 − kn(p))s]

)

(1 − p)

+ C(0)
(

λ0 (λ0/λ1)
µN

rK−1 + λ0 − µN∆λ

)

(1 − p)Ω(p)µN + C(1)
n (1 − p)Ω(p)(rK−1+λ0)/∆λ ,

and setting K = 1, N = 2 leads to the representations stated in the corollary.
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