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Abstract. In this paper classifiers for text-based prediction of intona-
tion contour classes are compared. The contour classes were derived au-
tomatically by a method presented in Reichel (2006), and the follow-
ing classifiers were utilised for prediction: Bayes classifier, C4.5 decision
trees, perceptrons, and linear feedforward networks. Prediction accura-
cies amounted from 38.0% (Perceptron) to 66.6% (Linear Network).

1 Introduction

Given approaches of description of intonation can roughly be divided into sym-
bolic, parametric and perception-based methods. They all have certain short-
comings: symbolic approaches like the tone sequence approach (Pierrehumbert,
1980) or the Kiel intonation model (Kohler, 1991) as well as parametric ap-
proaches like the Fujisaki model (Fujisaki, 1987) and PaintE (Moehler et al.,
1998) generally require time consuming prosodic labelling and run the risk of
low inter-labeller agreement and intra-labeller consistency, which reduces the
amount of reliably annotated data (Grice et al., 1996). Furthermore, being ap-
plied to new languages the label inventory often needs adjustments (Reyelt et al.,
1996). Also perception-based models like IPO (t’Hart et al., 1990) require per-
ceptual readjustment for each new language (Adriaens, 1991). In Reichel (2006)
we presented an alternative purely data-driven approach to extract intonation
contour classes. We distinguished local classes spanning over a short syllable
window and global classes intended to correspond to intonation phrases. Global
and local contour classes are superposed like in Fujisaki (1987) to form the final
f0 contour. In perception tests carried out in the same study comparing stim-
uli with original and resynthesised f0 contours, the resynthesised contours were
judged as less natural but functionally equivalent to the original contours.

In this paper we address the question whether the classes could be utilised
in text-to-speech synthesis (TTS). Since TTS generally requires text-based pre-
dictability of the f0 contour, here we describe first attempts to predict the contour
classes from text, concentrating on global classes. For this purpose we utilised
some standard classifiers as decision trees and neural networks and compared
their performances.
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2 Data

For contour class extraction and text-based prediction we used parts of the IMS
radio news corpus (Rapp, 1998) containing news text read by a professional
male speaker. The data we used comprises 3985 syllables (about 14 minutes)
and is amongst others segmented on the phone and syllable level. F0 values were
extracted with a sample frequency of 100 Hz using autocorrelation implemented
in Praat and transformed to semitones. Voiceless segments were bridged by cubic
spline interpolation and the contours were smoothed using the Savitzky-Golay
filter (order 3, window length 5). Data size is given in table 1.

Table 1. Data size.

Tokens Types

global contour segments 708 6

POS labels 1869 37

3 Extraction of intonation contour classes

In the next paragraphs the method for contour class extraction is introduced in
short. A more detailed description can be found in Reichel (2006).

3.1 Local contour classes

Local classes are derived in an iterative manner starting at the syllable level.
The smoothed and time normalised f0 contours are stylised by polynomes, and
classes are derived by Kmeans clustering of the polynomial shape coefficients
(ignoring the vertical offset). Neighbouring contour segments are merged if the
associated classes are interdependent, and the stylisation and clustering process
restarts with the new found larger segments. The process terminates if no further
segment merging is required by any systematic class co-occurrence. Local contour
classes derived by this method are presented in Figure 1.

3.2 Global contour classes

To extract global contour classes the utterances are split up into segments very
roughly corresponding to intonation phrases (IP). The segmentation is guided by
speech pauses and pitch discontinuities. Global contour classes are then derived
by linear stylisation of the f0 baselines given in the segments and clustering of
the resulting shape coefficients (again ignoring the vertical offset). The derived
global classes are shown in Figure 2.



l1 (n=114) l2 (n=178) l3 (n=60)

l4 (n=103) l5 (n=538) l6 (n=557)

75

80

85

l7 (n=201)

syllablesfr
eq

ue
nc

y 
(S

T
) l8 (n=266) l9 (n=89)

Fig. 1. Local contour classes. All contours are shifted to the mean of 80 ST. Time is
normalised. Syllable boundaries are marked by vertical dashed lines, nucleus centres by
crosses.
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Fig. 2. Global contour classes (declination baselines). Time is normalised to the interval
[0 1].

3.3 Resynthesis

The final f0 contour is calculated by superposition of global and local contours
(see Figure 3). For each syllable an f0 register is derived from the global contour
class, the f0 starting point within the IP and the syllable position within the
IP. The local contour classes are adjusted to the durations and the constituent
structures of the concerned syllables and added on the registers.

The f0 starting points for the IPs are derived from predicted pitch resets. For
pitch reset prediction the following multiple linear regression model is utilised:

r = −5.08 · s1 − 5.17 · s2 + 5.14 · d − 5.61 · b,

where s1 and s2 are the slope coefficients of the preceding and the following
global contour, d is the pause duration between the IPs, and b is the register of



the boundary preceding syllable. The root mean squared error between original
and predicted resets amounts 2.55 semitones and Pearson’s r is 0.68.
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Fig. 3. Combination of global and local contour. Left: The segment’s register baseline
is predicted by original frequency offset (here: 80 ST), global contour associated to
corresponding global contour class (here: class g3), and relative position of the segment
within the intonational phrase (here: 0.8). Middle: The baseline value of the local
contour given here by local contour class l3 is shifted to this value. Right: The contour
is aligned to the original time ranges of syllable onset (0s–0.05s), nucleus (0.05s–0.15s)
and coda (0.15s–0.22s).

4 Text-based prediction of global contour classes

In this study the prediction is restricted to global contour classes, and the seg-
mentation is assumed to be given. The prediction of the segment boundaries
needed for TTS applications could be carried out by relating them to part of
speech (POS) sequences (e.g. Black et al., 1997).

4.1 Features

Prediction is based on the following feature pool:

– intonation class dependent probabilities of POS sequences
– phrase lengths in syllables and words

POS probabilities For each contour class C probabilities for part of speech
sequences S are estimated by linear interpolated uni-, bi-, and trigram language



models using Good-Turing smoothing. The high relative entropy values between
the resulting class dependent probability distributions could indicate good pair-
wise separability but also data sparseness. They are shown in table 2.

Table 2. Relative Entropies of probability distributions Px and Py , x and y repre-
senting intonation classes. Each cell shows the mean extra number of bits needed to
encode the POS sequence Sx following the distribution Px (rows) with the distribution
Py (columns).

Pg1 Pg2 Pg3 Pg4 Pg5 Pg6

Pg1(S1) 0 548.87 663.16 475.94 599.10 472.32

Pg2(S2) 1248.35 0 1371.20 940.51 1189.46 919.92

Pg3(S3) 580.07 514.30 0 386.28 425.29 387.44

Pg4(S4) 2488.15 1840.35 2685.81 0 2253.32 1705.90

Pg5(S5) 1054.47 850.03 914.49 661.48 0 789.10

Pg6(S6) 1613.31 1299.49 1788.61 1128.50 1681.52 0

Other features Table 3 shows the mean phrase lengths in syllables and tokens
for each of the intonation classes.

Table 3. Mean phrase lengths for each intonation class c.

Contour class n(syllables) n(POS tokens)

c1 7.71 5.14
c2 7.64 4.88
c3 4.45 3.45
c4 3.54 3.41
c5 4.38 3.55
c6 6.45 4.81

4.2 Classifiers

We tested the following classifiers for the prediction task:

– Bayes

– C4.5 decision trees

– Perceptrons

– Linear feedforward networks



Bayes Within the framework of Bayes classification the predicted contour class
Ĉ is the class which maximises the following expression:

Ĉ = argmax
C

[

P (C|S)
]

Ĉ = argmax
C

[

P (S|C) · P (C)
]

,

where S is the POS sequence given in the examined segment, and P (S|C) is
estimated as described in section 4.1 by linear interpolated n-gram models.

Extensions In equivalence to approaches like in Timoshenko et al. (2006) the
maximum probability decision of Bayes can be replaced by a decision of another
classifier fed by conditional probabilities P (C|S) for all classes C given a POS
sequence S. This classifier can further be provided with additional knowledge.

Other classifiers The other classifiers tested in this study are C4.5 decision
trees, perceptrons and feedforward networks. Two feature pools were used, one
containing the P (C|S) for all six contour classes C, the other additionally con-
taining phrase length given by the number of words.

For the one-layer perceptron the hard limit transfer function and the percep-
tron weight/bias learning rule were chosen

Two classes of feedforward networks were trained, one with and the other
without a hidden layer. The input layer contained one unit for each feature,
the output layer one unit for each class. The hidden layer comprised the same
number of units as the input layer. Saturating linear transfer functions were
uniformly used. The gradient descent weight/bias learning function was chosen
in Levenberg-Marquardt backpropagation training. The networks output was
binarised by setting the highest activity to one and the others to zero.

Baseline model All trained models were tested against each other and against
a baseline model consisting of chance guesses guided by class occurrence proba-
bilities.

Procedure To evaluate each classifier we applied 30-fold cross-validation each
time using 80% of the data for training and 20% for testing. The subsequent
tables refer to the derived mean performances.

4.3 Results

As can be seen in table 4 the feedforward networks yielded the best results. The
winner was the feedforward network without hidden layers using all P (C|S)s
and phrase length as features. The perceptron yielded the worst performances.
All classifiers outperformed the baseline model.

Table 5 shows which performance differences are significant. Feedforward nets
without hidden layers significantly outperform all other classifiers.



Table 4. Performances (in %) in dependence of classifier and feature pool

PC +n(tokens)

Bayes 56.57 –

Perceptron 38.02 37.53

Feedforward, 2 layers 64.71 66.60

Feedforward, 3 layers 58.97 63.26

C4.5 58.77 58.68

BL 22.89

Table 5. Significance of performance differences. ∗(∗): row classifier performs (highly)
significantly better than column classifier (one-tailed t-test for matched samples). ’FF’:
feedforward, H: hidden layer, ’l’: using phrase length feature, DT: decision tree, B:
Bayes, P: perceptron, BL: baseline

performs better than:
FFl FF FFHl FFH DT DTl B P Pl BL

FFl ** ** ** ** ** ** ** **

FF * ** ** ** ** ** **

FFHl ** ** ** ** ** **

FFH * ** ** **

DT * ** ** **

DTl * ** ** **

B ** ** **

P **

Pl **

BL

5 Discussion

5.1 Interpretation of poor performances

Generally, the accuracies yielded in this study, the highest still below 70% are
rather low. Possible reasons for this finding are:

– The data-driven derived contour classes could not be interpreted linguisti-
cally.

– The choice of features to predict the classes may be inadequate to some
extent.

– The data may be too sparse for successful signal-based intonation class ex-
traction and/or text-based class prediction.

At present the first hypothesis cannot be verified, since the other two expla-
nations may also hold.



In this study very low-level features as POS labels and phrase lengths were
used. Since intonation is affected by higher linguistic levels as syntax (e.g. Ab-
ney, 1991) and semantics (e.g. Mayer, 1997), the predictions may be based on
insufficient linguistic analysis.

The data sparseness hypothesis is supported by the findings that feedforward
networks with a hidden layer perform highly significantly worse than more simple
feedforward networks, which indicates the tendency of overadaption appearing
when the model size gets to large compared to the amount of training data.
Also the high relative entropies between the class dependent POS probability
distributions (see table 2) could indicate too small sample sizes.

Therefore it cannot be decided at the present state whether the contour
classes are sufficiently related to linguistic concepts or not.

5.2 Extending Bayes Classification

Except for the perceptrons all other classifiers outperform Bayesian classifica-
tion. This finding supports the approach not just to decide for the highest class
probability but to leave the class decision to a classifier which has the knowledge
about all class probabilities.

6 Conclusion and future directions

In this study a first attempt was made to predict automatically derived global
intonation contour classes from text. More training data and a more elaborated
linguistic analysis would probably further increase prediction performance. The
next step will be to extend text based prediction for local contour classes.
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