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Abstract

A principal uses security bid auctions to award an incentive contract to one among several

agents, in the presence of hidden action and hidden information. Securities range from cash to

equity and call options. “Steeper” securities are better surplus extractors that narrow the gap

between the two highest valuations, yet reduce effort incentives. In view of this trade-off, the

generalized equity auction that includes a (possibly negative) cash reward to the winner tends

to outperform all other auctions, although it cannot extract the entire surplus and implement

efficient effort. Hence, profit sharing emerges without risk aversion or limited liability.
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1 Introduction

If a risk neutral principal deals with a risk neutral and sufficiently wealthy agent whose effort is

unobservable, the optimal contract is a franchising contract. There, the agent becomes full residual

claimant in exchange for a take-it-or-leave-it cash payment.1 This is true even if the agent’s ability

is unknown.

If the principal can recruit the agent from a pool of agents whose abilities are unknown, he can do

better by replacing the take-it-or-leave-it offer by a standard auction that awards the contract to the

highest bidder.

If output is contractible, the principal can do even better by using a contingent payment auction

in which cash bids are replaced by bidding with securities. However, such auction formats may

adversely affect effort incentives.

The present paper explores the profitability of cash versus security bid auctions ranging from equity

(share) to call option auctions for agency contracts in the presence of hidden action and hidden

∗Research support by the National Research Foundation of Korea funded by the Korean Government (NRF-2010-

330-B00085) and the Deutsche Forschungsgemeinschaft (DFG), SFB Transregio 15, “Governance and Efficiency of

Economic Systems” is gratefully acknowledged.
†Email: bhjun@korea.ac.kr
‡Institute of Economic Theory I, Humboldt University at Berlin, Spandauer Str. 1, 10178 Berlin, Germany, Email:

wolfstetter@gmail.com
1If the agent is risk averse, the optimal contract exhibits profit sharing (the classical reference is Holmstrœm, 1979),

and if the agent cannot make advance payments and is subject to limited liability, it is a bonus contract (Innes, 1990).
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information. These auction formats differ in their ability to extract surplus and implement efficient

effort. For example, cash auctions give the agent the full profit, and thus exhibit the strongest

possible effort incentives. However, they are weak in extracting surplus, because the principal can

extract only the second highest in expected profit. Whereas a call option auction, that gives the

principal the right to become residual claimant in exchange for a fixed strike price, extracts the full

surplus, yet completely lacks effort incentives.

Our main finding is that an equity or share auction, supplemented by a cash transfer to the winner,

tends to be the most profitable auction format for the principal, because after fine-tuning it with

cash rewards it manages to strike the best balance between effort incentives and surplus extraction.

Share auctions have been introduced by Hansen (1985) who showed that share auctions (which are

feasible if the winner’s valuation is verifiable ex post) can extract more surplus than standard cash

auctions. One may interpret this result as an implication of the “linkage principle” according to

which linking the price to a variable that is correlated with bidders’ private information tends to

lower bidders’ information rents (see Milgrom, 1987). Later, Crémer (1987) pointed out that by

adding cash transfers, share auctions can, paradoxically, achieve full surplus extraction.2

In the recent literature, contingent payment auctions have been revived and extended by DeMarzo,

Kremer, and Skrzypacz (2005).3 They consider a larger class of security bid auctions and rank

them according to their capacity to extract surplus. In particular, they introduce the concept of

“steepness”, which partially orders securities, and show that surplus extraction increases in steepness.

Essentially, the equilibrium price of a security bid auction with a steeper security responds more

strongly to the winner’s valuation. The standard cash auction has the lowest steepness, because the

equilibrium price reflects only the second highest valuation and thus cannot extract the gap between

the highest and the second highest valuation. In turn, the steepest security is the call option, which

entitles the auctioneer to the valuation of the winner in exchange for a fixed price.

Che and Kim (2010) commented on DeMarzo, Kremer, and Skrzypacz (2005), pointing out that

steepness of securities is only indicative of profitability if the considered security bid auctions make

the same selection of the winner. In the presence of adverse selection, this is not assured, and the

cash auction can make a better selection and yield higher expected profits than the steeper equity

(share) or call option auctions.

In the present paper we analyze security bid auctions in the presence of both hidden information

and hidden action. We show that the performance of security bid auctions hinges upon their power

of surplus extraction and the implied effort incentives. As in DeMarzo, Kremer, and Skrzypacz

(2005), the steeper securities are better surplus extractors, yet this applies only contingent on a

given choice of effort. The flip side is that the steeper securities dilute effort incentives. In the face

of this trade-off, the generalized share or equity auction, that includes a cash reward to the winner,

tends to outperform the less “steep” cash/debt and the “steeper” call option auctions.

Our model applies to a large range of agency problems with competition, ranging from the sale

of a product innovation to entrepreneurs who compete for the exclusive use of this innovation,

government licensing, franchising and other forms of subcontracting to mergers and acquisitions.

Our analysis also sheds light on the full surplus extraction paradox posed by Crémer (1987) because

we show that a share auction can only implement low effort and full full surplus extraction, but

cannot implement high effort and full surplus extraction.

2Samuelson (1987) commented that adverse selection or moral hazard may interfere with surplus extraction.
3See also Board (2007) and Rhodes-Kropf and Viswanathan (2005).
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The plan of the paper is as follows: In Section 2 we state the model and basic assumptions. In

Section 3 we solve the bidding games for different security bid auctions. In Section 4 we generalize

the share or equity auction by adding a cash reward or payment to the winner and show that

this makes it possible to either increase or lower share bids, which affects effort incentives, and

characterize the optimal generalized share auction. In Section 5 we characterize the optimal

mechanism, using the revelation principle. In Section 6 we rank the different security bid auctions

according to their profitability for the principal, and in Section 7 we discuss possible extensions.

2 Model

A principal wants to award an incentive contract to one of n ≥ 2 potential agents, using a security

bid auction.

Agents differ in their ability to generate revenue. Agents know their own ability, measured by a

productivity index x ∈ [0,1], but not that of others. They are subject to a production function that

maps their effort and productivity into their output.

Output is observable and verifiable, but effort is not observable (“hidden action”), which gives rise

to a principal-agent problem.

The principal awards incentive contracts – ranging from franchising, to fixed-wage and standard

principal-agent sharing contracts – and employs one of the following Vickrey style auction rules in

which bids are financial securities:

1. Standard (cash) auction: bidders offer cash payments in exchange for becoming the residual

claimant; the highest bidder wins, and the winner pays the second highest bid.

2. Debt auction: bidders offer IOU’s in exchange for becoming the residual claimant; the bidder

with the highest offer wins and has to pay off the second highest debt, subject to limited

liability.

3. Call option auction: bidders offer strike prices for a call option on their output; the bidder

with the lowest strike price wins; the call can be exercised at the second lowest strike price.

4. Equity (share) auction: bidders offer output shares; the bidder with the highest share offer

wins and pays the second highest share of his output (and possibly collects a cash reward for

the winner which may be positive or negative).

The timing of the game is as follows: First, bidders (agents) draw their productivity index, which is

their private information, and then simultaneously make their bids; second, the auctioneer (principal)

selects the winner; third, the winning bidder chooses his effort e; and finally, output is observed,

and the auctioneer collects payments, if any. The equilibrium concept is that of a subgame perfect

Nash equilibrium.

The following simplifying assumptions are made.

All parties are risk neutral. The production function, φ(x,e) := x+ e, is additive in the productivity

index, x, and effort, e. Effort is either high (H) or low (L), eH > eL > 0, and the corresponding cost

of effort is cH > cL, with ∆e := eH − eL > cH − cL =: ∆c, assuring that eH is the efficient choice

for all x.4 Bidders’ productivity index (to which we also refer as bidders’ type) is an i.i.d. random

4Our analysis easily generalizes to continuum of effort choices combined with a quadratic cost function. This

indicates that our assumption of binary effort is not restrictive.
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variable, drawn from the continuously differentiable distribution function F : [0,1] → [0,1] with

positive p.d.f. f everywhere (symmetric independent private values model).

We denote the k-th largest order statistic of a sample of i.i.d. random variables with sample size n

by X(k:n), its c.d.f. by F(k:n), and the joint p.d.f. of the highest and the second highest order statistic

by f(12:n)(x,y) (for x > y).

3 Equilibrium of standard security bid auctions

We now characterize the equilibrium strategies and payoffs of the above stated security bid auctions.

Proposition 1 (Cash/debt auction). In equilibrium the winner chooses high effort ei = eH , and

each bidder bids the net profit xi + eH − cH . The principal’s equilibrium expected revenue is

Π
c = E

(

X(2:n)

)

+ eH − cH . (1)

Similarly, in the debt auction, the winner chooses eH and each bidder offers an IOU that promises

to pay di := xi + eH − cH , which yields the same Π
c.

Proof. Because the winner is residual claimant he has undiluted incentives and chooses the efficient

effort level, eH . Given this effort strategy, the asserted bid strategy is obviously a (weakly) dominant

strategy.

The difference between cash and debt auctions is that cash bids are paid in advance, while debt is

payed after output has been observed. This makes a difference only in the event of bankruptcy;

however, bankruptcy cannot occur because the output always exceeds the requested debt payment.

In order to show this, let d′ denote the second highest IOU; then, the winner’s profit is xi +eH −d′ >
xi + eH −di = cH > 0, as asserted.

Proposition 2 (Call option). In equilibrium the winner plays the effort strategy ei(k
′), as a function

of the second highest strike price k′, with ei(k
′) = eH if k′ > x+ eL +∆c and ei(k

′) = eL otherwise.

Each bidder bids the strike price ki = cL. On the equilibrium path the winner is chosen at random

among all bidders and then chooses low effort. The principal’s expected revenue is equal to

Π
k = E(X)+ eL − cL. (2)

Proof. The principal will exercise his call option if and only if the strike price he has to pay, k′, is

less than the observed output of the winner, x+ ei. Taking this into account, in the effort subgame

the winner chooses eH if and only if

min
{

x+ eH ,k′
}

− cH > min
{

x+ eL,k
′
}

− cL. (3)

By checking all possible cases5 one finds that this is true if and only if k′ > x+ eL +∆c.

Given the equilibrium effort strategy, it is, again, a weakly dominant strategy to bid a strike price

equal to cL. And on the equilibrium path, the winner chooses eL.

Because in equilibrium all bids are the same, the principal selects the winner at random and

exercises the option. Therefore, his expected payoff is as asserted.

5Altogether, there are three cases: 1) k′ > x + eH , 2) k′ ∈ (x + eL,x + eH), 3) k′ < x + eL. In each case, the stated

condition must hold.
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We mention that the call option can be interpreted as a standard fixed-wage contract, where the

winning bidder is paid a fixed wage equal to k. This is due to the fact that in equilibrium the option

is exercised with probability one, and bankruptcy never occurs. Not surprisingly, a fixed-wage

contract lacks effort incentives, which is why the winner exerts low effort, e = eL.

Lemma 1 (Share auction). 1) Bidders’ equilibrium effort strategy is a function of the second

highest share, s′, where 1A is the indicator function of set A:

e(s′) = 1s′≤s0
eH +1s′>s0

eL, where s0 :=
∆e−∆c

∆e
. (4)

2) Conditional on choosing effort ei, the equilibrium share function is

si(x) = 1−
ci

x+ ei

, i ∈ {L,H}. (5)

Proof. 1) Given s′, the winner chooses high effort if and only (1− s′)(x+ eH)− cH > (1− s′)(x+
eL)− cL.

2) The equilibrium bid must be such that the bidder never regrets losing, independent of the rivals’

bids, i.e., (1− si(x))(xi + ei) = ci.

Lemma 2 (Share auction). The equilibrium share functions sH ,sL are single-crossing:

sH(x) T sL(x) ⇐⇒ sH(x) S s0. (6)

At the crossing point x0:

x0 :=
cL∆e− eL∆c

∆c
(7)

one has sH(x0) = sL(x0) = s0, provided x0 ∈ [0,1].

The proof follows immediately from Lemma 1.

Proposition 3 (Share auction). In equilibrium each bidder plays the bid strategy:

s(x) = max{sL(x),sH(x)} , (8)

together with the effort strategy (4). The principal’s expected revenue is equal to

Π
s =

∫ 1

0

∫ x

0
s(y)

(

x+ e(s(y))
)

f(12:n)(x,y)dydx. (9)

Proof. Consider a bidder with x > x0. Suppose that bidder deviates from the candidate equilibrium

strategy and bids a share s > sL(x). If that makes a difference, the bidder wins with the deviating

bid, s, but would have lost if he had bid sL(x). In that event, he must pay a share that is at least as

high as sL(x). Because by definition of sL his profit is non-positive if he pays sL (no matter which

effort he then chooses), this deviation is not profitable. The argument for the case when s < sL(x) is

similar. The same applies to the case x < x0.

The equilibrium of the share auction is illustrated in Figure 1 for the case x0 ∈ (0,1).6 The

equilibrium bid function is the upper envelope s(x) := max{sL(x),sH(x)}, and, depending upon the

second highest share, s′, the winner chooses e(s′) = eH for all s′ < s0 and e(s′) = eL for all s′ > s0.

6This plot assumes uniformly distributed productivity parameters and (eH ,eL,cH ,cL) = (3.3,2,1.5,1).
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1) To prove this, let r → cL. This implies x0 < 0, by (10), hence s(x) = sL(x) for all x and the winner

chooses eL, and the share paid by the winner approaches 1, by (10). Therefore, the principal’s

revenue is:

π = sL(x
′)(x+ eL)− r

= sL(x)(x+ eL)− r −
(

sL(x)− sL(x
′)
)

(x+ eL)

= x+ eL − (cL − r)− r −
(

sL(x)− sL(x
′)
)

(x+ eL).

Because both sL(x) and sL(x
′) converge to 1, π converges to x+ eL − cL.

2) The principal’s revenue is:

π = sH(x′)(x+ eH)− r

= sH(x)(x+ eH)− r −
(

sH(x)− sH(x′)
)

(x+ eH)

= x+ eH − (cH − r)− r −
(

sH(x)− sH(x′)
)

(x+ eH).

(11)

According to the equilibrium bidding strategy,

(1− sH(x′))(x′ + eH)− cH = (1− sH(x))(x+ eH)− cH = 0.

Hence,

(sH(x)− sH(x′))(x+ eH) = (1− sH(x′))(x− x′). (12)

Combining (11) and (12), we get

x+ eH − cH −π = (1− sH(x′))(x− x′)

≥ (1− s0)(x− x′).

Therefore, the principal’s expected revenue is bounded away from the expected surplus.

3) Suppose, per absurdum, that x0(r
∗) > 1. Then, by slightly increasing the cash reward, dr > 0, in

such a way that eH remains optimal for all x (i.e., x0(r
∗ +dr) > 1), the principal’s expected revenue

can be increased for the following reason. Denote the increment in the second highest share that

is induced by dr by ds′. In the equilibrium of the Vickrey auction (x′ + eH)(1− s′)− cH + r ≡ 0.

Therefore, (x′+eH)ds′−dr ≡ 0, which implies that by increasing r the principal’s revenue increases

by the amount:

(x+ eH)ds′ −dr > (x′ + eH)ds′ −dr ≡ 0.

Finally, denote the r that induces x0(r) = 1 by r1. Evidently,

∂r Π
s(r)|r=r1

=
∫ 1

0

∫ x

0

x+ eH

y+ eH

f(12:n)(x,y)dydx > 0;

therefore, the optimal cash reward r∗ is greater than r1, and r∗ induces x0(r
∗) < 1, as asserted.

5 The optimal mechanism

In similar models Laffont and Tirole (1987) and McAfee and McMillan (1987) characterized the

optimal mechanism for awarding incentive contracts. In order to compare the performance of the

above security bid auctions with that of the optimal mechanism we adapt their analysis to the

present framework.
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By the revelation principle, we can restrict attention to direct mechanisms (T,Q,ψ) that are

truthfully implementable in Bayesian Nash equilibrium and assure voluntary participation. There,

Ti : [0,1]n → R is the transfer to player i, and Qi : [0,1]n → [0,1] his probability of winning, as

functions of the reported type profile. In addition, the mechanism stipulates the output that the

winner is required to produce as a function of the winner’s reported type, ψ : [0,1] → R.

The optimal mechanism, which is derived in detail in the Appendix, has the following main

characteristics:

Proposition 5. The optimal mechanism selects the highest type as winner (selection rule), requires

the winner to satisfy the output target ψ and stipulates the transfer rule T , based on a threshold

level x̂ ∈ [0,1]:

Qi(xi,x−i) =

{

1 if xi > max{x−i}

0 if xi < max{x−i},
(selection rule)

ψ(x) =

{

x+ eL if x < x̂

x+ eH otherwise,
(output target)

Ti(xi,x−i) =

{

Qi(xi,x−i)cL if x < x̂

Qi(xi,x−i)cH +u(xi) otherwise.
(transfer rule)

There u(x) is a supplementary transfer that is defined in the Appendix.

Corollary 1. The optimal mechanism exhibits “no distortion at the top”, i.e., it implements high

effort whenever the winner’s productivity is sufficiently high, and generally exhibits a “distortion at

the bottom”.7

6 Performance ranking

To prepare the ranking of the above mechanisms, we introduce the following conditions:

eH

(eH +1)
>

∆c

∆e
(condition A)

∆e−∆c > E(X)−E(X(2:n)). (condition B)

Condition A is slightly stronger than our assumption concerning the technology. Whereas our

assumption requires ∆c/∆e < 1, condition A requires that ∆c/∆e is smaller than the ratio eH/(eH+1)

which is itself smaller than one. Therefore, condition A is satisfied if the technology is sufficiently

productive.

Condition B is a weak requirement concerning the number of bidders and their productivity. It can

only be violated if E(X) > E(X(2:n)); if F is the uniform distribution, this is possible if and only if

n = 2.

Proposition 6 (Ranking). The generalized share auction is not optimal. However, it is more

profitable than the cash/debt auction if condition A holds, and the cash auction is more profitable

than the call auction if condition B holds.

7The distortion at the bottom does not occur if the technology is highly productive. A distortion at the bottom occurs,

for example, if F is the uniform distribution, ∆e/∆c < 3, 1/3 < ∆e < 1/2, and n = 2.
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Proof. 1) The optimal generalized share auction exhibits an “effort distortion at the top” because it

implies that the winner chooses low effort if the second highest productivity parameter is below

x0(r
∗), where x0(r

∗) < 1 by Proposition 4. Therefore, the optimal generalized share auction is not

an optimal mechanism.

2) We will show that by choosing a reward r ≤ cL (either positive or negative) in such a way that

x0(r) = 1, the principal can induce bidders to choose high effort for all type profiles, and earn

a higher expected revenue than in the cash auction. Therefore, in the optimal generalized share

auction the principal’s expected revenue must be higher than that of the cash auction.

From (10) it follows that one can induce x0 = 1 by offering the reward r1 := cL − ∆c
∆e

(1+eL). If this

is done, high effort is chosen by all types. Let x,x′ be the highest and second highest productivity

parameters. Then, the associated revenue of the principal can be assessed as follows:

s(x′)(x+ eH)− r1 =

(

1−
cH − r1

x′ + eH

)

(x+ eH)− r1

=
(

x′ + eH − cH + r1

) x+ eH

x′ + eH

− r1

>
(

x′ + eH − cH + r1

)

− r1

= x′ + eH − cH (revenue in cash auction).

There, the inequality follows from the fact that (x+eH)/(x′+eH) > 1 and eH − cH + r1 > 0, which are

implied by the assumption of the proposition.

3) By (1) and (2) one finds that Π
c > Π

k if and only if condition B holds.

Example 1. To illustrate the performance ranking, suppose n = 2,F(x) = x,(eH ,eL,cH ,cL) =
(4/5, 2/5, 1/2, 3/10). Then, the different mechanisms give rise to expected profits of the principal that

are summarized in the following table (which also includes the maximum surplus):

Generalized Share Cash/Debt Call Optimal Full Surplus

Share Auction Auction Auction Auction Mechanism Extraction

0.7058 0.6810 0.6333 0.6000 0.8947 0.9667

Table 1: Principal’s Expected Profit

7 Discussion

One may ask whether the above analysis would differ if we had considered first-price in lieu of

Vickrey auctions. In order to answer this question, one may refer to a result by DeMarzo, Kremer,

and Skrzypacz (2005). For this purpose, notice that in all considered auctions, with the exception

of call auctions, the highest type wins. Therefore, these auctions are examples of so-called “general

symmetric mechanisms”. Moreover, the set of each type of securities is convex. Therefore, by

DeMarzo, Kremer, and Skrzypacz (2005, Proposition 3), first-price and Vickrey auctions are

revenue equivalent within each type of security bid auction.8

Revenue equivalence also extends to call auctions, even though they do not qualify as “general

symmetric mechanisms”, because there, the equilibrium strategy (i.e., to bid a strike price equal to

8Existence of a monotone equilibrium of the first-price auction is guaranteed by their Lemma 3.
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the low effort cost) is the same in both the first-price and the Vickrey auction, and in equilibrium

the winner is selected at random.

But, of course, revenue equivalence does not apply across different security bid auctions.

In future work one may pursue several natural extensions. One concerns replacing private by

common or affiliated values. Another concerns the fact that licensing typically occurs in a context

of oligopolistic competition, where agents interact with each other in an aftermarket, and the

winner’s type affects the payoff functions in the subsequent oligopoly subgame, which in turn

affects bidding. This suggests that one should extend the model to include the strategic interaction

in an aftermarket, which may give rise to signalling issues, as in Das Varma (2003) and Goeree

(2003) and the subsequent literature.9

A Appendix: The optimal mechanism

Because the game is symmetric (players’ productivity parameters are i.i.d. random variables), we

restrict attention to symmetric mechanisms with respect to the permutation of type profiles.

For convenience we define (and omit the subscripts in Ti, Qi):

t(xi) := Ex−i

(

T (xi,x−i)
)

, q(xi) := Ex−i

(

Q(xi,x−i)
)

. (13)

Define γ(xi,zi) as the winner’s cost of fulfilling his output requirement when the agent reports type

zi while his true type is xi, i.e.

γ(xi,zi) =











cL if ψ(zi) ≤ xi + eL

cH if xi + eL < ψ(zi) ≤ xi + eH

∞ otherwise.

We say that it is feasible for type xi to report zi if γ(xi,zi) < ∞. For convenience define U(xi,zi) :=
t(zi)−q(zi)γ(xi,zi). A mechanism is truthfully implementable if

ψ(xi) ≤ xi + eH for all xi ∈ [0,1]

U(xi,xi) ≥ U(xi,zi) for all xi,zi ∈ [0,1] (IC)

U(xi,xi) ≥ 0 for all xi ∈ [0,1] (IR)

Given two truthfully implementable mechanisms (T,Q,ψ) and (T̂ ,Q, ψ̂), we say that (T̂ ,Q, ψ̂)
improves upon (T,Q,ψ) if q(x)ψ̂(x) − t̂(x) ≥ q(x)ψ(x) − t(x) for all x ∈ [0,1] and q(x)ψ̂(x) −
t̂(x) > q(x)ψ(x)− t(x) for some x ∈ [0,1]. The binary relation “improves upon” defined on the set

of truthfully implementable mechanisms defines a partial ordering. Because we are looking for

the optimal mechanism, we will focus on the maximal truthfully implementable mechanisms. In

particular, maximal truthfully implementable mechanisms have the property that ψ(x) is either

equal to x+ eL or x+ eH . The following two lemmas show that there is no loss of generality when

we restrict our search for the optimal mechanism to the ones where ψ(x) is either equal to x+ eL or

x+ eH .

Lemma 3. Suppose that (T,Q,ψ) is a truthfully implementable mechanism and ψ(x′) < x′ + eL

for some x′. Define ψ̂ by ψ̂(x) = ψ(x) for x 6= x′ and ψ̂(x′) = x′ + eL. Then (T,Q, ψ̂) is truthfully

implementable.

9A step in that direction is Ding, Fan, and Wolfstetter (2010) who analyze takeover bidding in cash and equity

(share) auctions, assuming bidders interact in a downstream oligopoly market, and bids signal firms’ unknown synergy

parameters.
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Proof. We only need to check (IC).

Û(x′,x′) = t(x′)−q(x′)cL = U(x′,x′) ≥ U(x′,x) = t(x)−q(x)γ(x′,x) = Û(x′,x),

Û(x,x) = t(x)−q(x)γ(x,x) = U(x,x) ≥ U(x,x′) = t(x′)−q(x′)γ(x,x′) ≥ Û(x,x′)

The last inequality holds because γ̂(x,x′) ≥ γ(x,x′).

Lemma 4. Suppose that (T,Q,ψ) is a truthfully implementable mechanism and x′ + eL < ψ(x′) <
x′ + eH for some x′. Define ψ̂ by ψ̂(x) = ψ(x) for x 6= x′ and ψ̂(x′) = x′ + eH . Then (T,Q, ψ̂) is

truthfully implementable.

The proof is the same as that of the previous lemma. Hence we will focus on truthfully imple-

mentable mechanisms where ψ(x) is either equal to x + eL or x + eH . Define XH := {x | ψ(x) =
x+ eH} and XL := {x | ψ(x) = x+ eL}.

Lemma 5. A maximal truthfully implementable mechanism (T,Q,ψ) satisfies ψ(x) = x+ eH for

all x ∈ (1−∆e,1].

Proof. Suppose to the contrary that ψ(x′) = x′ + eL for some x′ ∈ (1−∆e,1]. Define ψ̂ by ψ̂(x) =
ψ(x) for x 6= x′ and ψ̂(x′) = x′ + eH and T̂ by T̂i(xi,x−i) = Ti(xi,x−i) for xi 6= x′ and T̂i(x

′,x−i) =
Ti(x

′,x−i) + q(x′)∆c. Then t̂(x′) = t(x′) + q(x′)∆c and (T̂ ,Q, ψ̂) is truthfully implementable as

shown below. This contradicts the fact that (T,Q,ψ) is a maximal truthfully implementable

mechanism, because

q(x)ψ̂(x)− t̂(x) = q(x)(ψ(x)+∆e)− (t(x)+q(x)∆c) > q(x)ψ(x)− t(x).

We now show that (T̂ ,Q, ψ̂) is truthfully implementable. It is obvious that (IR) holds for (T̂ ,Q, ψ̂).
In checking the condition (IC), it is sufficient to check the condition for the types above x′, because

the types below x′ cannot fulfill the output requirement.

Û(x,x′) = t(x′)+q(x′)∆c−q(x′)cH = t(x′)−q(x′)cL = U(x,x′) ≤ U(x,x) = Û(x,x).

Lemma 6. A mechanism (T,Q,ψ) satisfies (IC) if and only if the following conditions hold:

i) U(x,x) is non-decreasing in x

ii) x ∈ XH and x′ ≥ x+∆e ⇒ U(x′,x′) ≥ U(x,x)+q(x)∆c

iii) x′ ∈ XL and x′ ∈ (x,x+∆e] ⇒ U(x′,x′) ≤ U(x,x)+q(x′)∆c.

Proof. (1) Necessity: i) Due to the transitivity of the inequality, it is sufficient to show U(x′,x′) ≥
U(x,x) for x,x′ with x′ ∈ (x,x+∆e]. If x ∈ XH , then U(x′,x′) ≥ U(x′,x) = t(x)−q(x)cH = U(x,x).
If x ∈ XL, then U(x′,x′) ≥ U(x′,x) = t(x)−q(x)cL = U(x,x).

ii) Suppose x ∈ XH and x′ ≥ x+∆e. Then (IC) implies

U(x′,x′) ≥ U(x′,x) = t(x)−q(x)cL = U(x,x)+q(x)∆c.

iii) Suppose x′ ∈ XL and x′ ∈ (x,x+∆e). Then (IC) implies

U(x,x) ≥ U(x,x′) = t(x′)−q(x′)cH = U(x′,x′)−q(x′)∆c.
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(2) Sufficiency: If z ∈ XH and z ≤ x−∆e, then

U(x,z) = t(z)−q(z)cL = U(z,z)+q(z)∆c ≤ U(x,x) by ii).

If z ∈ XH and z ∈ (x−∆e,x), then

U(x,z) = t(z)−q(z)cH = U(z,z) ≤ U(x,x) by i).

If z ∈ XL and z < x, then

U(x,z) = t(z)−q(z)cL = U(z,z) ≤ U(x,x) by i).

If z ∈ XL and z ∈ (x,x+∆e], then

U(x,z) = t(z)−q(z)cH = U(z,z)−q(z)∆c ≤ U(x,x) by iii).

If either z ∈ XL and z > x+∆e or z ∈ XH and z > x, then U(x,z) = −∞ < U(x,x).

As long as the principal can extract the entire surplus, he prefers to assign high output, x + eH ,

because eH − cH ≥ eL − cL. Lemma 5 shows that (1−∆e,1] ⊂ XH . The following lemma shows

that the principal can fully extract the surplus when XH = (1−∆e,1].

Lemma 7. The principal can extract the entire surplus if ψ(x) = x + eH for x ∈ (1 − ∆e,1] and

ψ(x) = x+ eL for x ∈ [0,1−∆e].

Proof. Consider the following mechanism:

ψ(x) =

{

x+ cL if x ≤ 1−∆e

x+ cH otherwise,

Qi(xi,x−i) =

{

1 if xi > max{x−i}

0 if xi < max{x−i},

Ti(xi,x−i) =

{

Qi(xi,x−i)cL if x ≤ 1−∆e

Qi(xi,x−i)cH otherwise.

Under this mechanism, q(x) = G(x) := F(x)n−1 and t(x) = q(x)γ(x,x). Hence U(x,x) = t(x)−
q(x)γ(x,x) = 0 for all x, and thus (IR) is satisfied. Furthermore, (IC) is satisfied by Lemma 6. Since

it always selects the highest type, it maximizes the revenue among all truthful mechanisms with

XH = (1−∆e,1].

Note that the principal can extract the entire surplus with XH = [0,1] if ∆e > 1. Given XH =
(1−∆e,1], the optimal selection rule is Q, because the output ψ(x) is increasing in winner’s type x,

whereas the payment is already determined when agents report their types.

For an arbitrary XH define x̂ := inf{x | x ∈ XH}. Define a function u : [0,1] → R as follows: 10

u(x) =

{

0 if x < x̂+∆e

sup{u(y)+q(y)∆c1XH
| y ≤ x−∆e, y ∈ XH} otherwise.

10The value of u for larger x is defined by that for smaller x.
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Figure 2: Increase in payment due to increase in XH

Also define t(x) = u(x)+ G(x)γ(x,x). Then, U(x,x) = u(x) and the conditions in Lemma 6 are

satisfied. Furthermore, the payment is minimized for the given XH .

Suppose XH = (x0,1] and consider increasing the size of the high effort region XH by a small

interval so that the probability of high effort is increased by ε > 0. In other words consider choosing

x′ and δ (x′) so that n
∫ x′+δ (x′)

x′ G(t) f (t)dt = F(x′ +δ (x′))n −F(x′)n = ε and that the new high effort

region becomes X ′
H = [x′,x′ +δ (x′)]

⋃

XH . We now show that it is most profitable to increase XH

from the top so that X ′
H = [x′,1].

Since the principal’s expected revenue is Π = n
∫ 1

0

(

G(x)ψ(x)− t(x)
)

f (x)dx, the change in the

principal’s expected revenue due to change in XH is:

∆Π = n

∫ x′+δ (x′)

x′
G(x)(∆e−∆c) f (x)dx−n

∫ 1

0
∆u(x) f (x)dx

= ε(∆e−∆c)−n

∫ 1

0
∆u(x) f (x)dx.

Hence, x′ and δ (x′) should be chosen to minimize
∫ 1

0 ∆u(x) f (x)dx. A particular choice of x′

(and δ (x′)) is drawn in Figure 2. In this graph x′ is chosen slightly away from the top. Since

(x′ + δ (x′),x0] ⊂ XL, the graph of u(x) on the interval (x′ + δ (x′)+ ∆e,x0 + ∆e] is flat. On this

interval, ∆u(x) is smaller compared to the case where x′ is chosen at the top. On the other hand,

∆u(x) is larger on the interval starting from x′ compared to the case where x′ is chosen at the

top. In fact, ∆u(x) = G(x) on this interval, and the interval on which the difference between the

two ∆u(x)’s is G(x) is larger when x′ + δ (x′) is farther away from x0. Hence,
∫ 1

0 ∆u(x) f (x)dx is

minimized when x′ is chosen at the top.11

Therefore, the optimal mechanism is characterized by Proposition 5.
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