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REGULARIZATION AND MODEL SELECTION WITH
CATEGORICAL PREDICTORS AND EFFECT MODIFIERS

IN GENERALIZED LINEAR MODELS

By Margret-Ruth Oelker∗,†, Jan Gertheiss† and Gerhard Tutz†

Ludwig-Maximilians-Universität Munich†

Varying-coefficient models with categorical effect modifiers are
considered within the framework of generalized linear models. We
distinguish between nominal and ordinal effect modifiers, and pro-
pose adequate Lasso-type regularization techniques that allow for
(1) selection of relevant covariates, and (2) identification of coeffi-
cient functions that are actually varying with the level of a poten-
tially effect modifying factor. We investigate large sample properties,
and show in simulation studies that the proposed approaches perform
very well for finite samples, too. In addition, the presented methods
are compared with alternative procedures, and applied to real-world
medical data.

1. Introduction. In regression modeling, categorical predictors, also
called factors, are a standard case. Nevertheless, variable selection for dis-
crete covariates and the connected problem which categories within one
factor are to be distinguished has been somewhat neglected. More concrete,
in our application, we model the effects of pregnancy related covariates on
the type of delivery, that is, if birth was given vaginally or by means of a
Cesarean. Cases were observed over a period of several years. As medical
standards typically change over time, modeling the type of delivery requires
to consider discrete time-effects, and more importantly, to consider how ef-
fects change over years. In general, we are going to address model selection
with discrete covariates in a slightly extended version of generalized linear
models (GLMs), namely GLMs with varying coefficients.

Varying-coefficient models (Hastie and Tibshirani, 1993) are a quite flexi-
ble tool to capture complex model structures and interactions. In the setting
of GLMs, regression coefficients βj are allowed to vary with the value of other
variables uj . Hence the linear predictor has the form

(1.1) η = β0(u0) + x1β1(u1) + . . .+ xpβp(up),
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where x1, x2, . . . , xp are continuous covariates, and u1, . . . , up are the so
called effect modifiers, which modify the effects of the covariates in an un-
specified, typically smooth form βj(·). Thus, the predictor is still linear in
the regressors x1, . . . , xp, but scalar coefficients βj turn into functions de-
pending on the effect modifiers uj , j = 0, . . . , p. As common in GLMs, it is
assumed that the predictor η is linked to the conditional mean of response y
by a known response function h, that is,µ = E(y|x1, . . . , xp) = h(η), and y
follows a simple exponential family. Throughout the paper we assume that
covariates x1, . . . , xp are measured on comparable scales or have been scaled.
For continuous effect modifiers, unknown functions βj(·) are typically smooth
and have been modeled by splines (Hastie and Tibshirani, 1993; Hoover
et al., 1998;Lu, Zhang and Zhu, 2008), using localizing techniques (Wu, Chi-
ang and Hoover, 1998; Fan and Zhang, 1999; Kauermann and Tutz, 2000)
or boosting (Hofner, Hothorn and Kneib, 2008). Inference requires to dis-
tinguish between varying and non-varying coefficients and between relevant
and non-relevant terms. Hastie and Tibshirani (1993) proposed to adopt
techniques for additive models. Leng (2009) distinguishes between varying
and non-varying coefficients by applying the Cosso (Lin and Zhang, 2006)
penalty, while Wang, Li and Huang (2008) obtain selection of spline coeffi-
cients by groupwise SCAD-penalization. Wang and Xia (2009) select covari-
ates by local polynomial regression with the grouped Lasso (Yuan and Lin,
2006). However, apart from Hofner, Hothorn and Kneib (2008), selection
of predictors and identification of smooth/constant functions is not reached
simultaneously.
In contrast to most existing approaches, we consider categorical effect mod-
ifiers uj ∈ {1, . . . , kj}. In the pregnancy example, for instance, the ef-
fect modifier indicates the year considered. Then functions βj(uj) have the

form
∑kj

r=1 βjrI(uj = r), where I(·) denotes the indicator function and
βj1, . . . , βjkj represent regression parameters. Therefore the linear predic-
tor is given by

η =

k0∑

r=1

β0rI(u0 = r) +

p∑

j=1

xj

kj∑

r=1

βjrI(uj = r).

The total coefficient vector is given by βT = (βT0 , . . . , β
T
p ), where sub-vector

βTj = (βj1, . . . , βjkj ) contains the parameters for the jth predictor. With
categorical effect modifiers, the number of parameters q =

∑p
j=0 kj can be-

come very large, even for a moderate number of predictors p. Consequently,
usual maximum likelihood (ML) estimates may not exist and alternative
tools such as regularization techniques are needed. And even if ML esti-



CATEGORICAL PREDICTORS & EFFECT MODIFIERS IN GLMS 3

mates exist, it is desirable to reduce the model to the relevant terms. That
means, one wants to determine which predictors are influential, and if so,
which categories have to be distinguished.
The methods proposed here extend the work of Gertheiss and Tutz (2012),
as the latter is restricted to the classical linear model and hence cannot be
used for analyzing non-normal response variables such as the Cesarean data
described above. Two approaches are presented that allow to model categor-
ical effect modifiers within the GLM framework. In Section 2 we propose a
penalized ML criterion. For computation, a penalized iteratively reweighted
least squares algorithm is employed. Moreover, large sample properties are
derived. As an alternative, a forward selection procedure using information
criteria is shortly sketched (Section 3). The proposed methods are shown to
be highly competitive in numerical experiments (Section 4). In Sections 5
and 6, the approaches are applied to the Caesarean data and to data on
the reduction of mortality after myocardial infarction; the special case of
categorical effects is discussed in Section 7.

2. Penalized Estimation. Our main tool for regularization and model
selection is the use of penalties. In GLMs, penalized estimation means to
minimize

(2.1) Mpen
n (β) = −ln(β) + Pλ(β) = −ln(β) + λ · Jn(β),

where ln(β) denotes the log-likelihood for sample size n, and Pλ(β) stands
for a general penalty depending on tuning parameter λ. The expression
λ ·Jn(β) breaks the penalty down to a product, underlining the dependency
on one scalar tuning parameter only. With λ = 0, ordinary ML-estimation
is obtained.
The main issue is to choose an adequate penalty Jn(β): The Ridge penalty
(Hoerl and Kennard, 1970), for instance, shrinks coefficients, while the Lasso
(Tibshirani, 1996) combines shrinkage and selection of coefficients, and the
fused Lasso (Tibshirani et al., 2005) applies the Lasso to differences of ad-
jacent parameters. Thus, parameters are shrunk towards each other and
potentially fused in order to gain a local consistent profile of ordered coef-
ficients. In contrast, the grouped Lasso (Yuan and Lin, 2006) selects whole
groups of coefficients simultaneously. Although variable selection is implied,
both the Lasso and its grouped version are off target since they do not
enforce βjr = βjs for some r 6= s. The pure fused Lasso indeed leads to
(piecewise) constant functions βj(uj) but disregards the selection of whole
predictors. A combination of both allows not only for shrinkage and selec-
tion but also for gradual fusion of related coefficients – such that effects of
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the grouped Lasso are embedded.
As nominal and ordinal effect modifiers in (1.1) contain different informa-
tion, they should be treated differently. Therefore, we consider the general
penalty

(2.2) Jn(β) =

p∑

j=0

Jj(βj),

where Jj(βj) = 0 if covariate j is not modified, Jj(βj) = Jnomj (βj) for nom-

inal effect modifiers and Jj(βj) = Jordj (βj) for ordinal effect modifiers.

For a nominal effect modifier uj we propose

(2.3) Jnomj (βj) =
∑

r>s

|βjr − βjs|+ bj

kj∑

r=1

|βjr|,

where bj is an indicator that (de-)activates the second sum if wanted. Penalty
(2.3) is equivalent to a fused Lasso penalty applied on all pairwise differences
of coefficients belonging to βj(uj). Thus, not only adjacent coefficients but
each subset of nominal categories can be collapsed. In the case of strong
penalization, effects βj1, . . . , βjkj of covariate j are reduced to one constant
coefficient and do not depend on the categories of uj anymore; one ob-

tains β̂j1 = . . . = β̂jkj = β̂j . The second sum in (2.3) conforms to a Lasso
penalty shrinking all coefficients belonging to βj(uj) individually toward
zero. The effect is selection and exclusion of covariates. For strong penaliza-
tion β̂j1 = . . . = β̂jkj = 0 is obtained, and covariate j is excluded. In most
cases, a constant intercept shall remain in the model; hence, we typically
have b0 = 0.

If uj is ordinal, this additional information should be used. Our proposal
is to allow for the fusion of adjacent categories βjr and βj,r−1. Hence, for
ordinal predictors we use

(2.4) Jordj (βj) =

kj∑

r=2

|βjr − βj,r−1|+ bj

kj∑

r=1

|βjr|,

where bj denotes the same indicator as above. Instead of all pairwise dif-
ferences now only differences of neighbored coefficients are penalized, which
corresponds exactly to a fused Lasso-type penalty (Tibshirani et al., 2005).
Again, with setting b0 = 0, the intercept can be treated separately.
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Apart from their different amount of information, Jnomj and Jordj work sim-
ilarly: one term leads to fusion within the predictor, while a Lasso-type
penalty selects coefficients. Thus, overall variable selection as well as dis-
tinction of varying and non-varying coefficients is obtained.
If, for example, emphasis should be put on the selection of covariates, it
may be advantageous to use weights for the two components of the penalty
(compare Tibshirani et al., 2005). With parameter ψ ∈ (0, 1), the weighted
penalty for nominal effect modifier j is

(2.5) Jnomj (β, ψ) = ψ
∑

r>s

|βjr − βjs|+ (1− ψ)bj

kj∑

r=1

|βjr|,

for ordinal effect modifiers, it is

(2.6) Jordj (β, ψ) = ψ

kj∑

r=2

|βjr − βj,r−1|+ (1− ψ)bj

kj∑

r=1

|βjr|.

Parameter ψ is restricted to (0, 1) in order to separate it strictly from tuning
parameter λ. It allows to place emphasis on the fusion or on the selection
part of the penalty, but even so, it is another tuning parameter that has to
be chosen.
If effect modifiers uj have different numbers of categories, additional weight-
ing of penalty terms analogously to Bondell and Reich (2009) could be used
to prevent eventual selection bias.

2.1. Computational Issues. Since penalty (2.2) contains absolute values,
a convex but not continuously differentiable optimization problem has to
be solved. However, non-differentiability can be evaded by approximating
the penalty at the critical points, i.e., in a neighborhood of |ξ|, ξ = 0. We
employ a slightly adjusted version of the algorithm proposed by Fan and
Li (2001) and described in detail by Ulbricht (2010). In general, we assume
a penalty that can be written as Pλ(β) =

∑L
l=1 pλ,l(|aTl β|), where al are

known constants. Penalty terms pλ,l(|aTl β|) are supposed to map |aTl β| onto
the positive real numbers, to be continuous and monotone in |aTl β|. In addi-
tion, penalty terms pλ,l(|aTl β|) are assumed to be continuously differentiable
∀ aTl β 6= 0 such that dpλ,l(|aTl β|)/d|aTl β| ≥ 0 ∀ aTl β > 0 holds. Approx-

imating the absolute values by |ξ| ≈
√
ξ2 + c, where c is a small positive

constant, allows for derivatives of the objective function. Thus, the Fisher
scoring algorithm, which is typically used for ordinary GLMs, can be modi-
fied to a version that handles the approximated penalty.
Also penalty Jn(β) from equation (2.2) can be rewritten this way. Let the
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vectors al denote the columns of a block-diagonal matrixA = diag(A0, . . . , Ap)
⊂ Rq×L and functions pλ,l(ν) be defined as λ ·ν. Let block Aj refer to the ef-
fect modifier uj . If uj is nominal, ATj βj shall give the values of the according
coefficients βj1, . . . , βjkj and their pairwise differences. The former is reached
when using the columns of a (kj×kj) identity matrix, the latter by columns
containing these combinations of ±1 building the needed differences. Hence,
e.g. for kj = 4, we have

Anomj =




1 0 0 0 −1 0 0 −1 −1 0
0 1 0 0 1 −1 0 0 0 −1
0 0 1 0 0 1 −1 1 0 1
0 0 0 1 0 0 1 0 1 0


 ,

which is a kj×(1
2kj(1+kj)) dimensional matrix. If uj is ordinal, only pairwise

differences of coefficients βj1, . . . , βjkj are penalized. Thus in (kj× (2kj−1))

matrix Aordj the last three columns of matrix Anomj are omitted. If the inter-
cept is modified by any effect modifier, matrix A0 depends on the concrete
form of the penalty. In general, if bj = 0 the “diagonal part” part of Anomj ,

Aordj respectively, is omitted. For a covariate xj , whose influence on y is not
modified by any uj , matrix Anonej is an empty matrix with zero columns and
kj rows.
The generalized hat matrix of the algorithm’s final iteration allows to esti-
mate the model’s degrees of freedom. But the LQA-algorithm is only locally
convergent. Only if the objective function is strictly convex, a local optimum
is ensured to be the global optimum, too. Strict convexity implies that the
penalized Fisher information matrix is positive definite. Nevertheless, the
penalty applied here leads to a positive semi-definite information matrix.
Therefore the quasi-Newton approach will find descent directions in each
iteration but it may happen that the solution is not unique (Ulbricht, 2010).

2.2. Large Sample Properties. For asymptotics, general assumptions have
to hold and the number of observations has to grow in accordance with the
requirements of categorical covariates: If sample size n tends to infinity it
is assumed that the number of observations njr on level r of uj tends to
infinity for all j, r at the same rate. Then we have

Theorem 2.1. Suppose 0 ≤ λ < ∞ has been fixed, and all class-wise
sample sizes nr satisfy njr/n → cjr, where 0 < cjr < 1. Then the esti-

mate β̂ that minimizes (2.1) with Jn(β) defined by (2.2), (2.3) and (2.4) is
consistent, i.e. limn→∞P(||β̂ − β∗||2 > ε) = 0 for all ε > 0.
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The proof is given in Appendix A. Employing the generalized versions
(2.5) and (2.6) does not affect the consistency results.
As pointed out in Zou (2006), regularization as used so far does not ensure
consistency in terms of variable selection. In order to gain selection consis-
tency of the original Lasso, Zou (2006) proposed an adaptive version that
has the so-called oracle properties. A corresponding modification for penalty
(2.2) is available: Given effect modifiers uj , j = 1, . . . , p, penalty Jn(β) (2.2)
is modified to the adaptive penalty Jadn (β) by employing

Jad,nomj (β) =
∑

r>s

wrs(j)|βjr − βjs|+ bj

kj∑

r=1

wr(j)|βjr| and(2.7)

Jad,ordj (β) =

kj∑

r=2

wr,r−1(j)|βjr − βj,r−1|+ bj

kj∑

r=1

wr(j)|βjr|,(2.8)

which replace (2.3) and (2.4), and by using adaptive weights

wrs(j) = φrs(j)(n)|β̂ML
jr − β̂ML

js |−1 and(2.9)

wr(j) = φr(j)(n)|β̂ML
jr |−1.(2.10)

Here β̂ML
jr denotes the ML-estimate of βjr. For functions φrs(j)(n) and

φr(j)(n), convergence to fixed values is assumed; that is, φrs(j)(n) → qrs(j)
and φr(j)(n)→ qr(j), with 0 < qrs(j), qr(j) <∞. If φrs(j)(n) and φr(j)(n) are
positive constants, that sum up to one, we obtain a generalization as given
in equations (2.5) and (2.6); tuning parameter λ and functions φrs(j)(n),
φr(j)(n) are clearly separated.
To ensure consistency, penalty parameter λ has to increase with sample
size n; one assumes that λ = λn with λn/

√
n → 0 and λn → ∞, and all

class-wise sample sizes nr satisfy nr/n→ cr, where 0 < cr < 1.
In addition, we define vector θ = ATβ. Hence, θ is a vector that contains all
terms that penalty Jn(β) (2.2) considers. That is, the absolute values of all
penalized coefficients βij and – according to the level of measurement – the

absolute values of their differences. θ̂n denotes the estimate of θ based on
sample size n. Furthermore, there are some sets to be defined: C denotes the
set of indices corresponding to those entries of θ which are truly non-zero.
Cn is the set corresponding to those entries of θ̂n which are estimated to
be non-zero with sample size n, and based on estimate β̂n. θ∗C denotes the

vector of θ-entries which are truly included in C, θ̂nC is the corresponding
estimate.
Previous assumptions concerning ML-estimation are extended: the model
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must hold, the negative log-likelihood −ln(β) has to be convex. ln(β) has to
be at least three times continuously differentiable, the third moments of y
have to be finite. The information matrix Fn/n must have a positive definite
limit; for score function s(β), we suppose E(s(β)) = 0. Then one obtains

Theorem 2.2. Suppose λ = λn with λn/
√
n → 0 and λn → ∞, and

all class-wise sample sizes njr satisfy njr/n → cjr, where 0 < cjr < 1.
Then penalty Jadn (β) employing terms (2.7) and (2.8) with weights (2.9)
and (2.10), where β̂ML

jr , φrs(j)(n) and φr(j)(n) are defined as above, ensures
that

(a)
√
n(θ̂nC − θ∗C)

d→ N(0,Cov(θ∗C))
(b) limn→∞P(Cn = C) = 1

The proof uses ideas from Zou (2006) and Bondell and Reich (2009),
and is given in Appendix B. The concrete form of Cov(θ∗C) results from the
asymptotic marginal distribution of a set of non-redundant truly non-zero
regression parameters or differences threof. Since all estimated differences
are (deterministic) linear functions of estimated parameters, the covariance-
matrix Cov(θ∗C) is singular.

Fn/n
n→∞→ F with positive definite F is typically assumed in observational

studies but it raises problems in experiments. In this case the given proof can
be extended to matrix normalization (see for example Fahrmeir and Kauf-
mann, 1985). For λ = 0, the unpenalized likelihood is maximized; therefore
asymptotic normality and consistency hold as shown by McCullagh (1983).
Distributional properties for n→∞ given a fixed λ are not discussed since
the penalty shall not vanish in proportion to −ln(β) for n → ∞. For the
normality part of Proposition 2.2, the speed of convergence is λn/

√
n → 0.

Since n−1/2sn(β) ∼ N(0, F (β)) + O(n−1/2) and P(
√
n|β̂ML

lq | ≤ λ
1/2
n ) → 1

like c/
√
n → 0, the consistency part behaves the same. Thus, the overall

speed of convergence is O(n−1/2). Since the penalized model from Propo-
sition 2.2 converges to an ordinary GLM for n → ∞, and since the scale
parameter of the exponential family ϕ and β are orthogonal (see the mixed
second derivatives ∂l

∂ϕ∂β given in Claeskens and Hjort, 2008) it is possible
to replace ϕ by ϕ̂. Hence, all used arguments are valid for quasi likelihood
models, too. Only the estimates’ covariance matrix cannot be reduced to
F (β)−1 anymore but remains F (β)−1V (β)F (β)−1, where V (β) = cov(s(β))

and F (β) = E
(
−∂2ln(β)
∂β∂βT

)
, see McCullagh (1983) for details.

In some cases, in particular for small sample sizes, ML-estimates required for
adaptive weighting may not exist. If necessary, ML-estimates can be replaced
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by other
√
n-consistent estimates, e.g. Ridge estimates with fixed tuning pa-

rameter. However, adaptive estimation is as good as the used weights and
hence not recommended by all means.

3. Alternative Selection Strategies. For the selection of variables,
stepwise procedures are typically used. In particular, forward and backward
selection methods based on information criteria like the AIC or the BIC
are popular. One tries to find the model that performs best with respect to
the criterion. By construction, these strategies yield variable selection but
no fusion of categories.
Gertheiss and Tutz (2012) obtained fusion of categories by using an en-
larged setting. For a nominal effect modifier uj with three categories having
impact on covariate xj , for example, the varying coefficient βj(uj) corre-
sponds to (βj1, βj2, βj3)T in coefficient vector β. All possible combination
of coefficients belonging to xj would be: {(), (βj1), (βj2), (βj3), (βj1, βj2),
(βj1, βj3), (βj2, βj3), (βj1, βj2, βj3)}. Allowing for fusion increases the num-
ber of possibilities by {(βj1, βj2 = βj3), (βj2, βj1 = βj3), (βj3, βj2 = βj1),
(βj1 = βj2 = βj3)}. When selecting a model, all possibilities to fuse coeffi-
cients must be considered.
Concretely, we start with a model containing an intercept only. In each
step, the degrees of freedom of the model are enlarged by one until the
chosen criteria (AIC or BIC) is not improved anymore; with the degrees
of freedom being defined as the number of non-zero coefficient blocks in β̂
(Tibshirani et al., 2005). Hence in each step a former zero coefficient can be
set to non-zero, or a former zero group of coefficients can become non-zero.
Alternatively a group of equal coefficients can be split into two groups of
non-zero but identical coefficients.

4. Numerical Experiments. The proposed methods are compared in
simulation studies. For illustration, we start with a simple example.

4.1. An illustrative example. We assume a logistic regression model with
two covariates x1, x2 and one nominal effect modifier u with categories 1, 2
and 3. u possibly impacts all covariates plus the intercept. Concretely, the
predictor is

ηtrue = β0(u) + x1β1(u) + x2β2(u)

= β0 + x1 ( β11I(u = 1) + β12I(u = 2) + β13I(u = 3) ) + x2β2(4.1)

= 0.2 + x1 ( 0.3I(u = 1) + 0.7I(u = 2) + 0.7I(u = 3) )− x2 · 0.5
That means, while the intercept and x2 do not depend on u, covariate x1

varies with categories 1 and 2/3 of u. Covariates x1 and x2 are independently
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Fig 1. Coefficient paths for binary model (4.1) assuming predictor (4.2) – with adaptive
weights (left) and the standard penalty (right).

drawn from an uniform distribution U(0, 2); the effect modifier u is multino-
mial with probabilities 0.3, 0.4, 0.3 for categories 1, 2 and 3, respectively. For
response y, y = h(η) holds, where h−1(·) is the natural link (logit) function.
We generate n = 400 observations. When fitting the model, all coefficients
are allowed to vary with effect modifier u, i.e., we have

(4.2) ηmodel = β0(u) + x1 · β1(u) + x2 · β2(u).

Figure 1 shows the resulting coefficient paths for the proposed estimator
subject to penalty parameter λ. λ is scaled as 1−λ/λmax, where λmax refers
to the smallest value of penalty parameter λ that already gives maximal
penalization, i.e., the smallest λ that sets all penalized coefficients to zero.
Hence, we see ML-estimates at the right end. The left end relates to maximal
penalization, here only the intercept remains non-zero. In the left panel, the
penalty is adaptive, the weights are fixed (see equation (2.7) with b0 = 0,
φrs(j) = φr(j) = 0.5). The paths show how clustering/selection of coefficients
works: Even slight penalization discovers the intercept to be non-varying,
coefficients of covariate x1 are fused such that only category 1 makes a differ-
ence. Concerning covariate x2 coefficients should be fused to one non-varying
scalar. But stronger penalties are necessary to make this happen. The dot-
ted line marks the optimal model in terms of 5-fold cross-validation with the
predictive deviance Dev(y, µ̂) as loss function. It shrinks coefficients slightly
– in return all but one relevant structures are identified. Absolute deviation
to the true coefficients is small.
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Fig 2. Boxplots of scaled squared errors (MSE, left panel) and deviances (MSEP) for
setting b26.200; in the left panel outliers are omitted.

When the standard penalty (2.3) is used instead, results change: while co-
efficient paths remain basically the same in structure, the standard penalty
slows down fusion and selection of coefficients (see Figure 1, right panel). To
reach the same effects, stronger penalization is needed. Cross-validated λCV
is 2.25 now. However, performance is worse than with adaptive weights: in
the model chosen by cross-validation (see dotted line), coefficients of covari-
ate x1 are not fused.

4.2. Simulation Settings. To compare the proposed methods, various
model features are systematically varied. Concretely, we consider a binomial
response, there are two influential covariates, and we add 6 non-influential
noise variables. Training data sets contain n = 200 and n = 600 observations,
test data sets n = 600 and n = 1800 observations, respectively. That is, we
have two settings named b26.200 and b26.600. All covariates are continuous
and independently drawn from an uniform distribution U [−2, 2]. There is
a known effect modifier. It is nominal, has four categories 1, . . . , 4 and is
independently drawn from a multinomial distribution with probability 0.25
per category. The true linear predictor is

ηtrue = β0(u) + x1β1(u) + x2β2(u)

= ( 0.7I(u = 1) + 0.7I(u = 2) + 0I(u = 3) + 0I(u = 4) )

+ x1 ( 1I(u = 1)− 1.5I(u = 2)− 1.5I(u = 3) + 0.5I(u = 4) )

+ x2 ( 0I(u = 1) + 1I(u = 2) + 2I(u = 3)− 3I(u = 4) ) .
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Fig 3. Boxplots of scaled squared errors (MSE, left panel) and deviances (MSEP) for
setting b26.600; medians mark estimates of MSE and MSEP.

Since the procedure does not know which coefficients are actually varying, all
coefficients are allowed to vary with effect modifier u. As six non-influential
noise variables n3, . . . , n8 are added, the assumed predictor is

ηmodel = β0(u) + x1 · β1(u) + x2 · β2(u) + n3 · β3(u) + . . .+ n8 · β8(u).

This model is estimated using all the methods discussed. That means, we
consider various penalized estimates: with weight ψ fixed at 0.5, with flexi-
ble weight ψ, with adaptive weights and fixed φrs(j), φr(j) (φrs(j) = φr(j) =
φ = 0.5), with adaptive weights and flexible φrs(j), φr(j) (φrs(j) = φ, φr(j) =
1 − φ). In addition, we consider forward selection strategies with criteria
AIC and BIC, and the usual ML-estimate. For ML-estimates, neither reg-
ularization nor model selection is required. They are the benchmark for all
the other estimators’ performances. Penalty parameter λ is chosen by 5-fold
cross-validation. If weights ψ and φ are flexible, they are cross-validated,
too. For each setting, all models are computed 50 times in order to make
the results reliable.

4.3. Results. To assess parameter estimation, we compute the coeffi-
cients’ mean squared error for each simulation run:

ˆMSE(β, β̂) =
1

q

q∑

j=1

(
βj − β̂j

)2
,
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Setting b26.200 FPRselection 1 0.77 0.65 0.34 0.39 0.41 0.16
FNRselection 0 0.03 0.04 0.08 0.06 0.07 0.11
FPRclustering 1 0.64 0.69 0.43 0.42 0.40 0.10
FNRclustering 0 0.05 0.03 0.15 0.15 0.19 0.27

Setting b26.600 FPRselection 1 0.81 0.71 0.43 0.39 0.39 0.11
FNRselection 0 0.00 0.01 0.01 0.01 0.02 0.03
FPRclustering 1 0.77 0.76 0.45 0.42 0.37 0.05
FNRclustering 0 0.01 0.00 0.04 0.03 0.08 0.17

Table 1
Estimates of false positive and false negative rates for settings b26.200 and b26.600.

where q =
∑p

j=0 kj , β denotes the vector of true coefficients, and β̂ its
estimate. To judge the prediction accuracy, the mean predictive deviance
Dev(y, µ̂) is considered, referred to as MSEP. Figures 2 and 3 show the
box plots of MSE and MSEP for both settings. Median values of penalized
approaches and forward selection strategies are smaller than those of the
ML-estimates. However, forward selection strategies suffer from a high vari-
ability – especially for n = 200 they are very unstable. For n = 600 and
adaptive weights, interquartile ranges become smaller compared to “stan-
dard” penalization. This is due to the construction of the adaptive weights,
which are the inverses of the ML-estimates. The more observations we have
the better is the ML-estimate and so are the adaptive weights.

In addition, we evaluate the clustering and selection performance. A model
selection strategy should exclude non-influential covariates, especially pure
noise variables. That is, truly zero coefficients should not be selected. Truly
non-varying coefficients should be fused. For evaluation, we consider false
negative (FNR) and false positive rates (FPR). False positive means that a
truly zero coefficient is fitted as non-zero. False negative means that truly
non-zero values are estimated to be zero. With # denoting “the number of
coefficients” we have

FPRselection =
#(truly zero set to non-zero)

#(truly zero)
and

FNRselection =
#(truly non-zero set to zero)

#(truly non-zero)
.
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Variable Description

cesarean Type of delivery (0: vaginal, 1: Cesarean), response
term Term of pregnancy in weeks form the last menstruation
c.height Height of child at birth in centimeter
c.weight Weight of child at birth in gram
m.age Age of mother before pregnancy in years
m.height Height of mother in centimeter
m.bmi BMI of mother before pregnancy (mass (kg)/(height (m))2)
m.gain.w Gain in weight of mother during pregnancy in kg
m.prev Number of previous pregnancies
ind Was the labor induced?
memb Did the membranes burst before the beginning of the throes?
rest Was a strict bed rest ordered to the mother for at least one month

during the pregnancy?
cephalic Was the child in cephalic presentation before birth?
t Year of birth, effect modifier

Table 2
Short description of response, covariates and the effect modifier for birth data. The

coding of binary covariates is 0 for “no”, 1 for “yes”.

FPRclustering and FNRclustering are defined analogously, but refer to differ-
ences of coefficients. Table 1 shows false positive and negative rates for both
settings. Overall it stands out that forward selection strategies perform well.
However, having the high variability of forward selection strategies in mind
and looking at both clustering and selection, the previous recommendation
for adaptive weights still holds.

5. Application: Cesareans among Francophone Mothers. Our
data set contains various variables related to the pregnancy and delivery re-
cruited on French-speaking websites. The data was presented by Boulesteix
(2006) and is available in R add-on package catdata (Tutz and Schauberger,
2010). As described in Section 1, we are interested in the type of delivery,
in whether birth was given vaginally or by means of a Cesarean. Between
2001 and 2004, 578 deliveries were observed, and modeling the type of deliv-
ery requires to allow covariate effects to vary with time, since, e.g., medical
standards may have changed over time. As the time is measured discretely
and on a rough grid, we consider the time in years as an ordinal effect mod-
ifier in a varying-coefficient model. The response is binary indicating the
type of delivery; 0 stands for a vaginal birth, 1 for a Cesarean. The model
considers all covariates that were available and meaningful for all women.
Details on the covariates are found in Table 2. To be on comparable scales,
all covariates are standardized. As terms and delivery circumstances differ
immensely for multiple births, these cases are excluded.
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As we have no prior knowledge about the model’s structure, effect modifier t
potentially impacts all coefficients. As there is a relatively large number of
covariates, we are not only interested in parameter fusion, but also in the se-
lection of coefficients βj(t). Table 4 shows the resulting estimates. The values
of ML-estimates are quite extreme. To obtain a stable estimation procedure,
that is able to select among predictors, regularization is required. As sug-
gested by the numerical experiments in Section 4, we employ an adaptive
penalty with fixed weights φrs(j) = φr(j) = 0.5. Penalty parameter λ is
cross-validated and set to 1.33. This is small compared to the minimal value
of λ giving maximal penalization λmax = 211.5. But it stabilizes estimation
and shrinks unstable ML-estimates enormously. As an alternative, we con-
sider forward selection strategies as presented in Section 3. Forward selection
strategies produce very sparse estimates. Only three (AIC), respectively one
(BIC), coefficients are partly varying. ML-estimates, by contrast, argue for
a strong dependency on time, see for example the intercept of the year
2001, which is ignored by forward selection strategies. Penalized estimation
gives a more differentiated picture. It selects predictors and shows that not
all time points have different effects. For example the intercept shows that
there is a decrease of vaginal births over time and that in years 2002 and
2003 the preference of vaginal births is the same. In contrast, highly volatile
ML-estimates of the intercepts are not strictly decreasing.

6. Application: Reducing Mortality after Myocardial Infarction.
In this second application we consider a 22-center clinical trial of beta-
blockers for reducing mortality after myocardial infarction. The dataset is
for example described in Aitkin (1999) and available in R add-on pack-
age flexmix (Grün and Leisch, 2008). For each center the number of de-
ceased/successfully treated patients in control/test groups is known. We are
going to model the mortality rate depending on the centers and the treat-
ment groups; that means the response y is binomial. The data has been
analyzed by different authors: Aitkin (1999) modeled the effect of the study
centers by random intercepts. That is, the predictor is defined as

ηij = β0 +b0i+βT ·Treatmentij , i = 1, . . . , 22 Centers, j ∈ {control, test},

where b0i is normally distributed, b0i N(0, σ2). The corresponding marginal
likelihood is numerically approximated by a Gauss-Hermite quadrature with
four mass points. One obtains the treatment effect βT and estimates b̂0i.
However, centers are not clustered.
Grün and Leisch (2008) try to find similar centers with discrete mixture
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Fig 4. Coefficient paths beta-blocker data.

models. They use the predictor

ηi = β0m + βT · Treatmenti, i = 1, . . . , 44 Cases,

where m ∈ {1, . . . ,K} refer to the partition of the 22 centers into K groups.
The predictor contributes to the mixture likelihood

L(β0, βT , π; y) =
44∏

i=1

(
K∑

m=1

πmfm(ηi,Ψm)

)
,

with β0 = (β01, . . . , β0k)
T and with π = (π1, . . . , πK)T denoting the priori

probabilities of the components (
∑K

m=1 πm = 1, πm > 0 ∀m). Functions
fm(·) denote the components’ densities; for each component a simple expo-
nential family with parameters Ψm is assumed. For estimation an iterative
EM-algorithm (Dempster, Laird and Rubin, 1977, Leisch, 2004) with K = 3,
respectively K = 5, components is employed. Hence, the centers are clus-
tered, but the number of clusters has to be specified in advance.
To overcome these problems, we assume a varying intercept model with
predictor:

(6.1) ηi = β0(Centeri) + βT · Treatmenti, i = 1, . . . , 44 Cases.
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Random Varying Discrete Mixture
Coefficients ML Intercept Intercept Model

Model Model 5 Cluster 3 Cluster

Center- β0,15 -1.4782 -1.5519
specific β0,12 -1.5644 -1.6052
Intercept β0,16 -1.5999 -1.6493

-1.71 -1.5687
-1.7388

β0,20 -1.6038 -1.6523
β0,7 -1.8832 -1.8917 -1.92 -1.9024
β0,17 -2.0801 -2.1065
β0,9 -2.0910 -2.1079

-2.36

β0,8 -2.2083 -2.2132
β0,3 -2.2370 -2.2574
β0,21 -2.2832 -2.2859
β0,2 -2.3059 -2.3097

-2.3224

β0,6 -2.3113 -2.3162
-2.37 -2.3793

β0,10 -2.3840 -2.3832
β0,11 -2.4278 -2.4239
β0,1 -2.4798 -2.4145
β0,5 -2.5015 -2.4881
β0,4 -2.5189 -2.5151

-2.38 -2.4589

β0,14 -2.7862 -2.7670 -2.71
β0,18 -3.0433 -2.8805
β0,22 -3.0610 -3.0123 -2.86 -2.9632 -2.9628
β0,13 -3.1155 -3.0022
β0,19 -3.4942 -3.1541 -2.87

Treatment βT -0.1305 -0.1305 -0.13 -0.1295 -0.1291
Table 3

Resulting estimates of all considered methods for the beta-blocker data.
Intercept-coefficients are ordered such that their structure becomes obvious. “ML” stands

for the ML-estimate of a GLM containing an intercept and effect coded covariates
Center, Treatment; to keep things comparable, that linear combination of the coefficients

that corresponds to the other models is shown. Presented intercept-coefficients of the
mixed model are the sum of the fixed and the random effects. Horizontal lines denote

clusters of coefficients.

In order to obtain comparable results and as there is only one covariate,
the data is not scaled. The nominal information about the center is the
effect modifier. In analogy to Aitkin (1999) and Grün and Leisch (2008),
the explanatory covariate “Treatment” is not modified and effect coded.
For estimation the penalized likelihood (2.1) with adaptive weights (2.9)
and (2.10) is employed. As suggested in Section 4, weighting parameter
ψ is fixed at 0.5. Hence, the centers’ possible diversity is considered. Due
to penalized estimation the intercept-coefficients of several centers can be
merged – clusters of similar centers are detected. As penalty parameter λ is
cross-validated, quantity and quality of clusters are determined by the data.
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Figure 4 gives the resulting coefficient paths for model (6.1). There seem to
be three, respectively five different types of basically different study centers.
Cross-validation yields λCV = 0.7 and is marked by the dotted line in Figure
4. At this point the main clusters are detected, while subtle distinctions be-
tween the centers are still apparent. Table 3 gives the resulting coefficients.
Results are compared to the random intercept model of Aitkin (1999) and
the finite mixture model of Grün and Leisch (2008) with adjusted coding.
It is seen that the obtained clusters of the varying intercept model show the
same structure as finite mixture models. The random intercepts show the
same profile as our results, but no clusters. All estimates have the same scale.
The treatment effect is detected in all models and – this is remarkable – of
approximately the same size. But only the varying coefficient model com-
bines data driven clustering with stable results. When weighting parameter
φ and penalty parameter λ are cross-validated, we obtain nearly the same
results; order and clusters of coefficients are the same. Note that predictor
(6.1) in the varying intercept model corresponds to a GLM with penalized
nominal covariates Center and Treatment. However, the representation as
varying coefficient model makes interpretation easier. It offers an attractive
alternative to finite mixture models.
One may also wonder whether the treatment effect does depend on the ac-
cording study center, too. For this reason we consider a second model with
predictor

(6.2) ηi = β0(Centeri) + βT (Centeri) · Treatmenti, i = 1, . . . , 44 Cases

and the same assumptions as above. As there is only one covariate and one
effect modifier, which are both categorial, predictor (6.2) corresponds to
a GLM with covariates Center, Treatment and their interaction. This is a
saturated model. There are as many free parameters as observed Center-
Treatment constellations. Hence, observed mortality is perfectly replicated
by the model. In this case, only regularization results in a model that can be
interpreted. Cross-validation of λ (and φ) fuses βT (Centeri) to one constant
coefficient. The varying intercept β0(Centeri) shows the same clusters as
for predictor (6.1); such that the “fixed” treatment effect assumed in Aitkin
(1999) and Grün and Leisch (2008) is supported.

7. Special Case: Categorical Effects. So far, we considered categori-
cal effect modifiers in general. We did not touch categorical effects, which are
a special case of categorical effect modifiers. One obtains a coded categorical
effect, when the effect modifier uj is categorical and the modified covariate xj

is a constant vector. We have for example 1 ·βj(uj) = 1 ·∑kj
r=1 βjrI(uj = r).
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Penalization remains the same. Statements made for penalized varying co-
efficients hold for penalized categorical effects, too. Especially large sample
properties can be transferred. However, the devil is in the details: unlike
usual coding, the obtained coding does not contain a reference category.
This implies at least two things: the design matrix is not of full rank and in-
terpretation changes. As estimation is penalized and the tuning parameter λ
will be cross-validated in most cases, the first aspect can be neglected. Con-
cerning interpretation, penalized estimates can be transformed, such that
they correspond directly to usual coding of categorical effects. Note, how-
ever, the penalty we use here is not designed for a reference category. In
contrasts to Gertheiss, Stelz and Tutz (2012), all categories of a categorical
effect are penalized in the same way.

8. Concluding Remarks. We investigated categorical effect modifiers
within the framework of GLMs. When selecting a model with categorical ef-
fect modifiers, one wants to find out which covariates have an effect on the
response, and if so, which categories have to be distinguished. In fact, this is a
recoding of usual interactions between categorial and metric predictors, but
the concept of effect modifiers allows for interpretable model selection strate-
gies. We presented two different approaches: on the one hand we extended
the ideas of Tibshirani et al. (2005) to varying-coefficient models with cate-
gorical effect modifiers. Thus, we are able to simultaneously identify varying
coefficients and select covariates in GLMs. The penalty adjusts for the dif-
ferent amount of information in nominal and ordinal effect modifiers. An
adaptive version of the proposed penalty was shown to be asymptotically
normal and consistent. These results remain valid when scale parameter
φ of the exponential family is estimated and plugged-in, which allows for
quasi-likelihood approaches. On the other hand, we investigated a modified
forward selection strategy: start with a null-model and add one degree of
freedom in each iteration until a chosen criterion is not improved anymore.
Numerical experiments suggested both methods to be highly competitive.
Penalized estimates and forward selection strategies performed distinctly
better than un-penalized ML-estimates. Forward selection strategies, how-
ever, suffer from immense variability, which makes them less attractive.
Lasso-type penalties imply not continuously differentiable optimization prob-
lems, which we solved by adopting an algorithm of Fan and Li (2001). All
functions are available in the R add-on package gvcm.cat (Oelker, 2012).
In practice, varying-coefficient models are highly relevant. We analyzed Ce-
sareans among francophone mothers. We were interested in how the influence
of various medical indicators changed over time. The data is quite challeng-
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ing, standard approaches fail. However, penalized estimates give a coherent
trend.
Furthermore, we applied the proposed methods to a clinical trial on reduc-
ing mortality after myocardial infarction. We were interested in how diverse
study centers are. Penalized estimation turned out to be a stable alternative
to finite mixture models. Quantity and quality of clusters was detected data-
driven. We observed the same coefficient profile as for a random intercept
model.
So far we employed a single penalty parameter λ only; for a modest number
of effect modiffiers, however, one tuning parameter per effect modifier could
be advantageous. But computational complexity increases very fast with the
number of tuning parameters.
The proposed penalty’s potential is apparent: for longitudinal studies its
scope can be enlarged to marginal models; and it can be further general-
ized: varying coefficients may depend on more than one effect modifier. In
this paper we assumed continuous covariates x1, . . . , xp. But of course co-
variates can be categorical, too. Then there are even more coefficients, and
hence, there is an even stronger demand for regularization.

APPENDIX A: PROOF OF THEOREM 2.1

If β̂ minimizes Mpen
n (β) with Jn(β) as defined by Jn(β), with Jnomj (βj)

and Jordj (βj), then it also minimizesMpen
n (β)/n. The ML-estimate β̂ML min-

imizesMn(β) = −ln(β), respectivelyMn(β)/n. Since λ is fixed,Mpen
n (β̂)/n

P→
Mn(β̂ML)/n and Mpen

n (β̂)/n
P→Mn(β̂)/n, Mn(β̂)/n

P→Mn(β̂ML)/n hold
as well. Since β̂ML is the unique minimizer of Mn(β)/n, and Mn(β)/n is

convex, we have β̂
P→ β̂ML; and consistency follows from consistency of the

ML-estimate β̂ML, under assumptions given for example by Fahrmeir and
Kaufmann (1985).

APPENDIX B: PROOF OF THEOREM 2.2

Due to the additivity of arguments, a predictor of the following form can
be assumed without loss of generality:

ηi = β0(u) + x1β1(u) + . . .+ xpβp(u),

i.e., only one effect modifier u is assumed. In addition, let Z denote the
design matrix given by Z = (Z0, . . . , Zp), where

Zj =




x1jI(u1j = 1) · · · x1jI(u1j = kj)
...

. . .
...

xnjI(unj = 1) · · · xnjI(unj = kj)


 .
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B.1. Normality.

B.1.1. Redefinition of the Objective Function. Redefine optimization prob-
lem Mpen

n (β) as argminβ Ψn(β), where Ψn(β) = −ln(β) + λn√
n
Jn(β). Jn(β)

denotes the penalty term. Unlike before tuning parameter λ is divided by
factor

√
n, in turn the penalty Jn(β) is multiplied by the same factor:

Jn(β) =
√
n




p∑

j=0

∑

r>s

wrs(j)|βjr − βjs|+
p∑

j=1

k∑

r=1

wr(j)|βjr|


 .

The log-likelihood is defined as

ln(b) =

n∑

i=1

yiϑi(µi)− b(ϑi(µi))
ϕi

=

n∑

i=1

yiϑi(h(zTi β))− b(ϑi(h(zTi β)))

ϕi
,

that is, ln(b) is determined by a simple exponential family where ϑi ∈ Θ ⊂ R
is the natural parameter of the family depending on expectation µi; ϕi is
a scale or dispersion parameter, b(·) and c(·) are specific functions corre-
sponding to the type of the family. For given ϕi, one assumes Θ to be the
natural parameter space, i.e., the set of all ϑi satisfying 0 <

∫
exp(yiϑi/ϕi+

c(yi, ϕi))dyi < ∞. Then, Θ is convex, and in the nonempty interior Θ0 all
derivatives of b(ϑi) and all moments of yi exist, see Fahrmeir and Tutz, 2001.
Hence it is equivalent to solve

argminβ Vn(β) = argminβ 2 (Ψn(β)−Ψn(β∗))

with

Vn(β) = −2 (ln(β)− ln(β∗)) + 2
λn√
n

(Jn(β)− Jn(β∗))

= −2 (ln(β)− ln(β∗)) + 2
λn√
n
J̃n(β).

B.1.2. Limit Behavior. Following Bondell and Reich (2009) closely, J̃n(β)
with respect to b is considered; with b =

√
n(β − β∗) and β = β∗ + b/

√
n,

where β∗ denotes the true coefficient vector:

J̃n(β) = Jn(β)− Jn(β∗)⇒
J̃n(b) = Jn(b)− Jn(0)

=

p∑

j=0

∑

r>s

√
n

φrs(j)(n)

|β̂ML
jr − β̂ML

js |

∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣
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+

p∑

j=1

k∑

r=1

√
n
φr(j)(n)

|β̂ML
jr |

∣∣∣∣β∗jr +
bjr√
n

∣∣∣∣

−




p∑

j=0

∑

r>s

√
n

φrs(j)(n)

|β̂ML
jr − β̂ML

js |
∣∣β∗jr − β∗js

∣∣ +

p∑

j=1

k∑

r=1

√
n
φr(j)(n)

|β̂ML
jr |

∣∣β∗jr
∣∣



=

p∑

j=0

∑

r>s

√
n

φrs(j)(n)

|β̂ML
jr − β̂ML

js |

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣−
∣∣β∗jr − β∗js

∣∣
)

+

p∑

j=1

k∑

r=1

√
n
φr(j)(n)

|β̂ML
jr |

(∣∣∣∣β∗jr +
bjr√
n

∣∣∣∣−
∣∣β∗jr

∣∣
)

Distinction of cases (1) β∗jr 6= β∗js and β∗jr 6= 0, i.e., if θ∗i 6= 0.

As given in Zou (2006), we will consider the limit behavior of (λn/
√
n)J̃n(b).

If β∗jr 6= β∗js, then

|β̂ML
jr − β̂ML

js |
P→ |β∗jr − β∗js|

and

√
n

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣−
∣∣β∗jr − β∗js

∣∣
)

= (bjr − bjs)sgn(β∗jr − β∗js)

(if n large enough); and similarly, if β∗jr 6= 0, then

|β̂ML
jr |

P→ |β∗jr|

and √
n

(∣∣∣∣β∗jr +
bjr√
n

∣∣∣∣−
∣∣β∗jr

∣∣
)

= bjrsgn(β∗jr)

(if n large enough). Since by assumption φrs(j)(n) → qrs(j) and φr(j)(n) →
qr(j) (0 < qrs(j), qr(j) <∞) and λn/

√
n→ 0, by Slutsky’s theorem, we have

λn√
n

√
n

φrs(j)(n)

|β̂ML
jr − β̂ML

js |

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣−
∣∣β∗jr − β∗js

∣∣
)

P→ 0

and
λn√
n

√
n
φr(j)(n)

|β̂ML
jr |

(∣∣∣∣β∗jr +
bjr√
n

∣∣∣∣−
∣∣β∗jr

∣∣
)

P→ 0

respectively. That means, if θ∗i 6= 0, we have λn√
n
J̃(b)

P→ 0.
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Distinction of cases (2) β∗jr = β∗js or β∗jr = 0, i.e., if θ∗i = 0
Here it holds that

√
n

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣−
∣∣β∗jr − β∗js

∣∣
)

= |bjr − bjs|

and √
n

(∣∣∣∣β∗jr +
bjr√
n

∣∣∣∣−
∣∣β∗jr

∣∣
)

= |bjr|

Moreover, due to the consistency of the ML-estimates, we have

β̂ML − β∗ = F−1
n (β∗)sn(β∗) +O(n−1),

whereO denotes the Landau notation, Fn(β∗) = O(n) and sn(β∗) = O(n1/2).
Therefore sn(β∗)/Fn(β∗) < c · n−1/2 (c is some constant), sn(β∗)/Fn(β∗) =
O(n−1/2) and β̂ML− β∗ = O(n−1/2) (McCullagh, 1983). As a conclusion, it
holds that

limn→∞P
(√

n|β̂ML
jr − β̂ML

js | ≤ λ1/2
n

)
= 1

or
limn→∞P

(√
n|β̂ML

jr | ≤ λ1/2
n

)
= 1

respectively, since λn →∞ by assumption. Hence,

λn√
n

√
n

φrs(j)(n)

|β̂ML
jr − β̂ML

js |

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣−
∣∣β∗jr − β∗js

∣∣
)

P→∞

or
λn√
n

√
n
φr(j)(n)

|β̂ML
jr |

(∣∣∣∣β∗jr +
bjr√
n

∣∣∣∣−
∣∣β∗jr

∣∣
)

P→∞

if b∗jr 6= 0, respectively b∗jr 6= b∗js. That means, if for any r, s, j with β∗jr = 0
(j > 0) or β∗jr = β∗js (j ≥ 0), bjr 6= 0 or bjr 6= bjs, respectively, then we have

λn√
n
J̃(b)

P→∞.

B.1.3. Normality. Before we have a look at −2 (ln(β)− ln(β∗)) remem-
ber that an expansion of usual ML-equations s(β) = 0 about β∗ gives

sn(β∗) =
∂2ln(β)

∂β∂βT
|β=β∗(β − β∗).

Hence in usual GLMs, it holds that

β − β∗ =
∂2ln(β)

∂β∂βT
|β=β∗sn(β∗) = F−1

n (β∗)sn(β∗) +Op(n−1)
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Multiplying both sides by n1/2, using Fn(β∗)/n n→∞→ F (β∗) and n−1/2sn(β∗) d→
N(0, F (β∗)), one obtains

n1/2(β̂n − β∗) d→ N(0, F (β∗)−1)

in usual GLMs (McCullagh, 1983). Back to the given varying-coefficient
model, consider now−2 (ln(β)− ln(β∗)) instead of Vn(β) = −2 (ln(β)− ln(β∗))+
2 λn√

n
J̃n(β). An expansion of ln(β) about β∗ gives

−2 (ln(β)− ln(β∗)) = (β − β∗)T ∂
2ln(β)

∂β∂βT
|β=β∗(β − β∗).

Applying ∂2ln(β)
∂β∂βT |β=β∗(β − β∗) = sn(β∗) for −2 (ln(β)− ln(β∗)) as well, one

obtains

−2 (ln(β)− ln(β∗)) = (β−β∗)T ∂
2ln(β)

∂β∂βT
|β=β∗(β−β∗) = sTn (β∗)F−1

n (β∗)sn(β∗).

Following Bondell and Reich (2009), let θC denote the vector of θ-entries
which are truly non zero, i.e., from C, and let βC be the subset of entries of
θC which are part of β. By contrast θCc denotes the vector of θ-entries which
are truly zero and therefore not from C but from Cc; analogously to βC , βCc
is defined as the subset of entries of θCc which are part of β. Since n→∞,

and applying Fn(β∗)/n n→∞→ F (β∗) one more time, we have Vn(β) → V (β)
for every β, where

V (β) =

{
1
ns

T
n (βC)F−1(βC)sn(βC) if θCc = 0,

∞ otherwise,

and where sn(βC) are regular ML-equations. Therefore it holds that

n−1/2sn(β∗C)
d→ N(0, F (β∗C)) and n−1/2(βC − β∗C)

d→ N(0, F (β∗C)
−1) like men-

tioned above. Since the considered minimization problem is convex, the
unique minimum of V (β) is (βML

C , 0)T and we have

β̂nC → βML
C and β̂nCc → 0.

Hence, we have as well

n−1/2(β̂nC − β∗C)
d→ N(0, F (β∗C)

−1)

Via a reparametrization of β as, for example, β̌ = (β̌T0 , ..., β̌
T
p )T , with β̌j =

(βjr − βj1, ..., βjr, ..., βjr − βjk)
T , i.e., changing the subset of entries of θ

which are part of β, asymptotic normality can be proved for all entries of
θC .
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B.2. limn→∞P(Cn = C) = 1. To show consistency it has to be proved
that limn→∞P(J ∈ Cn) = 1 if J ∈ C and that limn→∞P(J ∈ Cn) = 0 if
J /∈ C, where J denotes a triple of indices (j, s, r) or pair (j, r).

B.2.1. limn→∞P(J ∈ Cn) = 1 if J ∈ C. follows from part (a).

B.2.2. limn→∞P(J ∈ Cn) = 0 if J /∈ C. A similar proof is found in
Bondell and Reich (2009). Let Bn denote the (nonempty) set of indices J
which are in Cn but not in C. Without loss of generality we assume that
the largest θ̂-entry corresponding to indices from Bn is β̂lq > 0, l ≥ 0. If

a certain difference β̂lr − β̂ls is the largest θ̂-entry included in Bn we just
need to reparameterize βl in an adequate way by β̃l as given above. Since all
coefficients and differences thereof are penalized in the same way this can
be done without any problems.
Moreover, we may order categories such that β̂l1 ≤ . . . ≤ β̂lz ≤ 0 ≤ β̂l,z+1 ≤
. . . ≤ β̂lk. That means, estimate β̂ = argminβ Ψ(β) = argminβ − l(β) +
λn√
n
J(β) like defined in (a) is equivalent to

argminB − ln(β) + λn
∑

j

Jj(β)

with

B = {β : β0,1, . . . , βl−1,k, βl,1 ≤ . . .
≤ βl,z ≤ 0 ≤ βl,z+1 ≤ . . . ≤ βl,k, βl+1,1, . . . , βp,k},

Jj(β) =
∑

r>s

φrs(j)(n)

|β̂ML
jr − β̂ML

js |
|βjr − βjs|+ I(j 6= 0)

k∑

r=1

φr(j)(n)

|β̂ML
jr |

|βjr| , j 6= l,

Jl(β) =
∑

r>s

φrs(l)(n)

|β̂ML
lr − β̂ML

ls |
(βlr − βls) +

∑

r≥z+1

φr(l)(n)

|β̂ML
lr |

(βlr)

−
∑

r≤z

φr(l)(n)

|β̂ML
lr |

(βlr) .

Since β̂nlq 6= 0 is assumed, at the solution β̂n this optimization criterion
is differentiable with respect to βlq. We may consider this derivative in
a neighborhood of the solution where coefficients which are set equal/to
zero remain equal/zero. That means, terms corresponding to pairs/triples
of indices which are not in Cn can be omitted, since they will vanish in
J(β̂n) =

∑
j Jj(β̂

n). If x(l)q denotes the column of design matrix Z which
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belongs to βlq, due to differentiability, estimate β̂n must satisfy

sn(β)√
n

=
xT(l)qDn(β)Σ−1

n (β)(y − µ)
√
n

= An +Dn,

with

An =
λn√
n


 ∑

s<q;(l,q,s)∈C

φqs(l)(n)

|β̂ML
lq − β̂ML

ls |
−

∑

r>q,(l,r,q)∈C

φrq(l)(n)

|β̂ML
lr − β̂ML

lq |


 and

Dn =
λn√
n


 ∑

s<q;(l,q,s)∈Bn

φqs(l)(n)

|β̂ML
lq − β̂ML

ls |
+

φq(l)(n)

|β̂ML
lq |


 .

From part (a) we know that n−1/2sn(β)
d→ N(0, F (β)). Hence for any ε > 0,

we have

limn→∞P(
sn(β)√

n
≤ λ1/4

n − ε) = 1

Since λn/
√
n→ 0, we also know ∃ε > 0 such that limn→∞P(|An| < ε) = 1.

By assumption λn → ∞; due to consistency of the ordinary ML-estimate
(O(n−1/2)), we know that

limn→∞P(
√
n|β̂ML

lq | ≤ λ1/2
n ) = 1,

if (l, q) ∈ Bn. Hence
limn→∞P(Dn ≥ λ1/4

n ) = 1.

As a consequence

limn→∞P(
sn(β)√

n
= An +Dn) = 0.

That means if J /∈ C, also

limn→∞P(J ∈ C) = 0.
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