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Abstract

This paper considers the canonical sequential screening model and shows that when

the agent has an ex post outside option, the principal does not benefit from eliciting the

agent’s information sequentially. Unlike in the standard model without ex post outside

options, the optimal contract is static and conditions only on the agent’s aggregate final

information. The benefits of sequential screening in the standard model are therefore due

to relaxed participation rather than relaxed incentive compatibility constraints. We argue

that in the presence of ex post participation constraints, the classical, local approach fails

to identify binding incentive constraints and develop a novel, inductive procedure to do

so instead. The result extends to the multi–agent version of the problem.
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1 Introduction

This paper considers the canonical sequential screening model and shows that when the agent

has an ex post outside option, the principal does not benefit from eliciting the agent’s informa-

tion sequentially. Unlike in the standard model with only ex ante outside options, the optimal

contract is, instead, static and conditions only on the agent’s aggregate final information.1

Introducing ex post participation constraints contributes to the understanding of dynamic

adverse selection problems from both a conceptual and practical perspective. Conceptually, our

approach allows us to identify the reason why, in the absence of ex post participation constraints,

sequential screening is strictly better than static screening. Compared to a static screening

model where all of the agent’s information arrives ex ante, the constraints in a sequential

screening problem are weaker for two reasons: First, sequential screening relaxes incentive

compatibility constraints because it is easier to prevent the agent from lying about his ex ante

information when he does not yet know his ex post information. Second, in the sequential

model with only an ex ante outside option, the contract needs to give the agent his outside

option only in expectation rather than for all possible contingencies of ex ante and ex post

information as in the static model. Our result makes clear that the value of sequential screening

in the standard model without ex post participation constraints arises solely from the second

reason—relaxed participation constraints—rather than from the first reason—relaxed incentive

constraints. This conclusion follows because ex post participation constraints affect only the

participation constraints while leaving the incentive constraints unaffected.

Comparing sequential screening models with ex ante and ex post participation constraints

in terms of information rents reveals striking qualitative differences. The results of Esö and

Szentes (2007a,b) imply that when there are only ex ante participation constraints then the

principal can extract at no cost the entire value of the agent’s ex post information. Hence, the

agent does not obtain any rents from his ex post, but only from his ex ante private information.

In contrast, our result implies that with ex post participation constraints the agent receives

information rents from both his ex ante and ex post private information.

1The (strict) optimality of sequential screening in the absence of ex post participation constraints has been

most cleanly established in Courty and Li (2000) and features also in Baron and Besanko (1984), Battaglini

(2005), Esö and Szentes (2007a, b), Dai et al. (2006), Krähmer and Strausz (2008, 2011), Inderst and Hoffmann

(2009), Pavan et al. (2008).
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This insight is reminiscent of Sappington (1983), who observes that in static adverse selection

problems, when the agent’s private information arrives after contracting and the agent cannot

sustain ex post losses, the optimal contract is the same as when the agent’s information arrives

before contracting. Analogously, in our dynamic setup, the optimal contract with ex post

participation constraints is the same as when all of the agent’s information arrives before

contracting. This dynamic extension of Sappington’s result is, however, not obvious. In a

static problem, ex post participation constraints reduce the set of implementable contracts to

the same set as when the agent’s information arrives ex ante. The result therefore follows

directly from implementability considerations. For dynamic setups, we show in contrast that

ex post participation constraints do not render sequential contracts infeasible.2 The principal,

however, does not benefit from offering a sequential contract. Hence, our result follows from

optimality rather than implementability considerations.

We obtain our result in the canonical, unit good sequential screening framework with an

arbitrary finite number of ex ante and a continuum of ex post agent types and non–shifting

support. In particular, we consider a procurement context where the principal seeks to acquire

a good from the agent who, while observing a private signal ex ante, learns his true costs only

as the relation proceeds. Without ex post participation constraints, the optimal contract can

be implemented by a menu of option contracts. An option contract consists of a (possibly

negative) up–front payment from the principal to the agent, and gives the agent the option to

deliver the good at a pre–specified exercise price after having observed his true costs. Because,

ex ante, agent types have different priors about the likelihood of exercising the option, the

principal can screen the agent’s prior by offering different combinations of up–front payments

and exercise prices.

Our result implies that offering a menu with a variety of different option contracts is no

longer optimal in the presence of ex post participation constraints. To see the reason for this,

assume to the contrary that, at the optimum, different ex ante types select different option

contracts. Observe first that when the agent’s true ex post costs happen to equal the exercise

price, the agent is indifferent between production and not and, thus, obtains no additional

payoff from production. Therefore, with ex post participation constraints, the principal cannot

demand an up–front fee, because it would imply an ex post loss for the agent if his true costs

equal the exercise price. Clearly, not all contracts in the optimal menu can have positive up–

2Indeed, Courty and Li (2000)’s footnote 8 can be understood in this way.
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front payments to the agent, because by lowering all of them slightly the principal could do

better. Now consider an ex ante type who, at the optimum, selects a contract with a zero

up–front payment. This type’s contract must display the largest exercise price (otherwise he

would have an incentive to pick a contract with a larger exercise price and take advantage of

both the higher up–front payment and the higher exercise price). Call this contract with the

zero up–front payment and the largest exercise price the “high price” contract.

Now, the contracts selected by the other ex ante types, by definition, have a smaller exercise

price, therefore these types produce less frequently ex post than under the “high price” contract,

and therefore the “high price” contract is more efficient. Moreover, by incentive compatibility

they must get at least the same rent which they get if they choose the “high price” contract. But

this implies that the principal is better off by offering the “high price” contract to all(!) agent

types. Because then she has to pay at most the same rent as under the sequential contract,

and production is more efficient. Therefore, with ex post participation constraints, it is not

optimal to screen ex ante types, but instead offer only a single (i.e. static) contract.3

The previous reasoning only applies to option contracts. The core analytical challenge of our

paper is to show that option contracts are optimal. In the absence of ex post participation con-

straints, the optimality of option contracts can be established by considering a relaxed problem

which only considers the “local” ex ante incentive constraints in the spirit of Mirrlees. Under

appropriate regularity conditions, the solution to the relaxed problem is automatically mono-

tone in the ex post type and thus ex post incentive compatible. In the unit good framework,

monotonicity in the ex post type implies that the good, depending on type, is produced with

probability of either zero or one, which, in turn, implies that the contract can be implemented

as an option contract. We argue that in our case, such a Mirrleesian–type, “local” approach

does not work, since the solution to the corresponding relaxed problem is not automatically

monotone in the ex post type. Instead, as the main methodological contribution of the paper,

we develop an inductive procedure to identify the binding “global” constraints. The procedure

reduces a model with n+ 1 ex ante types to a model with n ex ante types by merging the two

3This argument fails if there are only ex ante participation constraints. At the optimum, the principal then

charges an up–front fee for the contract with the largest exercise price. Only the agent who is most optimistic

about his future costs chooses this contract. The agent type with the most pessimistic prior would make an

expected loss from this contract. Thus, only offering the “high price” contract would violate ex ante participation

constraints.
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most extreme ex ante types of the n+1 types model. The set of binding incentive constraints for

the n+1 types model is then obtained by adding an appropriate constraint to those constraints

of the n types model which are, by induction, known to be binding.

Investigating the consequences of ex post participation constraints also contributes to a

better understanding of real–world contracts. Ex post participation constraints are empirically

relevant, since the principal’s ability to inflict ex post losses on the agent is often greatly lim-

ited in practice. In employment relations, employees typically have the legal right to leave their

employer at will. Such non–slavery conditions imply that the employer cannot inflict losses on

her employee and must respect the employee’s ex post participation constraints. Alternatively,

ex post participation constraints arise because workers are credit or wealth constrained. The

relevance of ex post participation constraints is even more compelling in procurement relation-

ships, where the agent as a corporation is legally protected by limited liability and, therefore,

cannot make losses. Indeed, procurement contracts that inflict losses on the agent simply drive

him out of business, leaving the contract unfulfilled. Similarly, legally granted money–back

guarantees give consumers the right to return the good and being fully refunded. In the mail

order business in Germany, for example, sellers are required by law to grant consumers a full

refund (including all postal charges) up to 14 days after purchase.

Our analysis predicts that in the presence of ex post participation constraints, “simple”

contracts are optimal, thus providing a rationale for “incomplete” contracts which depend only

on the agent’s final information instead of on the entire contingent information flow which the

agent observes.4 Likewise, our results imply for multi–agent versions of our setup that standard,

static auctions are optimal even when agents obtain their private information sequentially.

Indeed, Esö and Szentes (2007b) show that without ex post participation constraints, the

optimal contract with multiple agents is a “handicap auction” where in the first round, bidders

pick a premium from a menu offered by the auctioneer, and in the second round, bidders play

a second price auction where the winner pays the second highest bid plus his premium from

round 1. We argue that with ex post participation constraints, the optimal mechanism is static

and thus a second price auction with an optimal reserve price.

The rest of this paper is organized as follows. The next section introduces the setup. In

section 3, we derive the principal’s problem. In section 4, we discuss three benchmark cases. In

4For a similar result in a dynamic adverse selection model with contractible ex post information, see Chiu

and Sappington (2010).
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section 5, we illustrate the main argument and the main intuition behind our result in the case

when the agent’s ex ante information is binary. In section 6, we solve the principal’s problem

for the general case and derive our main result. Section 7 discusses extensions, and section 8

concludes.

2 The Setup

Consider a principal (she) who seeks to buy a good or service from an agent (he).5 The value of

the good for the principal is commonly known to be v > 0. The agent’s costs of production are

θ ∈ [0, 1]. The terms of trade are the probability with which production takes place, x ∈ [0, 1],

and a payment t ∈ R from the principal to the agent.

Parties are risk–neutral and have quasi–linear utility functions. That is, under the terms

of trade x and t, the principal receives utility vx − t, and the agent receives utility t − θx.

Consequently, the aggregate surplus is (v − θ)x.

At the time of contracting about the terms of trade, no party knows the true costs, θ,

but the agent has private information about the distribution of costs. After the principal

offers the contract but before production takes place, the agent privately learns the true costs

θ. Formally, there are two periods. In period 1, the agent knows that costs are distributed

according to distribution function Gi with non–shifting support [0,1], where i is drawn from the

set ω ≡ {1, . . . , n} with probability pi > 0. We refer to i as the agent’s ex ante type. In period

2, the agent observes his ex post type θ which is drawn according to Gi. While the agent’s ex

ante and ex post types are his private information, the distributions of ex ante and ex post

types are common knowledge.

We depart from the existing sequential screening literature and consider the case in which

agent can always quit after learning the true costs θ and receive an ex post outside option. We

assume that the outside option is type–independent and normalize it to zero.

Next, we state our distributional assumptions and introduce notation. The probability

density gi(θ) = G′
i(θ) exists, is differentiable, and is strictly positive for all θ ∈ [0, 1]. Moreover,

5The setup is isomorphic to a buyer seller relationship where the principal acts as a seller with commonly

known marginal costs and the agent as a buyer with private information about his willingness to pay.
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we define by

hi,j(θ) ≡
Gi(θ)

gj(θ)
, and hi(θ) ≡ hi,i(θ),

the cross hazard rate between the types i and j and the hazard rate of type i. We assume that:

hi,j and hi are non–decreasing in θ for all i, j.

We define conditional distributions associated with a subset of types. For γ ⊆ ω, let

pγ =
∑

i∈γ pi be the probability of γ, and define by

Gγ(θ) ≡
1

pγ

∑

i∈γ

piGi(θ), gγ(θ) ≡
1

pγ

∑

i∈γ

pigi(θ), hγ(θ) ≡
Gγ(θ)

gγ(θ)
(1)

the conditional distribution, conditional density, and conditional hazard rate conditional on the

event that the ex ante type is in γ. Moreover, define for two subsets γ, δ ⊆ ω the conditional

cross hazard rate

hγ,δ(θ) ≡
Gγ(θ)

gδ(θ)
.

Monotonicity of the (cross) hazard rates carries over to the conditional (cross) hazard rates:

Lemma 1 hγ,δ is non–decreasing in θ for all γ, δ ⊆ ω.

For each type i, We define the ex post cutoff type θi implicitly by

v = θi + hi(θi). (2)

Because the hazard rate is non–decreasing, there is at most one solution to (2). Without loss

of generality, we label the ex ante types according to the order of the ex post cutoff types:

θ1 ≤ . . . ≤ θi ≤ . . . ≤ θn.

We extend the definition of ex post cutoff type to subsets γ of types by defining θγ as the

solution to

v = θγ + hγ(θγ) (3)

which, by Lemma 1, is unique. The cutoff θγ displays an averaging feature in the sense that it

lies in between the lowest and highest cutoffs associated to the types in γ:
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Lemma 2 Let γ, δ ⊂ ω be disjoint. Then θγ∪δ ∈ [min{θγ, θδ},max{θγ, θδ}].

We close this section with the following remarks about our modeling setup:

Remark 1: As is standard in the literature on sequential screening, the agent’s ex ante private

information does not shift the support of his final ex post type. This non–shifting support

assumption facilitates the characterization of incentive compatibility off the equilibrium path.6

Moreover, the agent’s ex ante type i is payoff–irrelevant in the sense that it does not directly

affect the final cost type θ. This assumption is, however, without loss of generality, because if

final costs are given as a function θ(i, s) of both the agent’s ex ante information i and some ex

post information s that he receives in period 2, then we can redefine the agent’s ex post type

as the value of the random variable θ(i, s).

Remark 2: Non–decreasing hazard rates hi are a standard assumption in static screening mod-

els, because they ensure that solutions ”automatically” exhibit a monotonicity property. To

obtain an analogous property in our setting, we also require non–decreasing cross hazard rates.

This is satisfied for large and natural families of distributions. It essentially requires that the

cumulative distributions increase faster than the densities. Hence, a sufficient condition is that

densities are non–increasing.

Remark 3: Our ranking of ex ante types by their ex post cutoff type θi is simply a labeling

convention. It does not imply any restrictions on the stochastic order ranking of the distribu-

tions Gi. In particular, our result does not require that the distributions Gi be ranked in terms

of first or second order stochastic dominance, as is the case in standard sequential screening

models such as Courty and Li (2000). However, in the special case that the hazard rates hi are

decreasing in i, it is well–known that Gj first order stochastically dominates Gi for θi > θj.

3 Principal’s problem

The principal’s problem is to design a contract that maximizes her expected utility. In this

section, we describe the principal’s problem formally. Because the agent has private information,

the terms of trade optimally depend on communication by the agent to the principal. By the

revelation principle for sequential games (e.g., Myerson 1986), the optimal contract can be

found in the class of direct and incentive compatible contracts which induces the agent to

6See Krähmer and Strausz (2008) for an elaboration of this point.
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A learns

ex ante type i

P offers direct

contract (x, t)

A reports

ex ante type j

A learns

ex post type θ

A reports

ex post type θ′

A decides

whether to quit

Figure 1: Time line

report his type truthfully at the ex ante as well as at the ex post stage. Formally, a direct

contract

(x, t) = (xj(θ
′), tj(θ

′))j∈ω,θ′∈[0,1]

requires the agent to report an ex ante type j in period 1, and an ex post type θ′ in period 2.

A contract commits the principal to a production schedule xj(θ
′) and a transfer schedule tj(θ

′).

A direct contract induces a game with a timing structure as illustrated in Figure 1.

If the agent’s true ex post type is θ and his period 1 report was j, then his utility from

reporting θ′ in period 2 is

uj(θ
′; θ) ≡ tj(θ

′)− θxj(θ
′).

With slight abuse of notation, we denote the agent’s period 2 utility from truth–telling by

uj(θ) ≡ uj(θ; θ).

The contract is incentive compatible in period 2 if it gives the agent an incentive to announce

his ex post type truthfully. That is, if for all j ∈ ω,

uj(θ) ≥ uj(θ
′; θ) for all θ, θ′ ∈ [0, 1]. (4)

If the contract is incentive compatible in period 2, the agent announces his ex post type truth-

fully no matter what his report in the first period.7 Hence, if the agent’s true ex ante type is

i, then his period 1 utility from reporting j is

Uji ≡

∫ 1

0

uj(θ) dGi(θ).

7Observe that the fact that agent’s period 2 utility is independent of his ex ante type implies that a contract

which is incentive compatible in period 2 automatically induces truth–telling in period 2 also off the equilibrium

path, that is, if the agent has misreported his ex ante type in period 1. Observe also that, in general, optimality

does not require truth–telling off the path. See Krähmer and Strausz (2008) for an elaboration of this point.
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We denote, again with a slight abuse of notation, the agent’s period 1 utility from truth–telling

by

Ui = Uii.

The contract is incentive compatible in period 1 if it gives the agent an incentive to announce

his ex ante type truthfully:

Ui ≥ Uji for all i, j ∈ ω. (5)

To ensure the agent’s participation for all cost realizations, the contract needs to satisfy the ex

post individual rationality constraint:

ui(θ) ≥ 0 for all i ∈ ω, θ ∈ [0, 1]. (6)

In contrast, an incentive compatible contract is ex ante individually rational if

Ui ≥ 0 for all i ∈ ω. (7)

Clearly, ex post individual rationality implies ex ante individual rationality. We say a contract

is feasible if it is incentive compatible (in both periods) and ex post individually rational.

By definition, the principal’s payoff from a feasible contract is the difference between ag-

gregate surplus and the agent’s utility. That is, if the agent’s ex ante type is i, the principal’s

conditional expected payoff is

Wi ≡

∫ 1

0

{[v − θ]xi(θ)− ui(θ)} dGi(θ),

so that the principal’s expected payoff is

W ≡
∑

i∈ω

piWi.

The principal’s problem is therefore to find a direct contract (x∗, t∗) that solves the following

maximization problem:

max
(x,t)

W s.t. (4), (5), (6).
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3.1 Eliminating transfers from the principal’s problem

Our approach to solving the principal’s problem is to follow standard procedures of static

screening problems as closely as possible. Because for a given first period report, the second

period incentive compatibility constraints are the same as in a static screening problem, our first

step is to exploit the fact that second period incentive compatibility pins down the agent’s utility

as a function of the allocation x alone. This yields the familiar result that incentive compatibility

is equivalent to monotonicity of the production schedule and to “revenue equivalence”, which

means that the agent’s utility is determined by the production schedule up to a constant. We

state this standard result without proof.

Lemma 3 For all i ∈ ω, there are transfers ti(θ) so that second period incentive compatibility

(4) is equivalent to

xi(θ) is non–increasing in θ, (MON)

ui(θ) =

∫ 1

θ

xi(z) dz + ui(1). (RE)

Lemma 3 has three useful implications. First, we can replace the second period incentive

constraints (4) in the principal’s problem by the constraints (MON) and (RE). We can then

eliminate the constraint (RE) by inserting ui(θ) directly in the principal’s objective. After

an integration by parts, the principal’s objective transforms into the familiar expected virtual

surplus minus the agent’s utility of the least efficient ex post type θ = 1:

Wi =

∫ 1

0

[v − θ − hi(θ)]xi(θ) dGi(θ)− ui(1). (8)

The second implication of Lemma 3 is that (RE) also pins down the agent’s period 1 utility

Uji, which is simply the expectation over period 2 utility. Applying integration by parts, we

arrive at the following characterization of the first period incentive constraints:

Lemma 4 Consider a contract which satisfies (RE). Then first period incentive compatibility

(5) is equivalent to

∫ 1

0

[xi(θ)− xj(θ)]Gi(θ) dθ + ui(1)− uj(1) ≥ 0 for all i, j ∈ ω. (ICij)

The third useful implication of Lemma 3 is that because xi is non–decreasing, the agent’s

ex post utility ui(θ) is non–increasing in his ex post type θ. Thus, ex post individual rationality

is satisfied for all types if it holds for the highest type θ = 1:

11



Lemma 5 Consider a contract which satisfies (MON) and (RE). Then ex post individual

rationality (6) is equivalent to

ui(1) ≥ 0 for all i ∈ ω. (IRi)

By the previous three lemmas, the following equivalent representation of the principal’s

problem obtains when we replace the payment t by the vector u = {ui(1)}i∈ω of utilities of the

highest ex post type:

P : max
x,u

∑

i∈ω

pi

∫ 1

0

[v − θ − hi(θ)]xi(θ) dGi(θ)− piui(1)

s.t. (MON), (ICij), (IRi).

Before solving P , it is helpful to introduce some more notation. With slight abuse of

notation, we also refer to a pair (x,u) as a contract. We define a cutoff schedule with cutoff

θ̂ ∈ [0, 1] as

x̄(θ|θ̂) ≡











1 if θ ≤ θ̂,

0 otherwise.

We say that a contract (x,u) is a cutoff contract if each production schedule xi(θ) coincides with

some cutoff schedule with cutoff θ̂i. Note that a cutoff contract can be indirectly implemented

by a menu of option contracts, which consists of an up–front payment that the agent receives

in period 1 and an exercise price which the agent only receives when he decides to produce

the good in period 2. To see this note that, under a cutoff contract, the agent is required to

produce if he reports an ex post type below θ̂i after having announced an ex ante type i. In

this case, the ex post type θ obtains utility θ̂i − θ + ui(1). If, instead, he reports a type above

θ̂i, the agent does not produce and obtains utility ui(1). Hence, a cutoff contract (x,u) can

be implemented by the menu of i = 1, . . . , n option contracts with the up–front payment ui(1)

and the exercise price θ̂i. In what follows, we use the notions of cutoff and option contracts

synonymously, whichever interpretation is more convenient.

4 Benchmarks

In this section we discuss three benchmark cases that will play a crucial role in the subsequent

analysis. First, we consider the principal’s problem when the agent’s ex ante type is publicly

12



known. Second, we consider the optimal “static” contract whose terms of trade do not depend

on the agent’s ex ante information. This latter contract describes the optimal contract when

the principal does not engage in sequential screening, but offers the contract only after the

agent has obtained all his private information. It is clear that the principal’s payoff from

an optimal contract lies in between these two benchmarks. Finally, we review the optimal

sequential screening contract when the principal has to respect ex ante rather than ex post

participation constraints.

4.1 Publicly known ex ante types

When the agent’s ex ante type is publicly known, the incentive constraints (ICij) are redundant.

Absent these constraints, the ex post individual rationality constraints (IRi) are binding at the

optimum. If we now disregard the monotonicity constraint, pointwise maximization of the

principal’s objective yields that the optimal production schedule is the cutoff schedule with

cutoffs θi as defined in (2). In particular, it satisfies the monotonicity constraint and must,

therefore, be optimal. The next lemma summarizes.

Lemma 6 If the agent’s ex ante type is public information, the optimal contract is a cutoff

contract characterized by up
i (1) = 0 and

xp
i (θ) = x̄(θ|θi) ∀i ∈ ω.

In other words, if the agent’s ex ante type i is public information, the principal’s problem is

that of a unit good monopsonist facing the supply function Gi. At the optimal contract, the

transfer is equal to the ex post cutoff type θi, and the good is produced whenever costs are

smaller than θi.

4.2 Optimal static contract

We refer to a contract as static if the contract does not condition on the agent’s ex ante type:

xi = xj ≡ xs and ui(1) = uj(1) ≡ us(1) for all i, j ∈ ω. The principal’s objective under a static

contract is

W s =

∫ 1

0

[v − θ − hω(θ)]x
s(θ) dGω(θ)− us(1),

where hω and Gω are defined in (1) for γ = ω.
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Under a static contract, the incentive constraints (ICij) hold trivially, and it follows from

inspection of P , that at the optimum, the ex post individual rationality constraints are binding.

Observe that the solution to the unconstrained problem which simply maximizes the princi-

pal’s objective is given by the cutoff schedule with cutoff θω. In particular, it satisfies the

monotonicity constraint and is thus a solution to the constrained problem. The next lemma

summarizes.

Lemma 7 The optimal static contract is a cutoff contract characterized by us(1) = 0 and a

cutoff schedule

xs(θ) = x̄(θ|θω).

In other words, if the principal can only offer a static contract, her problem is that of a unit

good monopsonist facing the average supply function Gω. At the optimal contract, the transfer

is equal to the critical type θω, and the good is produced whenever costs are smaller than θω.

4.3 Ex ante participation constraints

The main benchmark for our analysis is the standard sequential screening model where the

principal has to respect only the ex ante participation constraints (7) rather than the ex post

participation constraints (IRi). In contrast to our main result, the principal does benefit from

sequential screening in this case, as shown by Courty and Li (2000). We now review this

important benchmark.

Courty and Li (2000) identify conditions so that the principal’s problem can be solved by a

“Mirrleesian” approach. That is, the optimal contract obtains from solving a relaxed problem

with only the participation constraint for the highest type i = n, and all “local downward”

incentive constraints ICi,i+1. One of the identified conditions is that the distributions Gi are

ordered in the sense of first order stochastic dominance.8 Courty and Li (2000) further show

that if, in addition, the solution to the relaxed problem exhibits a production schedule that is

monotone in both the ex ante and ex post type, then it represents also a solution to the original

problem. The need for monotonicity puts additional restrictions on the primitives of the model.

8An alternative condition is that the distributions display a particular kind of mean preserving spreads.

Combinations of this MPS–ordering and first order dominance are also fine, but second order dominance in

general does not work.
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The Mirrleesian approach implies that the solution to the relaxed problem exhibits deter-

ministic production schedules xCL which equal 1 whenever the aggregate surplus exceeds the

hazard rate multiplied with an informativeness measure9:

xCL
i (θ) = 1 ⇔ v − θ ≥ ĥi(θ) ≡

p1 + . . .+ pi−1

pi
·
Gi−1(θ)−Gi(θ)

gi(θ)
.

Hence, the remaining question is under which conditions the schedules xCL are monotone in

the ex post type θ and the ex ante type i. For the schedules to be monotone in θ, they must

be cutoff schedules with a cutoff θCL
i that is the unique solution to v − θ = ĥi(θ). A sufficient

condition for existence and uniqueness of θCL
i is that ĥi(θ) is convex in θ and v ≤ 1.

For cutoff schedules to be monotone in the ex ante type, the cutoffs are required to be

decreasing: θCL
n ≤ . . . ≤ θCL

1 . A sufficient condition to obtain this ordering is that ĥi(θ) is

increasing in i. The following lemma summarizes.

Lemma 8 Suppose Gi dominates Gi−1 in the sense of first order stochastic dominance for all

i = 2, . . . , n, that ĥi(θ) is convex in θ and increasing in i, and that v ≤ 1. Then, with ex ante

participation constraints, the optimal contract (xCL,uCL) exhibits productions schedules that

are characterized by the cutoff schedule xCL
i (θ) = x̄(θ|θCL

i ) where θCL
i is the unique solution to

θCL
1 = v, v − θCL

i = ĥi(θ
CL
i ) ∀i > 1.

Interestingly, the contract (xCL,uCL) violates all ex post participation constraints. To see

this note that because type n’s ex post utility at the least efficient ex post type, un(1), is pinned

down by (RE) and the binding ex ante participation constraint (7), it follows that un(1) < 0.

Because ui(1) is pinned down by the binding incentive constraint ICi,i+1, the ordering of the

cutoffs implies that the lowest ex ante type gets the lowest utility at the least efficient ex post

type:

0 > un(1) > . . . > u1(1).

This ordering also reveals the intuition why sequential screening is strictly optimal as well as

the role of stochastic dominance: Because lower ex ante types are less likely to become high ex

9Courty and Li (2000) present a continuous version of this measure, while Dai et al. (2006) present it for

the case with two ex ante types. Baron and Besanko (1984) were the first to interpret the second term as an

informativeness measure of the ex ante information.

15



post types, they are more willing to tolerate higher losses for higher ex post types. The optimal

screening contract with ex ante participation constraints exploits this feature. It screens ex

ante types by imposing higher ex post losses on lower ex ante types.

5 Two ex ante types

The main result of this paper is that, with ex post participation constraints, the optimal

sequential screening contract coincides with the static one. To gain intuition for this result, we

analyze in this section the case with two ex ante types. To simplify the exposition, we assume

in this section that v = 1.

Our approach to solving the principal’s problem is to consider an appropriate relaxed prob-

lem and to show that its solution also solves the original problem. As in standard screening

problems, we ignore, first, the monotonicity constraint. Second, we ignore the “upward” incen-

tive constraint (IC21), because the solution to the problem with publicly known ex ante type

violates only the “downward” incentive constraint (IC12).
10 Hence, we consider the relaxed

problem

R : max
x1,x2,u1(1),u2(1)

p1

∫ 1

0

[1− θ − h1(θ)]x1(θ) dG1(θ)− p1u1(1)

+p2

∫ 1

0

[1− θ − h2(θ)]x2(θ) dG2(θ)− p2u2(1) s.t.

∫ 1

0

[x1(θ)− x2(θ)]G1(θ) dθ + u1(1)− u2(1) ≥ 0, (IC12)

u1(1) ≥ 0, u2(1) ≥ 0. (IRi)

We now argue that the solution to R is given by the optimal static contract. It will then

also be a solution to the original problem P , because the static contract trivially satisfies all

neglected constraints. The argument has two steps. First, we argue that, for any fixed levels

u1(1) and u2(1), the optimal production schedule must be a cutoff schedule. Then we optimize

over u1(1) and u2(1) and all possible cutoffs to show that the optimal contract is the optimal

static one.

Keeping u1(1) and u2(1) fixed, IC12 is the only remaining constraint. By the Kuhn–Tucker

10In particular,
∫

1

0
[xp

1
(θ)− x

p
2
(θ)]G1(θ) dθ + u

p
1
(1)− u

p
2
(1) = −

∫ θ2

θ1
G1(θ) < 0, since θ1 < θ2.
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theorem11, a solution to R maximizes the Lagrange function

L = p1

∫ 1

0

[1− θ − h1(θ)]x1(θ)dG1(θ)− p1u1(1) + p2

∫ 1

0

[1− θ − h2(θ)]x2(θ)dG2(θ)− p2u2(1)

−λ{

∫ 1

0

[x1(θ)− x2(θ)]G1(θ) dθ + u1(1)− u2(1)},

where λ ≤ 0 is the multiplier associated to the constraint IC12. Re–arranging delivers

L =

∫ 1

0

{p1[1− θ − h1(θ)]− λh1(θ)}x1(θ)g1(θ) dθ − (p1 + λ)u1(1)

+

∫ 1

0

{p2[1− θ − h2(θ)] + λh12(θ)}x2(θ)g2(θ) dθ − (p2 − λ)u2(1).

Observe that we can maximize L point–wisely. In particular, the production schedules x1(θ)

and x2(θ) are optimally set to 1 whenever the respective expressions in the curly brackets under

the integrals,

p1[1− θ − h1(θ)]− λh1(θ), (9)

p2[1− θ − h2(θ)] + λh12(θ), (10)

are positive, and x1(θ) and x2(θ) are set to 0 otherwise. This implies that the production

schedules are cutoff schedules if (9) and (10) are decreasing in θ. To see that this is indeed the

case, recall that λ ≤ 0. Together with h2 and h12 non–decreasing, it then follows that (10) is

decreasing in θ. Next consider (9). It is decreasing in θ if p1 + λ is non–negative, because h1

is non–decreasing in θ. Now let θ̂1 ∈ [0, 1] be such that (9) is zero. If θ̂1 does not exist, then,

because (9) is continuous in θ, x1 is either 0 or 1 everywhere and, hence, a cutoff schedule with

cutoff 0 or 1. Otherwise, we have

p1[1− θ̂1 − h1(θ̂1)]− λh1(θ̂1) = 0 ⇔ p1 + λ =
p1(1− θ̂1)

h1(θ̂1)
≥ 0.

From this it follows that (9) is decreasing in θ, and θ̂1 is therefore unique. Hence, also when θ̂1

exists the optimal production schedules x1(θ) and x2(θ) are characterized by a cutoff schedule

with respective cutoffs θ̂1 and θ̂2.

We now turn to the second step and look for the optimal cutoff schedules and utility levels.

As argued above, the incentive constraint IC12 in problem R must be binding at the optimum,

11See Theorem 1 and 2 in Luenberger (1969, p.187–189).
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because disregarding it would yield a solution that violates it (see footnote 10). Therefore,

given cutoff schedules, the principal’s problem R can be written as:

R′ : max
θ̂1,θ̂1,u1(1)≥0,u2(1)≥0

p1

∫ θ̂1

0

[1− θ − h1(θ)] dG1(θ)− p1u1(1) (11)

+p2

∫ θ̂2

0

[1− θ − h2(θ)] dG2(θ)− p2u2(1)

s.t.

∫ θ̂2

θ̂1

G1(θ) dθ = u1(1)− u2(1). (12)

This representation identifies the principal’s fundamental trade-off. The principal may screen

ex ante types by imposing a different cutoff for each type: θ̂1 6= θ̂2. This allows her to fine–tune

production to the types’ different cost distributions. However, by (12), this is feasible only if

at least one ex post participation constraint is not binding. In other words, screening ex ante

type comes at the cost of giving at least one type a positive ex post utility level ui(1). We now

show that this trade–off is unambiguously resolved in disfavor of screening.

In fact, inspecting R yields u2(1) = 0 at any optimum, because otherwise lowering u2(1)

would relax IC12 and raise the objective. But if u2(1) = 0, then (12) together with the constraint

that u1(1) ≥ 0 implies that only cutoffs with θ̂1 ≤ θ̂2 are feasible. Substituting the constraint

(12) with u2(1) = 0 in the objective (11) yields

p1

∫ θ̂1

0

[1− θ − h1(θ)] dG1(θ)− p1

∫ θ̂2

θ̂1

G1(θ) dθ + p2

∫ θ̂2

0

[1− θ − h2(θ)] dG2(θ)

= p1

∫ θ̂1

0

[1− θ] dG1(θ)− p1

∫ θ̂2

0

G1(θ) dθ + p2

∫ θ̂2

0

[1− θ − h2(θ)] dG2(θ). (13)

Notice that, in the second line, the second and the third term do not depend on θ̂1, and the

first term is expected aggregate surplus, conditional on facing type 1. Since aggregate surplus

is maximized at θ̂1 = 1, it is optimal to choose θ̂1 as large as possible. Because of the restriction

θ̂1 ≤ θ̂2, it then follows that θ̂1 = θ̂2, or, in other words, that a static contract is optimal.

Clearly, among all static contracts the optimal static contract solves the principal’s problem.

This illustrates our main result for the special case of two types: With ex post participation

constraints it is feasible but not optimal for the principal to screen sequentially.

To shed more light on the role of ex post participation constraints, recall that we can

interpret a contract ci = (θ̂i, ui(1)) as an option contract with exercise price θ̂i and up–front

payment ui(1). Screening ex ante types then corresponds to offering a menu with two different
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option contracts c1 6= c2. To understand intuitively why the principal does not gain from

screening ex ante types, suppose that c2 is the optimal static contract with θ̂2 = θω and

u2(1) = 0. Now observe that when the principal targets type 1 with an additional but different

contract c1, incentive compatibility requires that type 1 gets at least the same rent from c1 as

from c2. Hence, the principal loses unambiguously from offering a contract c1 with a smaller

exercise price, because the smaller exercise price implies that c1 is less efficient than c2 so that

on top of paying (at least) the same rent to the agent, c1 also generates a smaller aggregate

surplus.

On the contrary, it is not directly obvious that the principal loses from offering a contract

c1 with a larger, more efficient exercise price θ̂1 > θ̂2. The key observation which helps to

understand this is that for θ̂1 > θ̂2 the incentive compatibility constraint (IC12) is necessarily

slack, because the up–front payment to type 1 cannot be negative. Hence, when the principal

increases the exercise price θ̂1 beyond θ̂2, she faces exactly the standard monopsony trade–off

between extending supply and paying a higher price, which, by definition, θ1 solves optimally.

But since θ1 < θω = θ̂2, raising the exercise price θ̂1 beyond θ̂2 is also suboptimal.

It is instructive to see where the previous argument fails when there are only ex ante

participation constraints. Clearly, the same reasoning as above implies that it is suboptimal

to offer a contract c1 with a smaller exercise price θ̂1 < θω. But, with ex ante participation

constraints, the argument is different for a contract with a higher exercise price θ̂1 > θω. In

contrast to the case with ex post participation constraints, the principal can now impose a

negative up–front payment u1(1) < 0 on type 1. Therefore, she can use u1(1) to extract exactly

that part of type 1’s information rent that goes beyond what is needed to guarantee incentive

compatibility.12 In fact, for fixed c2, it is then optimal to set u1(1) so that (IC12) is binding.

Unlike in the case with ex post participation constraints, increasing the exercise price θ̂1 does

therefore no longer go along with increasing type 1’s rent. Consequently, it is optimal to set the

exercise price to maximize aggregate surplus, thus θ̂1 = 1, in accord with the optimal exercise

price θCL
1 = 1 from the benchmark in section 4.3.

12We may interpret that part of type 1’s information rent that goes beyond what is needed to guarantee

incentive compatibility as the agent’s ex post information rent, because it results from the fact that all ex post

types who produce the good obtain the higher exercise price. That the principal can use the up–front payment

to fully extract this ex post information rent is equivalent to Esö and Szentes’ (2007a,b) observation that the

principal wants to disclose the maximal amount of ex post information available.
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6 Arbitrary number of ex ante types

In this section, we extend the result of the previous section to the environment with an arbitrary

number of ex ante types. The extension is not straightforward, because in contrast to the two

type case, where there are only local incentive constraints, we now have to deal with both local

and global incentive constraints. It turns out that, in contrast to sequential screening models

with ex ante participation constraints, we cannot use a “Mirrleesian” approach of focusing on

local constraints. Indeed, the major challenge in extending our result lies in identifying the

relevant incentive constraints.

6.1 Auxiliary problem: ui(1) = 0

We begin by considering the problem when the utilities of the least efficient ex post types,

ui(1), are exogenously set to 0. In the next subsection, we argue that this is indeed optimal.

Thus, we first consider the problem

P0 : max
x

∑

i∈ω

pi

∫ 1

0

[v − θ − hi(θ)]xi(θ) dGi(θ) s.t.

xi(θ) is non–increasing in θ, (MON)
∫ 1

0

[xi(θ)− xj(θ)]Gi(θ) dθ ≥ 0 for all i, j ∈ ω. (IC0
ij)

Our approach to solving P0 is to solve a relaxed problem where we ignore the monotonicity

constraints and consider only a subset of incentive constraints. The main challenge is to identify

the relevant incentive constraints such that the solution to the relaxed problem will also be a

solution to the original problem, that is, satisfy monotonicity and all ignored constraints.

We identify a subset of constraints IC0
ij with the subset of respective indices (i, j). Let

C0 ≡ {(i, j) ∈ ω2 | i 6= j}. For a subset C ⊆ C0, we denote by R0(C) the relaxed problem

where only the constraints in C are considered:

R0(C) : max
x

∑

i∈ω

pi

∫ 1

0

[v − θ − hi(θ)]xi(θ) dGi(θ) s.t. IC0
ij for all (i, j) ∈ C.

To solve problem R0(C), we will work with the Kuhn–Tucker theorem for function spaces.

By Theorem 1 and 2 in Luenberger (1969, p.187–189), {xk(·)}k∈ω solves R0(C) if and only if

there are multipliers λij ≤ 0 associated to constraint IC0
ij such that {xk(·)}k∈ω maximizes the
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Lagrangian

L0(C) =
∑

k∈ω

∫ 1

0

pk[v − θ − hk(θ)]xk(θ)gk(θ) dθ −
∑

(i,j)∈C

λij

∫ 1

0

[xi(θ)− xj(θ)]Gi(θ) dθ

=
∑

k∈ω

∫ 1

0







pk[v − θ − hk(θ)]−
∑

j:(k,j)∈C

λkjhk(θ) +
∑

i:(i,k)∈C

λikhi,k(θ)







xk(θ)gk(θ) dθ,

and, moreover, λij = 0 only if the inequality in IC0
ij is strict.

By point–wise maximization, the Lagrangian L0(C) is maximized if xk(θ) is set to 1 when-

ever the expression in curly brackets under the integral,

Ψk(θ, C) ≡ pk[v − θ − hk(θ)]−
∑

j:(k,j)∈C

λkjhk(θ) +
∑

i:(i,k)∈C

λikhi,k(θ),

is positive, and xk(θ) is set to 0 otherwise.13 We summarize this observation in the following

lemma.

Lemma 9 The schedule {xk(·)}k∈ω is a solution to R0(C) if and only if for all (i, j) ∈ C there

is a λij so that

λij ≤ 0, (KT1)

xk(θ) =







0 if Ψk(θ, C) < 0

1 if Ψk(θ, C) > 0
∀k ∈ ω, (KT2)

λij

∫ 1

0

[xi(θ)− xj(θ)]Gi(θ)dθ = 0 ∀(i, j) ∈ C. (KT3)

The main result of this subsection is that the static contract solves problem P0. We organize

the argument in three steps. In step 1, we look for conditions on the constraints C so that a

solution to (KT1)-(KT3) exhibits a monotone and deterministic production schedule. This will

imply that the schedule for a type k is a cutoff schedule with some type specific cutoff. In step

2, we identify conditions so that the resulting cutoffs are the same for all types and equal to

the static cutoff. Clearly, this implies that all neglected constraints are satisfied. Finally, in

step 3, we construct a set of constraints that satisfies the conditions both from step 1 and step

2.

13More precisely, it is sufficient for obtaining a maximum that the previous statement is true for almost all

θ. For simplicity, we ignore issues of zero measure sets in what follows.
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6.1.1 Cutoff contracts

In line with the analysis of the two type case, it seems intuitive to follow a Mirrleesian approach

and to relax the original problem P0 by considering only the “local downward” constraints

IC0
i,i+1. To see why this does not work with more than two types, consider the three types

case. When we only consider the local downward constraints IC0
12 and IC0

23, then we have with

respect to type k = 2:

Ψ2(θ, C) = p2[v − θ]− [p2 + λ23]h2(θ) + λ12h12(θ). (14)

If Ψ2(θ, C) were decreasing in θ, then the solution x2 to (KT2) would automatically be monotone

and deterministic. Observe that since the (cross) hazard rates are non–increasing, Ψ2(θ, C) is

decreasing provided that p2 + λ23 > 0. The problem is to show that this is true. In the two

types case, we were able to sign the analogous sum of the ex ante probability and the multiplier.

Mimicking this argument, suppose there is a solution θ̂ so that Ψ2(θ̂) = 0, and thus

p2 + λ23 =
p2[v − θ̂]

h2(θ̂)
+ λ12h12(θ̂).

From here, we cannot deduce that p2 + λ23 > 0 because of the presence of the negative term

λ12h12(θ̂). For the general case, this suggests that the solution to the relaxed problem does not

automatically display monotonicity, if, for some type k, the relaxed problem involves constraints

IC0
kj and IC0

ik at the same time.

In the three types case we may however consider the relaxed problem with the constraints

IC0
13 and IC0

23. Then,

Ψ1(θ) = p1[v − θ − h1(θ)]− λ13h1(θ),

Ψ2(θ) = p2[v − θ − h2(θ)]− λ23h2(θ),

Ψ3(θ) = p3[v − θ − h3(θ)] + λ13h13(θ) + λ23h23(θ).

A similar argument to show monotonicity in (9) and (10) can now be used to show that for

all types k, Ψk(θ) is decreasing in θ. This implies that the solution xk to (KT2) automatically

displays monotonicity. In the general case, this argument extends to any relaxed problem where

the set of constraints is what we call directed :

Definition 1 A set C ⊆ C0 is called directed if for all i:

(i, j) ∈ C for some j ⇒ (k, i) 6∈ C for all k, and (15)

(j, i) ∈ C for some j ⇒ (i, k) 6∈ C for all k. (16)
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For a directed set C ⊆ C0 of constraints, we define by

ωC ≡ {i, j | (i, j) ∈ C}

the set of ex ante types that are part of some constraint in C, and

ω+
C = {i | (i, j) ∈ C}, ω−

C = {j | (i, j) ∈ C}.

Observe that ω+
C ∩ ω−

C = ∅, because C is directed. If C is directed, Ψk boils down to

Ψk(θ, C) =



















pk[v − θ − hk(θ)] if k 6∈ ωC

pk[v − θ − hk(θ)] +
∑

i:(i,k)∈C λikhik(θ) if k ∈ ω−
C

pk[v − θ − hk(θ)]−
∑

j:(k,j)∈C λkjhk(θ) if k ∈ ω+
C .

(17)

The next lemma shows that for a directed set, the functions Ψk are strictly decreasing provided

they have a root in the interval [0, v].

Lemma 10 Let C be directed and λij ≤ 0 for all (i, j) ∈ C. If there is a solution θ̂ ∈ [0, v] to

Ψk(θ̂, C) = 0, then Ψk(θ, C) is strictly decreasing in θ.

Next we show that the Kuhn–Tucker conditions (KT1)-(KT3) imply that for all k and all

(i, j) ∈ C there is indeed a solution θ̂k ∈ [0, v] to Ψk(θ̂k, C) = 0 with λij ≤ 0. Thus, the previous

lemma implies that the solution to the problem R0(C) automatically satisfies monotonicity.

Lemma 11 Let C be directed. Then any solution {xk(·)}k∈ω to R0(C) is characterized by a

cutoff schedule xk(θ) = x̄(θ, θ̂k) with cutoff θ̂k ∈ [0, v] given by Ψk(θ̂k, C) = 0. In particular, the

solution satisfies the monotonicity constraint (MON).

6.1.2 Static solutions

We now identify sufficient conditions on the set of constraints C so that the solution to R0(C)

is the optimal static contract. By Lemma 11, this amounts to identifying conditions so that

the cutoffs θ̂k are all equal to the static cutoff θs.

Observe first that whenever a constraint (i, j) ∈ C is binding, i.e.,
∫ 1

0
[xi − xj] dGi = 0,

then because xi and xj are cutoff schedules by Lemma 11, the respective cutoffs must be the

same: θ̂i = θ̂j. Similarly, if C contains the constraints (i, j) and (j, k) and both are binding,

then all three cutoffs are the same: θ̂i = θ̂j = θ̂k. This argument extends to any set of binding

constraints which is connected in the following sense.
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Definition 2 Consider a subset C ⊆ C0.

(i) Cis called connected if for all (i, j), (i′, j′) ∈ C, C contains a sequence of pairs (is, js)
S
s=1 so

that

(i1, j1) = (i, j), (i2, j2) = (i2, j), (i3, j3) = (i2, j3), . . . , (iS, jS) = (i′, j′).

(ii) C is called binding if for any solution {xk(·)}k∈ωC
, {λij}(i,j)∈C to (KT1)-(KT3), it holds

λij < 0 for all (i, j) ∈ C.

The next lemma expresses the insight that if the set of constraints is directed, connected and

binding, then for all types in the set of constraints, the solution to the relaxed problem is given

by the same cutoff schedule.

Lemma 12 Let C be directed, connected, and binding. Then for any solution {xk(·)}k∈ω to

R0(C) there is a θ̂ ∈ [0, v] such that xk(θ) = x̄(θ; θ̂) for all k ∈ ωC.

By Lemma 11, the cutoff θ̂ satisfies the equation Ψk(θ̂, C) = 0 for all types k ∈ ωC . Thus,

solving this system of |ωC | equations pins down the optimal cutoff θ̂. It turns out that θ̂ actually

coincides with the optimal static monopsony cutoff, θωC
, when the principal faces only types in

ωC .

Lemma 13 Let C be directed, connected, and binding. Then the cutoff in Lemma 12 is given

by θ̂ = θωC
.

An immediate implication of the previous lemma is that if ωC = ω so that any type appears in

some constraint, then the cutoff is equal to the optimal static cutoff θω. We call such a set C

with ωC = ω exhausting. This means that for a directed, connected, binding, and exhausting

set of constraints C, the solution to R0(C) is the static contract. Since the static contract

(trivially) satisfies all original constraints, it is also a solution to the original problem P0:

Lemma 14 Let C be directed, connected, binding, and exhausting. Then the solution to R0(C)

is the static contract. In particular, the optimal static contract solves the problem P0.

6.1.3 Identifying directed, connected, binding, and exhausting constraints.

We now develop a constructive algorithm which, for any problem P0, yields a directed, con-

nected, binding, and exhausting set of constraints. The construction is non–trivial, because it
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turns out that the relevant set of constraints depends on how the various cutoffs θγ, γ ⊆ ω,

introduced in (3) are ordered. To illustrate this, turn again to the three types case. In the

previous subsection, we relaxed the problem by considering only IC0
13 and IC0

23. These two

constraints form a directed, connected, and exhausting set C = {(1, 3); (2, 3)}. To see whether

the set is also binding, we check, for instance, IC0
23. Ignoring this constraint yields the problem

R0({(1, 3)}) : max
x1,x2,x3

3
∑

i=1

pi

∫ 1

0

[v − θ − hi(θ)]xi(θ) dGi(θ) s.t.

∫ 1

0

[x1(θ)− x3(θ)]G1(θ) dθ ≥ 0.

In R({(1, 3)}), the choice variable x2 is unconstrained, and moreover, with respect to the choice

variables x1 and x3, the problem is isomorphic to the two types problem with the types 1 and

3. Thus, the solution x2 is characterized by the public information cutoff θ2. Moreover, by

“induction”, the solution x1 and x3 is given by the optimal static contract in the case in which

the principal faces only the two types 1 and 3. The latter is characterized by the cutoff θ{1,3}

defined by (3). Therefore, the constraint IC0
23 writes

∫ 1

0
[x2 − x3]G1dθ =

∫ θ2

θ{1,3}
G2dθ ≥ 0, and,

hence, is violated if and only if

θ2 < θ{1,3}. (18)

Accordingly, if (18) holds, IC0
23 must be binding at the optimum. As a consequence, C =

{(1, 3), (2, 3)} is directed, connected, exhausting and binding so that we have found a solution

by Lemma 14.

For θ2 > θ{1,3}, however, C is not binding and we have to look for a different set of constraints

C ′. It is straightforward to check that in this case the set C ′ = {(1, 2), (1, 3)} is directed,

connected, exhausting and binding. Therefore, whether the appropriate set of constraints is C

or C ′ depends on the ordering of the cutoffs θ2 and θ{1,3}. This insight is key for extending our

result to an arbitrary number of types.

Finally note that for the special case θ2 = θ{1,3}, Lemma 2 implies θ2 = θ{1,3} = θω so

that the solution to R0({(1, 3)}) itself already coincides with the static contract. Hence, it

trivially satisfies both IC0
23 and IC0

13 and solves the overall problem. Consequently, we obtain

our result that the static contract is optimal, even though neither C nor C ′ are binding by our

definition. This illustrates that our result also obtains in the special non–generic cases, where

cutoffs coincide, but requires a different (and easier) treatment. For expositional clarity, we

will concentrate on the case where the cutoffs do not coincide and only note that our result
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also hold for the special cases where cutoffs do coincide. Formally, we assume

θγ 6= θδ for all γ, δ ⊆ ω, γ 6= δ. (19)

We now construct an explicit algorithm that yields a directed, connected, binding and

exhausting subset of constraints for any configuration of cutoffs θγ that satisfies (19).

Our construction is inductive. We first reduce the number of types by merging the largest

and the smallest types and proceed until we are left with two types. The next definition

formalizes this idea. We interpret the set 2ω \ ∅ of non–empty subsets of ω as an index set that

encodes the types of the compressed type space. We abuse notation and identify a type i ∈ ω

with the singleton {i} so that i ∪ j denotes {i, j} etc.

Definition 3 Inductively, for m = n, . . . , 2, define

• Basis (m = n):

⋄ ωn = ω, αn = 1, βn = n.

• Step (m → m− 1):

⋄ ωm−1 = (ωm \ {αm, βm}) ∪ {αm ∪ βm},

⋄ αm−1 = argmax{θγ | γ ∈ ωm−1} is the set index with the lowest monopsony cutoff,

⋄ βm−1 = argmin{θγ | γ ∈ ωm−1} is the set index with the highest monopsony cutoff.14

The algorithm results in a type space ω2 = {α2, β2} that has two types and by construction

exhibits θα2 < θβ2 . For this case, we already know from the analysis of the two types case

in Section 5 that the set C2 = {(α2, β2)} of constraints is directed, connected, binding and

exhausting. Starting with this constraint, we now expand the type space again in reverse order

and essentially add to C2 the constraint which requires that in the expanded type space ω3, the

type α3 does not mimic type β3. The resulting set C3 is our candidate for a directed, connected,

binding and exhausting set of constraints for ω3. Proceeding in this fashion, we generate a set

Cn of n − 1 constraints for the original type space ω. The procedure is formally described in

the next definition and subsequently illustrated for the three types case.

Definition 4 Inductively, for m = 2, . . . , n− 1, define

• Basis (m = 2):

⋄ C2 = {(α2, β2)}.

14By assumption (19), the types αm−1 and βm−1 are unique.
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• Step (m → m+ 1):

Define the re–labeling function ρm+1 : Cm → ω2
m+1 by

ρm+1((γ, δ)) =



















(αm+1, δ) if γ = αm+1 ∪ βm+1

(γ, βm+1) if δ = αm+1 ∪ βm+1

(γ, δ) else

and define the set

Cm+1 = ρm+1(Cm) ∪ {(αm+1, βm+1)}.

To highlight how the construction of Cn depends on the primitives, consider explicitly the case

n = 3. To generate ω2, the procedure first merges the highest and the lowest type in ω so that

we get ω2 = {{2}, {1, 3}}. Now if (18) holds, the highest type in ω2 is α2 = {2}, and the lowest

type is β2 = {1, 3}. Therefore, C2 = {({2}, {1, 3})}. To create C3, the procedure re-labels

first the merged type β2 = {1, 3} as type {3}. This yields the set of constraints ρ3(C2) =

{({2}, {3})} which we identify with {(2, 3)}. We subsequently add to this set the constraint

(α1, β1) = (1, 3), resulting in C3 = {(2, 3), (1, 3)}. In contrast, the expansion procedure starts

with C ′
2 = {({1, 3}, {2})} for the case θ2 > θ{1,3} and finally yields C ′

3 = {(1, 2), (1, 3)}. By

construction, the sets C3 and C ′
3 are directed, connected, and exhausting. Moreover, as we

have argued above, they are binding for the respective cases θ2 < θ{1,3} and θ2 > θ{1,3}. We

now prove that this insight extends to any configuration of cutoffs θγ that satisfies (19). This

is the key step to establish the main result of our paper.

Lemma 15 The set Cn is directed, connected, binding and exhausting.

Together with Lemma 14, Lemma 15 implies that the static contract solves problem P0. In

problem P0, we set ui(1) exogenously to zero. We now consider the original problem P , in

which ui(1) is a choice variable of the principal.

6.2 Original problem: ui(1) as a choice variable

To solve problem P , we consider the relaxed problem where we ignore the monotonicity con-

straints and consider only the incentive constraints in the set Cn constructed in Definition
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4:

R : max
x,u1(1),...,un(1)

∑

i∈ω

pi

∫ 1

0

[v − θ − hi(θ)]xi(θ) dGi(θ)− piui(1) s.t.

∫ 1

0

[xi(θ)− xj(θ)]Gi(θ) dθ + ui(1)− uj(1) ≥ 0 for all (i, j) ∈ Cn,

ui(1) ≥ 0 for all i ∈ ω.

We now prove that the static contract solves problem R. This establishes the main result of

the paper that the static contract solve problem P .

Theorem 1 The static contract is a solution to problem R. Because the static contract satisfies

all neglected constraints, it is also a solution to the original problem P.

7 Extensions

7.1 Different ex ante and ex post outside options

In the analysis so far, we assumed that the agent’s ex ante outside option coincides with his ex

post outside option. This is the natural assumption when the ex post outside option is type–

independent and does not change over time. Yet from a practical perspective, it is important

to know to what extent our results are robust and extend to differences in ex ante and ex

post outside options. For example, in a procurement relationship, where the agent as a firm is

typically protected by limited liability, the agent can incur some losses without going bankrupt

when he has pledgable assets or other sources of income. In this case, the agent’s ex post

outside option is lower than his ex ante outside option.

To allow for different outside options, we normalize the ex ante outside option to zero and

set the ex post outside option to ū ≤ 0. Thus, the ex post individual rationality (6) changes to

ui(θ) ≥ ū for all i ∈ ω, θ ∈ [0, 1], (20)

while the ex ante individual rationality constraint (7) remains the same.

We argue that our result that the static contract is optimal still holds as long as ū is not too

negative. To see this, note first that if we solve for the optimal contract with the adapted ex

post individual rationality constraint (20) while disregarding the ex ante individual rationality

constraint (7), the only change is that the principal can extract more utility from the agent.
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In particular, the optimal production schedule is equal to the cutoff schedule with the optimal

static cutoff θs, and since the ex post participation constraint (20) is binding at the optimum,

we have that ui(1) = ū. It follows that the expected utility of ex ante type i is

Ui = ū+

∫ θs

0

Gidθ.

Hence, if we define

ūp ≡ −min
i

∫ θs

0

Gidθ,

then for ū ≥ ūp, the solution satisfies automatically the ex ante participation constraint (7).

Thus, for all ex post outside options ū ∈ [ūp, 0], the optimal contract is the static one. Because

ūp < 0, our result that sequential screening is not helpful with ex post participation constraints

is robust and extends to differences in ex ante and ex post outside options.

Taking the opposite approach and solving the model with the ex ante individual rationality

constraint (7) while disregarding the ex post individual rationality constraint (20) yields the

solution of Lemma 8. In particular, the individual rationality constraint of the highest type

and all local downward incentive constraints are binding. This means that the ex post type

θ = 1 of ex ante type 1 obtains the lowest ex post utility of all ex post agent types and, in

particular,

u1(1) = ūa ≡ −
n

∑

i=1

∫ θCL
i

θCL
i+1

Gi(θ)dθ,

where θCL
n+1 ≡ 0. Hence, the solution satisfies the neglected ex ante individual rationality

constraint (20) whenever ū < ūa.

It follows that as we vary the ex post outside option ū, we obtain the sequential screening

models with ex ante and ex post participation constraints as two extremes: the model with ex

ante constraints for ū ≤ ūa and the model with ex post constraints for ū ≥ ūp. A fully fledged

analysis of the intermediate case ū ∈ (ūa, ūp) lies, due to intractability issues, outside the scope

of this paper. We only mention that simulation exercises for simple models with two ex ante

types show that it depends on the exact magnitude of up which of the incentive, ex ante, and

ex post individual rationality constraints are binding, and that in the interval (ūa, ūp) different

types of static and sequential contracts can be optimal.
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7.2 Auctions

Our techniques and results extend readily to settings with multiple agents. Consequently, the

optimal mechanism with ex post participation constraints is equivalent to the static Myerson

(1981) auction that is optimal for the principal when he faces the agents after they received all

their private information. Again, this stands in stark contrast to sequential screening models

with ex ante participation constraints only. In particular, Esö and Szentes (2007b) show that

with multiple agents sequential screening allows the principal to extract all the additional

information embodied in the ex post private information by means of an augmented second

price auction. With ex post outside options, the optimal contract is simpler and the principal

cannot extract the agent’s information rents.

8 Conclusion

This paper shows that introducing ex post participation constraints in a sequential screening

problem eliminates the value of eliciting the agent’s information sequentially. Instead, a static

contract, which conditions only on the agent’s final information is optimal. In this sense, the

value of dynamic over static contracting in the absence of ex post participation constraints is

due to relaxed participation rather than relaxed incentive constraints.

In this paper, we have taken the agent’s outside option as exogenous. In practice, the

outside option is often endogenously determined, for example, by the presence of a spot market

where the agent can trade in any period. Our paper raises the question if dynamic, long–term

contracting has some value when spot markets offer the agent an outside option at any point

in time.
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Appendix

Proof of Lemma of 1 Since hij is non–decreasing by assumption, we have

h′
ij = (g2j )

−1 · (−gigj −Gig
′
j) ≥ 0 for all i, j ∈ ω. Hence, for γ, δ ⊂ ω:

h′
γ,δ = (g2δ )

−1[−gγgδ −Gγg
′
δ] =

1

pγpδ
(g2δ )

−1 ·
∑

i∈γ,j∈δ

pipj(−gigj −Gig
′
j) ≥ 0, (21)

and this proves the claim. Q.E.D.

Proof of Lemma 2 By definition, θγ∪δ satisfies the equation

(v − θγ∪δ)
∑

i∈γ∪δ

pigi(θγ∪δ) =
∑

i∈γ∪δ

piGi(θγ∪δ). (22)

Now suppose that contrary to the claim, we have θγ∪δ > max{θγ, θδ}. (Similar arguments apply

to the case θγ∪δ < min{θγ, θδ}.) Then, by monotonicity of the hazard rate and the definition

of θγ, θδ:

v − θγ∪δ <
Gγ(θγ∪δ)

gγ(θγ∪δ)
and v − θγ∪δ <

Gδ(θγ∪δ)

gδ(θγ∪δ)
(23)

⇔ (v − θγ∪δ) · gγ(θγ∪δ) < Gγ(θγ∪δ) and (v − θγ∪δ) · gδ(θγ∪δ) < Gδ(θγ∪δ). (24)

Now multiply the left inequality with pγ and the right with pδ and add them up to get

(v − θγ∪δ)

[

∑

i∈γ

pigi(θγ∪δ) +
∑

i∈δ

pigi(θγ∪δ)

]

<
∑

i∈γ

piGi(θγ∪δ) +
∑

i∈δ

piGi(θγ∪δ). (25)

Since γ and δ are disjoint, this can be written as

(v − θγ∪δ)
∑

i∈γ∪δ

pigi(θγ∪δ) <
∑

i∈γ∪δ

piGi(θγ∪δ), (26)

a contradiction to (22). Q.E.D.

Derivation of (8) and Proof of Lemma 4 By (RE),

∫ 1

0

uj(θ) dGi(θ) =

∫ 1

0

∫ 1

θ

xj(z) dz gi(θ) dθ + uj(1) (27)

=

∫ 1

θ

xj(z) dz ·Gi(θ)
∣

∣

∣

1

0
−

∫ 1

0

−xj(θ)Gi(θ) dθ + uj(1) (28)

=

∫ 1

0

xj(θ)Gi(θ) dθ + uj(1), (29)

where we have used integration by parts in the second line.
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Thus, for j = i, it follows that

∫ 1

0

ui(θ) dGi(θ) =

∫ 1

0

xi(θ)hi(θ) dGi(θ) + ui(1). (30)

Plugging this in the principal’s objective delivers (8).

Moreover, since Uij =
∫ 1

0
uj(θ) dGi(θ), (29) implies that the first period incentive compat-

ibility condition Ui − Uij ≥ 0 is equivalent to (ICij), and this is what we wanted to show.

Q.E.D.

Proof of Lemma 10 Because the hazard rate hk(θ) is non–decreasing and pk[v− θ] is strictly

decreasing, it follows that pk[v−θ−hk(θ)] is strictly decreasing. This establishes that Ψk(θ, C)

is strictly decreasing in θ for k 6∈ ωC . In addition, λkj ≤ 0 and non–decreasing cross hazard

rates hkj(θ) imply that
∑

i:(i,k)∈C λikhik(θ) is non–increasing in θ. Hence, Ψk(θ, C) is strictly

decreasing in θ also for k ∈ ω−
C . Finally, to see that Ψk(θ, C) is strictly decreasing in θ also for

k ∈ ω+
C , first rewrite Ψk(θ, C) for k ∈ ω+

C as

Ψk(θ, C) = pk[v − θ]−



pk +
∑

j:(k,j)∈C

λkj



hk(θ). (31)

By assumption, Ψk(θ̂, C) = 0 for some θ̂ ∈ [0, v]. For k ∈ ω+
C , this implies that

pk +
∑

j:(k,j)∈C

λkj =
pk[v − θ̂]

hk(θ̂)
≥ 0. (32)

The non–decreasing hazard rate hk(·) therefore implies that (pk +
∑

j:(k,j)∈C λkj)hk(θ) is non–

decreasing. Due to the term pk[v − θ], it then follows that (31) is strictly decreasing in θ.

Q.E.D.

Proof of Lemma 11 By Lemma 9 any solution {xk(·)}k∈ω to R0(C) satisfies (KT1)–KT3. We

distinguish the three possible cases:

Case k 6∈ ωC : In this case, Ψ(θk, C) = 0 by definition of θk. Since θk < v, Lemma 10 implies

that Ψk(θ, C) > 0 for all θ ∈ [0, θk) and Ψk(θ, C) < 0 for all θ ∈ (θk, 1]. By (KT2), any solution

therefore exhibits xk(θ) = 1[0,θk](θ).
15

Case k ∈ ω−
C : In this case, Ψk(0, C) = pkv > 0 and, by (KT1), Ψk(θk, C) =

∑

i:(i,k)∈C λikhik(θk) ≤

0. Continuity of Ψk(θ, C) in θ then implies there exists a θ̂k ∈ (0, θk] such that Ψk(θ̂k, C) = 0.

Because θ̂k ≤ θk < v, Lemma 10 applies so that Ψk(θ, C) is strictly decreasing in θ. Hence,

15Let 1A(a) express the indicator function: It takes value 1 if a ∈ A and 0 otherwise.
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Ψk(θ, C) > 0 for all θ ∈ [0, θ̂k) and Ψk(θ, C) < 0 for all θ ∈ (θ̂k, 1]. By (KT2), any solution

therefore exhibits xk(θ) = 1[0,θk](θ).

Case k ∈ ω+
C : We prove by contradiction that there exists a θ̂k ∈ [0, v] such that Ψk(θ̂k, C) = 0.

For suppose the contrary, then, by Ψk(0, C) = pkv > 0 and continuity of Ψk(θ, C) in θ, it must

hold Ψk(θ, C) > 0 for all θ ∈ [0, v]. First, this implies, by (KT2), that for any solution it must

hold xk(θ) = 1 for any θ ∈ [0, v]. Second, it implies that Ψk(v, C) = −[pk+
∑

j:(k,j)∈C λkj]hk(v) >

0 so that necessarily
∑

j:(k,j)∈C λkj < −pk. Hence, there must be at least one j ∈ ω−
C such that

λkj < 0, implying by (KT3) that ICkj is satisfied in equality. But because j ∈ ω−
C , we just

established that for any solution there exists a θ̂j < v such that xj(θ) = 1[0,θ̂j ]
(θ). It therefore

follows
∫ 1

0

[xk(θ)− xj(θ)]Gk(θ)dθ ≥

∫ v

θ̂j

Gk(θ)dθ > 0.

Using (KT3), this leads to the contradiction that λkj = 0. Consequently, there must exist

a θ̂k ∈ [0, v] such that Ψk(θ̂k, C) = 0. By Lemma 10, Ψk(θ, C) > 0 for all θ ∈ [0, θ̂k) and

Ψk(θ, C) < 0 for all θ ∈ (θ̂k, 1]. By (KT2), any solution therefore exhibits xk(θ) = 1[0,θ̂k]
(θ).

We conclude that any solution is characterized by a cutoff schedule xk(θ) = x̄(θ, θ̂k), where

the cutoff θ̂k ∈ [0, v] solves Ψk(θ̂k, C) = 0. This solution trivially satisfies the monotonicity

constraint (MON). Q.E.D.

Proof of Lemma 12 Because C is binding, for any (i, j) ∈ C it holds λij < 0 such that (KT3)

implies

∫ 1

0

[xi(θ)− xj(θ)]Gi(θ))dθ = 0. (33)

Because by Lemma 11 xi(·) and xj(·) are increasing cutoff schedules with respective cutoffs θ̂i

and θ̂j, (33) can only hold if θ̂i = θ̂j. Connectedness then implies that for any i, j ∈ ωC , the

cutoffs are the same. Q.E.D.

Proof of Lemma 13 From Lemma 11 and Lemma 12 it follows that θ̂ satisfies Ψk(θ̂, C) = 0

for all k ∈ ωC . Because C is directed, we have for all k ∈ ωC that either k ∈ ω+
C or (exclusively)
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k ∈ ω−
C . Multiplying Ψk(θ̂, C) by gk(θ̂) and adding up delivers

0 =
∑

k∈ωC

Ψk(θ̂, C)gk(θ̂) (34)

=
∑

k∈ωC

pk[v − θ̂]gk(θ̂)− pkGk(θ̂) (35)

−
∑

k∈ω+
C

∑

j:(k,j)∈C

λkjhk(θ̂)gk(θ̂) +
∑

k∈ω−
C

∑

i:(i,k)∈C

λikhi,k(θ̂)gk(θ̂) (36)

=
∑

k∈ωC

pk[v − θ̂]gk(θ̂)− pkGk(θ̂) (37)

−
∑

k∈ω+
C

∑

j:(k,j)∈C

λkjGk(θ̂) +
∑

j∈ω−
C

∑

k:(k,j)∈C

λkjGk(θ̂). (38)

The last inequality follows by re-labeling the summation index of the second double sum and by

definition of hk and hi,k. Now observe that in the last line, every pair (k, j) that appears under

the first double sum also appears under the second double sum (and vice versa). Therefore,

the last line is zero, and we obtain

0 =
∑

k∈ωC

pk[v − θ̂]gk(θ̂)− pkGk(θ̂) ⇔ v = θ̂ +

∑

k∈ωC
pkGk(θ̂)

∑

k∈ωC
pkgk(θ̂)

, (39)

which by (3) implies θ̂ = θωC
. Q.E.D.

Proof of Lemma 14 The claim is a direct implication of Lemmata 11, 12, and 13. Q.E.D.

Proof of Lemma 15 The set Cn is directed, connected, and exhausting by construction. To

show that it is binding, we have to show that any solution to (KT1)-(KT3) satisfies

λγ,δ < 0 ∀(γ, δ) ∈ Cn. (40)

We only consider the case in which θ{1,n} < θω\{1,n}. (The argument for the reverse case is

analogous.)

Step 1 : We begin by showing that

λ1n < 0. (41)

Contrary to (41), suppose there is a solution {xη(·)}η∈ω to (KT1)-(KT3) so that λ1n = 0. By

construction of Cn, the pair (1, n) is the only pair in Cn that involves the index n. Together

with λ1n = 0, this implies that

Ψn(θ, Cn) = pn[v − θ − hn(θ)]. (42)
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Hence, (KT2) implies that xn = 1[0,θn]. Next, we determine x1. We distinguish two cases.

(1) If λ1δ = 0 for all δ with (1, δ) ∈ Cn, the same reasoning as in the previous paragraph

delivers that x1 = 1[0,θ1]. Since θ1 < θn by assumption, {xη(·)}η∈ω violates the constraint

(1, n) ∈ Cn, a contradiction to the assumption that {xη(·)}η∈ω is a solution to R0(Cn).

(2) Suppose that λ1δ∗ < 0 for some (1, δ∗) ∈ Cn. We shall derive a contradiction in a similar

fashion as in the previous paragraph by first determining x1 and then comparing it to xn. Let

A = {(γ, δ) ∈ Cn | λγδ < 0} ⊂ Cn (43)

be the set of binding constraints in Cn. It is non–empty, as it contains (1, δ∗). Let B be the

largest connected set in A which contains (1, δ∗). By definition of B, we have

η ∈ ωB ⇔ (η, δ) ∈ B for all (η, δ) ∈ Cn with ληδ < 0, or (44)

(γ, η) ∈ B for all (γ, η) ∈ Cn with λγη < 0. (45)

This implies that for all η ∈ ωB we can write

Ψη(θ, Cn) = pη[v − θ − hη(θ)]−
∑

δ:(η,δ)∈Cn

ληδhη(θ) +
∑

γ:(γ,η)∈Cn

λγηhγ,η(θ) (46)

= pη[v − θ − hη(θ)]−
∑

δ:(η,δ)∈B

ληδhη(θ) +
∑

γ:(γ,η)∈B

λγηhγ,η(θ) (47)

= Ψη(θ, B). (48)

Therefore, (KT2) for C = Cn implies that

xη(θ) =







0 if Ψη(θ, B) < 0

1 if Ψη(θ, B) > 0
∀η ∈ ωB. (49)

Moreover, (KT1) and (KT3) for C = Cn (trivially) imply

λγδ ≤ 0, and λγδ

∫ 1

0

[xγ(θ)− xδ(θ)]Gγ(θ)dθ = 0 ∀(γ, δ) ∈ B. (50)

The conditions (49) and (50) are the first order conditions for the problem R0(B) (when the

type space is ωB). Therefore, the solution xη(·) for η ∈ ωB to R0(Cn) is given by the solution

xη(·) to R0(B). Because B as a subset of the directed set Cn is itself directed and, because

it is connected and binding by definition, Lemma 12 and 13 imply that for all η ∈ ωB and in

particular for η = 1 ∈ ωB, we have:

xη = x1 = 1[0,θωB
]. (51)
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Because n 6∈ ωB, it follows, by assumption, θη < θn for all η ∈ ωB. By Lemma 2 it then follows

θωB
< θn, and thus x1(·) < xn(·). But this violates the constraint (1, n) ∈ Cn, a contradiction

to the assumption that {xη(·)}η∈ω is a solution to R0(Cn).

Step 2: We now show the rest of (40) by induction over the number of types n. More precisely

the induction hypothesis is that (40) is true for any model with n− 1 types.

Base (n = 2): By assumption θ1 < θ2 so that C2 = {(1, 2)}. Thus, Step 1 implies that λ12 < 0,

as desired.

Step (n − 1 → n): Let (x, λ) = ({xk(·)}k∈ω, {λij}(i,j)∈Cn
) be a solution to (KT1)-(KT3) (for

C = Cn). Contrary to the claim, suppose that

λij = 0 for some (i, j) ∈ Cn with (i, j) 6= (1, n). (52)

We will derive a contradiction to the induction hypothesis by constructing a model with n− 1

types and a solution to (KT1)
n−1-(KT3)

n−1 (for C = Cn−1) which violates (40)n−1.16

By Lemma 11, (x, λ) displays for each k a cutoff θ̂k ∈ [0, v] so that xk = 1[0,θ̂k], and

Ψk(θ̂k, Cn) = 0. (53)

Moreover, the argument in the proof of Lemma 12 implies that for all (i, j) ∈ Cn:

λij < 0 ⇒ θ̂i = θ̂j. (54)

Consider now the model with n− 1 types when types 1 and n are merged so that the new type

space is ωn−1 = {{1, n}, 2, . . . , n − 1}. We indicate the variables pertaining to this model by

a superindex n− 1. From the solution (x, λ) to (KT1)
n-(KT3)

n (for C = Cn), we propose the

following candidate solution (xn−1, λn−1) to (KT1)
n−1-(KT3)

n−1 (for C = Cn−1):

xn−1
k = xk = 1[0,θ̂k] for all k = 2, . . . , n− 1, (55)

xn−1
{1,n} = x1 = 1[0,θ̂1], (56)

λn−1
γδ = λγδ for all (γ, δ) ∈ Cn−1 with γ 6= {1, n}, (57)

λn−1
{1,n}δ = λ1δ ·

G1(θ̂1)

G{1,n}(θ̂1)
for all ({1, n}, δ) ∈ Cn−1. (58)

16In what follows, the exponent on the equation reference refers to the number of types of the model under

consideration.
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(Observe that because θ{1,n} > θω\{1,n} by assumption, we have by construction of the set Cn−1

that (1, δ) ∈ Cn if and only if ({1, n}, δ) ∈ Cn−1.)

By (52), this definition implies that there is a (γ, δ) ∈ Cn−1 so that λn−1
γδ = 0. Thus, it is

sufficient to show that

(xn−1, λn−1) satisfies (KT1)
n−1-(KT3)

n−1 (for C = Cn−1) , (59)

because then we would have found a model with n−1 types that violates (40)n−1, a contradiction

to the induction hypothesis.

We now show (59).

• That (xn−1, λn−1) satisfies (KT1)
n−1 is trivial.

• To see that (xn−1, λn−1) satisfies (KT2)
n−1, observe that since xn−1

k is a cutoff schedule for all

k ∈ ωn−1, we only have to show that Ψn−1
k (·, Cn−1) equals zero at the respective cutoff of xn−1

k .

By the definition (55) and (56) of xn−1
k , this means we have to show:

Ψn−1
k (θ̂k, Cn−1) = 0 for all k = 2, . . . , n− 1, and Ψn−1

{1,n}(θ̂1, Cn−1) = 0. (60)

Recall that θ{1,n} > θω\{1,n} by assumption. Thus, the set Cn−1 is constructed by removing

(1, n) from Cn and then re-labeling the index 1 as {1, n}. Moreover, (1, n) is the only pair in

Cn that involves the index n. Thus,

For all k ∈ ω+
n−1 \ {1, n} : (k, δ) ∈ Cn−1 ⇔ (k, δ) ∈ Cn, (61)

For all k ∈ ω−
n−1 : (γ, k) ∈ Cn−1 ⇔ (γ, k) ∈ Cn, or (γ = {1, n} and (1, k) ∈ Cn). (62)

We now establish the left part of (60). For k ∈ ω+
n−1 \ {1, n}, (61) together with (53) and (57)

implies that

Ψn−1
k (θ̂k, Cn−1) = pk[v − θ̂k − hk(θ̂k)]−

∑

δ:(k,δ)∈Cn−1

λn−1
kδ hk(θ̂k) (63)

= pk[v − θ̂k − hk(θ̂k)]−
∑

δ:(k,δ)∈Cn

λkδhk(θ̂k) = Ψk(θ̂k, Cn) = 0. (64)
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Moreover, for k ∈ ω−
n−1, (62) together with (57) and (58) implies that

Ψn−1
k (θ̂k, Cn−1) = pk[v − θ̂k − hk(θ̂k)] +

∑

γ:(γ,k)∈Cn−1

λn−1
γk hγ,k(θ̂k) (65)

= pk[v − θ̂k − hk(θ̂k)] +
∑

γ:(γ,k)∈Cn−1
γ 6={1,n}

λn−1
γk hγ,k(θ̂k) + λn−1

{1,n}kh{1,n},k(θ̂k) (66)

= pk[v − θ̂k − hk(θ̂k)] +
∑

γ:(γ,k)∈Cn
γ 6=1

λγkhγ,k(θ̂k) (67)

+λ1k ·
G1(θ̂1)

G{1,n}(θ̂1)
h{1,n},k(θ̂k),

where we make use of the convention: λn−1
{1,n}k = 0 if ({1, n}, k) 6∈ Cn−1 and λ1k = 0 if (1, k) 6∈

Cn−1. We now distinguish two cases. If λ1k = 0, then the last term in the previous expression

vanishes, and we can as well write

Ψn−1
k (θ̂k, Cn−1) = pk[v − θ̂k − hk(θ̂k)] +

∑

γ:(γ,k)∈Cn
γ 6=1

λγkhγ,k(θ̂k) + λ1kh1,k(θ̂k) = Ψk(θ̂k, Cn), (68)

which is zero by (53), as desired. If λ1k < 0, then θ̂1 = θ̂k by (54), so that

G1(θ̂1)

G{1,n}(θ̂1)
h{1,n},k(θ̂k) =

G1(θ̂1)

G{1,n}(θ̂1)
·
G{1,n}(θ̂1)

gk(θ̂1)
= h1,k(θ̂k). (69)

Consequently, we also have in this case that Ψn−1
k (θ̂k, Cn−1) = Ψk(θ̂k, Cn), which is zero by (53).

This completes the proof of the left part of (60).

We are left to show the right part of (60), i.e. Ψn−1
{1,n}(θ̂1, Cn−1) = 0. By assumption,

θ{1,n} > θω\{1,n}. It is easy to see that this implies {1, n} ∈ ω+
n−1. Hence, TO

DO
Ψn−1

{1,n}(θ̂1, Cn−1) = p{1,n}[v − θ̂1 − h{1,n}(θ̂1)]−
∑

δ:({1,n},δ)∈Cn−1

λn−1
{1,n}δh{1,n}(θ̂1) (70)

=
[v − θ̂1]p{1,n}g{1,n}(θ̂1)− p{1,n}G{1,n}(θ̂1)

g{1,n}(θ̂1)
(71)

−
∑

δ:({1,n},δ)∈Cn−1

λn−1
{1,n}δh{1,n}(θ̂1),

where in the second line we have took 1/g{1,n}(θ̂1) out of the square brackets. By (58) and the

definition of G{1,n} and g{1,n}, and since ({1, n}, δ) ∈ Cn−1 if and only if (1, δ) ∈ Cn and δ 6= n,
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this can be re-written as

Ψn−1
{1,n}(θ̂1, Cn−1) =

[v − θ̂1] · {p1g1(θ̂1) + pngn(θ̂1)} − p1G1(θ̂1)− pnGn(θ̂1)

g{1,n}(θ̂1)
(72)

−
∑

δ:(1,δ)∈Cn
δ 6=n

λ1,δ
G1(θ̂1)

g{1,n}(θ̂1)

Now add and subtract λ1nG1(θ̂1)/g1(θ̂1) to obtain

Ψn−1
{1,n}(θ̂1, Cn−1) =

1

g{1,n}(θ̂1)

{

p1[(v − θ̂1)g1(θ̂1)−G1(θ̂1)]− λ1nG1(θ̂1) (73)

−
∑

δ:(1,δ)∈Cn
δ 6=n

λ1,δG1(θ̂1)











+
1

g{1,n}(θ̂1)

{

pn[(v − θ̂1)gn(θ̂1)−Gn(θ̂1)] + λ1nG1(θ̂1)
}

.

The first two lines on the right hand side can be written as

g1(θ̂1)

g{1,n}(θ̂1)
·
p1[(v − θ̂1)g1(θ̂1)−G1(θ̂1)]−

∑

δ:(1,δ)∈Cn
λ1δG1(θ̂1)

g1(θ̂1)
=

g1(θ̂1)

g{1,n}(θ̂1)
·Ψ1(θ̂1, Cn). (74)

Moreover, since (1, n) is the only pair in Cn that involves the index n, the third line becomes

g1(θ̂1)

g{1,n}(θ̂1)
·
pn[(v − θ̂1)gn(θ̂1)−Gn(θ̂1)] + λ1nG1(θ̂1)

g1(θ̂1)
=

g1(θ̂1)

g{1,n}(θ̂1)
·Ψn(θ̂1, Cn) (75)

=
g1(θ̂1)

g{1,n}(θ̂1)
·Ψn(θ̂n, Cn), (76)

where in the last line we have used that λ1n < 0 by Step 1 which implies θ̂1 = θ̂n by (54).

Hence, by (53):

Ψn−1
{1,n}(θ̂1, Cn−1) =

g1(θ̂1)

g{1,n}(θ̂1)
·Ψ1(θ̂1, Cn) +

g1(θ̂1)

g{1,n}(θ̂1)
·Ψn(θ̂n, Cn) = 0, (77)

and this completes the proof of the right part of (60).

• To complete the proof of (59), it remains to be shown that (xn−1, λn−1) satisfies (KT3)
n−1.

Consider (γ, δ) ∈ Cn−1. If λ
n−1
γδ = 0, (KT3)

n−1 holds trivially. If λn−1
γδ < 0, then (54)-(58) imply

that xn−1
γ = xn−1

δ . Accordingly, (KT3)
n−1 also holds in this case.

This establishes (59) and completes the proof. Q.E.D.
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Proof of Proposition 1 For all k ∈ ω, let xs
k(θ) = 1[0,θω ](θ) be the production schedule and

us
k(1) = 0 the least efficient ex post type’s utility level under the static contract. By the Kuhn–

Tucker theorem, we have to show that there are multipliers λij ≤ 0, (i, j) ∈ Cn, and µk ≤ 0,

k ∈ ω, so that ({xs
k(·)}k∈ω, {u

s
k(1)}k∈ω) maximizes the Lagrangian

L =
∑

k∈ω

{∫ 1

0

pk[v − θ − hk(θ)]xk(θ)gk(θ) dθ − pkuk(1)

}

(78)

−
∑

(i,j)∈Cn

λij

[∫ 1

0

[xi(θ)− xj(θ)]Gi(θ) dθ + ui(1)− uj(1)

]

−
∑

k∈ω

µkuk(1)

=
∑

k∈ω

∫ 1

0







pk[v − θ − hk(θ)]−
∑

j:(k,j)∈Cn

λkjhk(θ) +
∑

i:(i,k)∈Cn

λikhi,k(θ)







xk(θ)gk(θ) dθ(79)

−
∑

k∈ω







pk +
∑

j:(k,j)∈Cn

λkj −
∑

i:(i,k)∈Cn

λik + µk







uk(1),

where λij = 0 or µk = 0 only if the respective constraints are not binding. Now, let λij < 0 be

as in the proof of Lemma 15, and define

µk =







−pk −
∑

j:(k,j)∈Cn
λkj if k ∈ ω+

Cn

−pk +
∑

i:(i,k)∈Cn
λik if k ∈ ω−

Cn

. (80)

Then the curly brackets in the last line are zero, and the Lagrangian L is identical to the

Lagrangian for the problem R0(C). Therefore, by Lemma 11 and 15, ({xs
k(·)}k∈ω, {u

s
k(1)}k∈ω)

maximizes L. It remains to be shown that µk ≤ 0. Since λik < 0, the claim is trivial for

k ∈ ω−
Cn
. For k ∈ ω+

Cn
, recall from (32) in the proof of Lemma 10 that −pk−

∑

j:(k,j)∈Cn
λkj ≥ 0.

This completes the proof. Q.E.D.
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