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Abstract

We characterize optimal incentive contracts in a moral hazard framework extended in

two directions. First, after effort provision, the agent is free to leave and pursue some

ex-post outside option. Second, the value of this outside option is increasing in effort, and

hence endogenous. Optimal contracts may entail properties such as inducing first-best ef-

fort and surplus, or non-responsiveness with respect to changes in verifiable parameters.

Moreover, while always socially inefficient, separation might occur in equilibrium. Except

for the latter, these findings are robust to renegotiation. When the outside option is exoge-

nous instead, the standard results obtain.
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1 Introduction

Motivation In the standard moral hazard model, participation of the agent throughout the

relationship with the principal is taken for granted. That is, after a contract is signed, the agent

chooses his effort, subsequently some output is realized, and finally the agent receives payments

as stipulated by the contract. However, the principal-agent literature has identified a number

of contexts, employment relationships in particular, where despite of a formal contract with

the principal, agents are basically free to leave at any time (see e.g., Harris and Holmstrom,

1982; Holmstrom, 1983; Meyer, 1987; Phelan, 1995; Krueger and Uhlig, 2006). Potential factors

contributing to this phenomenon include the employment-at-will doctrine in U.S. employment

law or difficulties in the course of trying to enforce participation on an unwilling employee (see

e.g., Malcomson, 1999, p. 2304f.).

For the principal, the agent’s freedom to leave might be a concern when both the agent’s

effort and his subsequent presence are essential for project success. At the same time, in

many settings, more effort within the relationship with the principal will improve the agent’s

outside opportunities. For example, in the course of working on the project, the agent might

accumulate crucial human capital that he may also profitably use outside his relationship with

the principal (e.g., by starting a new business). If this is the case, the principal will have

to take into account that providing high effort incentives might make it more attractive for

the agent to leave in the middle of the project; thereby endangering the project return. As

discussed below, such issues are particularly relevant for “knowledge workers” (Drucker, 1959)

whose human capital is crucial for the principal (see e.g., Pakes and Nitzan, 1983; Anton and

Yao, 1995; Lerner and Malmendier, 2010).

In such a context, the following questions arise naturally: How should optimal incentive

contracts be structured in settings where contracts must be sufficiently attractive to retain

the agent? Might it be optimal for the principal to induce separation even if this is socially

inefficient? Does the additional source of frictions imposed by the agent’s freedom to leave

necessarily have a negative welfare effect?
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Framework To address these questions, we employ a workhorse moral hazard model (risk-

neutrality, limited liability, and binary output space) and modify it in the following two ways.1

First, while the principal can commit to the contract terms (i.e., output-dependent payments),

the agent is free to leave.2 In particular, after effort provision the agent learns the realized

state of the world and may opt to separate from the principal in order to pursue some ex-post

outside option. Second, we focus on the case where this ex-post outside option is increasing in

the agent’s chosen effort, and hence endogenous.3

Compared to the standard model, these additional features have a non-trivial impact on

the incentive structure. In particular, the agent’s ex-post participation decision will not only

depend on the terms of the initial contract (which determines his payoff when staying with the

principal), but may also depend on his chosen effort level (which, via the value of his ex-post

outside option, determines his payoff when leaving). As a result, the agent’s optimal effort and

ex-post participation decisions are intertwined, which, compared to the standard model, makes

the principal’s contract design problem substantially more intricate. Consequently, the main

contribution of this paper is the characterization of optimal incentive contracts in this setting.

Results We show that the contract optimally offered by the principal is either one of two

types: under a no-separation contract all specified payments are sufficiently large such that

the agent is induced to always stay, which is also the ex-post efficient decision. Alternatively,

under a partial-separation contract, the agent is induced to leave in the low state of the world.

The exact properties of optimal no-separation contracts depend on the size of the first-best

effort level and thus on how strongly effort affects expected surplus. In particular, there are

three relevant cases, each of which may emerge in equilibrium. First, as long as the first-best

effort level is not too large, it is optimally induced by the principal, and the first-best surplus is

realized. In this case, from a welfare perspective, the additional friction imposed by the agent’s

freedom to leave in fact neutralizes the frictions imposed by unobservable effort and limited

1See e.g., Laffont and Martimort (2002, pp. 194ff.) for a textbook treatment and Tirole (1999) for an

application in the context of corporate governance.
2This is in line with the literature on one-sided commitment discussed above, which argues that in many

settings (such as employment, financing, or insurance), principals will find it easier to commit to initial contract

terms; legally or by other means such as reputation (see e.g., Krueger and Uhlig, 2006).
3In the following, we will frequently omit the term “ex-post” and simply refer to the agent’s “outside option”.

As will become clear, participation ex-ante is always ensured, and hence not an issue.
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liability alone.4 Second, for intermediate levels of first-best effort, the principal optimally offers

exactly the same contract (inducing also the same effort level) in this entire range of parameters.

Hence, while we are in a complete-contracting framework, an outside observer may perceive

the optimal contract as incomplete in the sense of being non-responsive to changes in the

verifiable output (for a detailed discussion of incomplete contracts and their foundation, see

e.g., Tirole, 1999). Third, for sufficiently large first-best effort levels, the implemented effort

is again increasing in first-best effort, but it is inefficiently low and, compared to the standard

model with full commitment, the downward distortion is even larger.

Clearly, the principal can always ensure no-separation by stipulating sufficiently attractive

payments. However, we show that for large levels of first-best effort, the principal may strictly

prefer to offer a partial-separation contract, which induces the agent to leave when the low state

of the world is realized. This result holds even though we assume that in case of separation, the

principal does not benefit at all from the agent’s effort. Moreover, separation is also socially

inefficient.5 Our partial-separation result is reminiscent of up-or-out policies, as frequently used

in human-capital intensive industries, such as law or consulting firms (see e.g., Gibbons and

Waldmann, 1999; O’Flaherty and Siow, 1995). Such policies are often enforced informally, for

example by offering an employee a very low bonus or by moving him to a less intriguing job, in

order to induce him to leave “voluntarily”. As a further interesting feature of partial-separation

contracts, the agent may in fact be harmed if his ex-post outside option becomes ceteris paribus

more attractive.

Finally, we show that our results are driven by the combination of the agent’s freedom

to leave and the endogeneity of his outside option. To this end, we consider a model variant

where the agent is free to leave, but where his outside option is exogenous, i.e., independent

of the chosen effort (such that his subsequent participation decision will not be affected by his

effort choice). Compared to the standard model with full-commitment, the payments under the

optimal contract are then simply scaled up by the value of the outside option, but otherwise

the same effort and participation decisions obtain.

4In some cases, (employment) contracts stipulate non-compete clauses with the purpose of preventing agents

from using their acquired skills outside the relationship. However, as discussed in section 5, courts are often

reluctant to enforce such clauses, which, from a welfare perspective, our result seems to corroborate.
5However, as discussed in section 5, if renegotiation cannot be ruled out, without loss of generality, one can

restrict attention to no-separation contracts, and all of our results with respect to this type of contract remain

intact.
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Intuition One crucial difference between the exogenous and endogenous outside option cases

is that in the former, the principal can avoid leaving a rent to the agent at least in some states

of the world (i.e., the agent is then indifferent between staying and leaving in those states). In

the latter case of an endogenous outside option, however, the agent will in general respond to

any given contract by choosing an effort level such that ex-post, he either strictly prefers to

stay or strictly prefers to leave, which implies that he will earn a rent in each state in which he

stays with the principal. Consequently, inducing no-separation is more costly for the principal,

and the agent’s rent has properties qualitatively different from both the standard model and

the exogenous outside option case.

The optimal no-separation contract makes the agent indifferent between choosing an effort

level that subsequently induces him to stay in all states and choosing a different effort level that

(depending on parameters) subsequently induces him to either (i) leave in all states or (ii) leave

in the low state only. In the former case, the agent’s payoff (and hence, his rent) is invariant

in the terms of the contract, which makes the principal the residual claimant, who then finds

it optimal to provide first-best incentives. In the latter case, the agent’s rent is increasing in

effort, which leads the principal to optimally distort the induced effort below first-best, and

potentially even below the effort level that would obtain in the standard model; the reason

being that the agent’s marginal rent has an additional term to ensure that separation does not

occur. Moreover, at the boundary between these two cases the agent’s marginal rent makes a

discrete jump from zero to strictly positive, and so does the principal’s marginal virtual cost

of inducing a given effort level. Consequently, even as the marginal benefit of more effort

increases, there exists a parameter range where the principal keeps the implemented effort level

constant, resulting in non-responsiveness of the optimal contract in that range.

When the effort level that the principal intends to implement is large, inducing no-separation

is very costly for the principal because, in this case, the agent’s rent is increasing in effort.

Hence, as it allows to reduce the agent’s rent, the principal might prefer to induce partial-

separation; thereby foregoing the output in the low state. In this case, the principal free-rides on

the (external) effort incentives generated by the agent’s endogenous outside option. Moreover,

the effort incentives generated through the outside option respectively the contract may be

substitutes, and hence a more attractive outside option may lead the principal to reduce the

contractual payments, which, in total, might even reduce the agent’s expected payoff.
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Related literature To the best of our knowledge, this is the first paper to consider optimal

incentive contracts in a moral hazard framework where the agent is free to exercise some

(ex-post) outside option that is endogenous (i.e., determined by the effort chosen inside the

contractual relationship with the principal). Of course, these important features have been

addressed previously, but in contexts differing from ours.

There is an early strand of research on labor markets with one-sided commitment where

the agent is free to leave but the principal can commit to the contract terms (for an overview,

see e.g., Meyer, 1987). For example, in order to analyze career wage profiles, Harris and

Holmstrom (1982) and Holmstrom (1983) study optimal insurance problems in the context of

dynamic principal-agent setups where ex-ante effort provision plays, however, no role.6 More

closely related, in one of the first papers to discuss limited liability in a (static) moral hazard

framework, Sappington (1983) considers a setting with hidden information: after having entered

the relationship with the principal, the agent receives private information on a productivity

shock and may decide to leave the principal before providing effort.

Furthermore, a prominent strand in the one-sided commitment literature deals with labor

mobility; studying situations where “knowledge workers” (such as scientists or engineers) may

walk away in the course of a project (e.g., in order to start their own business), which might

endanger the principal’s project return. For example, in a seminal paper, Pakes and Nitzan

(1983) investigate optimal separation decisions of firms and workers in a complete information

framework where effort is fixed; resulting in efficient retention decisions in all possible states

of the world. Building on Pakes and Nitzan (1983), Anton and Yao (1995) also abstract from

effort provision, but analyze a situation where the agent has private information on the value of

an innovation (which, when leaving the principal, he may exploit to form a start-up business).

They show that there might be inefficient separation ex-post, the extent of which depends on

the degree of asset complementarity and the nature of competition. In a recent paper, Lerner

and Malmendier (2010) study a phenomenon that is related to issues of labor mobility but does

not necessarily imply that the agent (completely) leaves the principal. For the biotechnology

industry, Lerner and Malmendier (2010) document that “project substitution” seems to be a

major concern of financing firms, who worry that (instead of solely focussing on completing the

6Phelan (1995) and Krueger and Uhlig (2006) consider related setups to study optimal dynamic consumption

profiles. Note that in Krueger and Uhlig (2006) the term “endogenous outside option” is used to describe an

outside option whose value is determined by competition among principals.
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project) start-up entrepreneurs may spend time and resources on work for alternative alliances,

own products, or even academic papers (leading to a dissipation of the project returns). Thus,

project substitution may be seen as a milder version of our setting where, upon the agent’s

departure, the project return is lost completely.

With respect to endogenous outside options, potential effects of effort on an agent’s outside

opportunities have not received much attention in the moral hazard literature (for a recent

exception, see e.g., Netzer and Scheuer, 2008). However, such potential outside effects are a

central feature in the literature on career concerns (see e.g., Holmstrom, 1999; Dewatripont,

Jewitt, and Tirole, 1999). There, over time, the principal (and potential alternative employ-

ers) receive information about the agent’s unobservable productivity type by observing output

(which depends on both the agent’s type and his unobservable effort). In the simplest ver-

sion, there are no output-contingent contracts, and in each period the agent’s outside option

is based on his assessed ability.7 Consequently, through his current effort choice, the agent

aims to influence the principal’s (and the outside market’s) learning process. More closely

related, Gibbons and Murphy (1992) consider the interaction of internal incentives (through

explicit incentive contracts) and market-based incentives (through career concerns) to study

their relative importance over the career horizon.

The remainder of the paper is structured as follows. Section 2 introduces the model and the

first-best benchmark. Section 3 derives optimal agent behavior for a given contract. Section 4

contains our main results: we characterize optimal no-separation contracts and optimal partial-

separation contracts, as well as the principal’s ultimate choice between the two. Section 5 in

turn discusses non-compete clauses, the exogenous outside option case as well as two robustness

checks: we show that the set of contracts considered is without loss of generality, and we discuss

the issue of renegotiation. Section 6 concludes. All proofs are relegated to the Appendix.

2 Model

Basic framework We consider an extension of a standard moral-hazard model with a prin-

cipal (she) and an agent (he), who are both risk-neutral and where the agent faces a limited-

7Note that, similar to the present paper, in career concern models the agent is in principle free to leave, but

the focus is on potential separation after output has been realized.
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Figure 1: Sequence of events

liability constraint.8 The sequence of events is as follows (see Figure 1): The principal needs

the agent to conduct some project and proposes (take-it-or-leave-it) a contract to the agent at

date 1 (feasible contracts will be discussed below). When deciding whether or not to accept

the offer, we follow the standard model in that the agent’s (ex-ante) reservation utility is a

constant, which we set to zero.

At date 2, the agent exerts unobservable effort e ∈ [0, 1], which stochastically influences

which state of the world s ∈ {s, s} is realized at date 3, where s > s > 0, and where ∆s ≡ s−s.

In particular, we assume Prob(s = s) = e and Prob(s = s) = 1− e, so that higher effort makes

s = s more likely. Effort costs are given by c (e) = 1
2e2 for simplicity.9

In addition, the agent’s effort choice not only affects the expected surplus of the relationship

with the principal, but also the value v(e) of the agent’s ex-post outside option that he might

pursue at date 4 after having privately learned the state s at date 3. As discussed above, the

agent might, for example, acquire some knowledge in the course of the project that he can

also profitably use outside the relationship with the principal, i.e., v′(e) > 0. In what follows,

let v(e) = λe so that the parameter λ > 0 measures the intensity of the agent’s effort on his

ex-post outside option. Moreover, we assume λ < s such that, independent of e, separation is

always inefficient ex-post.

We assume that the principal only reaps a profit from the project if the agent decides to

stay at date 4, i.e., the presence of the agent is essential for the principal to realize a profit at

all. This assumption makes separation very harmful for the principal. Nevertheless, as shown

below, the principal might find it optimal to induce separation, which, however, is inefficient.

Formally, if the agent stays (i.e., “completes the project”), the principal’s verifiable gross profit

at date 5 is simply s. If the agent leaves, the principal’s gross profit is zero.

8Note that, in the absence of limited liability, the first-best outcome can easily be implemented, for example,

by a sell-the-shop contract.
9While at some points this assumption simplifies the analysis, it is not crucial for our main results.
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Informational assumptions and contract space Since the agent’s effort e is unobservable,

his ex-post outside option is non-contractible (which is line with the literature on knowledge

workers). In contrast, the gross profit realized by the principal at date 5 (which is s, s, or 0 in

case the agent leaves) is observable and verifiable. Therefore, the initial contract may specify

payments that may depend on the realized gross profit and that, due to the agent’s limited

liability, have to be non-negative. In principle, the contract may also condition on messages

that, after date 3, the agent sends about his effort level and the realized state. However, we

show in section 5 that, akin to the standard moral hazard model, for any incentive-compatible

message-dependent contract there exists a contract that does not condition on messages and

leads to the same equilibrium outcome (i.e., effort level, ex-post participation decisions, and

payoffs). Moreover, as is also shown in section 5, from the principal’s perspective, it can neither

be optimal to promise a positive payment if the gross profit is zero (i.e., if the agent leaves)

nor to specify a payment when s is realized that exceeds the payment when s is realized.

Hence, without loss of generality, in the following we restrict attention to contracts of the form

t ∈ T+ ≡ {(t, t) | t ≥ t ≥ 0}, where t and t denote the transfers to the agent if the realized

gross profit is given by s and s, respectively.

As discussed in the introduction, we focus on a situation where there is one-sided commit-

ment only: while the principal can commit to the payments specified in the contract, the agent

cannot be forced (or simply promise) to stay. That is, contracts that prohibit the agent to leave

at intermediate stages of the project are not feasible. Consequently, if the principal intends

to induce the participation of the agent throughout the entire project, she must structure the

contractually promised payments in a way that gives the agent an incentive to stay.

Payoffs Given the discussion above, from an ex-ante perspective, the principal’s expected

payoff is

e · (s − t) · I + (1 − e) · (s − t) · I, (1)

while for the agent we have

e ·
[
t · I + v(e) · (1 − I)

]
+ (1 − e) · [t · I + v(e) · (1 − I)] − c(e), (2)

where I and I are indicator variables that are equal to 1 if, at date 4, the agent decides to

stay with the principal in state s and s, respectively, and that are zero otherwise. Note that
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(1) and (2) immediately imply that ex-ante participation is not an issue. That is, the principal

can always secure herself a payoff of at least zero by proposing the contract t = t = 0, while

the agent can secure himself a payoff of at least zero by choosing e = 0.

First-best Note that the assumption λ < s together with e ∈ [0, 1] implies v(e) < s for all e

and s, and hence, from a first-best perspective, the agent should never leave the principal at

stage 4. Consequently, the first-best effort level eFB is given by

eFB(∆s) ≡ argmax
e

{
es + (1 − e)s − 1

2
e2

}
= min(∆s, 1), (3)

and, as e = 0 is feasible, the resulting first-best social surplus is strictly positive. Note that

the first-best effort level depends on the spread ∆s = s − s only.

3 Optimal agent behavior for a given contract

In this section, we characterize the optimal agent behavior for a given contract t, where we

proceed in four steps. In step 1, we derive the agent’s optimal ex-post participation decision

at date 4 (Lemma 1). This decision will, in general, depend on both the contract and the

previously chosen effort level: the latter affects the value of the agent’s outside option, which

in combination with the contract terms is crucial for his (optimal) decision to stay or leave.

It turns out that, when taking into account the agent’s optimal ex-post participation decision,

the functional form of his payoff U(e, t) varies across the contract space. Consequently, in order

to ultimately derive the agent’s optimal effort level, in a preliminary step 2, we characterize

U(e, t) (Lemma 2). In step 3, we establish that the number of candidate optimal effort level is

limited (Lemma 3). Finally, in step 4, we show that the contract space can be partitioned in

three subsets of contracts that differ with respect to the agent’s ex-post participation decisions

that emerge in equilibrium. In combination with our previous results, this will then allow to

fully characterize the agent’s optimal behavior for any given contract (Proposition 1).

Step 1: Ex-post participation At date 4, the state s is already known to the agent, so

that his ex-post participation decision depends on the respective payment t or t as stipulated

in the contract as well as the previously chosen effort level (which leads to an outside option

of λe). Clearly, for s given, the agent will optimally stay as long as the payment from the
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principal (weakly) exceeds the agent’s outside option. Hence, in state s (s) the agent optimally

stays if t ≥ λe (t ≥ λe) holds.10 Put differently, in state s (s), the agent optimally stays if and

only if the previously chosen effort level is weakly below some threshold value, i.e., if e ≤ t
λ

(e ≤ t
λ
) holds. Note that t ≥ t implies that it can never be optimal for the agent to stay when

s = s, but to leave when s = s.

Lemma 1 (Optimal ex-post participation at date 4) For a given contract t ∈ T+, the

agent’s optimal participation decision at date 4 may depend on the previously chosen effort level

e. In particular,

(i) for low effort levels e ∈ E2(t) ≡ {e | e ≤ t
λ
}, he stays in both states,

(ii) for intermediate effort levels e ∈ E1(t) ≡ {e | t
λ

< e ≤ t
λ
}, he stays in state s only, and

(iii) for high effort levels e ∈ E0(t) ≡ {e | e > t
λ
}, he stays in neither state.

Note that, depending on the underlying contract t, the sets E1(t) and E0(t) might be

empty (see Figure 2). That is, for a given contract t, independent of the chosen effort level, the

respective ex-post participation decision(s) will not occur in equilibrium. Put differently, when

taking into account the agent’s optimal ex-post participation decisions, in each of the cases (i),

(ii), and (iii) of Figure 2 the functional form of the agent’s payoff (see (2))

U(e, t) ≡ e · max(t, λe) + (1 − e) · max(t, λe) − c(e), (4)

will be different, and its exact functional form depends on the underlying contract t. This issue

is crucial for determining the agent’s optimal effort choice and will be considered next.

Step 2: Characterizing the agent’s payoff function To determine which of the sets

E0(t), E1(t), and E2(t) are non-empty, note that (except for knife-edge cases) one of the

following three situations may emerge for a given contract (see Figure 2): First, for the type

of contract depicted in panel (i) both critical values t
λ

and t
λ

(see Lemma 1) are in the interior

of the effort space [0, 1]. Hence, in this case it depends on the previously chosen effort level

(and hence the induced value of the agent’s outside option) whether the agent decides to stay

in both states (for e ∈ E2(t) = [0, t
λ
]), in the good state s = s only (for e ∈ E1(t) = ( t

λ
, t

λ
]), or

whether he decides to stay in neither state (for e ∈ E0(t) = ( t
λ
, 1]).

10Note that we assume that the agent stays when indifferent, which is also the socially efficient choice.
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Figure 2: Partition of the effort space induced by a given contract: 3 examples

Second, for contracts such as the one depicted in panel (ii), even when choosing maximum

effort (thereby also maximizing his outside option), the agent does not find it optimal to leave

in state s = s. For such contracts, the set E0(t) is empty. However, and similar to panel

(i), it still depends on the agent’s effort level whether he optimally stays in both states (for

e ∈ E2(t) = [0, t
λ
]) or in state s = s only (for e ∈ E1(t) = ( t

λ
, 1]). Finally, as for panel (iii),

even the payment t is sufficiently attractive such that, independent of his outside option, the

agent prefers to stay in both states of the world. Here, both E1(t) and E0(t) are empty, and

we have E2(t) = [0, 1]. This leads to the following result (illustrated in Figure 3):

Lemma 2 (Agent’s payoff function given optimal ex-post participation decisions)

(i) For a given contract t ∈ T+ and optimal ex-post participation decisions, the agent’s

expected payoff is given by

U(e, t) =





U2(e, t) ≡ e · t + (1 − e) · t − 1
2e2 if e ∈ E2(t)

U1(e, t) ≡ e · t + (1 − e) · λe − 1
2e2 if e ∈ E1(t)

U0(e, t) ≡ λe − 1
2e2 if e ∈ E0(t),

(5)

where (a) E2(t), E1(t), E0(t) 6= ∅ for t < λ,11 (b) E2(t), E1(t) 6= ∅ and E0(t) = ∅ for

t < λ ≤ t, and (c) E2(t) 6= ∅ and E1(t) = E0(t) = ∅ for t ≥ λ,

(ii) U(e, t) is continuous in e, and U2(e, t), U1(e, t), and U0(e, t) are strictly concave in e.

(iii)
∂U2(e= t

λ
,t)

∂e
<

∂U1(e= t

λ
,t)

∂e
for t < λ, and

∂U1(e= t
λ

,t)

∂e
<

∂U0(e= t
λ

,t)

∂e
for t > 0.

11For the knife-edge case t = t < λ, we have E1(t) = ∅.
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Figure 3: Non-empty sets Ej(t) depending on the underlying contract t

Step 3: Candidate optimal effort levels Given the payoff function (5), the agent’s optimal

effort choice e∗(t) solves

e∗(t) ∈ arg max
e∈[0,1]

U(e, t). (6)

Note that solving (6) is non-trivial. First, the chosen effort may affect the agent’s subsequent

ex-post participation decision. Hence, the agent has to decide from which of the effort intervals

Ej(t) to select his effort (where, for a given contract, some of these intervals may not exist (see

Lemma 2)). Second, as (5) is piece-wise defined, there might, in principle, be a corner solution

at one of the threshold values t
λ

or t
λ
. However, one can show that such corner solutions

play only a limited role. For an illustration, consider Figure 2 (i), where t
λ
, t

λ
∈ (0, 1) holds.

Lemma 2 (iii) implies that, at the threshold value t
λ
, the slope of U(e, t) makes a positive

jump, because for all e ∈ E1(t) the agent leaves in the bad state, in which case his payoff λe

is increasing in e. An analogous argument applies to the boundary between the sets E1(t) and

E0(t). Intuitively, these observations imply that choosing e = t
λ

respectively e = t
λ

cannot

be optimal for the agent. In particular, we show below that, with the possible exception of

being equal to one, the optimal effort level will satisfy an appropriate first-order condition. To

this end, for j ∈ {0, 1, 2}, implicitly define e∗j (t) by
∂Uj(e,t)

∂e
= 0, where it follows from (5) that

e∗2(t) = ∆t, e∗1(t) = t+λ
2λ+1 , and e∗0(t) = λ.12

12Note that e∗j (t) does not necessarily lie in Ej(t) (or in [0, 1] for that matter), but, of course, the subsequent

results take these restrictions into account.
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Lemma 3 (Candidate optimal effort levels for a given contract) For all t ∈ T+,

(i) if e∗(t) < 1, then, in both states of the world, the agent’s equilibrium ex-post participation

constraint is not binding, i.e., e∗(t) 6= { t
λ
, t

λ
}, and

(ii) there exists some j ∈ {0, 1, 2} such that e∗(t) = min(e∗j (t), 1) and min(e∗j (t), 1) ∈ Ej(t).

For any interior effort level, Lemma 3 (i) implies that, if the principal wants the agent to

stay in a given state, the agent necessarily reaps a rent in this state. This makes inducing

participation more costly compared to the standard model with full commitment, where the

agent reaps a rent in some states only.

Step 4: Optimal agent behavior for a given contract Part (ii) of Lemma 3 is useful

because, as will be shown below, it leads to a partition of the contract space T+ into three

subsets T0, T1, and T2 that differ with respect to the induced equilibrium ex-post participation

decisions (for a preview, see Figure 4). Intuitively, in the set of full-separation contracts T0,

the stipulated payments are relatively low in both states such that the agent’s outside option

becomes relatively attractive. Consequently, the agent will optimally choose a relatively high

effort level, and he will optimally stay in neither state. In contrast, in the set of no-separation

contracts T2, both payments are sufficiently high such that the agent will optimally choose

a relatively low effort level (which keeps his outside option low), and he will optimally stay

with the principal in both states. Finally, as for the set of partial-separation contracts T1, only

payment t is sufficiently large, which will induce the agent to choose an intermediate effort level

such that he will optimally stay with the principal in the high state only.

Before stating the formal result, we define a boundary function b(t), illustrated in Figure 4,

that delineates the sets T0, T1, and T2 and simplifies their formal characterization in Proposition

1 below. Moreover, this boundary function will play a crucial role when deriving the principal’s

optimal choice of contract in Section 4. To simplify the subsequent exposition, note that both

U0(e, t) and e∗0(t) = λ are independent of t. Consequently, (under slight abuse of notation)

define U0 ≡ U0(min(λ, 1), t).

13



Definition 1 (Boundary function) Define a (continuous) function b : t → t as follows:

(i) for t ∈ [t
′
, t

′′
]: b(t) is implicitly defined by U2(e

∗
2(t), t) = U0

(ii) for t ∈ [t
′′
, t

′′′
]: b(t) is implicitly defined by U2(e

∗
2(t), t) = U1(e

∗
1(t), t), and

(iii) for t ∈ [t
′′′

,∞): b(t) = λ

where t
′ ≡ U0, t

′′
is implicitly defined by U1(e

∗
1(t), t) = U0, and t

′′′ ≡ 1 + λ, and where

0 < t
′
< t

′′
< t

′′′
holds.

 
0

t
 

t
 

t
′

T2 

T0 T1 

 Δt=0 

 Δt=1 

bt

t
′′

t
′′′

Figure 4: Sets of full-, partial-, and no-separation contracts

This section’s main result can now be stated as follows:

Proposition 1 (Optimal agent behavior for a given contract) The contract space T+

can be partitioned into three (non-empty) subsets T0, T1, and T2 that differ in the equilib-

rium ex-post participation decision of the agent. In particular, for a given contract t ∈ Tj,

j ∈ {0, 1, 2}, the agent selects equilibrium effort e∗(t) = min(e∗j (t), 1) and subsequently chooses

to stay with the principal in j states of the world. Formally, the sets T0, T1, and T2 are defined

by T2 ≡ { t ∈ T+ | t ≥ b(t) and t ≥ t
′}, T1 ≡ { t ∈ T+ | t < b(t) and t ≥ t

′′}, and T0 ≡ T+ \

(T2 ∪T1), where the continuous boundary function b(t) is decreasing and concave for t ∈ [t
′
, t

′′
],

and increasing and concave with a slope of less than 1 for t ∈ [t
′′
, t

′′′
], and where b(t

′
) = t

′
.
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As for the optimal effort level e∗(t), it follows from Proposition 1 that

e∗(t) =





e∗2(t) if t ∈ T2 and ∆t ≤ 1,

e∗1(t) if t ∈ T1 and t ≤ t
′′′

,

min(λ, 1) if t ∈ T0, and

1 otherwise

(7)

As the boundary function b(t) will be crucial throughout, some more intuition regarding its

shape is useful.13 First, to see why it is decreasing in the interval [t
′
, t

′′
], recall from Definition

1 that on this part of the graph of b(t) it has to hold that U2(e
∗
2(t), t) = U0. Note that

U0 is constant in the (t, t)-space, and, from (5) and the Envelope-Theorem, it follows that

∂U2(e∗2(t),t)

∂t
= e∗2(t) ≥ 0 and

∂U2(e∗2(t),t)
∂t

= 1 − e∗2(t) > 0. Hence, a lower t is required to keep the

agent indifferent when raising t, and vice versa. Second, in the interval [t
′′
, t

′′′
], b(t) is implicitly

defined by U2(e
∗
2(t), t) = U1(e

∗
1(t), t). Note that

∂U1(e∗1(t),t)

∂t
= e∗1(t), which again follows from

(5) and the Envelope-Theorem. Moreover, the boundary between the sets T2 and T1 is located

in a part of the contract space where e∗2(t) < e∗1(t) holds (see the proof of Proposition 1).

Consequently, a higher t raises U1(e
∗
1(t), t) by more than it raises U2(e

∗
2(t), t). Hence, to keep

the agent indifferent as t increases, t must go up as well because it affects U2(e
∗
2(t), t), but

not U1(e
∗
1(t), t) (see (5)). Finally, note that since neither U0 nor U1(e

∗
1(t), t) depend on t, the

boundary between the regions T0 and T1 is a vertical line at t = t
′′
.

4 Optimal contracts

Taking into account the agent’s optimal behavior for a given contract (as characterized in

Proposition 1), an optimal contract maximizes the principal’s expected payoff (see (1))

Π(t) ≡ e∗(t) · (s − t) · I + (1 − e∗(t)) · (s − t) · I, (8)

where I (I) is equal to one iff t ≥ λe∗(t) (t ≥ λe∗(t)), and zero otherwise. It also follows

from Proposition 1 that the principal faces a choice between three types of contracts (i.e.,

contracts from the sets T2, T1, and T0, respectively) that differ in the induced effort and ex-post

13Note that, given a contract on the part of the graph of b(t) where t ∈ [t
′
, t

′′
] holds, the agent is indifferent

between the effort level e∗2(t) ∈ E2(t) and the effort level min(e∗0(t), 1) ∈ E0(t). However, it will become clear

in Section 4 on optimal contracts that, on the equilibrium path, these indifferences are resolved in favor of e∗2(t)

(which also constitutes the socially efficient behavior). This is already taken into account in the definition of

the set T2 that is assumed to include the respective part of the graph of b(t). Similar considerations apply when

resolving indifferences in the definitions of T2, T1, and T0.
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participation decisions; thereby leading to either no-, partial-, or full-separation. However, note

that the principal’s payoff in the latter case is zero, while it will turn out that she can always

secure a strictly positive payoff by instead choosing an appropriate no-separation or partial-

separation contract.14 Consequently, the search for the optimal contract can be restricted to

the former two contract types. Hence, we first characterize optimal no-separation and partial-

separation contracts, respectively (Propositions 2 and 3). We then compare these two contract

types to determine the “globally” optimal contract ultimately chosen by the principal. Thereby,

depending on parameters, either contract type can be strictly optimal (Proposition 4).

The optimal no-separation contract When the principal offers a no-separation contract

t ∈ T2, then from Proposition 1, the agent chooses effort e∗(t) = min(∆t, 1) and (optimally)

stays in both states of the world. It turns out that, in her search for the optimal no-separation

contract, the principal can narrow down the set of candidate optimal contracts considerably to

include only the upper bold line of Figure 5, which corresponds to the graph of the boundary

function b(t) over the interval [t
′
, t

′′′
].

0
t

 

t
 

t
′

T2 

T0 T1 

Δt0

Δt1

t
′′

t
′′′

ΔtΔt′′

bt

Figure 5: Candidate optimal contracts

Intuitively, as e∗(t) = min(∆t, 1), it cannot be optimal for the principal to choose ∆t > 1,

because there would exist a contract with ∆t = 1 that would induce the same effort at lower

cost. Moreover, for any given effort ∆t the principal optimally sets t as low as possible. In the

standard model with full commitment, this leads to t = 0 which, however, in our setup would

14This is shown formally in the proof of Proposition 4.
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induce the agent to leave for s = s. Rather, to implement a given effort level ∆t , the respective

payment t must be sufficiently high to avoid separation. Consider the upper bold line of Figure

5 and note that effort levels ∆t can be depicted as lines parallel to the main diagonal. Hence,

the cost-minimizing payment t is given by the left-most point on the respective parallel line

that is still inside T2, i.e., the optimal contract implementing a given ∆t lies in the (unique)

point of intersection of the respective parallel with b(t).15

In analogy to the standard model, the optimal no-separation contract exhibits the natural

feature that the effort level e = ∆t optimally implemented by the principal does not depend on

the absolute levels s and s, but depends on the spread ∆s only, and is (weakly) increasing in

∆s. However, the principal’s need to set both payments sufficiently high (to avoid separation

ex-post) leads to properties of optimal no-separation contracts markedly different from the

standard model:

Proposition 2 (Optimal no-separation contract) For given (s, s), the optimal contract

in the set T2 has the following properties:

(i) To induce some effort level e = ∆t ≤ 1, it is given by t = (b(t), t) satisfying t− b(t) = ∆t.

(ii) The effort level e = ∆t optimally induced by the principal depends on ∆s only, and is

continuous and weakly increasing in ∆s (see Figure 6). Formally,

∆t =





∆s = eFB(∆s) if ∆s ∈ (0, ∆t′′],

∆t′′ = const. < eFB(∆s) if ∆s ∈ (∆t′′,∆sI ],
∆s
2 −

√
1+2λ−1

2 < eFB(∆s) if ∆s ∈ (∆sI ,∆sII ],

1 if ∆s > ∆sII ,

where 0 < ∆t′′ ≡ t
′′ − b(t

′′
) < ∆sI ≡ 2∆t′′ +

√
1 + 2λ − 1 < ∆sII ≡ 1 +

√
1 + 2λ.

In our view, the most interesting property of the optimal no-separation contract is that

the additional source of frictions (limited commitment in addition to moral hazard and limited

liability) does not necessarily lead to higher agency costs in equilibrium. To the contrary, it

might turn out to be welfare-improving, and even first-best effort incentives (and hence, first-

15Proposition 1 implies that there is a unique point of intersection because t
′
− b(t

′
) = 0, t − b(t) is strictly

increasing in t for t ∈ [t
′
, t

′′′
], and t

′′′
− b(t

′′′
) = 1.
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Figure 6: Regions of optimal no-separation contracts

best surplus) might be induced by the principal.16 Moreover, as shown in Proposition 4 below,

whenever ∆s ≤ ∆t′′ the optimal no-separation contract not only leads to first-best incentives

but is also “globally” optimal for the principal.

To gain an intuition, note that the discussion above Proposition 2 implies that the principal’s

problem of maximizing (8) can be transformed into the one-dimensional problem of finding the

optimal t ∈ [t
′
, t

′′′
]. This is so because each point on the graph of b(t) (and hence, each effort

level e = ∆t) is identified by a unique value of t. Moreover, it follows from Proposition 1 and

(8) that for all t ∈ T2 that satisfy ∆t ≤ 1, we have Π(t) = W (t) − U2(e
∗
2(t), t), where W (t)

denotes the social surplus as a function of t, i.e.,

W (t) ≡ Π(t) + U(e∗(t), t) for t ∈ T+. (9)

These observations in combination with Definition 1 imply that the principal’s problem can be

stated as finding the t ∈ [t
′
, t

′′′
] that maximizes

Π(t) = W (t) −
{

U0 if t ∈ [t
′
, t

′′
]

U1(e
∗
1(t), t) if t ∈ [t

′′
, t

′′′
]

(10)

under the constraint that t = b(t).

The intuition behind Proposition 2 then follows naturally from the properties of (10) (see

also Figure 6 for an illustration). First, as long as ∆s is not too large, the principal finds it

16At the same time, the principal’s equilibrium payoff is lower than in the standard model with full commit-

ment, because the optimal no-separation contract has to satisfy the additional constraints of inducing partici-

pation ex-post.
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optimal to implement a relatively small effort level, and she achieves this by choosing some

t < t
′′
. It follows from (10) that, in this range, her payoff is equal to the social surplus minus

a constant; making her residual claimant and implying the optimality of first-best incentives.

Second, there exists an intermediate range of ∆s for which the optimal t (and hence, the

induced effort level) is constant in ∆s (and below first-best effort). Intuitively, note from (10)

that for t ≥ t
′′
, the agent’s payoff is given by U1(e

∗
1(t), t). Moreover, recall that U1(e

∗
1(t), t)

depends on t only and
∂U1(e∗1(t),t)

∂t
= e∗1(t) > 0 for t ∈ [t

′′
, t

′′′
]. Hence, while for t < t

′′
the agent’s

marginal rent is zero, it jumps to e∗1(t) at t = t
′′
. Due to this jump in the marginal rent, the

principal’s benefit from raising t must be sufficiently large to make it worthwhile to raise t

beyond t
′′
, explaining why for an entire range of ∆s the optimal t remains constant at t

′′
.

Finally, as ∆s increases further, by choosing some t ∈ (t
′′
, t

′′′
), the principal optimally

induces some effort level that is again strictly increasing in ∆s. In this case, the agent’s

marginal rent e∗1(t) is larger (and hence, the implemented effort is lower) than in the standard

model with full commitment, where the induced effort is given by min(∆s
2 , 1) (see Proposition

5). The reason is that, to induce a higher effort level and to avoid separation, the principal

has to raise both t and t, which is in contrast to the standard model where a higher effort is

induced by raising the payment in the good state only.

The optimal partial-separation contract As shown in Proposition 1, when offered a

partial-separation contract t ∈ T1, the agent exerts effort e∗(t) = min( t+λ
2λ+1 , 1) and optimally

stays in state s = s only. In a first step, we argue that in the set T1, without loss of generality,

one can restrict attention to contracts where t = 0 (i.e., those located on the lower bold line

of Figure 5): the agent leaves if state s is realized, which implies that Π(t) does not depend

on t. Moreover, payments t > t
′′′

cannot be optimal for the principal as they would induce the

same effort level of 1 as a contract stipulating t = t
′′′

, but at a higher cost. These observations

imply that (in order to find the optimal partial-separation contract) the principal’s problem of

maximizing (8) can be restated as finding the t ∈ [t
′′
, t

′′′
] that maximizes

Π(t) = W (t) − U1(e
∗
1(t), t) =

(
t + λ

1 + 2λ

)
· (s − t). (11)

As Π(t) is independent of s, compared to the no-separation case, the characterization of the

optimal partial-separation contract is substantially less complex:
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Proposition 3 (Optimal partial-separation contract) For given (s, s), the optimal con-

tract in the set T1 has the following properties:

(i) The payment t is irrelevant, and, without loss of generality, some contract of the form

t = 0 and t ∈ [t
′′
, t

′′′
] is optimal.

(ii) The effort optimally induced by the principal and the required payment t are independent

of s, and continuous and weakly increasing in s (see Figure 7). In particular,

t =





t
′′

if s ∈ (0, sI ], implying e = t
′′
+λ

2λ+1

s−λ
2 if s ∈ (sI , sII ], implying e = s+λ

4λ+2

t
′′′

if s ∈ (sII ,∞), implying e = 1

where sI ≡ 2t
′′

+ λ < sII ≡ 2t
′′′

+ λ.

λ 
s

 

s
 

 sIIsI 

Δs0

Figure 7: Regions of optimal partial-separation contracts

The optimal partial-separation contract has a number of interesting properties. First, for

s = s it induces separation, which is socially inefficient because our assumption λ < s implies

e∗(t)λ < s. Second, separation in the bad state is induced through a sufficiently unattractive

payment t = 0 such that the agent prefers to leave. This feature is reminiscent of up-or-out

policies, which (similar to the present case) are often enforced informally (e.g., by offering an

employee a very low bonus, by moving him to a less intriguing job, or by making clear his

lacking career options); inducing the employee to leave voluntarily.17

17See Walker (2005) for empirical evidence on implicit up-or-out policies in a large manufacturing firm.
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Third, the agent may in fact be harmed by a more attractive outside option, i.e., the

agent’s equilibrium payoff may be decreasing in λ.18 To see this, denote the optimal partial-

separation contract by t1 = (0, t1) where t1 denotes the optimal payment in state s as identified

in Proposition 3. Under this contract, the derivative of the agent’s expected payoff with respect

to λ is given by

e∗1(t1) ·
∂t1
∂λ

+ (1 − e∗1(t1)) · e∗1(t1), (12)

which follows from (5), Proposition 1, and the Envelope-Theorem.19 In the following, suppose

s < sII such that the induced effort level is interior (see Proposition 3). The second term in

(12) is a direct, positive effect: a larger λ implies a larger payoff for the agent in the state where

he leaves. The first term denotes an indirect effect that turns out to be negative. Intuitively, as

long as the induced effort level is interior, t1 and λ (as internal respectively external sources of

effort incentives) are substitutes. That is, a larger λ reduces the positive effect of t1 on effort.

Hence, the principal optimally responds to a larger λ by reducing t1. It turns out that, for

s ∈ (sI , sII) and λ > 1, this negative, indirect effect in fact dominates the positive direct effect,

and the agent’s expected payoff is decreasing in λ.20

The globally optimal contract It remains to determine which of the two candidate optimal

contracts (as characterized in Propositions 2 and 3) the principal ultimately prefers. It turns

out that either contract type may be strictly optimal. In particular, there always exists a

parameter region (s, s) where a partial-separation contract is optimal for the principal. To see

this, consider Figure 8 (which combines Figures 6 and 7) and the following “revealed preference”

argument. Recall from Proposition 2 that for all ∆s ≥ ∆sII , the principal implements effort

e = 1 under the optimal no-separation contract. Moreover, if s ≥ sII holds in addition, then

e = 1 is also implemented under the optimal partial-separation contract (see Proposition 3).

In this case, both contracts are payoff-equivalent, and the principal is indifferent between the

two contracts. Now, consider the white, dotted area in Figure 8, which satisfies s < sII .

18Wickelgren (2009) shows that an improved outside option can worsen a player’s payoff in a bargaining game

with strategic delay.
19Note that both the optimal partial-separation contract t1 and the effort level e∗(t1) directly depend on λ (see

Proposition 3 and the discussion above Lemma 3), which is taken into account when obtaining the derivative.
20Formally, in this parameter range, e∗1(t1) = t1+λ

2λ+1
, and hence the agent’s expected payoff is (s+λ)2

8(1+2λ)
, which is

strictly decreasing in λ iff s > 1+λ. At the same time, it can be shown that sI ≡ 2t
′′
+λ = 2

√
4λ2

− 1−λ > 1+λ,

which implies the result.
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Figure 8: Global optimality of partial-separation: a revealed-preference argument

There, the induced effort level under the optimal partial-separation contract is less than 1,

even though implementing e = 1 would have been feasible. Hence, by optimality, it follows that

the principal must strictly prefer this partial-separation contract to the optimal no-separation

contract which, recall, is payoff-equivalent to the partial-separation contract that implements

e = 1. Strict optimality of partial-separation contracts does, however, not depend on the

existence of corner solutions as the following result shows.

Proposition 4 (Globally optimal contract) There is a strictly increasing, continuous func-

tion B : s → s that allows to partition the (s, s)-space into three subsets (see Figure 9):

(i) For s < B(s), the no-separation contract (Proposition 2) is strictly optimal. In particular,

this is the case when ∆s ≤ ∆t′′ holds. Moreover, for all ∆s ∈ (∆t′′,∆sII) there exists a

range of values of s and s such that no-separation is strictly optimal.

(ii) For B(s) < s < sII , the partial-separation contract (Proposition 3) is strictly optimal,

(iii) Otherwise, the principal is indifferent between these two contracts. In particular, this is

the case when both s ≥ sII and ∆s ≥ ∆sII hold.

First, for ∆s ≤ ∆t′′ the no-separation contract is globally optimal because in this parameter

range, the principal’s payoff is given by the first-best social surplus minus the constant U0 (see

(10) and Proposition 2). At the same time, from Proposition 3, the optimal partial-separation

contract has the form (t = 0, t ∈ [t
′′
, t

′′′
]) in which case, the principal’s payoff is given by
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Figure 9: Globally optimal contracts

W (t) − U1(e
∗
1(t), t) (see (11)), where W (t) is below the first-best social surplus and where

U1(e
∗
1(t), t) ≥ U0 for all t ∈ [t

′′
, t

′′′
].21

Second, while no-separation is strictly optimal for ∆s not too large, it becomes less attrac-

tive for the principal as ∆s (and hence the implemented effort) increases. This is due to the

fact that, at the same time, the agent’s rent becomes larger. As a result, for ∆s sufficiently

large, partial-separation becomes optimal for the principal: while foregoing some of the surplus,

this allows the principal to save on the agent’s rent and to free-ride on the (external) effort

incentives generated by the agent’s endogenous outside option.

5 Discussion

In this section, first, we briefly consider the potential role (and desirability) of non-compete

clauses in restricting the agent’s freedom to leave. Second, to illustrate that our results are

driven by the combination of the agent’s freedom to leave and the endogeneity of his outside

option, we also analyze the case where his ex-post outside option is independent of his effort,

and hence exogenous. Third, we show that the restriction to the class of contracts introduced

in section 2 is without loss of generality. Finally, we relax the assumption that the principal

can commit to the initial contract and allow for renegotiation.

21From Definition 1 recall that for t = t
′′
, we have U0 = U1(e

∗
1(t), t), and

∂U1(e∗
1
(t),t)

∂t
= e∗1(t) > 0 for t ∈ [t

′′
, t

′′′
].
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Freedom to leave and non-compete clauses In the model, the agent is free to leave

to pursue his ex-post outside option. In principle, the principal might try to prevent this

through instruments such as non-compete clauses as can be observed, for example, in the

context of employment relationships. However, in practice, courts are often hesitant to enforce

non-compete clauses; worrying that employers might abuse them to prevent employees from

working elsewhere at all. As a result, courts typically allow employees to leave except for cases

where the current employer’s legitimate business interests (e.g., trade secrets) are affected.22

One extreme case in this respect is California, where non-compete clauses are not enforced at

all.23 Such legal practices do find support in our framework in those cases where the agent’s

freedom to leave leads to the first-best surplus.

Freedom to leave and exogenous outside option Now, suppose that the agent’s ex-post

outside option is given by v(e) = λ (and hence independent of e), where, in analogy to above,

0 ≤ λ < s. It turns out that in this setting, the resulting effort level and ex-post participation

decisions are identical to those observed in the standard model with full commitment (see e.g.,

Laffont and Martimort, 2002, p. 194ff.). To see this, note that in the bad (good) state the

agent will leave the principal ex-post if t < λ (t < λ) holds. Now, suppose that the optimal

contract would indeed stipulate t < λ, in which case the agent would leave, and the payoffs

of the agent and principal would be λ and 0, respectively. However, in this case the principal

would be better off by setting t = λ, while leaving t unchanged: the agent would then face

the same effort incentives and would obtain the same payoff as before. However, the principal

would be strictly better off, because the agent would now stay in the bad state (maintaining

our assumption that he does so when indifferent); yielding the principal an extra payoff of

s− λ > 0 in this state. It follows that under the optimal contract, t ≥ λ and (by an analogous

argument) t ≥ λ have to hold. Put differently (and in contrast to the framework analyzed so

22A prominent example is Mark Papermaster, who (despite of a non-compete clause) moved from IBM to

Apple Inc. (to replace Tony Fadell, “father” of the iPod, as Senior Vice President). While IBM tried to stop the

move, the case was finally settled in 2009: Papermaster was allowed to move with the only condition of having to

testify in court that he would not share IBM business secrets (see e.g., http://www.ft.com/cms/s/0/111b3c1c-

aadd-11dd-897c-000077b07658.html and http://www.apple.com/pr/library/2009/01/27papermaster.html).
23For more detailed discussions of non-compete clauses, see e.g., Posner, Triantis, and Triantis (2004) and

Gilson (1999), who, however, do not focus on effort incentives (for an exception, see e.g., Kräkel and Sliwka,

2009). The issue of optimal litigation strategies against leaving knowledge workers is analyzed in Gompers and

Lerner (2000) and Hvide and Kristiansen (2009).
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far), the optimal contract is always of the no-separation type. Hence, in line with the standard

model, the agent’s optimal choice of effort level is given by the wage spread ∆t, and the wage

spread optimally chosen by the principal depends on ∆s only. However, as for the respective

payments, the principal cannot set t as low as possible, but has to respect the agent’s ex-post

outside option which leads to t = λ. In contrast to the endogenous outside option case, this

implies that the agent does not earn a rent in state s (i.e., he is indifferent between staying and

leaving); making no-separation more attractive in the exogenous outside option case.24

Proposition 5 (Optimal contract with exogenous outside option) If (i) the agent is

free to leave and (ii) his ex-post outside option is exogenous and given by v(e) = λ, where

0 ≤ λ < s, then the optimal contract is of the no-separation type and satisfies t = λ and

∆t = min(∆s
2 , 1). The induced effort level is e = min(∆s

2 , 1). Moreover, for λ = 0, the

equilibrium outcome is exactly the same as in the standard model with full commitment.

Note that, for λ > 0, compared to the standard model, only the optimal payments go up by λ

in both states of the world. Hence, the main predictions of the standard model are qualitatively

unaffected by the agent’s freedom to leave as long as his outside option is exogenous (i.e., as

long as the agent’s effort is fully specific to the relationship with the principal, and hence does

not affect the value of his outside option). In contrast, as shown above, the agent’s freedom to

leave leads to markedly different results if his outside option is endogenous (i.e., if the agent’s

effort has at least some general component that positively affects his outside option).

Contract space Up to now, we have only considered contracts of the form t ∈ T+ ≡ {(t, t) |

t ≥ t ≥ 0} and have argued that this restriction is without loss of generality. We now prove this

claim formally. The revelation principle implies that it suffices to consider a set T of contracts

(τ(ê, ŝ; s), τ0(ê, ŝ)), where (i) ê and ŝ denote messages about e and s, respectively, that the

agent sends after date 3, (ii) for given messages ê and ŝ, τ(ê, ŝ; s) denotes the payment to the

agent if the principal’s realized gross profit is given by s ∈ {s, s}, (iii) for given messages ê and

ŝ, τ0(ê, ŝ) denotes the payment to the agent if the principal’s realized gross profit is zero (which

is the case when the agent leaves), (iv) due to the agent’s limited liability τ(ê, ŝ; s), τ0(ê, ŝ) ≥ 0

24Similar to above, ex-ante participation by both the agent and the principal is always ensured.
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holds for all ê, ŝ, s, and (v) the agent’s incentive compatibility condition

max {τ(e, s; s), λe + τ0(e, s)} ≥ max {τ(ê, ŝ; s), λe + τ0(ê, ŝ)} (13)

is satisfied for all e, ê ∈ [0, 1] and for all s, ŝ ∈ {s, s}.25 Denote the subset of contracts where

the contractually promised payments do not vary in the agent’s messages (both on and off the

equilibrium path) by T̃ .

Proposition 6 (Restriction to T+ is without loss of generality) For any contract in T ,

there exists a contract in T̃ that leads to the same equilibrium outcome (i.e., effort level, ex-post

participation decisions, and payoffs). Moreover, for any contract in T̃ that either (i) specifies

a strictly positive payment when the gross profit is zero or (ii) specifies a payment when the

gross profit is s that is strictly larger than the payment when the gross profit is s, there exists

a contract in T+ that yields the principal a strictly higher payoff.

Renegotiation We have so far assumed that the principal can commit to the terms of the

initial contract. However, since λ < s < s, whenever she offers a partial-separation contract,

this leads to an inefficient outcome ex-post, such that the parties have an incentive to renego-

tiate.26 Specifically, after effort provision, the principal might be tempted to propose altered

payments that induce participation in all states.27 As this would lead to a larger surplus ex-

post, there always exist new payments that would make both parties better off. When the

principal cannot credibly commit not to renegotiate, without loss of generality, one can restrict

attention to initial contracts that are renegotiation-proof (in the sense of inducing an equilib-

rium outcome that is ex-post pareto-efficient). Clearly, in our framework this is the case when

the initial contract induces the agent to stay in both states or, using our terminology, when it

is of the no-separation type. This observation in combination with Proposition 6 implies that,

25Note that when sending his messages between dates 3 and 4, the agent knows the state, and effort costs are

already sunk, which explains the form of the agent’s incentive compatibility condition.
26Beginning with Fudenberg and Tirole (1990) and Ma (1991), there is a substantial literature on renegotiation

in static moral hazard problems with a risk-averse agent. In these models, participation by the agent is not

an issue. Rather, while from an ex-ante incentive perspective the agent should bear some risk, from an ex-

post perspective the agent should be fully insured. More closely related, Netzer and Scheuer (2008) augment

Fudenberg and Tirole’s (1990) setup by assuming that the agent is free to leave. They study how ex-post

competition among principals affects the risk versus incentive trade-off in a setting with no commitment.
27In equilibrium, the principal correctly anticipates the agent’s outside option, and hence may be tempted to

raise the respective payment to match it.
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when renegotiation cannot be ruled out, without loss of generality one can restrict attention

to no-separation contracts t ∈ T2. In this case, Proposition 2 (which characterizes optimal

no-separation contracts) also characterizes the globally optimal contract. As a result, all of the

properties of this contract type (such as first-best incentives and surplus, or non-responsiveness)

would remain equilibrium features if renegotiation could not be ruled out.

6 Conclusion

We modify the standard moral hazard model under risk-neutrality and limited liability by

assuming one-sided commitment only: while the principal is able to commit to the contract

terms, the agent is free to leave (and hence, he will only stay with the principal if he has an

incentive to do so). We consider the case that the agent’s ex-post outside option is endogenous

(i.e., increasing in effort). This leads to results which are in stark contrast to the standard case

with full commitment. In particular, as long as first-best effort is not too large, the principal

finds it optimal to provide first-best effort incentives and to structure the contract such that the

agent always stays (and hence does not take up his outside option); resulting in the first-best

social surplus. If, on the other hand, first-best effort is sufficiently large, the principal optimally

proposes a contract that might be non-responsive to changes in the underlying parameters or

that might induce (inefficient) separation in some states of the world. Under the latter type

of (partial-separation) contract, the agent may be harmed in equilibrium as his outside option

becomes (ceteris paribus) more attractive. Finally, we also highlight that our results are driven

by the combination of the agent’s freedom to leave and the endogeneity of his outside option.

In future work it would be interesting to analyze situations where the effort provided by

the agent inside the relationship with the principal actually harms the agent’s ex-post outside

option. For example, this would be the case if by tailoring his human capital to the needs

of the principal, the agent reduces his outside opportunities. Recently, this issue has been

investigated by Rasul and Sonderegger (2010), however, in the context of an adverse selection

model where an ex-ante investment affects some ex-post outside option.

27



Appendix

Lemmas 1 and 2 and Propositions 3 and 5 follow immediately from the discussion in the text

and require no separate formal proof.

A Proof of Lemma 3

Ad (i): We prove the claim by showing that (a) for t
λ
∈ [0, 1) we have e∗(t) 6= t

λ
, and (b) for

t
λ
∈ [0, 1) we have e∗(t) 6= t

λ
. First, suppose t

λ
∈ (0, 1). In this case, the set E0(t) = ( t

λ
, 1] is

non-empty (see Lemma 1), and e = t
λ

cannot be the agent’s optimal choice of effort because,

on the one hand, U(e, t) is continuous and piece-wise concave and, on the other hand, Lemma

2 (iii) implies
∂U1( t

λ
,t)

∂e
≥ 0 ⇒ ∂U0( t

λ
,t)

∂e
> 0 (that is, together these observations imply that there

exist effort levels slightly smaller or larger than t
λ

that yield the agent a strictly larger payoff).

Second, suppose t
λ
∈ (0, 1). In this case, the set E1(t) = ( t

λ
, min( t

λ
, 1)] is non-empty (see

Lemma 1). Moreover, Lemma 2 (iii) implies
∂U2( t

λ
,t)

∂e
≥ 0 ⇒ ∂U1( t

λ
,t)

∂e
> 0. On the one hand,

if both t
λ
∈ (0, 1) and t 6= t hold, similar to above, these considerations in combination with

the continuity and piece-wise concavity of U(e, t) imply that e = t
λ

cannot be the agent’s

optimal choice of effort. On the other hand, if both t
λ

∈ (0, 1) and t = t hold, we have

E1(t) = ( t
λ
, t

λ
] = ∅ and E0(t) = ( t

λ
, 1] 6= ∅. Moreover, in this case it follows from (5) that

∂U2( t

λ
,t)

∂e
= − t

λ
< − t

λ
+ λ =

∂U0( t

λ
,t)

∂e
. Hence, again similar to above, the continuity and piece-

wise concavity of U(e, t) imply that e = t
λ

cannot be the agent’s optimal choice of effort.

Finally, suppose t
λ

= 0 ( t
λ

= 0), in which case it follows that e∗(t) 6= t
λ

(e∗(t) 6= t
λ
) because

∂U1(0,t)
∂e

, ∂U0(0,t)
∂e

> 0 holds for all t ∈ T+.

Ad (ii): In a first step, suppose that, for a given t ∈ T+, we have e∗(t) ∈ E2(t), where, by

definition, E2(t) = [0, min( t
λ
, 1)]. The discussion in the proof of Lemma 3 (i) above implies

that in this case it must hold that t
λ

> 0. On the one hand, if t
λ

< 1, then the concavity

of U2(e, t) in combination with e∗(t) 6= t
λ

(see the proof of Lemma 3 (i) above) immediately

implies that e∗(t) = e∗2(t) ≡ ∆t < t
λ

has to hold. On the other hand, if t
λ

≥ 1, then the

concavity of U2(e, t) in combination with E2(t) = [0, 1] implies e∗(t) = min(e∗2(t), 1). Hence, to

summarize e∗(t) ∈ E2(t) implies e∗(t) = min(e∗2(t), 1). In a second step, following analogous

lines of reasoning, it is straightforward to show that e∗(t) ∈ E1(t) implies e∗(t) = min(e∗1(t), 1)

and that e∗(t) ∈ E0(t) implies e∗(t) = min(e∗0(t), 1), which concludes the proof of the Lemma.
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B Proof of Proposition 1

For given t ∈ T+, we first characterize whether e∗(t) ∈ E2(t), e∗(t) ∈ E1(t), or e∗(t) ∈ E0(t)

holds (i.e., we characterize which equilibrium ex-post participation decisions emerge for a given

contract), and, subsequently, we employ Lemma 3 to characterize e∗(t). We proceed in six

steps.

Step 1. By using basic properties of the agent’s payoff function (see Lemma 2), one

can show that, for some contracts t, some ex-post participation decisions cannot emerge in

equilibrium. Put differently, in the following we show that in some regions of the contract space

T+ it cannot be optimal for the agent to choose his effort from certain regions of the effort

space. To this end, define two functions f(t) ≡ λ
1+λ

·t and g(t) ≡ λ2

1+2λ
+ λ

1+2λ
·t, and a threshold

value h ≡ λ2

1+λ
(see Figure 10, which depicts the lines f , g, and h in the contract space). The

following lemma (which is proven at the end of this section) will be useful.

Lemma 4 Suppose t ∈ T+. Then

(i) e∗(t) /∈ E1(t) if either t ≤ h or g(t) ≤ t < λ holds, and

(ii) e∗(t) /∈ E2(t) if both t ≤ f(t) and t < λ hold.
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t
 

t
 

gt

ft 

h

e
*
(t) ∉ E2(t) 

e
*
(t) ∉ E1(t)

Δt=0 

t
′′′

Figure 10: Illustration of Lemma 4

Lemma 4 in combination with Lemma 2 pins down the equilibrium ex-post participation

decisions of the agent for large parts of the contract space. This is illustrated by Figure 11

that combines the information contained in Figures 3 and 10. In particular, Figure 11 depicts
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Figure 11: Only in the set T̂ of contracts (the non-shaded, white part of T+) Lemma 4 in com-

bination with Lemma 2 does not yet uniquely pin down the equilibrium ex-post participation

decisions (for ease of exposition, the dependency of Ej(t) on t, for j = {0, 1, 2}, is suppressed).

the candidate effort intervals in which the agent’s optimal effort e∗(t) may be located for a

given t. For example, consider the grey-shaded area of Figure 11. In this region of the contract

space, Lemma 2 implies E2(t) = [0, t
λ
], E1(t) = ( t

λ
, 1], and E0(t) = ∅, and Lemma 4 implies

e∗(t) /∈ E2(t); implying that in the grey-shaded area it must be the case that e∗(t) ∈ E1(t).

Only in the non-shaded, white parts of Figure 11, Lemma 4 in combination with Lemma 2

does not yet pin down the equilibrium participation decisions (i.e., the respective set Ej(t) in

which e∗(t) is located). Formally, this subset of contracts is defined as T̂ ≡ {(t, t) ∈ T+ such

that either (i) t ∈ [0, h] and t > f(t), or (ii) t ∈ (h, λ), or (iii) t ∈ [λ, t
′′′

) and g(t) > t > f(t)}.

Step 2. We now restrict attention to the set of contracts T̂ (see Step 1 above). Given

t ∈ T̂ , for each non-empty effort interval Ej(t) for which e∗(t) ∈ Ej(t) has not been ruled out

by Lemma 4 (see Figure 11), we now characterize the effort level that is (locally) optimal in

Ej(t). This will allow us to pin down the maximum payoff the agent may obtain in each of the

relevant intervals Ej(t).

Lemma 5 Suppose t ∈ T̂ .

(i) If t > f(t) holds, the effort level that is optimal in the set E2(t) is given by e∗2(t). In this

case, e∗2(t) ∈ [0, 1).
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(ii) If both t > h and t < g(t) hold, the effort level that is optimal in the set E1(t) is given by

e∗1(t). In this case, e∗1(t) ∈ (0, 1).

(iii) The effort level that is optimal in the set E0(t) is given by (a) e = 1 if both λ ≥ 1 and

t < λ hold, and (b) e = λ if both λ < 1 and t < λ2 hold. If both λ < 1 and λ2 ≤ t < λ

hold, we have e∗(t) /∈ E0(t).

Lemma 5 (which is proven at the end of this section) allows to characterize the boundaries

between the sets T0, T1, and T2, where these boundaries will be located in T̂ . For further

reference, note that (5) in combination with the Envelope-Theorem implies

∂U2(e
∗
2(t), t)

∂t
= e∗2(t),

∂U2(e
∗
2(t), t)

∂t
= 1 − e∗2(t),

∂U1(e
∗
1(t), t)

∂t
= e∗1(t), and

∂U1(e
∗
1(t), t)

∂t
= 0

(14)

for e∗2(t), e
∗
1(t) ∈ (0, 1).

Step 3. Next, we identify contracts t ∈ T̂ that make the agent indifferent between choosing

some effort level from the set E0(t) or choosing some effort level from the set E1(t) (which may,

in principle, exist if both t ∈ (h, λ) and t < g(t) hold (see Lemmas 2 and 4 and Figure 11)).

If such contracts exist, the above observations in combination with Lemma 5 imply that such

contracts are implicitly defined by U1(e
∗
1(t), t) = U0, where

U1(e
∗
1(t), t) = U0 ⇔ e∗1(t)t + (1 − e∗1(t))λe∗1(t) −

1

2
(e∗1(t))

2 = U0

⇔ (t + λ)2

1 + 2λ
− 1 + 2λ

2

(t + λ)2

1 + 2λ
= U0 ⇔ (t + λ)2

2(1 + 2λ)
= U0

⇔ t = t
′′ ≡

√
2(1 + 2λ)U0 − λ, (15)

and where it is straightforward to show that (a) t
′′ ∈ (U0, λ) if λ ≥ 1 and (b) t

′′ ∈ (U0, λ
2) if

λ < 1. To summarize, in the set T̂ there indeed exist contracts where the agent is indifferent

between choosing an effort level min(λ, 1) ∈ E0(t) and choosing an effort level e∗1(t) ∈ E1(t).

More precisely, the above observations imply that in the set of contracts {t ∈ T̂ such that

t ∈ (h, λ) and t < g(t)}, the agent prefers min(λ, 1) ∈ E0(t) over e∗1(t) ∈ E1(t) if t < t
′′

holds,

while he prefers e∗1(t) ∈ E1(t) over min(λ, 1) ∈ E0(t) if t ≥ t
′′

holds.

Step 4. We now identify contracts t ∈ T̂ that make the agent indifferent between choosing

some effort level from the set E2(t) or choosing some effort level from the set E1(t) (which

may, in principle, exist if both g(t) > t > f(t) and t ∈ (h, t
′′′

) hold (see Lemmas 2 and 4
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and Figure 11). If such contracts exist, then, in analogy to above, Lemma 5 (i) and (ii) imply

that they are located on the graph of a function y(t) : t → t that is implicitly defined by

U2(e
∗
2(t), t) = U1(e

∗
1(t), t). Moreover, for all contracts t on the graph of y(t), it holds that (a)

e∗1(t) = t+λ
2λ+1 ∈ (0, 1) (see Lemma 5(ii)), and (b) 0 ≤ e∗2(t) = ∆t < e∗1(t) which follows from

e∗2(t) ∈ E2(t) = [0, t
λ
], e∗1(t) ∈ E1(t) = ( t

λ
, min( t

λ
, 1)], and U

′

2(
t
λ
, t) < U

′

1(
t
λ
, t) (see Lemma 2

(iii)). Note that U2(e
∗
2(t), t) = U1(e

∗
1(t), t), the Implicit-Function Theorem, (14), and the above

observations with respect to e∗2(t) and e∗1(t) imply

∂y(t)

∂t
=

e∗1(t) − e∗2(t)

1 − e∗2(t)
∈ (0, 1), and (16)

∂2y(t)

∂t
2 < 0 ⇔ (1− e∗2(t)) · (

1

1 + 2λ
− 1) + (e∗1(t)− e∗2(t)) < 0 ⇔ t − λ

(1 − e∗2(t))
2(1 + 2λ)

< 0, (17)

which is satisfied, because for all t ∈ T̂ we have t < λ (see Figure 11). Moreover, note that

U2(e
∗
2(t), t) = U1(e

∗
1(t), t) is satisfied at t = (t = t

′′′ ≡ 1 + λ, t = λ). That is, lim
t→t

′′′y(t) = λ.

Also, for all t ∈ (h, t
′′′

) we have y(t) ∈ (f(t), g(t)), which follows from the following Interme-

diate Value Theorem argument. Take some arbitrary t ∈ (h, t
′′′

) as given. First, suppose that,

at the same time, t ≤ f(t) holds. In this case, the proof of Lemma 4 (ii) implies that, given

such a contract, the agent obtains a strictly higher payoff from choosing some effort level in

E1(t) than from choosing any effort level in E2(t). Second, suppose that t ≥ g(t) holds. In this

case, the proof of Lemma 4 (i) implies that, given such a contract, the agent obtains a strictly

higher payoff from choosing some effort level in E2(t) than from choosing any effort level in

E1(t). These observations, the Intermediate Value Theorem, and the fact that U1(e
∗
1(t), t) is

independent of t while U2(e
∗
2(t), t) is increasing in t imply the claim.

To summarize, the above discussion shows that in the set T̂ there indeed exist contracts

where the agent is indifferent between choosing an effort level e∗2(t) ∈ E2(t) and choosing

an effort level e∗1(t) ∈ E1(t). More precisely, the above observations imply that in the set

of contracts {t ∈ T̂ such that g(t) > t > f(t) and t ∈ (h, t
′′′

= 1 + λ)}, the agent prefers

e∗2(t) ∈ E2(t) over e∗1(t) ∈ E1(t) if t ≥ y(t) holds, while he prefers e∗1(t) ∈ E1(t) over e∗2(t) ∈ E2(t)

if t < y(t) holds.

Step 5. Now, we identify contracts t ∈ T̂ that make the agent indifferent between choosing

some effort level from the set E2(t) or choosing some effort level from the set E0(t) (which may,

in principle, exist if both t > f(t) and t < λ hold (see Lemmas 2 (i) and 4 and Figure 11)). If

such contracts exist, then, in analogy to above, Lemma 5 (i) and (iii) imply that they are located
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on the graph of a function x(t) : t → t that is implicitly defined by U2(e
∗
2(t), t) = U0. Moreover,

for all contracts t on the graph of x(t), it holds that (a) e∗2(t) = ∆t < 1 (see Lemma 5 (i)), and

(b) e∗2(t) = 0 if and only if ∆t = 0. Hence, the fact that U2(e
∗
2(t), t) = U0 in combination with

the Implicit Function Theorem, (14), and the above observations with respect to e∗2(t) imply

∂x(t)

∂t
= − e∗2(t)

1 − e∗2(t)
< 0 ( = 0) for e∗2(t) > 0 (e∗2(t) = 0), and (18)

∂2x(t)

∂t
2 = − 1

[1 − e∗2(t)]
2 < 0. (19)

Moreover, note that U2(e
∗
2(t), t) = U0 is satisfied at t = (t = t

′ ≡ U0, t = U0). That is, x(U0) =

U0, and recall from Step 3 that U0 < t
′′

holds. Also, recall from Step 4 that y(t) ∈ (f(t), g(t))

for all t ∈ (h, t
′′′

), which implies y(t
′′
) ∈ (f(t

′′
), g(t

′′
)) (for the definition of t

′′
see (15)). Hence,

for the contract t̃ ≡ (t = y(t
′′
), t = t

′′
) it holds that U2(e

∗
2(t̃), t̃) = U1(e

∗
1(t̃), t̃) = U0 (because

contract t̃ is located on the graph of y(t) and t = t
′′

holds), which implies x(t
′′
) = y(t

′′
).

To summarize, in the set T̂ there indeed exist contracts where the agent is indifferent

between choosing an effort level e∗2(t) ∈ E2(t) and an effort level min(λ, 1) ∈ E0(t). More

precisely, the above observations imply that in the set of contracts {t ∈ T̂ such that t > f(t)

and t < t
′′}, the agent prefers min(λ, 1) ∈ E0(t) over e∗2(t) ∈ E2(t) if either (i) t < U0 or (ii)

t ∈ [U0, t
′′
] and t < x(t) holds, while the agent prefers e∗2(t) ∈ E2(t) over min(λ, 1) ∈ E0(t)

otherwise.

Step 6. Taken together, Steps 1 through 5 imply the definitions of the sets T0, T1, and T2 in

Proposition 1 because for t ∈ [t
′
, t

′′
] we have b(t) = x(t), while for t ∈ [t

′′
, t

′′′
) we have b(t) = y(t)

(see Definition 1). That is, for j = 0, 1, 2, we have shown that t ∈ Tj ⇒ e∗(t) ∈ Ej(t), which

in combination with Lemma 3(ii) implies e∗(t) = min(e∗j (t), 1). Finally, the properties of b(t)

as stated in Proposition 1 immediately follow from the discussion of the properties of x(t) and

y(t) above, which concludes the proof.

B.1 Proof of Lemma 4

Note that h = λ2

1+λ
< λ, g(h) = h, g(t

′′′
) = λ, f(0) = 0 and f(t

′′′
) = λ, which implies that the

lines h, g(t), and f(t) are located exactly as depicted in Figure 10.

Ad (i): First, suppose t ≤ h, which is equivalent to
∂U1( t

λ
,t)

∂e
≥ 0 (see (5)). This observation

in combination with the concavity of U1(e, t) implies that U1(e, t) is increasing in e for all

e ∈ E1(t). Moreover, recall that h < λ, and hence t
λ

< 1; implying E0(t) = ( t
λ
, 1] 6= ∅ (see
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Lemma 1). These observations in combination with Lemma 2 imply that there exists some

effort level in E0(t) that yields the agent a strictly higher payoff than any effort level in E1(t),

and hence e∗(t) /∈ E1(t). Note that in the case t = 0 we have E1(t) = ∅. Second, suppose

g(t) ≤ t < λ, in which case E1(t) = ( t
λ
, min( t

λ
, 1)] 6= ∅ (which follows from t

λ
< 1) and

∂U1( t

λ
,t)

∂e
≤ 0 (which is equivalent to g(t) ≤ t). These observations in combination with the

concavity of U1(e, t) imply that U1(e, t) is decreasing in e for all e ∈ E1(t). Consequently, it

follows from Lemma 2 and the fact that E2(t) 6= ∅ ∀t ∈ T+ that there exists some effort level

in E2(t) that yields the agent a strictly higher payoff than any effort level in E1(t), and hence

e∗(t) /∈ E1(t).

Ad (ii): Note that E2(t) = [0, t
λ
] (which follows from t < λ) and E1(t) = ( t

λ
, min( t

λ
, 1)],

where E1(t) 6= ∅ unless t = t = 0 (see Lemmas 1 and 2). However, if t = t = 0, it follows from

∂U1(0,t)
∂e

, ∂U0(0,t)
∂e

> 0 ∀t ∈ T+ that e∗(t) /∈ E2(t). Hence, in the following suppose t > 0. Note

that
∂U2( t

λ
,t)

∂e
≥ 0 (which is equivalent to t ≤ f(t)), which in combination with the concavity of

U2(e, t) implies that U2(e, t) is increasing in e for all e ∈ E2(t). Consequently, it follows from

Lemma 2(iii) that there exists some effort level in E1(t) that yields the agent a strictly higher

payoff than any effort level in E2(t), and hence e∗(t) /∈ E2(t).

B.2 Proof of Lemma 5

Ad (i): From (5) we have
∂U2( t

λ
,t)

∂e
< 0 for all t > f(t), where, for all t ∈ T̂ , we have t

λ
< 1.

These observations in combination with the concavity of U2(e, t) and ∂U2(0,t)
∂e

≥ 0 imply that

the effort level that is optimal in E2(t) = [0, t
λ
] is defined by the respective first-order condition,

and hence is given by e∗2(t) = ∆t, where e∗2(t) ∈ [0, t
λ
) holds.

Ad (ii): Using Lemma 2 it can be shown that
∂U1( t

λ
,t)

∂e
> 0 >

∂U1( t
λ

,t)

∂e
for all t ∈ T̂ satisfying

t > h and t < g(t), where we have t
λ

< 1. These observations in combination with the concavity

of U1(e, t) imply that the effort level that is optimal in E1(t) = ( t
λ
, min( t

λ
, 1)] is defined by the

respective first-order condition, and hence is given by e∗1(t) = t+λ
2λ+1 if t+λ

2λ+1 ≤ 1 holds. This is

indeed the case because for all t ∈ T̂ we have t < 1 + λ, and hence t+λ
2λ+1 < 1.

Ad (iii): First, suppose that both λ ≥ 1 and t < λ hold. In this case, we have t
λ

< 1

and ∂U0(1,t)
∂e

= λ − 1 ≥ 0 (see (5)). These observations in combination with the concavity

of U0(e, t) imply that the effort level that is optimal in E0(t) = ( t
λ
, 1] is given by 1, which

proves part (a). Second, suppose that λ < 1 holds. Recall that t < λ implies t
λ

< 1, and
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hence E0(t) = ( t
λ
, 1] 6= ∅. Note that

∂U0( t
λ

,t)

∂e
>

∂U1( t
λ

,t)

∂e
for t > 0 and

∂U0( t
λ

,t)

∂e
=

∂U1( t
λ

,t)

∂e
for

t = 0 (see Lemma 2). Moreover, from (5), we have 0 ≥ ∂U0( t
λ

,t)

∂e
if t ≥ λ2. Hence, for t ≥ λ2

we have e∗(t) /∈ E0(t), which proves part (c). With respect to part (b), note that we have

h < λ2 < λ < 1. Moreover, from (5) we have
∂U0( t

λ
,t)

∂e
> 0 > ∂U0(1,t)

∂e
for t < λ2. Hence, for

t < λ2, these observations in combination with the concavity of U0(e, t) imply that the effort

level that is optimal in E0(t) = ( t
λ
, 1] is defined by the respective first-order condition, and

hence it is given by λ, which proves part (b).

C Proof of Proposition 2

The discussion above the Proposition immediately implies that the principal’s problem of max-

imizing (8) can be transformed in a one-dimensional problem of the following form:

max
∆t∈[0,1]

{∆t · (∆s − ∆t) + s − t(∆t)} , (20)

where, for a given ∆t, the payment in the bad state t(∆t) has to be such that the contract

(t = t(∆t), t = ∆t + t(∆t)) is on the graph of b(t).

Ad (i): Part (i) immediately follows from (8) in combination with the discussion above the

Proposition.

Ad (ii): In a first step towards solving (20), we now derive the functional form of t(∆t).

First, it follows from Definition 1 that, for t ∈ [t
′
, t

′′
], on the graph of b(t) it holds that

1
2(∆t)2 + t = t

′
. Hence, t(∆t) = t

′ − 1
2(∆t)2 for ∆t ∈ [0,∆t′′], where ∆t′′ ≡ t

′′ − b(t
′′
) < 1.

Second, it follows from Definition 1 that, for t ∈ [t
′′
, t

′′′
], on the graph of b(t) it holds that

1

2
(∆t)2 + t =

(t + λ)2

2(1 + 2λ)
⇔ 0 = t2 − t · [2λ + 2 − 2∆t] +

[
2λ∆t + λ2 − 2λ(∆t)2

]
, (21)

where the equivalence follows from the identity t = ∆t + t and rearranging terms. Note that

(21) is a quadratic equation in t. This quadratic equation has two solutions, only one of which

is, however, admissible because for all contracts on the graph of b(t) it holds that t ≤ λ.

Hence,

t(∆t) =

{
t
′ − 1

2(∆t)2 if ∆t ∈ [0,∆t′′], and
[
λ −

(√
1 + 2λ − 1

)]
+ ∆t ·

[√
1 + 2λ − 1

]
if ∆t ∈ [∆t′′, 1].

(22)

To solve (20), we now proceed in three steps. First, we derive the optimal ∆t in the

interval [0, ∆t′′]. Second, we derive the optimal ∆t in the interval [∆t′′, 1]. Note that (20) in
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combination with (22) implies that both in the interval [0,∆t′′] and the interval [∆t′′, 1] the

principal’s objective function is strictly concave in ∆t. Third, building on these preliminary

results we characterize the optimal ∆t as a function of ∆s.

Step 1. (20) and (22) imply that in the interval [0,∆t′′] the first-order condition of (20)

with respect to ∆t is satisfied at ∆t = ∆s. Hence, in the interval [0, ∆t′′] the optimal ∆t is

given by

∆t =

{
∆s if ∆s < ∆t′′, and

∆t′′ if ∆s ≥ ∆t′′.
(23)

Recall that ∆t′′ < 1.

Step 2. (20) and (22) imply that in the interval [∆t′′, 1] the first-order condition of (20)

with respect to ∆t is satisfied at ∆t = ∆s−
√

1+2λ+1
2 . Hence, in the interval [∆t′′, 1] the optimal

∆t is given by

∆t =

{
∆t′′ if ∆s ≤ ∆sI , and

min{∆s−
√

1+2λ+1
2 , 1} if ∆s > ∆sI ,

(24)

where ∆sI ≡ 2∆t′′ +
√

1 + 2λ − 1 and where ∆s > ∆sI ⇔ ∆s−
√

1+2λ+1
2 > ∆t′′. Importantly,

note that ∆t′′ < ∆sI = 2∆t′′ +
√

1 + 2λ − 1.

Step 3. We can now use the preliminary results obtained in Steps 1 and 2 to characterize

the effort level that the principal wants to induce for a given ∆s.28 First, consider ∆s ∈ (0, ∆t′′).

For such ∆s, ∆t = ∆s < ∆t′′ is optimal in the interval [0,∆t′′] (see (23)), while ∆t = ∆t′′

is optimal in the interval [∆t′′, 1] (see (24)). As ∆t = ∆t′′ would also have been feasible in

the interval [0,∆t′′], ∆t = ∆s must be globally optimal (i.e., in the interval ∆s ∈ (0, ∆t′′) the

principal optimally induces ∆t = ∆s). Second, consider ∆s ∈ [∆t′′,∆sI ]. For such ∆s, both

in the interval [0, ∆t′′] and the interval [∆t′′, 1] the optimal ∆t is given by ∆t′′ (see (23) and

(24)), and hence, for all ∆s ∈ (0,∆sI ], the optimal ∆t is given by ∆t′′. To summarize, for ∆s ∈

(0, ∆sI ], the principal induces ∆t = min{∆s,∆t′′}. Finally, consider ∆s ∈ (∆sI ,∞). For such

∆s, ∆t = ∆t′′ is optimal in the interval [0,∆t′′] (see (23)), while ∆t = min{∆s−
√

1+2λ+1
2 , 1} >

∆t′′ is optimal in the interval [∆t′′, 1] (see (24)). As ∆t = ∆t′′ would also have been feasible in

the interval [∆t′′, 1], ∆t = min{∆s−
√

1+2λ+1
2 , 1} must be globally optimal (i.e., in the interval

∆s ∈ (∆sI ,∞) the principal optimally induces ∆t = min{∆s−
√

1+2λ+1
2 , 1}), which concludes

28Intuitively, we now show the following: whenever the optimal ∆t in the interval [0, ∆t′′] (in the interval

[∆t′′, 1]) is in the interior of this interval, the optimal ∆t in the interval [∆t′′, 1] (in the interval [0, ∆t′′]) is equal

to ∆t′′. As ∆t′′ is an element of both intervals, this implies that whenever the ∆t that is optimal in one of the

two subsets is interior it is also globally optimal in the entire interval [0, 1].
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the proof.

D Proof of Proposition 4

In the following, we characterize the globally optimal contract across the (s, s)-space. At the

end of the proof, we show that contracts t ∈ T0 can never be optimal. Consequently, for given

(s, s), we now determine whether the globally optimal contract is given (a) by the optimal

no-separation contract as characterized in Proposition 2 (which we denote by t∗2(s, s)) or (b)

by the optimal partial-separation contract as characterized in Proposition 3 (which we denote

by t∗1(s, s)). Define (see (8)):

D(s, s) = Π(t∗1(s, s)) − Π(t∗2(s, s)), (25)

and hence contract t∗1(s, s) is globally optimal when D(s, s) ≥ 0 holds, while contract t∗2(s, s)

is globally optimal when D(s, s) ≤ 0 holds. Note that D(s, s) is continuous in s and s. In the

following, we characterize D(s, s) across the (s, s)-space. To do so, we proceed in six steps (for

an illustration, see Figure 12).

λ s
 

s
 

ΔsΔs II  

Δs0  

 sII


ss  Bs

 

ΔsΔt′′  

ΔsΔs I  
sII − Δt ′′

s II − Δs II

  ΔsII

Figure 12: Illustration of the proof of Proposition 4

Step 1. Suppose that both s < sII and ∆s ≥ ∆sII hold. This parameter region is non-

empty because it can be shown that ∆sII + λ < sII holds (see Figure 12). The discussion

above Proposition 4 implies:
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Lemma 6 D(s, s) > 0 if both s < sII and ∆s ≥ ∆sII hold (where pairs (s, s) satisfying these

conditions indeed exist).

Step 2. Now, suppose that s ≥ sII holds. In this region, Proposition 3 implies t∗1(s, s) =

(t = 0, t = t
′′′

), which would lead the agent to choose an effort level of 1; implying that s

would obtain with certainty. Two cases with respect to t∗2(s, s) may arise. First, if ∆s ≥ ∆sII ,

then under the optimal no-separation contract exactly the same outcome as under t∗1(s, s)

would obtain (see Proposition 2(ii)): the agent would exert an effort level of 1, s would obtain

with certainty, and the principal’s payoff would be identical to the payoff under the optimal

partial-separation contract because under both contracts the payment by the principal in the

good state would be given by t
′′′

. Hence, in the parameter region where both s ≥ sII and

∆s ≥ ∆sII hold, the principal is indifferent between t∗1(s, s) and t∗2(s, s). Second, if, however,

∆s < ∆sII holds, then the contract t∗2(s, s) is strictly optimal, which follows from the following

“revealed preference”-argument. In this parameter region, the principal could have chosen the

contract (t = b(t
′′′

), t = t
′′′

) ∈ T2, which would have yielded her the same payoff as the contract

t∗1(s, s) = (t = 0, t = t
′′′

). The fact that the principal chooses some different contract t∗2(s, s)

(see Proposition 2) implies that, by doing so, she obtains a strictly higher payoff. To summarize

(for an illustration, see again Figure 12):

Lemma 7 D(s, s) = 0 if both s ≥ sII and ∆s ≥ ∆sII hold, and D(s, s) < 0 if both s ≥ sII

and ∆s < ∆sII hold.

Step 3. Now, suppose that both s ≤ sII and ∆s ≤ ∆t′′ hold. In this region, it will

turn out that D(s, s) < 0 holds. To see this, note that, for ∆s ≤ ∆t′′, the contract t∗2(s, s)

implies first-best effort and the equilibrium payoff of the agent is equal to t
′
(see Proposition

2 and Definition 1). We now show that, given the contract t∗1(s, s), the principal’s payoff

would be strictly smaller, which implies the claim. First, note that if s ∈ (sI , sII ], then, given

t∗1(s, s), the agent’s equilibrium payoff is given by (s+λ)2

8(1+2λ) , which is strictly increasing in s, and

(sI+λ)2

8(1+2λ) = t
′
. Hence, for all s ∈ (sI , sII ], compared to t∗2(s, s), the contract t∗1(s, s) implies a

higher equilibrium payoff for the agent (but cannot imply a higher social surplus as t∗2(s, s)

induces first-best effort). Hence, t∗2(s, s) is strictly optimal from the principal’s perspective.

Second, if s ≤ sI holds, the contract t∗2(s, s) is strictly optimal for the following reasons.

While t∗2(s, s) induces first-best effort e∗2(t
∗
2(s, s)), contract t∗1(s, s) induces a strictly larger
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effort level e∗1(t
∗
1(s, s)) because e∗2(t

∗
2(s, s)) ≤ e∗2(t

′′, t
′′
) < e∗1(t

′′, t
′′
) = e∗1(t

∗
1(s, s)) holds: the

first inequality follows from Proposition 2 because we currently consider a range of parameters

where ∆s ≤ ∆t′′ = t
′′ − t′′ holds. The second inequality holds because (i) t

′′
< λ implies

E2(t
′′, t

′′
) = [0, t′′

λ
] and E1(t

′′, t
′′
) = ( t′′

λ
, t

′′

λ
] (see Lemma 2), and (ii) we have e∗2(t

′′, t
′′
) ∈

E2(t
′′, t

′′
) and e∗1(t

′′, t
′′
) ∈ E1(t

′′, t
′′
) (see Proposition 1). The equality e∗1(t

′′, t
′′
) = e∗1(t

∗
1(s, s))

follows from t∗1(s, s) = (0, t
′′
) for all s ≤ sI . Hence, t∗1(s, s) generates a lower social surplus

than t∗2(s, s); implying a lower profit for the principal because both contracts yield the agent

the same equilibrium payoff of t
′
. To summarize:

Lemma 8 D(s, s) < 0 if both s ≤ sII and ∆s ≤ ∆t′′ hold.

Step 4. To characterize D(s, s) in the remaining parts of the parameter space, it will turn

out to be useful to establish some properties of the partial derivative of D(s, s) with respect to

s. In particular, (25), (8), and Propositions 1-3 imply

∂D(s, s)

∂s
= e∗1(t

∗
1(s, s)) − e∗2(t

∗
2(s, s)), (26)

where obtaining (26) is straightforward because either (a) the optimal contract is derived from

the respective first-order condition (in which case the Envelope Theorem applies), or (b) the

optimal contract is a corner solution (and hence invariant in s). The proof of the following

lemma can be found at the end of this Section.

Lemma 9 Suppose ∆s < ∆sII holds. For any given s, there exists a threshold level s̃(s) such

that

∂D(s, s)

∂s
> 0 if s < s̃(s), and

∂D(s, s)

∂s
≤ 0 if s ≥ s̃(s).

where (i) if s ≥ sII − ∆sII , we have s̃(s) = s + ∆sII , and (ii) if s ≤ sII − ∆sII , we have

that s̃(s) is a strictly increasing function of s that satisfies s̃(s = λ) < λ + ∆sII and s̃(s =

sII − ∆sII) = sII .

Now, consider the parameter region where s ≤ sII , ∆s ∈ (∆t′′,∆sII), and s ∈ (sII −

∆sII , sII − ∆t′′) hold (for an illustration, see again Figure 12). In this case, D(s, s) < 0

because, for given s, Lemma 7 implies D(s, sII) < 0, while Lemma 9 implies ∂D(s,s)
∂s

> 0 for all

s ≤ sII .

Lemma 10 D(s, s) < 0 if s ≤ sII , ∆s ∈ (∆t′′,∆sII), and s ∈ (sII − ∆sII , sII − ∆t′′) hold.
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Step 5. To characterize D(s, s) in the remainder of the parameter space, suppose for a

moment that s ≤ sII − ∆sII holds. In this case, (i) D(s, s) < 0 if ∆s ≤ ∆t′′ (Lemma 8), (ii)

D(s, s) > 0 if both ∆s ≥ ∆sII and s < sII (Lemma 6), and (iii) D(s, s) = 0 if s ≥ sII (Lemma

7). These observations in combination with Lemma 9 imply that for any s ≤ sII − ∆sII there

exists a unique threshold value B(s) such that (a) D(s, s) < 0 holds for all s < B(s), and (b)

D(s, s) ≥ 0 holds for all s ≥ B(s). The above observations also imply that, for s < sII −∆sII ,

the boundary function B(s) is located in a part of the parameter space where ∆s ∈ (∆t′′,∆sII)

and ∂D(s,s)
∂s

> 0 hold; implying that B(s) < s̃(s) for all s < sII − ∆sII .
29 With respect to

its slope, note that B(s) is implicitly defined by D(s, s) = 0. Hence, the Implicit Function

Theorem implies

∂B(s)

∂s
= −

∂D(s,s)
∂s

∂D(s,s)
∂s

> 0 for s < sII − ∆sII . (27)

The inequality in (27) follows from (a) ∂D(s,s)
∂s

> 0 (see the reasoning above) and (b)

∂D(s, s)

∂s
= − (1 − e∗2(t

∗
2(s, s))) < 0, (28)

where this partial derivative can be derived in a similar way as (26), and where the inequality

in (28) follows from e∗2(t
∗
2(s, s)) < 1 for all ∆s < ∆sII (see Proposition 2, and recall the above

reasoning that, for s < sII − ∆sII , the boundary B(s) is located in a part of the parameter

space where ∆s ∈ (∆t′′,∆sII) holds).

Step 6. To summarize, Lemmas 6-10 and Step 5 imply that the claims in Proposition 4

hold true. In particular, the continuous boundary function B(s) has the following properties:

(a) if s ≥ sII −∆sII , we have B(s) = s + ∆sII , and (b) if s < sII −∆sII , then B(s) is strictly

increasing in s and it is located in a part of the parameter space where ∆s ∈ (∆t′′,∆sII) holds.

It only remains to show that contracts t ∈ T0 can never be optimal. To see this, note that

any contract t ∈ T0 induces the agent to leave in both states (resulting in a payoff of zero for

the principal). Moreover, note that the contract (t
′
, t

′
) ∈ T2 would yield the principal a payoff

of s−U0 (because ∆t = 0 implies e∗(t) = 0 and t
′
= U0 holds (see Proposition 1 and Definition

1)), where s−U0 > s− λ > 0 (which follows from (5) and our assumption that λ < s). Hence,

for all (s, s), there exists some no-separation contract (for example, the one discussed above)

that yields the principal a strictly positive payoff, which implies that choosing some t ∈ T0 can

never be optimal from the principal’s perspective.

29Note that for s = sII − ∆sII , we have B(s) = sII .
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D.1 Proof of Lemma 9

It follows from (26) that the sign of ∂D(s,s)
∂s

depends on the sign of [e∗1(t
∗
1(s, s)) − e∗2(t

∗
2(s, s))],

which we study in the following. We proceed in two steps.

Step 1. Consider the range of parameters where ∆s ≤ ∆sI is satisfied, where it will

turn out that e∗2(t
∗
2(s, s)) < e∗1(t

∗
1(s, s)) holds. To see this, consider the contract (t′′, t

′′
), where

t′′ ≡ t
′′−∆t′′ (for an illustration, see Figure 5). Under this contract, it follows from Definition 1

and Proposition 1 that the agent is indifferent between choosing any of the effort levels e∗2(t
′′, t

′′
),

e∗1(t
′′, t

′′
), and min(λ, 1), where e

′′

2 ≡ e∗2(t
′′, t

′′
) < e∗1(t

′′, t
′′
) ≡ e

′′

1 (because (i) t
′′

< λ implies

E2(t
′′, t

′′
) = [0, t′′

λ
] and E1(t

′′, t
′′
) = ( t′′

λ
, t

′′

λ
] (see Lemma 2), and (ii) we have e

′′

2 ∈ E2(t
′′, t

′′
)

and e
′′

1 ∈ E1(t
′′, t

′′
) (see Proposition 1). Now, note that Proposition 3 implies e

′′

1 ≤ e∗1(t
∗
1(s, s)).

Moreover, from Proposition 2 it follows that for ∆s ≤ ∆sI we have e∗2(t
∗
2(s, s)) ≤ e

′′

2 , which

together with the previous observations implies e∗2(t
∗
2(s, s)) ≤ e

′′

2 < e
′′

1 ≤ e∗1(t
∗
1(s, s)), which

proves the claim e∗2(t
∗
2(s, s)) < e∗1(t

∗
1(s, s)) (implying ∂D(s,s)

∂s
> 0 in this range).

Step 2. Consider the (remaining) range of parameters where ∆s ∈ (∆sI ,∆sII) holds. First,

suppose that, in addition, s ≥ sII holds. In this case, we have e∗2(t
∗
2(s, s)) < e∗1(t

∗
1(s, s)) = 1

(see Propositions 2 and 3), which implies ∂D(s,s)
∂s

> 0 in this range of parameters. Second,

note that, in the region of the (s, s)-space where both ∆s ∈ (∆sI ,∆sII) and s ∈ [sI , sII) hold,

e∗1(t
∗
1(s, s)) = e∗2(t

∗
2(s, s)) is equivalent to

1

2

(
s + λ

1 + 2λ

)
=

1

2

(
∆s −

√
1 + 2λ + 1

)
⇔ s =

(
1 + 2λ

2λ

)

︸ ︷︷ ︸
>1

· s +

(
λ + (1 + 2λ)(

√
1 + 2λ − 1)

2λ

)

︸ ︷︷ ︸
>0

,

(29)

which follows from Propositions 1, 2, and 3.

To summarize what we have learned from Steps 1 and 2 sofar, in the parameter region where

both ∆s < ∆sII and s ≥ sI hold, the boundary function s̃(s) is defined (a) by s̃(s) = s + ∆sII

if s ≥ sII − ∆sII , and (b) by (29) (and located as depicted in Figure 12) if s ≤ sII − ∆sII .

Finally, consider the region of the (s, s)-space, where both ∆s ∈ (∆sI ,∆sII) and s < sI hold

(where such (s, s) may or may not exist). In this region of the parameter space, e∗1(t
∗
1(s, s)) =

e∗2(t
∗
2(s, s)) is equivalent to (see Propositions 1, 2, and 3):

1

2




(
2t

′′
+ λ

)
+ λ

1 + 2λ


 =

1

2

(
∆s −

√
1 + 2λ + 1

)
, (30)
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and hence, in this parameter range, the boundary function s̃(s) is a line parallel to the main

diagonal, where e∗1(t
∗
1(s, s)) > (<)e∗2(t

∗
2(s, s)) to the left (right) of this line. Moreover, indepen-

dent of the existence of pairs (s, s) that satisfy both ∆s ∈ (∆sI ,∆sII) and s < sI , the above

discussion implies that, for s ≤ sII − ∆sII , the boundary function s̃(s) is (piece-wise) linear

and increasing in s, and it satisfies s̃(s = λ) < λ + ∆sII and s̃(s = sII − ∆sII) = sII , which

concludes the proof.

E Proof of Proposition 6

In the proof of Proposition 6, we maintain the following two assumptions. First, if, at date

4, the agent is indifferent between leaving and staying, he stays (see footnote 10). Second,

consider a given pair of contracts and suppose that both generate the same effort incentives

(i.e., given truth-telling and taking into account optimal ex-post participation decisions, the

agent’s payoff as a function of his effort choice e is the same under both contracts). Then, the

agent chooses the same effort level under both contracts (i.e., potentially arising indifferences

are resolved in the same way).

For a given contract (τ(ê, ŝ; s), τ0(ê, ŝ)) in T define sets of effort levels ES(s) ≡ {e / given

e and s, in equilibrium the agent stays} and EL(s) ≡ {e / given e and s, in equilibrium the

agent leaves}. We first establish the following result, which proves the first part of Proposition

6.

Lemma 11 (Restriction to T̃ is without loss of generality) For any contract (τ(ê, ŝ; s),

τ0(ê, ŝ)) in T , there exist threshold values ẽ(s), ẽ(s) ∈ ℜ and payments τ̃(s), τ̃(s), τ̃0 ≥ 0 satis-

fying τ̃(s) = λẽ(s)+ τ̃0 for all s ∈ {s, s} (where ẽ() and τ̃() are functions of the verifiable gross

profit only) such that

(i) for s given, (a) if e ∈ ES(s), then e ≤ ẽ(s) and the agent receives the payment τ̃(s), and

(b) if e ∈ EL(s), then e ≥ ẽ(s) and the agent receives the payment τ̃0, and

(ii) the message-independent contract (τ̃(s), τ̃(s), τ̃0) leads to the same equilibrium outcome.

The proof of Lemma 11 proceeds in five steps. In Steps 1-3 we establish some preliminary

results, which are used in Steps 4-5 to establish Lemma 11.
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Step 1. Take s as given. We first show that for all e ∈ ES(s) the equilibrium payment

τ(e, s; s) cannot vary in e. This is trivially satisfied if ES(s) is a singleton, and hence suppose

that this is not the case. For any pair e′, e′′ ∈ ES(s), (13) implies that both

max
{
τ(e′, s, s), λe′ + τ0(e

′, s)
}

≥ τ(e′′, s, s) ⇔ τ(e′, s, s) ≥ τ(e′′, s, s) and (31)

max
{
τ(e′′, s, s), λe′′ + τ0(e

′′, s)
}

≥ τ(e′, s, s) ⇔ τ(e′′, s, s) ≥ τ(e′, s, s) (32)

have to hold, which can only be satisfied if τ(e′′, s, s) = τ(e′, s, s). To summarize, τ(e, s; s) ≡

τ̃(s) for all e ∈ ES(s), where τ̃(s) may vary in the realized, verifiable gross profit s ∈ {s, s}.

Step 2. Take s as given. An analogous argument as in Step 1 implies that for all e ∈ EL(s)

the equilibrium payment τ0(e, s) cannot vary in e, i.e., τ0(e, s) ≡ x0(s) for all e ∈ EL(s), where

(so far) we do not ruled out that the equilibrium payment x0(s) may depend on the agent’s

report about the realized state.

Step 3. For s given, suppose ES(s), EL(s) 6= ∅. For this case, we show that truth-telling

implies that there exists a threshold value ε(s) such that (i) e ∈ ES(s) implies e ≤ ε(s), and

(ii) e ∈ EL(s) implies e ≥ ε(s), where ε(s) is implicitly defined by

τ̃(s) = λ · ε(s) + x0(s). (33)

First, consider EL(s). If ε(s) ≤ 0 would hold, then the claim with respect to EL(s) would be

trivially satisfied. Hence, suppose ε(s) > 0, and, contrary to the above claim, assume that there

exist e′ ∈ EL(s) such that e′ < ε(s); implying max {τ(e′, s, s), λe′ + τ0(e
′, s)} = λe′ + x0(s) <

τ̃(s), where the equality follows from e′ ∈ EL(s) and where the inequality follows from e′ < ε(s)

(which is equivalent to τ̃(s) > λe′+x0(s)). Hence, if e′ < ε(s) would hold, the agent’s incentive

compatibility condition (13) would be violated, because the agent could obtain the larger payoff

of τ̃(s) by, instead of truthfully reporting e′, switch to some false report e′′ ∈ ES(s). Hence,

e ≥ ε(s) for all e ∈ EL(s). Second, consider ES(s). A completely analogous argument (which

we, therefore, omit) implies the claim with respect to ES(s).

Step 4. Building on Steps 1-3, we now prove Lemma 11 for the case that, for all s, it holds

that ES(s), EL(s) 6= ∅. For this case, we first establish that x0(s) ≡ τ̃0 has to hold for all

s ∈ {s, s}. To see this, note that in the present case
{
EL(s) ∩ EL(s)

}
6= ∅ (see the discussion

of the threshold values ε(s) in Step 3), and (13) in combination with Step 2 implies that for

all e ∈
{
EL(s) ∩ EL(s)

}
both λe + x0(s) ≥ λe + x0(s) and λe + x0(s) ≥ λe + x0(s) have to

43



hold. This can only be satisfied if x0(s) ≡ τ̃0 for all s ∈ {s, s}. This observation implies that,

in the present case, we indeed have ε(s) = ẽ(s) ∀s (where ẽ(s) is defined in Lemma 11). For

the present case, these observations prove part (i) of Lemma 11. Moreover, these observations

imply that both the contract (τ(ê, ŝ; s), τ0(ê, ŝ)) and the contract (τ̃(s), τ̃(s), τ̃0)) imply the

same sets ES(s) and EL(s) for all s ∈ {s, s}. Hence, for all e and all s, both contracts lead to

the same ex-post participation decisions and payments to the agent; implying that the agent’s

effort incentives under both contracts are identical. As a result, both contracts lead to the

same equilibrium outcome, which, for the present case, proves part (ii) of Lemma 11.

Step 5. Building on Steps 1-3, we now prove Lemma 11 for the remaining cases (where

ES(s), EL(s) 6= ∅ does not hold for all s). For each of the remaining cases, we derive some

observations with respect to the threshold values ẽ(s) and ẽ(s) and the payments τ̃(s), τ̃(s),

and τ̃0. These observations in combination with a similar reasoning as in Step 4 will imply

the Proposition for the respective case, where, due to its similarity to Step 4, this latter step

is, however, omitted from the proof. First, suppose EL(s) = EL(s) = [0, 1], where a similar

reasoning as in Step 4 implies that x0(s) = x0(s) ≡ τ̃0 > 0 has to hold. Additionally, define

τ̃(s) ≡ 0 for all s, and implicitly define ẽ(s) by 0 = λẽ(s) + τ̃0 for all s, where, due to τ̃0 > 0,

we have ẽ(s) < 0. Second, suppose ES(s) = ES(s) = [0, 1]; implying that, depending on the

realized state, the agent receives a payment τ̃(s) or τ̃(s). Additionally, define τ̃0 ≡ 0, in which

case ẽ(s) is implicitly defined by τ̃(s) = λẽ(s) for all s, where due to ES(s) = ES(s) = [0, 1]

we have ẽ(s) ≥ 1. Third, suppose EL(s) = ES(s) = [0, 1]; implying that in state s the agent

receives a payment τ̃(s), while in state s he receives x0(s), where x0(s) > 0. In this case, (13) in

combination with Steps 1 and 2 implies that, given the contract (τ(ê, ŝ; s), τ0(ê, ŝ)), it must be

the case that τ̃(s) ≥ λe+x0(s) for all e. Hence, define τ̃(s) ≡ 0 and τ̃0 ≡ x0(s); implying ẽ(s) <

0 and ẽ(s) ≥ 1. The proof for the case EL(s) = ES(s) = [0, 1] is completely analogous and

therefore omitted. Fourth, suppose EL(s) ⊂ [0, 1] = ES(s). In this case, (13) in combination

with Steps 1 and 2 again implies that, under the contract (τ(ê, ŝ; s), τ0(ê, ŝ)), it must be the

case that τ̃(s) ≥ λe + x0(s) holds for all e. Now, define τ̃0 ≡ x0(s), which in combination with

τ̃(s) ≥ λe + τ̃0 ∀e implies ẽ(s) ≥ 1. Also, as in the present case, in state s the agent leaves for

some e but stays for others, Steps 3 and 4 imply that ẽ(s) = ε(s) ∈ [0, 1). The proof for the

case EL(s) ⊂ [0, 1] = ES(s) is completely analogous and therefore omitted. Finally, suppose

ES(s) ⊂ [0, 1] = EL(s). In this case, it follows from Step 4 that x0(s) = x0(s) ≡ τ̃0 > 0. Define
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τ̃(s) ≡ 0, and hence λẽ(s) + τ̃0 = 0 implies ẽ(s) = ε(s) < 0. Also, it follows from Steps 3 and 4

that ES(s) ⊂ [0, 1] implies ẽ(s) = ε(s) ∈ [0, 1). The proof for the case ES(s) ⊂ [0, 1] = EL(s)

is completely analogous and therefore omitted. This concludes the proof of Lemma 11.

We now turn to the proof of the second part of Proposition 6, where the proof consists of

two parts (Lemmas 12 and 13).

Lemma 12 (No strictly positive payment when the gross profit is zero) For any con-

tract (τ̃(s), τ̃(s), τ̃0) in T̃ satisfying τ̃0 > 0 there exists an alternative contract in T̃ that specifies

a payment of zero when the gross profit is zero and that yields the principal a strictly higher

payoff.

The proof of Lemma 12 proceeds in two steps. In Step 1, we show that, if τ̃0 > 0 holds,

without loss of generality, one can restrict attention to contracts satisfying τ̃(s) ≥ τ̃0 for all

s. Building on this result, in Step 2 we show that any such contract is dominated by some

contract specifying τ̃0 = 0.

Step 1. Take a contract (τ̃(s), τ̃(s), τ̃0) with τ̃0 > 0 as given and suppose that there exists

some s such that τ̃(s) < τ̃0. Without loss of generality, suppose τ̃(s) < τ̃0, and consider

the alternative contract (τ̃0, τ̃(s), τ̃0). In state s, under both the original and the alternative

contract the agent’s ex-post participation behavior and the payoffs he obtains are exactly the

same (because the specified payments are exactly the same). In state s, under the original

contract, for all e, the agent leaves (because τ̃(s) < λe + τ̃0 ∀e), and he receives a payment

of τ̃0. Under the alternative contract, we have τ̃0 < (=)λe + τ̃0 for e > 0 (e = 0), and

hence (as under the original contract) the agent leaves and receives τ̃0 for all e > 0. For

e = 0, under the alternative contract the agent would stay (because he is indifferent), but

again receive τ̃0. Consequently, from the principal’s perspective, both contracts generate the

same effort incentives and payments to the agent. Moreover, if e = 0 would indeed be chosen in

equilibrium, the principal would be better off under the alternative contract because it induces

participation. Consequently, without loss of generality one can restrict attention to contracts

(τ̃(s), τ̃(s), τ̃0) satisfying τ̃(s) − τ̃0 ≥ 0 for all s.

Step 2. Take a contract (τ̃(s), τ̃(s), τ̃0) with τ̃0 > 0 as given and suppose τ̃(s) − τ̃0 ≥ 0

for all s. First, consider the agent’s ex-post participation decision. For given e, the agent

stays with the principal if τ̃(s) ≥ λe + τ̃0 ⇔ τ̃(s) − τ̃0 ≥ λe holds. Now, define an alternative
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contract (t, t, 0), where t ≡ τ̃(s) − τ̃0 ≥ 0 and t ≡ τ̃(s) − τ̃0 ≥ 0. This alternative contract

yields the same ex-post participation behavior as the original contract (τ̃(s), τ̃(s), τ̃0). Second,

consider the agent’s effort incentives. When choosing his effort level, under the original contract

(τ̃(s), τ̃(s), τ̃0), the agent’s objective function is given by

e · max(τ̃(s), λe + τ̃0) + (1 − e) · max(τ̃(s), λe + τ̃0) − c(e) (34)

Under the alternative contract (t, t, 0), in each contingency the payment to the agent is reduced

by τ̃0, and hence the agent’s objective function can be written as

[e · max(τ̃(s), λe + τ̃0) + (1 − e) · max(τ̃(s), λe + τ̃0) − c(e)] − τ̃0. (35)

Hence, under both contracts the agent faces identical effort incentives and chooses the same

equilibrium effort level. Third, as under both contracts choosing e = 0 would be feasible

(which in either case would yield the agent a non-negative payoff), under both contracts the

agent’s ex-ante participation constraint is satisfied. Finally, as under the alternative contract

the expected payment to the agent is reduced by τ̃0 > 0, the principal is strictly better off

under the alternative contract. This concludes the proof of Lemma 12.

Lemma 12 shows that, without loss of generality, one can restrict attention to contracts in

T̃ that satisfy τ̃0 = 0. Now, consider contracts (τ̃(s), τ̃(s), τ̃0) in T̃ that satisfy τ̃(s) > τ̃(s) ≥

τ̃0 = 0, and denote this subset of contracts by T−.

Lemma 13 (No reward for low gross profit) For any contract in T−, there exists an al-

ternative contract (τ̃(s), τ̃(s), τ̃0) in T̃ that satisfies τ̃(s) ≥ τ̃(s) ≥ τ̃0 = 0 and that yields the

principal a strictly higher payoff.

In order to prove Lemma 13, we first characterize optimal agent behavior across T−, then

derive optimal contracts in T−, and subsequently we show that contracts in T− are strictly

dominated. For ease of notation (and consistent with the main body of the paper), define

t ≡ τ̃(s), t ≡ τ̃(s), and t ≡ (t, t). Applying an analogous reasoning as that above Lemma 2 (see

Section 3), it is straightforward to show that, for a given contract t ∈ T− and optimal ex-post

participation decisions, the agent’s expected payoff is given by

U(e, t) =





U−
2 (e, t) ≡ e · t + (1 − e) · t − 1

2e2 if e ∈ E−
2 (t) ≡ {e | e ≤ t

λ
}

U−
1 (e, t) ≡ e · λe + (1 − e) · t − 1

2e2 if e ∈ E−
1 (t) ≡ {e | t

λ
< e ≤ t

λ
}

U−
0 (e, t) ≡ λe − 1

2e2 if e ∈ E−
0 (t) ≡ {e | e > t

λ
},

(36)
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where (a) E−
2 (t), E−

1 (t), E−
0 (t) 6= ∅ for t < λ, (b) E−

2 (t), E−
1 (t) 6= ∅ and E−

0 (t) = ∅ for

t < λ ≤ t, and (c) E−
2 (t) 6= ∅ and E−

1 (t) = E−
0 (t) = ∅ for t ≥ λ. Moreover, note that, for

t ∈ T−, U(e, t) is continuous in e, U−
2 (e, t) and U−

0 (e, t) are strictly concave in e, and U−
1 (e, t)

is strictly concave in e if and only if λ < 1
2 . Hence, for any t ∈ T− the agent either stays in

both states, leaves in both states, or stays in the bad state s only.

We now turn to the agent’s optimal choice of effort level given a contract t ∈ T−. Note

that U−
2 (e, t) is strictly decreasing in e, and hence in the set E−

2 (t) the optimal effort level is

given by e = 0; implying that the agent’s maximum payoff in E−
2 (t) is given by U−

2 (0, t) = t.

Next, we show that E−
1 (t) 6= ∅ implies e∗(t) /∈ E−

1 (t). To prove this, we show that

U−
1 (e, t) < t for all e ∈ E−

1 (t) (where, recall, t is the payoff the agent could obtain in E−
2 (t)).

On the one hand, note that U−
1 (e, t) = (λ − 1

2)e2 − et + t < t if λ − 1
2 < 0 (because e > 0 for

all e ∈ E−
1 (t), which follows from (36)). On the other hand, if λ− 1

2 ≥ 0 (i.e., when U−
1 (e, t) is

weakly convex in e), then the continuity of U(e, t) implies that, for the claim to hold true, it

suffices to check whether the claim holds at the upper bound of E−
1 (t). This is indeed the case

because U−
1 ( t

λ
, t) = t − 1

2

(
t
λ

)2
< t, which follows from t > t ≥ 0 (see the definition of T−).

The fact that e∗(t) /∈ E−
1 (t) if E−

1 (t) 6= ∅ in combination with the above stated properties

of U(e, t) (see (36)) implies that e∗(t) = 0 ∈ E−
2 (t) for all t ∈ T− that satisfy t ≥ λ. Moreover,

for the case t < λ it is straightforward to show that the optimal effort level in E−
2 (t) yields the

agent a higher (lower) payoff than the optimal effort level in E−
0 (t) if t > (<)U0 holds. Note

that U0 < λ. These observations imply that, for t ∈ T−, we have e∗(t) = 0 ∈ E−
2 (t) if t ≥ U0,

and e∗(t) = min(λ, 1) ∈ E−
0 (t) if t < U0. In the latter case, the principal’s payoff is equal to

zero because the agent leaves in both states of the world (see (8)). Moreover, in the former case

(i.e., for contracts t ∈ T− satisfying t ≥ U0), the above observations imply that the principal’s

payoff (see again (8)) is given by s − t. Hence, in this set of contracts, the principal optimally

sets t = U0 and obtains a payoff of s − U0, where we have s − U0 > s − λ > 0 (implying that

any contract t ∈ T− that induces the agent to leave in both states (resulting in a payoff of zero

for the principal) can never be optimal).

Hence, to prove that contracts in T− cannot be optimal, it remains to show that, for any

(s, s), the contract that is globally optimal in the set T2 ∪ T1 yields the agent a payoff that is

strictly larger than s−U0. To see why this is true note that the contract (t
′
, t

′
) ∈ T2 would also

yield the principal a payoff of s − U0 (because ∆t = 0 implies e∗(t) = 0 and t
′
= U0 holds (see
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Proposition 1 and Definition 1)). However, as is apparent from Proposition 2 there does not

exist (s, s) such that (t
′
, t

′
) is an optimal no-separation contract, which necessarily implies that,

for all (s, s), the optimal no-separation contract yields the principal a strictly higher payoff.

Hence, contracts in T− can never be optimal. This concludes the proof of Lemma 13 and the

proof of the second part of Proposition 6.
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