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Abstract

We use a simple balanced budget contest to collect taxes on a private good in order to
finance a pure public good. We show that—with an appropriately chosen structure of winning
probabilities—this contest can provide the public good efficiently and without distorting private
consumption. We provide extensions to multiple public goods and private taxation sources,
asymmetric preferences, and show the mechanism’s robustness across these settings. (JEL
C7, D7. Keywords: Taxation, Contests, Efficiency.)

1 Introduction

The $240 billion worldwide lottery industry is a thriving business by any standard.1 Most governments

regulate lottery activities to some extent and many participate in the generated revenues in some

form or another. The lotteries in the 46 United States’ jurisdictions which allowed such activities

in 2009 represented a combined revenue of more than $52.3 billion resulting in $17.7 billion profits

(Bloomberg, 11-Jan-2011). The resulting tax proceeds were and are essential for communities to

balance budgets and finance public projects.

An example of a carefully designed lottery to directly finance public goods are the United Kingdom

Premium Bonds.2 A Premium Bond is a lottery bond issued by the UK government’s National

Savings and Investments scheme. The UK government promises to buy back the bond, on request,

for its original price and pays interest on the bond (pegged at 1.5% in July 2010). But instead of

the interest being paid into individual accounts, it is paid into a prize fund from which a monthly

lottery distributes tax-free prizes, or premiums, to those bond-holders whose numbers are selected

∗Thanks to Alan Krause, Felix Bierbrauer, and Alex Gershkov for helpful discussions. Financial support from
the German Science Foundation through SFB/TR 15 and from the University of York Super Pump Priming Fund is
gratefully acknowledged. Giebe thanks for the hospitality of the University of York (03-03-2011).
1 LaFleur’s World Lottery Almanac 2010, http://www.lafleurs.com.
2 http://www.nsandi.com/products/pb.



randomly. In July 2010, the total estimated value of the UK premium bond prize pot was £52.3

million. The machine that generates the random numbers underlying the lottery is called ERNIE, for

Electronic Random Number Indicator Equipment. In principle, this machine could generate random

numbers according to any probability distribution specified and in particular it would be easy to

generate the winning probabilities we design in the present paper.

This paper provides an answer to the question of why lotteries are so commonly used to finance

public goods: they may induce efficient allocations. The mechanisms we design for this purpose

are simple contests capable of collecting taxes on one or more private goods in order to finance

any number of pure public goods. Since we employ contests which retain an element of luck to

winning, there is a lottery feel to these mechanisms which is crucial for our results. Thus, we refer to

these mechanisms as contests or lotteries synonymously throughout the paper. We show that—with

appropriately chosen parameters—our contests can provide public goods efficiently and without

distortion of private consumption. The tax parameters are individually rational and unanimously

accepted if proposed.

The main idea behind our contest scheme is to carefully construct overinvestment incentives

into a lottery. These overinvestments are siphoned into financing a public good which would not be

provided in efficient quantity given private contributions. Our main point is that, in many cases, the

lottery incentives can be designed such that the public good is provided efficiently. We show that

any private good can be used to generate the required lottery. Our surprising result is that we can

design the lottery such that both the public and the private goods are supplied efficiently.

Literature

To use lotteries for taxation purposes is not a new idea.3 Nevertheless, we are only aware of

a handful of papers developing ideas directly related to this paper, that is, to taxation through

contests: Morgan (2000), Morgan and Sefton (2000), Moir (2004), Goeree, Maasland, Onderstal,

and Turner (2005), and Gee (2010).4 Contrary to the present analysis, these papers are mainly

concerned with raising funds and not with designing a mechanism capable of achieving efficiency.

From a technical modelling point of view, they employ separable (quasi-linear) utility, and the Tullock

and all-pay-auction contest success functions, respectively.

Morgan (2000) is by far the closest paper to our analysis. Without considering a private good,

he studies aspects of the ‘simplified Tullock’ case of our environment, that is, he does not design

the winning probability aspect of the lottery but uses an exogenously fixed technology. His results

3 “A Lottery is a Taxation, Upon all the Fools in Creation; And Heavn be praisd, It is easily raisd, Credulitys always
in Fashion; For, Follys a Fund, Will never lose Ground; While Fools are so rife in the Nation.” Henry Fielding, The
Lottery (London: J. Watts, 1732), Scene 1, quoted in Clotfelter and Cook (1989, 219). Earlier still, according
to wikipedia, Keno lottery slips from the Chinese Han Dynasty (205–187 B.C.) are believed to have helped
financing the construction of the Great Wall of China.

4 The idea that in some circumstances efficiency can be induced through a rank order tournament is due to Lazear
and Rosen (1981). In these tournaments, prizes are allocated according to a relative ranking, hence ordinal
information on performance is sufficient. This idea has found numerous applications and extensions, for instance
in the work of Green and Stokey (1983), Nalebuff and Stiglitz (1983), Dixit (1987), Moldovanu and Sela (2001),
or Siegel (2009). For a detailed survey of the contests literature see the comprehensive Konrad (2008).
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have therefore a more negative flavour than ours. In his paper, the amount of public good provided

depends on the size and structure of the lottery prize and on the return from the public good itself.

In sum, Morgan’s lottery tickets cost more than the prize sum needed to attract participation and

he uses the surplus to finance the public good. He shows that if the prize sum is fixed in advance,

a sufficiently large prize can provide the public good at close to the efficient level while if the prize

is a percentage of contributions, the lottery does not perform better than voluntary contributions.

Goeree, Maasland, Onderstal, and Turner (2005) introduce a general class of all-pay auctions, rank

their revenues, and illustrate the extent to which they dominate winner-pay auctions and lotteries.

Moreover, they identify the optimal fund-raising mechanism as being of the all-pay format they

investigate. Moir and Childs (2005) and Moir (2006) discuss difficulties in the efficient design of

one or more public goods lotteries in a comparatively conversational manner. The empirical relevance

of the use of lottery money for financing public goods is testified to by, for instance, Landry and

Price (2007). For a critical appraisal of tax lotteries see Hansen (2005).

The large literature on variants of Vickrey-Clarke-Groves mechanisms applied to taxation prob-

lems assumes incomplete information on preferences. An example tailored directly to public goods

provision is Ledyard and Palfrey (1994). Modern exponents are Bierbrauer (2009), Bierbrauer and

Hellwig (2009), or Hellwig (2007), but although fascinating and ingenious, this literature is not

applicable to our classic perfect information setup.

As it is impossible to review the vast literature on optimal taxation here, we contend ourselves

with pointing out the key advantages of our approach with respect to the classic remedies developed

in the literature on efficient complete information taxation.5 The textbook solution to avoiding the

distortive effect of taxation is through lump-sum taxes. Implementing these, however, is politically

often outright impossible. One difficulty with the Lindahl approach is the assumption that an in-

dividual expects to consume the amount of the (non-rival and non-excludable) public good, which

solves the individual’s utility maximisation problem. Thus, free riding on the public good is prob-

lematic given the efficient provision of the public good through the other players. Thus the Lindahl

equilibrium is not a Nash equilibrium while ours is. A Pigouvian tax subsidises the public good such

that an efficient allocation is obtained. Hence, this mechanism is not balanced budget. The idea of

Coasian bargaining requires property rights for the public good which is not easily justified in many

public goods contexts.

Following the model definition in section 2, we present the idea of tax contests through an

illustrative example in section 3. Although highly stylised, this simple example conveys much of

the intuition of the general results presented in section 4. The subsections extend these results to

the asymmetric case and compare them with alternative schemes. Robustness checks and model

extensions are examined in sections 5 and 6. All proofs are in the appendix.

5 For recent and comprehensive surveys see Silvestre (2003) or Mankiw, Weinzierl, and Yagan (2009).

3



2 The model

There is a set N of n > 1 risk-neutral, identical individuals i ∈ N who each consume a public good,

G, and can purchase quantities xi ∈ [0,∞), x = (x1, . . . , xn), of some private good. Consumption

choices are not verifiable but a sales tax can be imposed and collected. Individual utility ui(·),

i ∈ N , is assumed to be additively separable in consumption and money and is given by

ui(xi, G) = w + v (xi, G)− pxi, (1)

where w is monetary wealth and p is the unit price of the private good; we assume the latter to be

unperturbed by taxation. The public good is produced at strictly monotonic and differentiable cost

C(G) and we assume v to be strictly quasi-concave in both arguments.

In order to overcome the free-riding problem associated with the provision of the public good,

we introduce a contest tax scheme as follows. A sales tax of proportion α > 0 is collected in order

to form a prize pool

P = αp
n∑

j=1

xj . (2)

The share (1− β) of this prize pool is used to finance the public good and the remaining share β is

awarded as the winner’s prize in a contest held on the purchased quantity of the private good. The

participation utility in such a contest is

ui(x) = w + v(xi, G) + πi(x)βP − (1 + α)pxi, (3)

where πi(x) is player i’s probability of winning the contest as a function of all players’ private

good consumption. Thus, the prize βP goes to the winner of the contest and the second prize,

(1 − β)P , is enjoyed by all consumers. The amount of the public good, G, is implicitly given by

C(G) = (1 − β)P . We assume that the noisy (partial) ranking π(x) = (π1(x), . . . , πn(x)) of

the players’ consumption expenditures is observe- and verifiable. We assume that πi(x) is strictly

increasing in xi, strictly decreasing in all other arguments, equal to 1/n for identical arguments, twice

continuously differentiable, and zero for xi = 0 with at least one xj 6=i > 0, j ∈ N . In order to

simplify the exposition of the results in the main body of the paper, we assume the contest to be

governed by the generalised Tullock contest success function, that is, by the winning probability

πi(x) =
xr
i

∑n

j=1 x
r
j

, r > 0, (4)

with πi(x) = 1/n for x1 = x2 = · · · = xn = 0.6 For this specification, we interpret the exponent

r as the ‘power’ of the contest success function defining the (marginal) increase in the (marginal)

probability of winning from higher consumption of the private good. This formulation allows for a

6 The Tullock success function has been axiomatised by Skaperdas (1996) and others who show that only variants
of the Tullock contest success function satisfy a set of desiderata similar to our assumptions in section 5.1. Fu
and Lu (2007) and Jia (2008) derive distribution-based foundations for the general Tullock formulation.
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more compact presentation of our results than the general framework. Our results, however, hold

for a wider range of contest specifications, some of which we explore in section 5.

The objective of the designer is to maximise total utility by choosing a rank order taxation contest

〈α∗, β∗, π(x)〉 which allows for the efficient provision of the public good while simultaneously ensuring

efficient private good consumption. When the specific generalised Tullock formulation is used, then

we write the efficient scheme as 〈α∗, β∗, r〉.

3 Example

This section presents an illustrative example based on a Tullock contest and Cobb-Douglas prefer-

ences where the public good is produced at linear cost, C(G) = qG with q > 0.7 The idea is that

we levy a (sales) tax equal to a share α of the consumption expenditures on the private good x. In

return, the consumer gets a (non-transferable) lottery ticket entitling to the participation in a prize

draw. We assume that v(x,G) = xaGb with a, b > 0, a+ b < 1, implying that the social planner’s

problem is concave and its solution is given by

W ∗ = max
x,G

n
(
w + xaGb − px

)
− qG. (5)

The efficient quantities x∗ and G∗ are positive and unique. They are found by solving the first-order

conditions with respect to x and G

x∗ =

(
a

p

) 1−b
1−a−b

(
nb

q

) b
1−a−b

, G∗ =

(
a

p

) a
1−a−b

(
nb

q

) 1−a
1−a−b

. (6)

Assuming symmetric contributions, each consumer needs to contribute a monetary amount equal to

qg∗ = qG∗/n in order to provide the efficient amount of the public good. Given this, it is individually

rational to consume the amount x∗ of the private good.

In a game with voluntary contributions, taking existence of a symmetric Nash equilibrium as

given, player i solves

max
xi,gi

w + xa
i (gi + (n− 1)gj)

b − pxi − qgi. (7)

Denoting the symmetric equilibrium strategies by xeq and geq, we find

xeq

x∗
= n

b
1−a−b ,

geq

g∗
= n

1−a
1−a−b , (8)

implying the well-known distortion that is due to the positive external effect which player i’s con-

tribution has on the other n − 1 players. In order to counterbalance this problem, we introduce a

7 A similar example works for additive separable preferences. Since the fully separable case is known to lend itself
to efficient public goods provision (under conditions discussed, for instance, by Deaton (1981) or Bergstrom and
Cornes (1983)), we use Cobb-Douglas preferences as leading example.
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contest tax scheme, thereby changing player i’s utility (3) to

max
xi

ui(x) = w + xa
iG

b +
xr
i

∑n

j=1 x
r
j

βP − (1 + α)pxi

s.t. qG = (1− β)P, and P = αp
∑n

j=1 xj .

(9)

Our central result is that there exists a contest tax scheme 〈α∗, β∗, r〉 which induces a symmetric

equilibrium where every player i ∈ N consumes the efficient quantity of the private good x∗ while

the public good is provided in the efficient amount G∗. Suppose that a symmetric equilibrium exists

where the other players play the symmetric strategy xj > 0. Then i’s utility is

ui(x) = w + xa
i

(
1− β

q
αp (xi + (n− 1)xj)

)b

+

xr
i

xr
i + (n− 1)xr

j

βαp(xi + (n− 1)xj)− (1 + α)pxi.
(10)

Taking the first-order condition w.r.t. xi and replacing xi = xj by x, respectively, we get

xa+b−1

(
1− β

q
αpn

)b(

a+
b

n

)

+
n− 1

n
rβαp+

βαp

n
− (1 + α)p = 0. (11)

In order to isolate α in the above, we develop a second condition: Take qG = (1− β)P , from (9),

insert the efficient quantities x∗ and G∗ from (6) to obtain the relation

α(1− β) =
b

a
. (12)

Solving for α, inserting this into (11) and simplifying leads to

xa+b−1

(
pnb

aq

)b(

a +
b

n

)

+
pb

a(1− β)

(
n− 1

n
rβ +

β

n
− 1

)

− p = 0. (13)

After setting x = x∗ from (6), this simplifies to

β∗ =
1

r
, α∗ =

b

a

r

r − 1
. (14)

Note that ‘limited liability’ β∗ ∈ (0, 1) is satisfied if r > 1 while α∗ > 0 is then assured. Thus,

through the efficient mechanism 〈α∗, β∗, r〉 the designer can induce a symmetric and efficient equi-

librium candidate where each player consumes the efficient amount x∗ of the private good. Notice

that the designer has a degree of freedom in the choice of r. As apparent from (14), high values of

r allow for lower contest prizes than low r.

Inserting x∗, G∗, α∗ and β∗ in (10), we get

ui(x) = (1− a− b)

(
a

p

) a
1−a−b

(
nb

q

) b
1−a−b

. (15)
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The following figure confirms equilibrium existence for this candidate by plotting i’s single-peaked

utility arising from different consumption levels xi under the contest tax scheme with α∗ and β∗,

assuming that every player j 6= i chooses xj = x∗.8

0.02 0.04 0.08 0.10 0.12

0.008

0.009

0.010

0.011

0.012

ui(xi, x
∗)

ui(xi, x
∗)

xi
x∗

ui(x
∗, x∗)

Figure 1: Private good consumption levels ensuring efficient public good provision.

4 Analysis

The social planner’s problem is to maximise total utility net of cost,

W ∗ = max
x,G

n (w + v (x,G)− px)− C(G). (16)

The efficient level of the private good, x∗
i , and the efficient total contribution to the public good

G∗ are then characterised by the first-order conditions

∂v(x,G)

∂x

∣
∣
∣
∣
(x,G)=(x∗,G∗)

= p,
∂v(x,G)

∂G

∣
∣
∣
∣
(x,G)=(x∗,G∗)

=
C ′(G)

n
, (17)

where the latter is known as the Samuelson condition which equates the sum of marginal utilities

to the marginal cost of the public good. Samuelson (1954) shows that individual maximisation fails

to attain these efficient levels. This well-known result is due to the positive externality created by

each individual contribution to the public good. The basic idea of the contest tax scheme is to

balance that positive externality with the negative externality inherent in the contest. If the scheme

is appropriately designed, the two externalities cancel each other out. As discussed in section 4.2,

several prominent alternative schemes fail to achieve this result.

8 The parameters used for plotting the figure are n = 2, p = q = 1, a = 3/4, b = 1/10, r = 2, x∗ = .0601,
g∗ = 0.0081, α∗ = .73, β∗ = 0.5. We should also point out that there is a long-standing issue with the existence
of symmetric pure strategy equilibria when r > 1 in standard contests with many players (see, eg., Schweinzer
and Segev (2011)). As shown in proposition 2, however, existence conditions are not as restrictive in the present
environment.
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Provided that a symmetric pure strategy equilibrium xj > 0 exists under the contest tax scheme

(a fact that we establish for a large class of specifications in proposition 2), the individual utility

maximisation problem (1) becomes

max
xi

ui(x) = w + v(xi, G)− (1 + α)pxi +
xr
i

xr
i + (n− 1)xr

j

βP

s.t.: C(G) = (1− β)P, and P = αp(xi + (n− 1)xj).
(18)

Our first main result gives a sufficient condition implying that the first-order condition of each

player’s best-reply problem is satisfied.

Proposition 1. Using the tax contest scheme 〈α∗, β∗, r〉, the private good is consumed at its efficient

level and the public good can be provided efficiently for all n ≥ 2 if r > 1. The corresponding

equilibrium parameters α∗ and β∗ are

β∗ =
1

r
and α∗ =

C(G∗)/n

px∗

1

1− β∗
(19)

The derived α∗ has a nice interpretation: the first fraction is the per-person cost of the public

good divided by the per-person cost of the private good. Notice that this is a sufficient condition.

When β∗ is significantly smaller than one, much less steep ranking technologies may still ensure

efficient public good provision. Notice that β∗ is independent of the tax rate.

Inserting x∗, G∗, α∗ and β∗ in the utility function of (18) we get

ui(x) = w + v(x∗, G∗)− px∗ −
C(G∗)

n
=

W ∗

n
. (20)

Since (18) is not a convex optimisation problem, we need to be more specific for the derivation of

a sufficient existence condition. The following proposition provides such a condition for a subclass

of Cobb-Douglas preferences.

Proposition 2. Consider the subclass of problems with Cobb-Douglas utility v(x,G) = xaGb,

linear cost of the public good C(G) = qG with q > 0, and b = t(n) where t is an arbitrary positive

continuous function with t′ < 0 and limn→∞ t(n) = 0. For this subclass, there exists a threshold

number of players ñ, such that for any n > ñ, existence of symmetric pure strategy equilibrium is

ensured for any r > 1, irrespective of price p, marginal cost q, and a ∈ (0, 1− b).

Thus, an equilibrium exists in pure strategies for tax contests of this subclass provided that the

number of participants is high enough. Participation in the lottery tax scheme is jointly rational,

ie., consumers vote in favour of our tax proposal if the alternative is private provision of the public

good. To see this, it is sufficient to recall that the tax contest implements the utility-maximising,

efficient allocation while private contributions necessarily underprovide the public good.
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4.1 Asymmetric Players

Let us now introduce asymmetries among players by individualising player i’s utility function as

vi(xi, G). Denote the vector of private consumption by x = (x1, . . . , xn) and the efficient quantities

by x
∗ = (x∗

1, . . . x
∗
n). The efficient amounts of private consumption and public good are

∂vi(xi, G)

∂xi

∣
∣
∣
∣
(xi,G)=(x∗

i ,G
∗)

= p, ∀ i ∈ N , and

n∑

i=1

∂vi(xi, G)

∂G

∣
∣
∣
∣
∣
(x,G)=(x∗,G∗)

= C ′(G∗), (21)

where the right-hand side expression is, again, the Samuelson condition. For this asymmetric model,

we can characterise the optimal parameters of our tax contest scheme α∗ and β∗ as follows.

Proposition 3. Suppose that players are asymmetric, with player i’s utility function given by

vi(xi, G). Using the tax contest scheme 〈α∗, β∗, r〉, the private good is consumed at its efficient

level and the public good can be provided efficiently for all n ≥ 2 if r > 1 and

β∗ =
(n− 1) (

∑n

i=1(x
∗
i )

r)
2

r
∑n

i=1(x
∗
i )
∑n

i=1

(

(x∗
i )

r−1
∑

j 6=i(x
∗
j )

r

) and α∗ =
C(G∗)

(1− β∗)p
∑n

i=1(x
∗
i )
. (22)

Notice that β∗ is still independent of the tax rate. Even for only two players we are unable to

analytically solve for the efficient quantities (21) and, thus, we are unable to obtain an analytical

solution of the optimal asymmetric tax contest scheme. Therefore, we give a numerical example

for the case of two players. The utility functions are v1(x1, G) = xa1
1 Gb1 and v2(x2, G) = xa2

2 Gb2

with (a1, b1, a2, b2, p) = (1/2, 1/6, 1/4, 1/8, 1). The cost function is C(G) = G. For r = 3 we

get the optimal tax contest scheme α∗ ≈ 0.6235 and β∗ ≈ 0.3358 while the efficient quantities

are G∗ ≈ 0.09, x∗
1 ≈ 0.1121 and x∗

2 ≈ 0.1054. Figure 2 establishes existence by plotting each

player’s single-peaked utility for different consumption levels, given that the other player consumes

his efficient quantity.

0.05 0.15 0.20

0.040
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0.050

0.055

0.060

0.065

0.05 0.15 0.20

0.21

0.22

0.23

0.24

0.25

0.26

x1

u1(x1, x
∗
2)

x∗
1

x2

u2(x
∗
1, x2)

x∗
2

Figure 2: Best response problem in two player asymmetric model. Shown left is player 1’s problem; player
2’s is shown on the right.

The next result shows that only generalised Tullock contests (with r 6= 1) can possibly achieve

efficiency.
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Proposition 4. Suppose that players are asymmetric, with player i’s utility function given by

vi(xi, G). Using the tax contest scheme 〈α∗, β∗, r〉, a simplified Tullock contest where r = 1

cannot induce efficiency.

This extends a result in Morgan (2000) by showing that a simplified Tullock ‘lottery’ contest

(r = 1) cannot achieve efficiency in a model with private contributions to a public good. This case is

typically called the lottery contest because a player’s winning probability is equal to his share of the

total number of lottery tickets. Our analysis, however, shows that r = 1 is a knife-edge case. Many

efficient contest mechanisms exist for the case of r > 1, that is, for mechanisms where the winning

probabilities feature ‘increasing returns’ to scale.9 For a more detailed discussion of Morgan’s results

see the following subsection.

4.2 Alternative Schemes

It is well known that voluntary contributions cannot provide the public good efficiently.10 Moreover,

as shown in a remarkable paper by Morgan (2000), even if voluntary contributions are combined

with a (lottery) contest in which the players can win a prize financed by part of their contributions,

efficiency cannot be attained. Morgan (2000) restricts attention to ‘simplified’ Tullock contests,

i.e., the case of r = 1. Some recent results in the contest literature, for instance Gershkov, Li, and

Schweinzer (2009) among others, suggest that by employing a ‘generalised’ Tullock contest with

appropriately chosen power r, a designer may be able to induce exactly efficient contributions. We

pursue this idea in a linear cost setting C(G) = qG.

Suppose that, in order to produce an amount gi of the public good, the individual can contribute

the monetary amount (1 + γ)qgi. With this contribution, he also enters a lottery where the winner

is paid a prize equal to γqG where G = (g1 + · · ·+ gn) is the quantity of the pubic good. Suppose

further that the lottery is governed by a generalised Tullock contest where winning probabilities are

increasing in own contributions to the public good. Under such a scheme, player i maximises

ui(x, gi) = w + v

(

xi,
n∑

j=1

gj

)

− pxi − (1 + γ)qgi +
gri

∑n

j=1 g
r
j

γq
n∑

j=1

gj. (23)

Consider the first-order condition w.r.t. gi. In symmetric equilibrium with g = g1 = · · · = gn and

G = ng, this simplifies to

∂v (xi, G)

∂gi
=

q

n
(n− (n− 1)(r − 1)γ) . (24)

Since ∂v/∂gi = (∂v/∂G)(∂G/∂gi) and ∂G/∂gi = 1, efficiency requires that γ∗ = 1/(r − 1),

which—from (17)—equalises the left-hand side to C ′(G)/n = q/n. Feasibility of γ∗ requires that

9 This, coincidentally, seems to correspond to reality: Many examples exist—for instance in the German or Austrian
Klassenlotterien—where purchasing a higher ‘class’ ticket increases winning chances (or prizes) disproportionately.
For a detailed description of these institutions see Schoenbein (2008).

10 For details see the short discussion in section 3.
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r > 1, which implies that ‘pari-mutuel raffles’ with r = 1 cannot achieve efficiency.11

Since the maximisation problem (23) is not convex, satisfying the first-order condition is not

sufficient for a global maximum. Assume that the second derivative of v exists. Then, evaluating

the second derivative of ui(x, gi) w.r.t. gi at g = g1 = · · · = gn = G∗/n and γ = γ∗, we get

(n− 2)(n− 1)qr

G∗n
+

∂2v(x,G)

(∂G)2

∣
∣
∣
∣
(x,G)=(x∗,G∗)

. (25)

Existence requires a local maximum, i.e., (25) must be negative. Since the left-hand term is strictly

positive for n > 2, this might be impossible. In fact, in our Cobb-Douglas example, (25) is positive

for n > 2, implying a local minimum. Adding a sales tax to such a contest scheme with voluntary

contributions cannot implement efficiency either. This is due to the fact that a sales tax distorts the

consumption of the private good. Our contest tax scheme counterbalances this effect by increasing

the marginal utility of additional consumption by letting the players take part in a contest where the

winning probability is increasing in their private consumption amounts.

Morgan (2000) also analyses ‘fixed-prize raffles,’ where a fixed prize R is awarded to the contest

winner. That prize is financed by the players’ contributions, such that the amount of the public

good is G =
∑n

i=1 xi − R with cost of C(G) = G. Applying Morgan’s fixed-prize scheme to our

model with a private good we confirm Morgan’s finding that r = 1 cannot induce efficiency.

5 Robust lottery specification

In order to simplify the exposition in the main part of the paper we employ there the widely used

Tullock contest success function to determine winning probabilities. This, of course, is only one of

many possible contest or lottery specifications. In the following we demonstrate our main results for

a more general form of noisy ranking based on ratios as well as for contests based on differences of

consumption quantities.

5.1 Contest with ratio-based ranking

Let us now assume that there exists a noisy and partial but verifiable ranking of private good

consumption decisions

Γ(x̃) = [π1 (x̃1) , . . . , πn (x̃n)] (26)

where xij = xi/xj and x̃i = (xi1, xi2, . . . , xin), where the ith element is 1. Thus (26) ranks the

players on the basis of ratios between consumption pairs such that πi(x̃i) is player i’s probability of

being ranked first given the consumption vector x = (x1, . . . , xn). Player i’s utility becomes

ui(x) = w + v(xi, G) + πi(x̃i)βP − (1 + α)pxi. (27)

11 Morgan’s model is different from ours but the results are comparable. In particular, Morgan (2000) employs an
asymmetric model with quasilinear utility and cost function C(G) = G. The share p of the lottery ticket revenue
is the winner’s prize in the lottery and the remaining share 1−p is used to finance the public good. In that model,
we find that the first-order condition requires p = 1/r which, similar to our result, is not feasible with r = 1.
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We make the following assumptions on πi(·):

A1 Symmetry: For any two players l 6= m and for any two consumption vectors, (x1, . . . , xn) and

(x′
1, . . . , x

′
n) with xk = x′

k for k /∈ {l, m} and xl = x′
m and xm = x′

l, we have

πl(x̃l) = πm(x̃
′
m).

Moreover, for any player i, let the elements of a consumption ratio vector x̃′
i be arbitrary

permutations of those in x̃i except for the element at the ith position. For these we require

πi(x̃i) = πi(x̃
′
i).

A2 Responsiveness: For any l ∈ {1, . . . , n} and l 6= i,
∂πi(x̃i)

∂xil

> 0.

A3 π(·) is twice continuously differentiable.

This class includes the Tullock success function used in the main body of the paper. A1 says

that every opponent of player i affects the winning probability of i in a similar way. Thus, if players

l and m exchange their consumption levels, this does not affect the winning probability of player

i /∈ {l, m}. The interpretation of A2 is that the probability of being ranked first should react

positively to increased consumption. A3 is technical (and excludes the case of the all-pay auction).

A1 also implies that in symmetric equilibrium, where x1 = · · · = xn, the slope of πi with respect to

any ratio xij is the same for all i, j ∈ N , and each ratio is equal to 1. We simply denote this slope

by π′(1).

Provided that a symmetric pure strategy equilibrium xj > 0 exists under the contest tax scheme,

the individual utility maximisation problem (1) becomes

max
xi

ui(x) = w + v(xi, G)− (1 + α)pxi + πi(x̃i)βP

s.t.: C(G) = (1− β)P, and P = αp(xi + (n− 1)xj).
(28)

The next proposition gives a sufficient condition such that the first-order condition of each player’s

best-reply problem is satisfied.

Proposition 5. Using the tax contest scheme 〈α∗, β∗, π(x)〉, the private good is consumed at its

efficient level and the public good can be provided efficiently for all n ≥ 2 if π′(1) > 1/4. The

corresponding equilibrium parameters α∗ and β∗ are given by

β∗ =
1

n2π′(1)
and α∗ =

C(G∗)/n

px∗

1

1− β∗
. (29)

Again, β∗ is independent of the tax rate. It is easily verified that these results correspond to our

results for the Tullock contest, where

πi(x̃i) =

(
n∑

j=1

x−r
ij

)−1

=
xr
i

∑n

j=1 x
r
j

, r > 0. (30)
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5.2 Contests with difference-based ranking

In this extension we present a simple two-players version of the example of section 3 based on the

difference form success function introduced by Hirshleifer (1989).12 The social planner’s problem is

unchanged and thus the efficient quantities x∗ and G∗ are still given by (6). Using a contest tax

scheme, player i’s utility (3) is now

max
xi

ui(x) = w + xa
iG

b +
1

1 + exp(r(xj − xi))
βP − (1 + α)pxi

s.t. qG = (1− β)P, and P = αp(xi + xj)
(31)

where r > 0 can be interpreted as a precision parameter similar to the Tullock model. Working

through steps similar to those outlined in the example section and setting x = x∗ for n = 2 from

(6), we obtain the same optimality condition (12) as in the example section. Here this results in

β∗ =
1

rx∗
, α∗ =

b

a

rx∗

rx∗ − 1
. (32)

Existence can be confirmed by a graph which is almost identical to figure 3 for the same parametri-

sation as stated in footnote 8.

6 Extensions

6.1 Larger number of goods

The proposed tax contest scheme also works for a larger number of goods as the following example

illustrates. Consider a symmetric model with two private goods (with prices p1 and p2) and two

public goods (produced according to cost functions C1(G1) = q1G1 and C2(G2) = q2G2). Assume

that v(x1, x2, G1, G2) = xa1
1 xa2

2 Gb1
1 G

b2
2 .

13 The social planner’s problem is then to

max
x1,x2,G1,G2

n
(
w + xa1

1 xa2
2 Gb1

1 G
b2
2 − p1x1 − p2x2

)
− q1G1 − q2G2. (33)

Denoting S = 1− a1 − a2 − b1 − b2, the efficient quantities are

x∗
1 = n

b1+b2
S

(
a1
p1

)S+a1
S
(

a2
p2

) a2
S
(

b1
q1

) b1
S
(

b2
q2

) b2
S

,

x∗
2 = n

b1+b2
S

(
a1
p1

) a1
S
(

a2
p2

)S+a2
S
(

b1
q1

) b1
S
(

b2
q2

) b2
S

,

G∗
1 = n

S+b1+b2
S

(
a1
p1

) a1
S
(

a2
p2

) a2
S
(

b1
q1

)S+b1
S
(

b2
q2

) b2
S

,

G∗
2 = n

S+b1+b2
S

(
a1
p1

) a1
S
(

a2
p2

) a2
S
(

b1
q1

) b1
S
(

b2
q2

)S+b2
S

.

(34)

12 This type of difference-form success function can be extended to n > 2 players but then—depending on the
precise formulation used—the difference to the ratio-form may become blurred. Hence we use the most distant
2-players case from our specification in section 3 for our robustness argument.

13 Assume a1, a2, b1, b2 ∈ (0, 1), a1 + a2 + b1 + b2 < 1.
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Under the tax contest scheme, the respective private goods are taxed with tax rates α1 and α2.

The prize pool P equals total tax revenues. The shares γ1 and γ2 of the prize pool are used to

finance the two public goods, respectively. The remaining share, 1− γ1 − γ2 is paid to the contest

winner. Each player’s total consumption enters the contest. Assuming that the other players play

the symmetric strategies x1j > 0 and x2j > 0, player i maximises

ui(x1i, x2i) = w + xa1
1 xa2

2 Gb1
1 G

b2
2 − (1 + α1)p1x1i − (1 + α2)p2x2i

+
(x1i + x2i)

r

(x1i + x2i)r + (n− 1)(x1j + x2j)r
(1− γ1 − γ2)P

s.t. q1G1 = γ1P, q2G2 = γ2P,

and P = α1p1(x1i + (n− 1)x1j) + α2p2(x2i + (n− 1)x2j).

(35)

Using steps similar to those above, we find the following optimal contest specification

α∗
1 =

r

r − 1

(b1 + b2)p2
a1p2 + a2p1

, α∗
2 =

r

r − 1

(b1 + b2)p1
a1p2 + a2p1

,

γ∗
1 =

r − 1

r

b1
b1 + b2

, γ∗
2 =

r − 1

r

b2
b1 + b2

.
(36)

Checking the example (a1, a2, b1, b2, p1, p2, q1, q2, n, r) = (1/8, 1/8, 1/100, 1/100, 1, 1, 1, 1, 10, 3)

ensures that the set of equilibria for this scheme is non-empty and open.

7 Concluding remarks

We show that a simple (lottery) tax contest can implement both efficient private and public good

consumption. Many desirable generalisations of the model are left for future work: In reality, which

share of total private goods consumption would have to go into the lottery? Is the resulting wealth

redistribution one we would like to see? Is it realistic to assume that prices are unaffected by

the introduction of the contest? What is the effect of risk attitudes? These questions are to a

large extent empirical and may well have policy implications. At any rate we do not feel qualified

to answer these questions now. What we do provide, however, are firm results showing that an

incentive mechanism along the lines we indicate can in principle provide public goods efficiently

without infracting upon private consumption or recurring to the coercive powers of the state.

Appendix

Lemma 1 (Local Maxima in Tullock-Cobb-Douglas). Consider the Tullock-Cobb-Douglas example.

Look at u′′
i (x) (where ui(x) is given in (9)). Evaluate this derivative at x1 = · · · = xn = x∗,

G = G∗, α = α∗, β = β∗. Iff b < a(1 − a), then there exists an r > 1 such that for every n ≥ 2

there is a local maximum of i’s best-reply problem at xi = x∗.

The proof of lemma 1 is a straightforward computation and is therefore omitted.
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Proof of proposition 1. The proof is covered by the proof of proposition 5 since the Tullock

contest success function is a special case of the ratio-based ranking. In particular,

πi(x̃i) =

(
n∑

j=1

x−r
ij

)−1

=
xr
i

∑n

j=1 x
r
j

, r > 0,

∂πi(x̃i)

∂xij

= −

(
n∑

j=1

x−r
ij

)−2

(−r)x−r−1
ij

(37)

and π′(1) = r/n2.

Proof of proposition 2. Throughout this proof we ignore the individual wealth level, w, since its

only effect on the analysis is to increase each utility level by the same constant. Denote by ui(x, y)

player i’s utility if consuming x, while the other players choose the symmetric strategy y. Define

∆uk = ui(x
∗, x∗) − ui(kx

∗, x∗) where k ≥ 0. Thus, by varying k we can evaluate any feasible

deviation from the equilibrium candidate. Whereas ui(x
∗, x∗) is given by (15), we can determine

ui(kx
∗, x∗) as follows. Recalling (10), setting xi = kx, xj = x, and simplifying, we get

ui(kx, x) = ka

(
(1− β)pα(k + n− 1)

q

)b

xa+b − px

(

(1 + α)k − kr k + n− 1

kr + n− 1
αβ

)

. (38)

Replacing α and β with the optimal levels given in (14) yields

ui(kx, x) = ka

(
bp(k + n− 1)

aq

)b

xa+b − px

(

k +
b

a(r − 1)

(

kr − kr k + n− 1

kr + n− 1

))

. (39)

Setting x = x∗ from (6) gives

ui(kx
∗, x∗) =

(
a

p

) a
1−a−b

(
bn

q

)
b

1− a− b

(

k(1− a− b)−
b

r − 1

(

k −
kr(k − 1 + n)

(kr − 1 + n)

)

− k + ka

(
k − 1 + n

n

)b
)

.

(40)

Now it is straightforward to obtain

∆uk =

(
a

p

)
a

1− a− b
(
bn

q

)
b

1− a− b

(

(1− k)(1− a− b) +
b

r − 1

(

k −
kr(k − 1 + n)

(kr − 1 + n)

)

+k − ka

(
k − 1 + n

n

)b)

.

(41)
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Inserting b = t(n), we get

∆uk|b=t(n) =

=(A)
︷ ︸︸ ︷
(
a

p

) a
1−a−t(n)

=(B)
︷ ︸︸ ︷
(
nt(n)

q

) t(n)
1−a−t(n)

(

(1− k)(1− a− t(n)) + k − ka

(
k + n− 1

n

)t(n)

+
t(n)

r − 1

(k − kr) (n− 1)

kr + n− 1

)

︸ ︷︷ ︸

=(C)

(42)

By definition ∆uk = 0 for k = 1 and ∆uk = ui(x
∗, x∗) > 0 for k = 0.14 In order to prove existence

of the equilibrium for sufficiently large n, it suffices to show that, for all n above some threshold ñ,

∆uk|b=t(n) > 0 for all k with k > 0 and k 6= 1.

By assumption, t(n) vanishes for large n. Since parts (A) and (B) in (42) are always positive—

with t(n) vanishing in (A), and (B) converging to 1—the sign of (42) is determined by part (C).

There, in the first of four terms, t(n) vanishes and (1− k)(1− a) remains as n becomes large. The

second term, k, is independent of n. The third term converges to ka and the last term vanishes.

Note that (42) is continuous in n. Thus, we find

limn→∞∆uk|b=t(n) =

(
a

p

) a
1−a

(1− a+ ka− ka) , (43)

where (1− a+ ka− ka) is the limit of part (C) in (42). This term determines the sign of (43). We

need to show that this term is positive for all k > 0 and k 6= 1, i.e.,

1− a + ka− ka > 0, ∀k > 0, k 6= 1. (44)

It is easily verified that 1− a+ ka− ka is strictly convex with minimum value zero at k = 1. Thus,

condition (44) is satisfied for any a ∈ (0, 1), all k > 0, and k 6= 1. This implies that the sign of (43)

is positive. By continuity of (42), this, in turn, implies existence of our equilibrium for sufficiently

large n. Note that this finding does neither depend on the choice of r (as long as r > 1), nor on

the prices p and q, nor on the size of a, as long as a is feasible, i.e., a ∈ (0, 1− t(n)).

Proof of proposition 3. The utility maximisation problem is identical with (18), except for the

use of vi instead of v and
∑

j 6=i xj (resp.
∑

j 6=i x
r
j) instead of (n− 1)xj (resp. (n− 1)xr

j). The first

derivative of player i’s expected utility is

u′
i(x) =

∂vi
∂xi

+
∂vi
∂G

∂G

∂xi

− (1 + α)p+ αpβ






rxr−1
i

∑

j 6=i x
r
j

(
∑n

j=1 x
r
j

)2

∑n

j=1 xj +
xr
i

∑n

j=1 x
r
j




 . (45)

We set this equal to zero and evaluate it at the efficient levels as follows. First, replace xi by x∗
i for

14 Note that in the present setting, x∗ and G∗ are unique and positive and the corresponding welfare, W ∗, see (5),
is positive as well (since welfare is zero if either x or G are zero). Thus, ui(x

∗, x∗) is positive since it is equal to
W ∗/n, see (15).
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all i ∈ N . Second, replace
∂vi
∂xi

with the efficient level p (see (21)). Third, denote B = (1− β)P ,

and recall that P = (1 − β)αp
∑n

j=1 xj and note that ∂P
∂xi

= (1 − β)αp. Under the tax contest

scheme C(G) = (1− β)P = B and we obtain

C(G) = B ⇐⇒ G = C−1(B) ⇒
∂G

∂xi

=
∂C−1(B)

∂B

∂B

∂xi

=
1

C ′(G)
(1− β)αp. (46)

Thus, we replace
∂G

∂xi

in (46) with ((1− β)αp)/C ′(G) and get

∂vi
∂G

1
C′(G)

(1− β)αp− αp+ αpβ






r(x∗
i )

r−1
∑

j 6=i(x
∗
j )

r

(
∑n

j=1(x
∗
j )

r

)2

∑n

j=1 x
∗
j +

(x∗

i )
r

∑n
j=1(x

∗

j )
r




 = 0. (47)

Adding the first-order conditions for all n players, we get

∑n

i=1

∂vi
∂G

1
C′(G)

(1− β)αp− nαp+ αpβ






∑n

i=1 r(x
∗
i )

r−1
∑

j 6=i(x
∗
j )

r

(
∑n

j=1(x
∗
j )

r

)2

∑n

j=1 x
∗
j + 1




 = 0. (48)

We replace ∂vi(xi,G)
∂G

with the efficient level C ′(G) (see (21)). After straightforward simplification

we get β∗ as given in (22). By the tax contest scheme, α∗ follows immediately from the condition

C(G∗) = (1− β∗)P where P = α∗p
∑n

j=1 x
∗
j .

Proof of proposition 4. By the proof of proposition 3, for any r > 0, the first-order condition

for efficiency in equilibrium is given by (22). With r = 1, (22) simplifies to β∗ = 1 which is not

feasible.

Proof of proposition 5. The proof proceeds as follows. We suppose existence of a symmetric

efficient equilibrium that is characterised by the first-order condition of player i’s best-reply problem,

given that the players j 6= i choose xj = x∗. First, we derive β∗. Second, we derive the equilibrium

tax rate, α∗. Third, we derive conditions ensuring feasibility of the equilibrium parameters α∗, β∗,

and P .

1) Suppose a symmetric equilibrium xj > 0 exists. Then xik = xil =
xi

xj

for all k, l ∈ N \ i.

Thus, πi(x̃i) = πi

(
xi

xj
, . . . , 1, . . . , xi

xj

)

, with ”1“ at the i’th position. Then i’s utility is

ui(x) = w + v(xi, G)− (1 + α)pxi + πi

(
xi

xj

, . . . , 1, . . . ,
xi

xj

)

βαp(xi + (n− 1)xj), (49)

Since, by A1, the derivative of πi w.r.t. any ratio xi/xj is the same, the first-order condition can
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be written as

u′
i(x) = ∂v

∂xi
+ ∂v

∂G
∂G
∂xi

− (1 + α)p+ (n− 1)
∂πi

∂xij

1
xj
βαp(xi + (n− 1)xj)

+πi

(
xi

xj
, . . . , 1, . . . , xi

xj

)

βαp = 0.
(50)

Now we evaluate (50) at the efficient levels x1 = · · · = xn = x∗ and G = G∗ as follows. Using

(17), we replace ∂v(xi,G)
∂xi

in (50) with the efficient level p as given in (17). Denote the total public

goods expenditure by B = (1− β)αp(xi + (n− 1)xj) and note that ∂B
∂xi

= (1− β)αp. We get

C(G) = B ⇐⇒ G = C−1(B) ⇒
∂G

∂xi

=
∂C−1(B)

∂B

∂B

∂xi

=
1

C ′(G)
(1− β)αp. (51)

Next, we replace ∂v(xi,G)
∂G

in (50) with the efficient level C′(G)
n

(as given in (17)) and replace ∂G
∂xi

with

the term derived in (51). Finally, set x∗ = x1 = · · · = xn. Then (50) becomes

p+ 1−β

n
αp− (1 + α)p+

(

(n− 1) ∂πi

∂xij

)
1
x∗
βαpnx∗ + πi((1, . . . , 1))βαp = 0 (52)

As mentioned earlier in the text, A1 implies that in symmetric equilibrium
∂πi

∂xij

is the same for all

ratios and players (and denoted by π′(1)) since all ratios xi/xj are equal to one. Moreover, again

by A1, πi(1, . . . , 1) = 1/n. Applying this to (52) and simplifying leads to the left part of (29).

2) Take C(G) = (1− β)P and evaluate at x1 = · · · = xn = x∗, G = G∗, α = α∗, and β = β∗,

and solve for α∗.

3) In a symmetric and efficient equilibrium, each player consumes x∗ > 0. We only have to

ensure that the corresponding α, β and P are feasible. In 1) and 2) we derived the values of α and

β that are consistent with equilibrium existence. Feasibility requires α∗ > 0 and β∗ ∈ (0, 1). By

A2 and n ≥ 2, β∗ > 0. Moreover, β∗ < 1 if and only if π′(1) > 1
n2 . This condition is satisfied for

all n ≥ 2 if it holds for n = 2. Thus, π′(1) > 1
4
ensures feasibility of β∗ for all n ≥ 2. Given this,

α∗ > 0 since each factor in the right part of (29) is positive. Finally, P = α∗pnx∗ > 0.
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