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Abstract
The relation between symbolic and signal features of prosodic
boundaries is experimentally studied using prediction methods.
Text-based break index prediction turns out to be fairly good,
but signal-based prediction and pause duration prediction per-
form worse. A possible reason is that random signal feature
variations, as usually produced by humans, are hard to predict.

1. Introduction
Speakers divide their utterances into prosodic phrases separated
by weak or strong prosodic boundaries. These boundaries can
be perceptually classified according to the ToBI break indices,
or they can be described by measurements of prosodic features
of the speech signal, i.e. the pause duration and the local con-
tours of F0, speech rate, amplitude, and voice quality in the
vicinity of the prosodic boundary. The goal of the present study
is to investigate the relationship between symbolic and signal
representations of prosodic boundaries by means of three pre-
diction methods (see Fig. 1).

Prosodic phrase break prediction can be decomposed into
two tasks: break localization and prediction of its phonetic real-
ization. For the latter this study concentrates on pause duration.

Rule-based or statistical approaches tackle both tasks by ex-
ploiting part of speech (POS), syntactical, and rhythmical infor-
mation. For rule-based break localization Liberman & Church
[9] use the fact, that certain POS classes occur preferably phrase
initially (chinks) while others do not (chunks). Gee & Grosjean
[7] and Bachenko & Fitzpatrick [2] impose syntactically moti-
vated performance structures on an utterance. The distance of
two adjacent words in these structures given in the level of their
common node determines the break strength and thus the pause
duration between these words. The rule-based Keller-Zellner
algorithm [19] also incorporates rhythmical constraints.

In some statistical approaches phrase breaks are predicted
from a given part of speech sequence by a modified Markov
Tagger. For example, Black & Taylor’s tagger [3] is based
on conditional emission probabilities for POS sequences co-
occurring with the break type given at the corresponding state
and conditional transition probabilities of this break type for a
given break type history. Others (e.g. [1]) use classificators as
CART [4] in order to predict phrase breaks and pause lengths
from a set of linguistic features as part of speech and word and
syllable distances. CARTs are well suited for this task due to
their ability to cope with categorical and continuous types of
dependent and independent variables.

In 2002, Mixdorff [11] investigated, among other prosodic
properties, pause durations in the IMS Radio News Corpus
[15]. Mean values and standard deviations of pauses at sen-
tence boundaries were 716 ms and 336 ms, respectively, and of
pauses within sentences were 327 ms and 132 ms, respectively.

2. Method
We investigated the predictability of break indices and pause du-
rations by text-based and by signal-based features (see Fig. 1).
In order to account for human duration perception, pause du-
rations were represented on a logarithmic scale. For break
index prediction we used C4.5 decision trees [14], for pause
durations CARTs (classification and regression trees [4]) pro-
vided by R. Additionally, we analysed the correlation between
prosodic measures and pause duration.

2.1. Data
The present study is based on the IMS Radio News Corpus
[15] which consists of German news texts read by professional
speakers. Originally, the data is automatically segmented into
phonemes according to the German SAM-PA inventory fol-
lowed by some manual refinements. Prosody of the data was
manually labelled following the GToBI conventions [10].

Prior to analysis of the data a substantial correction was
necessary. We omitted news repetitions and manually corrected
the phone boundaries in order to achieve reliable pause dura-
tion and PLSR measures (perceptual local speech rate [12, 13]).
Particularly, we replaced canonical transcriptions by their actual
phonetic realizations, inserted glottal stops, which have unfortu-
nately been absent, and replaced /Vowel/-/R/-pairs by their cor-
responding /Vowel/-/6/-diphthongs, especially /@/-/R/ by /6/.

Finally, our data comprises 28 news articles read by one
male speaker. It consists of 16285 phones, 2384 word tokens,
and 970 word types, which is approximately half of the origi-
nal data. For text-based prediction all final words of each sig-
nal were excluded, because subsequent pause duration naturally
could not be measured. 80% of this data were used for training
and the remainder as test set. The data for n-gram and collo-
cation modeling comes from diverse written news corpora and
consists of 327821 word tokens and 42741 types.
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Figure 1: Text-based (top-down) and signal-based (bottom-up)
predictions of break indices and pause durations in this study.
Categorical data are predicted by C4.5 decision trees, and con-
tinuous data by CARTs or by linear regression.
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Figure 2: Speech signal with phone segmentation, word segmentation, break indices, and prosodic contours of F0, PLSR, and amplitude
of the utterance dlf951121.1200.n7.wav: “[. . .] vorgesehen. Zudem sollen Überstunden nur noch [. . .]” — English translation:
“[. . .] planned. Furthermore, overtime shall only [. . .]”. Notice the different prosodic behaviour in the vicinity of the two speech pauses.

2.2. Text-based Features

2.2.1. Part of speech

Due to a restricted number of factor levels in R’s ‘tree’-package
POS labels are clustered heuristically with respect to their syn-
tactic behaviour into 32 classes. Analogous to Liberman &
Church’s chinks and chunks [9] we additionally classified POS
tags with respect to their likelihood to occur in phrase final po-
sition into kinches and kunches.

2.2.2. Position

For each word we determined the syllable and word distances
to the next preceding and following punctuation marks as well
as the relative position between these markers and within the
sentence. We also noted the kind of punctuation following the
word in question (including no punctuation).

2.2.3. Cohesion

Opposed to the approaches of e.g. Gee & Grosjean [7] and due
to the ease of automatic treatment, our notion of cohesion is
statistical and not syntactical. We use linearly interpolated n-
gram probabilities as well as likelihood ratios for stems of ad-
jacent words (see [16] for the morphologic method). Likeli-
hood ratios compare the goodnesses of fit of two models to
the occurrence probabilities observed in the training data. The
numerator-model assumes dependence, the denominator model
independence of the words in question. Thus, we hypothesize
that the higher the n-gram probability and the likelihood ratio
for adjacent words are, the stronger these words are connected,
and the less probable is a prosodic break separating these words.

2.3. Signal-based Features

F0 and pitch reset are important features for prosodic bound-
aries [6]. But speech rate [8] seems to be comparably important,
particularly when revealing pre-boundary lengthening [18].

The IMS Radio News Corpus provides raw fundamental
frequency contours which have been extracted with the “Entrop-
ics ESPS/waves get f0” [17]. We smoothed this data by means
of Median and Hanning filtering to reduce detection errors and
micro-prosodic effects (Fig. 2 shows the raw F0 data).

Next, we estimated perceptual local speech rate (PLSR)
contours from manual phone and syllable segmentations using
a prediction model based on perception tests and linear regres-
sion [12, 13]. Generally, it is able to predict perception results
of local speech rate with a mean deviation of 10%, where 100%
represent a typical average speech rate.

Finally, we extracted amplitude contours using a moving
30-ms-Kaiser window with approx. 50 dB sidelobe suppression.
Because the underlying speech corpus is recorded after radio
broadcasting [15, p. 102], the speech signal is likely to be dy-
namically processed which considerably reduces prosodic am-
plitude variations and might deteriorate prediction performance.

Even though prosodic voice quality features are supposed
to play a significant role in prosodic boundary detection, we
excluded them from the present study because of the still incon-
sistent and unreliable automatic extraction methods.

Fig. 2 displays all extracted prosodic contours of a short
stretch of speech containing a strong and a weak prosodic
boundary. Obviously, the strong boundary is accompanied by
a pitch reset while the weak boundary is not. However, both
boundaries show a PLSR reset. The amplitude is nonuniform.



3. Results
3.1. Text- and Signal-based Prediction of Break Indices
The signal-based approach has to discriminate four break lev-
els: 1 for default word boundary, 2 for irregular boundaries, 3
for weak prosodic boundaries and 4 for strong prosodic bound-
aries. However, in the text-based prediction task the number of
categories was reduced to three, because irregular boundaries
are generally not motivated by the contents of the underlying
text. Therefore, in the text-based task irregular boundaries were
set to break level 1.

Evaluation results in Table 1 show that text-based predic-
tion of break indices using C4.5 decision trees achieved an ac-
curacy of 87.72%. Both precision (the number of correct iden-
tifications of a class divided by the total number of predictions
of this class) and recall (the number of found class instances
divided by the number of all instances of this class) turned out
to be clearly lowest for the break level 3 (the weak boundary or
intermediate level).

Signal-based prediction yields a lower accuracy than text-
based prediction (compare Table 2 with 1). Its prediction bias
towards the ‘no prosodic boundary’ category is reflected in the
low recall values for any other break level than 1. Considering
break level 2, the weak performance can obviously be attributed
to its rare occurrence in training (29) and test data (13). Besides,
again prediction results for break level 3 were poorest.

The confusion matrix in Table 4 shows that almost half
of the strong prosodic boundaries are miss-classified as default
word boundaries. Finally, it is remarkable that both confusion
matrices in Tables 3 and 4 reveal a tendency to treat break level
3 rather as no prosodic boundary than a strong one.

break index accuracy [%] recall [%] precision [%]
all 87.72
1 94.03 92.98
3 47.06 57.14
4 84.44 76.00

Table 1: Evaluation results of text-based break index prediction.

break index accuracy [%] recall [%] precision [%]
all 83.22
1 96.86 85.88
2 0.0 0.0
3 43.10 54.35
4 46.58 85.00

Table 2: Evaluation results of signal-based break index prediction.

classified as
break index 1 3 4

1 331 16 5
3 20 24 7
4 5 2 38

Table 3: Confusion matrix of text-based break index prediction.

classified as
break index 1 2 3 4

1 432 1 9 4
2 11 0 2 0
3 31 0 25 2
4 29 0 10 34

Table 4: Confusion matrix of signal-based break index prediction.

3.2. Prediction of Pause Durations using CARTs
Correlations for both text- and signal-based predictions of pause
durations are rather low as can be seen in Table 5, which might
be explained by the fact that CARTs need a much bigger corpus
than chosen for the present study to perform well.

Considering correlation (due to the lack of normal distri-
butions Spearman’s correlation coefficient was used) and mean
deviation factor, text-based prediction led to better results than
signal-based prediction. The performance was further improved
by adding the break index values, which were predicted by C4.5
decision trees in the previous section, to the feature pool:

Spearman mean deviation factor
text-based, without BI .591 1.72
text-based, with BI .668 1.63
signal-based .510 2.36

Table 5: Results of the text- and signal-based predictions of
pause durations. Conditions: ‘with BI’: predicted break indices
incorporated into the feature pool, ‘without BI’: not added.

3.3. Prediction of Pause Durations using Linear Regression
Prosodic features are measured in the centers of preceeding and
succeeding syllables of a pause. As shown in Fig. 2 prosodic
contours in the vicinity of weak versus strong boundaries differs
considerably. Thus, a single linear combination of prosodic fea-
tures cannot be expected to sufficiently predict pause durations
of both weak and strong boundaries. Instead, we use two dif-
ferent linear models for break level 3 and 4, respectively. When
excluding prosodic boundaries with no speech pause, the re-
maining pause durations are normally distributed on a logarith-
mic scale, and the Pearson correlation coefficient is appropriate.

Table 6 shows that while break level 3 prediction is best
when including all features, F0-features dominate break level 4
prediction. Fig. 3 shows prediction details and reveals outliers.

break level 3 break level 4
c1F0 + c2log. F0 reset .207 1.71 .505 1.40
c1PLSR + c2PLSR reset .260 1.70 .132 1.51
c1Ampl. + c2Ampl. reset .280 1.69 .440 1.40
all signal features .481 1.57 .535 1.38

Table 6: Pearson r and mean deviation factor between mea-
sured and predicted pause durations using linear regression.
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Figure 3: Scatter plot of predicted and measured pause dura-
tions of break index 4. Predictions are performed by linear re-
gression based on Amplitude, F0, and logarithmic F0 reset.



4. Discussion
In this paper we examined the relationship between the sym-
bolic layer and the signal layer of speech with regard to prosodic
boundaries. The question where the prosodic boundaries are,
is answered with break indices which represent the perceptual
equivalent. On the symbolic layer prosodic boundaries are re-
flected by punctuation and the syntactic as well as the semantic
structure. On the signal layer, the known acoustic manifesta-
tions of prosodic boundaries are pause durations as well as con-
tours of F0, speech rate, amplitude, and voice quality.

The results showed poor performances of predicting inter-
mediate break levels. This suggest that either the size of training
data or the features used in our study are not sufficient to achieve
the classification quality of human transcribers. But generally,
the prediction accuracy of perceptual break indices purely by
means of text-based features is fairly good (87.72%).

On the contrary, any signal-based prediction or predic-
tion of actual pause durations performs worse. The reason is
twofold: On the one hand outlier durations (e.g. caused by ad-
ditional mute phases triggered by the speaker to hide clearing
his throat) as well as random pause duration variations, which
are typically produced by humans, are not predictable, on the
other hand signal properties of prosodic boundaries are to a sig-
nificant extent speaker-specific.

The weak correlation between signal-based prediction and
measures of pause duration clearly indicates that pause duration
is not just a redundant parameter reflected by the other bound-
ary signals. Instead, to some extent it carries non-redundant
information, and it is controlled independently by the speaker.

The IMS Radio News Corpus provides some word-for-
word repetitions of news which enable the quantitative analy-
sis of random pause duration variation. Unfortunately, only 40
pauses are repeated two to five times in identical sentence con-
text. This allows for only informal conclusions:

Short pauses with about 200 ms duration show standard de-
viations between 40 and 180 ms, long pauses with durations
of approx. 800 ms have standard deviations between 300 and
550 ms. This indicates a tendency but no clear evidence of a
linear relation between mean pause durations and standard devi-
ations. Obviously, further investigations regarding sources and
limits of speech pause duration variation are necessary.
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