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1 Introduction

Recent experience seems to con¯rm the impression that currency crises, triggered by

speculative attacks, are an inevitable characteristic of ¯xed exchange rate regimes.

Within the economics profession there is, however, a strong controversy about the

causes and nature of such attacks. Panglossian economists like to argue that they

are ultimately driven by weak fundamentals. In this view, such attacks should be

welcomed: By attacking when fundamentals are weak, speculation imposes the mar-

ket discipline required to correct an unsustainable policy regime of ¯xed exchange

rates.1

On the other hand, countries su®ering from such attacks usually like to blame ir-

responsible speculators: They claim that attacks of greedy international capitalists

forced the defeat of their otherwise intrinsically sound economies. Recently, the

latter view has found theoretical support by work of Obstfeld (1996) demonstrating

that multiple equilibria may prevail under ¯xed exchange rate regimes: If everybody

believes that a currency peg can be sustained, nobody dares to attack, and so the

rate indeed stays ¯xed. On the other hand, if speculators believe that devaluation

is likely to occur, they are inclined to attack, and this attack will trigger the devalu-

ation. Under multiple equilibria expectations are self-ful¯lling. As Obstfeld shows,

fundamentals play some role for the occurrence of multiple equilibria: If fundamen-

tals are really bad (below some critical minimum level µ) the ¯xed rate can never be

sustained, similarly, if the fundamentals are really good (above some critical level ¹µ),

an attack will be unrewarding. But there is an intermediate range of fundamentals

µ < µ < ¹µ for which both \attack" and \no attack" are Nash equilibria.

The trouble with indeterminate equilibria is that the outbreak of an attack appears

to be completely arbitrary: A sudden change in mood, caused by some unrelated

event (such as a sunspot) can trigger the attack, as long as all speculators align with

the sunspot - that is, as long as it is common knowledge that all agents coordinate

their expectations after observing the fundamentals (and possibly some sunspot

1See Krugman (1979) for the ¯rst model of speculative attacks with a unique equilibrium.
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variable). Thus, there exists a continuum of equilibria with self ful¯lling beliefs.

The fate of the economy seems to be in the hands of arbitrary expectations of

speculators - irrespective of the soundness of policy variables. There is no reason

why an attempt to guide speculators expectations to the good equilibrium should

be successful.

This view has come under attack recently by papers of Morris and Shin (1998a,b).

They show that the indeterminacy of equilibria can be completely removed, once

small uncertainty of agents about the true fundamentals is introduced. More pre-

cisely, it turns out that there is a unique switching point µ¤ ¸ µ: If fundamentals

are worse than µ¤, there will be an attack with probability one. There will be no

speculative attack when fundamentals are better than µ¤. While Morris and Shin

(1998a,b) assume that fundamentals and signals have either uniform or normal dis-

tribution, we show that their method is applicable to a broader class of probability

distributions.

The additional uncertainty introduced by noisy private information about funda-

mentals, rather than worsening the multiplicity problem, is su±cient to eliminate

all indeterminacy - at ¯rst sight a paradoxical result. When agents get such noisy

signals, common knowledge about the state of the economy no longer exists. Thus,

there is no longer a correlating device on which agents can orientate their attacks.

Even if agents have relatively precise information about the fundamental state and

can deduce that rewards from a successful attack would pay o® transaction costs,

they cannot be sure how many other agents get such signals. Hence, the success of

an attack seems uncertain to them. Now, agents have to compare potential gains

and losses from success or failure of an attack. This imposes an additional equi-

librium condition that did not exist under perfect information. Depending on the

signals' distribution, it may eliminate all but one equilibrium. In the paper, we

present detailed intuition for this result and for the conditions under which there is

a unique equilibrium.

Lack of common knowledge is the driving force for the results in Morris and Shin.

Therefore, one may doubt whether uniqueness still holds when all agents can com-

monly observe an additional variable. Such a variable, which may be uncorrelated

with fundamentals (pure sunspots) or correlated (think of ¯nancial news), might

serve as a correlating device for expectations and so substitute common knowledge
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of fundamentals. We will show that the introduction of sunspots does not restore

multiplicity of equilibria. It is not the lack of a correlating device per se, but the

uncertainty about other agents' information that causes the additional equilibrium

condition.

In general, there are two kinds of uncertainty: Uncertainty about the fundamentals

of the economy and uncertainty about the behavior of other agents. Uncertainty

about behavior is a Knightian uncertainty to which we cannot assign any probabil-

ities. In Nash equilibria, the latter type of uncertainty - so called `market uncer-

tainty' (Shell, 1987, p. 549) - is assumed away: All agents are assumed to know the

strategies of all other agents. One way to model `market uncertainty' is to consider

a{posteriori equilibria (Aumann, 1974) or `rationalizable expectations' as they have

been called by Bernheim (1984) and Guesnerie (1992). Those are equilibria that

can be inferred from the model by assuming rationality alone without imposing any

further restrictions on beliefs. Rationalizable expectations equilibria (REE) are as-

certained by iterated elimination of dominated strategies.2 In general, the set of

REE exceeds the set of Nash equilibria. While there is a continuum of Nash and

REE under perfect information, we show that with uncertainty about fundamentals,

equilibrium may be unique even if we allow for uncertainty about others' strategies.

A crucial issue in the policy discussion about currency attacks is transparency. Of-

ten, it is claimed that a more transparent policy (giving more precise information

about fundamentals) will lead to a better outcome. The notion of transparency,

however, is rarely made precise. In the paper we show that, for a speci¯c example,

increased transparency of government policy will indeed reduce the likelihood of

attacks. Following Cukierman and Meltzer (1985), Faust and Svensson (1998), and

Illing (1998) we model transparency in the following way: For all states, increased

transparency reduces the noisiness of private signals (the more transparent govern-

ment policy, the more precise private agents can infer the fundamentals from their

information).

For a speci¯c example (the case of uniform distribution of states and signals), we

analyze how transparency a®ects the outburst of speculative attacks. A more trans-

parent policy turns out to shift the range of fundamentals under which speculative

2This procedure has ¯rst been described by Morgenstern (1935). Brandenburger (1992) gives
an overview over its relation to other equilibrium concepts and their decision theoretic foundations.
The close relationship to sunspot equilibria has been analyzed by Heinemann (1997).
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attacks occur in a predictable way. We show that the switching point µ¤ increases

when policy becomes less transparent: The lower transparency, the higher the like-

lihood of an attack. An intransparent policy may even trigger attacks when funda-

mentals are really good (µ¤ > ¹µ).

This extends the analysis of Heinemann (2000) who corrects a faulty expression in

Morris and Shin (1998a) and shows in which way the probability of attacks depends

on the critical mass needed for success when fundamentals are fairly transparent to

all market participants.

In the next section, we present a generalized version of Morris and Shin. Section 3

solves the model using the technique of iterated elimination of dominated strategies.

We get the same solution that Morris and Shin (1998a) obtained under more special

assumptions. Our proof shows that the solution does not change even if we introduce

sunspots and uncertainty about the behavior of other agents. In section 4 we give

an intuitive and graphical explanation of the results. In section 5 we analyze the

impact of transparency on the probability of a speculative attack. For the case of

uniform distribution of state and signals, we show that increased transparency helps

to reduce the probability of attacks. Section 6 concludes this paper and gives an

outlook on future research.

2 The Basic Model

Using essentially the same set up as Morris and Shin (1998a), we now lay out a

generalized version of their model. As in Obstfeld (1996), the fundamentals of the

economy are characterized by some parameter µ 2 R. If an attack is successful,
agents get a reward R(µ). R(µ) is non{increasing in µ: Usually, the better the

fundamentals, the lower the return of an attack. Any attack imposes transaction

costs t. If µ is low, fundamentals are weak, and a speculative attack would be

successful, even if undertaken by only one single agent, giving him a reward (net of

transaction costs) R(µ)¡t. On the other hand, if µ is high enough, the fundamentals
of the economy are so sound, that a speculative attack would never pay o®, even if

all agents would attack the currency.
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µ 2 R is a random variable not known to the agents. Only the density function

h is common knowledge. In addition, each agent observes a private signal xi 2 R.
There is a continuum of agents i 2 [0; 1]. The signals xi are i.i.d. random variables

distributed around µ with ¯nite variance and expected value. Their density function

g is common knowledge as well. The cumulative distribution of xi given µ is denoted

by G(xi j µ).

We assume that @G=@µ < 0 for all xi and µ with 0 < G(xi j µ) < 1, i.e. a better state
leads to a smaller proportion of speculators getting signals worse than some given xi.

In addition, we assume thatG(xijµ) approaches one [zero] for µ ! ¡1 [+1] for each
¯nite xi. Similarly, we assume that conditional cumulative distribution of µ given

signal xi, denoted by H(µ jxi) decreases in xi whenever 0 < H(µ jxi) < 1. This says
that posterior probability for the state being worse than some given µ decreases if the

signal gets better. Both assumptions imply that xi and µ are positively correlated.

They characterize the kind of signals that we consider here. Uniform and normal

distributions as in Morris and Shin (1998a,b) ful¯ll these requirements.

Agents must decide on whether to attack the currency or not. An individual strategy

is a function ¼i : R ! f0; 1g with the interpretation that agent i attacks the currency
after getting signal xi if ¼i(xi) = 1. If all agents get the same signal x, a fraction

¼(x) :=
Z 1

0
¼i(x) di (1)

will attack the currency. If the fundamental state is µ, a fraction

s(µ; ¼) :=
Z

R
¼(x) g(xjµ) dx (2)

will attack with probability one, because signals are independent.

There is a function a : R ! [0; 1] that assigns to each state of the world the

proportion of attacking agents necessary for an attack to be successful. We assume

that a is continuous and non{decreasing and there is a µ 2 R with a(µ) = 0 if and

only if µ · µ,

A(¼) := fµ j s(µ; ¼) ¸ a(µ)g (3)
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is the event where attacks are successful with probability one.

If an agent attacks, she must pay transaction costs t > 0. If the attack is successful

the attacking agents get a reward of R(µ). We assume that R is non{increasing,

R(µ) > 0 for all µ, there exists a unique ¹µ 2 R with R(¹µ) = t, and µ < ¹µ.

The expected payo® of an attack for an agent who gets signal xi is

u(xi; ¼) :=
Z

A(¼)
R(µ)h(µjxi) dµ ¡ t: (4)

It is crucial for uniqueness that there are \bad" [\good"] states at which attacking

[non{attacking] is a dominant strategy. Morris and Shin (1998a) assume limited

support of the signal's distribution. But, it is su±cient to assume that the expected

payo® of an attack, provided that none of the other agents follows the attack, is

positive for some signals while the expected payo® of an attack by all speculators

is negative for some other signals. Formally, we assume that there exist signals

x; ¹x 2 R, such that

u(x; 0) :=
Z µ

¡1
R(µ) h(µ jx) dµ ¡ t = 0 (5)

and

u(¹x; 1) :=
Z +1

¡1
R(µ)h(µ j ¹x) dµ ¡ t = 0: (6)

As will be shown in an appendix at the end of the paper, u(xi; 0) and u(xi; 1) are

decreasing in xi. Thus attacking is a dominant strategy for all signals xi < x, while

non{attacking is dominant for xi > ¹x.
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3 Rationality and Common Knowledge

In this section we solve the model by assuming rationality, common knowledge of

the game, and mutual knowledge of rationality. We do not assume that agents

know the strategies of each other. We adopt the method of iterated elimination of

dominated strategies that yields the set of rationalizable expectations equilibria3.

This includes all Nash equilibria but also all a{posteriori or sunspot equilibria. We

get the same condition for uniqueness that has been obtained by Morris and Shin

(1998a,b) for special distributions. Thus, their result is robust, even if sunspots

as a correlating device or di®ering subjective beliefs about the strategies of other

players are considered4. It is one intriguing feature of this game that it has a unique

rationalizable expectations equilibrium under fairly general conditions when there is

uncertainty about fundamentals while there is a continuum of Nash equilibria under

perfect information.

Rationality requires the agents not to play a dominated strategy. Agents who receive

signals below x will attack the currency, agents who receive signals above ¹x will not.

An agent who knows the game and knows that other players are rational and know

the game as well, can deduce that none of them will play a dominated strategy. The

expected payo® of an attacking agent rises with the probability of success. Success

is more likely, the more agents attack at any given distribution of private signals.

Hence, the worst [best] strategy an attacking agent must fear [can hope for] to be

played by her colleagues is Ix [I¹x], where Ik is de¯ned by

Ik(x) :=

(
1 if x < k
0 if x ¸ k

: (7)

If all agents play strategy Ik then all agents getting signals below k will attack the

currency. Thus,

s(µ; Ik) =
Z k

¡1
g(xjµ) dx = G(kjµ): (8)

3For an application of this method to a game of similar structure see Carlsson and van Damme
(1993).

4This can also be shown by application of a result by Milgrom and Roberts (1990), who proved
that for supermodular games as ours the sets of pure Nash equilibria and rationalizable strategies
have identical bounds.
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Since a(µ) is increasing from zero at µ and G(kjµ) is non{increasing in µ and ranges
from 1 to 0, there is a unique µ̂(k) ¸ µ, de¯ned by

µ̂(k) := supfµ j a(µ̂) = s(µ̂; Ik)g (9)

such that

A(Ik) = (¡1; µ̂(k)]: (10)

The expected payo® to an attacking agent i when others play strategy Ik is given

by

u(xi; Ik) =
Z µ̂(k)

¡1
R(µ) h(µ jxi) dµ ¡ t: (11)

After eliminating all dominated strategies, it unambiguously pays to attack the

currency when u(xi; Ix) > 0, it does not pay to attack when u(xi; I¹x) < 0. As will

be shown in the appendix, u(xi; Ik) is decreasing in xi. Hence, there are unique

values x1; ¹x1 2 (x; ¹x) for which

u(x1; Ix) = 0 and u(¹x1; I¹x) = 0; (12)

and we may eliminate all strategies that assign a positive fraction of non{attackers

to signals below x1 or a positive fraction of attackers to signals above ¹x1

Now we are ready to de¯ne step n > 1 of the iterative process xn; ¹xn 2 R by

u(xn; Ixn¡1) = 0 and u(¹xn; I¹xn¡1) = 0: (13)

Given that agents are rational and rationality is mutual knowledge, strategies with

¼i(x) < 1 for x < xn or ¼i(x) > 0 for x > ¹xn are inconsistent with n{order

knowledge of the game. Common knowledge takes the process to its limit. De¯ne

x1 = limn!1 xn and ¹x1 = limn!1 ¹xn.
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Because xn ¸ xn¡1 and ¹xn · ¹xn¡1 for all n, the limit points are given by

x1 = inffx j u(x; Ix) = 0g and ¹x1 = supfx j u(x; Ix) = 0g: (14)

Since u(x; Ik) is decreasing in x, strategy combinations in which all agents play Ix1

or in which all agents play I¹x1 are Nash equilibria. Thus, we have multiple equilibria

if x1 < ¹x1.

On the other hand, if x1 = ¹x1 =: x¤, a rationalizable expectations equilibrium is a

strategy pro¯le with

¼i(x) =

(
1 if x < x¤

0 if x > x¤
: (15)

for all i. Agents who get signal x¤ are indi®erent between attacking and non{

attacking. But they have mass zero with probability one. µ¤ := µ̂(x¤) is the threshold

of the fundamental state up to [above] which a currency attack will occur with

probability one [zero]. I.e., in all equilibria A(¼) = (¡1; µ¤].

If u(x; Ix) is decreasing in x, there can only be one point x
¤ at which u(x¤; Ix¤) = 0,

so that there is a unique threshold as described above. These results are in line with

Morris and Shin (1998a,b), who proved that u(x; Ix) is decreasing in x if g and h are

either uniform distributions or normal with a su±ciently small variance Var(xijµ).
But note that the in°uence of x on u via Ix is positive and may exceed the negative

partial derivative @u=@x. In section 4 we attempt an illustration of this case.

Suppose now, that we have yet another random variable s 2 R which is independent
from µ and xi and commonly observable. It may be viewed at as sunspots. We

have shown that the iterated elimination of dominated strategies may lead to a

unique threshold µ¤ for all rationalizable expectations equilibria. This threshold

cannot depend on sunspots. To see why, think of agents who observe a certain

realization of s. Now, a strategy is a function ~¼(s; xi) 2 f0; 1g that assigns one of
the two possible actions to each combination of sunspots and individual signal. A

dominated strategy remains dominated for all realizations of s. Therefore, we can

eliminate all strategies that assign positive probability to agents who do [not] attack

for some sunspots when they get a signal above ¹x [below x]. The iterated elimination
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can be pursued just the same way as before and leads to the same switching point

x¤ for each s. Hence, sunspots can only matter for agents who get signal x¤ which

is a proportion of mass zero with probability one. Thus, µ¤ is independent of s.

If x1 < ¹x1, we have multiple Nash equilibria. It is well known that multiplicity of

Nash equilibria is su±cient for the existence of equilibria in which sunspots matter.

Since Ix1 and I¹x1 are equilibrium strategies, we can construct a sunspot equilibrium

easily by de¯ning

~¼(s; xi) =

(
Ix1(x

i) if s < ¹s
I¹x1(x

i) if s ¸ ¹s

for some arbitrary number of sunspots ¹s. Rationalizable expectations allow even for

a wider variety of strategies. Since strategies are not known by other agents, some

agents might play Ix1 while others play I¹x1 .

Whatever combination of strategies is played, the ones that have been eliminated

can neither occur in sunspot equilibria, nor under rationalizable expectations. So,

the worst combination of strategies for the currency threatened by attack is I¹x1 ,

the most harmless is Ix1 and the set of states at which an attack must be expected

for some equilibria but not for others is given by
³
µ̂(x1); µ̂(¹x1)

i
.

4 Intuitive Explanation

In this section we give an intuitive and graphic explanation why there may be a

unique equilibrium under uncertainty about fundamentals. We also explain under

which conditions there are multiple equilibria.

Let us ¯rst describe a Nash equilibrium under perfect information. For any fun-

damental state µ 2 (µ; ¹µ) it pays to attack if and only if a su±cient proportion of
speculators a(µ) 2 [0; 1] follows the attack. Hence, any combination of strategies

(¼i)i2[0;1] with

¼i(µ) = ¼(µ) for all µ 6= ¹µ,
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¼i(µ) = 1 for µ · µ,

¼i(µ) = 0 for µ > ¹µ; and
³
¼(¹µ) ¸ a(¹µ) or ¼(¹µ) = 0

´

is a Nash equilibrium.

Within the interval (µ; ¹µ) there are two possible outcomes associated with each real-

ization of µ: attack or no attack. Since the fundamental state is common knowledge,

either all agents or none will attack the currency.5 In equilibrium an attack is al-

ways successful. Thus, agents do not need to compare the potential reward from

a successful attack with the potential loss from an attack that would fail. Even

for relatively good states, close to ¹µ, where rewards are rather low compared to

transactions costs, agents may attack the currency.

The situation changes dramatically if there is some uncertainty about µ. Given that

there are some states at which attacking and some others at which non{attacking

is a dominant strategy, there must be states at which the success of an attack is

uncertain. At those states agents have to weigh potential gains and losses in the

two events that an attack succeeds or fails. This imposes an additional equilibrium

condition that did not exist in the perfect information case.

Consider a state close to ¹x. Many agents will receive a signal above ¹x for which non{

attacking is a dominant action. They will not attack. Agents who receive signals

below ¹x expect many others to get signals above, so they attach a high probability

to failure and abstain from attacking too, even if they expected a reward in the case

of success. In equilibrium switching points, rewards of an attack weighted with the

probability of success must equal the expected losses in the case of failure.

Figure 1 shows a Nash equilibrium under perfect information with four points at

which agents switch between attacking and non{attacking. For the illustration we

assume that state µ has uniform distribution in the relevant area and signals xi

are uniformly distributed in [µ ¡ ²; µ + ²]. The event that an attack succeeds [fails]
given some signal x is that part of the interval [x ¡ ²; x + ²] for which s(µ; ¼) ¸
[<] a(µ). The lower part of Figure 1 shows that only one of the switching points

ful¯lls the equilibrium condition that gains from a successful attack weighted with

5except for ¹µ, at which agents may be indi®erent.

12



the probability of success equal the losses from a failed attack weighted with the

probability of failure.

Insert Figure 1 about here!

Consider an agent receiving signal x¤. Since conditional distribution of µ given

xi is uniform, the agent attaches equal weight to all fundamental states within

(x¤ ¡ ²; x¤ + ²). At any state µ, individual signals are dispersed in (µ ¡ ²; µ + ²). If
all agents pursue the strategy to attack if and only if their signal is below x¤, the

proportion of attacking agents at any of these states is s(µ; Ix¤) =
x¤¡µ+²
2 ²

2 [0; 1].

The agent can expect an attack to succeed whenever this proportion exceeds a(µ).

The conditional probability of this event, given signal x¤, is 1¡ a.

The agent weights expected return under success against expected loss under fail-

ure. For the marginal attacker, who gets signal x¤, expected return under success
R µ¤
x¤¡²R(µ) dµ ¡ t, weighted with probability 1 ¡ a(µ¤), will just compensate loss t

weighted with the probability of failure a(µ¤).

Consider the case (illustrated in Figure 1) that a(x¤) > 1=2. If the true state were x¤

then only half of all agents would get a signal below x¤ and an attack would fail. The

agent getting signal x¤ knows that the true state must be su±ciently worse (µ · µ¤)

to bring about a distribution of signals, such that at least a(µ¤) > 1=2 agents get

signals below x¤ and attack. To compensate for the low subjective probability of

this event, rewards R(µ) must be correspondingly higher than transaction costs.

If uncertainty shrinks to almost zero (e.g. by reducing the variance), the addi-

tional equilibrium condition converges to the equality of gains and losses at x¤,

each weighted with posterior probability of µ being higher or lower than µ̂(x¤) given

that signal.

It is obvious that there can only be one equilibrium under the distributional pre-

sumptions made in Figure 1. This gives an intuitive insight that may be misleading

once we allow for more general distributions. As Morris and Shin (1998b) have

shown, there may be multiple equilibria if there is a strong dispersion of individ-

ual signals. They demonstrated that u(x; Ix) may be rising in x if the variance

associated with G(xjµ) is big enough.
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In Figure 2 we illustrate such a case for which the expected payo® of an attack at

some signal x, given that others play strategy Ix, is smaller than the expected payo®

of an attack at x0 > x, given that others play Ix0. After observing a signal, agents

update their initial beliefs about the fundamental. If the signal is low, conditional

density of µ shifts to the left, whereas it shifts to the right for high signals. The

more precise the signal, the stronger this shift. With decreasing precision of the

signal, agents attach more and more weight to the a{priori (unconditional) density

h(µ) relative to the signal itself. The larger the signals' dispersion, the less moves

conditional density of µ given signal x relative to the signal itself. In the extreme

case where the signal is completely unrelated to µ the conditional density equals the

unconditional one. So inevitably with high dispersion, conditional probability of the

state being worse than the signal rises with better signals: H(xjx) << H(x0jx0).

Now consider strategies Ix and Ix0 . The events where attacks are successful are given

by (¡1; µ̂(x)] and (¡1; µ̂(x0)] respectively. u would unambiguously increase in x
if both a and R were constant. Rising a and falling R dampen this e®ect and will

eventually reverse it. But as long as both a and R are relatively °at, u can still

be increasing. The dampening e®ects work in two ways: The steeper the reward

function R, the larger is the direct negative e®ect @u=@x. An increase in the hurdle

a(¢) works in a more subtle way. It shifts µ̂(x) to the left relative to x. This reduces
the probability of attacks being successful and so tends to reduce expected rewards.

As is shown in Figure 2, an overall positive e®ect on u via Ix can easily dominate

the negative direct e®ect. If a is rather °at, then µ̂(x) does not fall too much behind

a rising x, and posterior probability of an attack being successful given signal x

and strategy Ix rises in x: H(µ̂(x)jx) < H(µ̂(x0)jx0). If R is °at as well (or even

constant), then changes in u(x; Ix) are driven by changes in posterior probability of

success. Hence, u(x; Ix) < u(x; Ix0).

Insert Figure 2 about here!

Now choose transaction costs t, such that u(x; Ix) < 0 < u(x0; Ix0). Then there must

be equilibrium switching points like x1 < x and ¹x1 > x0. Hence, we have multiple

equilibria with di®erent thresholds. From Figure 2 and the description above, it is

clear that uniqueness is the easier to get the smaller the dispersion of signals or the

steeper functions a and R.
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On the other hand, if a and R are both constant then for any reasonable distribution

there is an interval in which u(x; Ix) is rising in x. If, in addition, the distribution of

µ is about symmetric and peaks around the levels where currency attacks are to be

expected from the values of a, R and t, then there are multiple equilibria whenever

there is considerable dispersion in private information.

This leads to the next question we want to address: Does this theory give any insight

in optimal information policy by the authorities?

5 Transparency

In the wake of the Asian crisis, much attention has been paid to the question how

policy should be designed to make speculative attacks more di±cult. Frequently,

based on models with multiple equilibria, it is argued that policy should help to

coordinate expectations such that they are guided to the \good" (non-attacking)

equilibrium. Since within such models, expectations are rather arbitrary and there is

no reason why sunspot events triggering a crisis should be related to policy variables,

such reasoning is rather ad hoc. In sunspot models, there is no lack of coordination

of expectations, and so it is hard to see why increased coordination should be able

to improve upon the outcome.

As a response to the Asian crisis, international policy makers recently favor a di®er-

ent route: They suggest that increased transparency could help to avoid speculative

crashes and, simultaneously, make sure that unsustainable pegs will be corrected in

good time.6 In this section we analyze to what extent the model set up in the last

sections can shed light on this issue. In order to do that, we have to make precise

the notion of transparency. Along the route suggested by work on monetary policy,

such as Cukierman and Meltzer (1986), Faust and Svensson (1998) and Illing (1998),

transparency is modeled in the following way: Higher transparency of government

policy increases the precision of private signals. The more transparent the policy,

the better private agents can infer the fundamentals from their information.

6See, for instance, recent calls by IMF (1998a,b) and BIS (1998) for more transparency.
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In the model, government is informed about the fundamentals µ and observes the

proportion s(µ; ¼) of all agents attacking. If s(µ; ¼) ¸ a(µ), the currency will be

devalued. Government cannot convey information about the true state to the public,

and so private agents receive only noisy signals. But by committing to a more

transparent policy (e.g., allowing access to information by outside observers such

as independent rating agencies), the noise in private signals can be reduced. We

assume that government can commit in advance to pursue an information policy

with a given degree of transparency. Thus, increased transparency reduces the

noisiness of private signals in all states.7

The results obtained in the last section suggest that higher transparency in the sense

modeled here may indeed help to reduce market uncertainty and so reduce incentives

for speculative attacks: Multiplicity of equilibria is less likely the higher the precision

of private signals. But here, we are interested in a more speci¯c question: Can higher

transparency help to reduce the likelihood of attacks even if equilibrium is unique?

In order to focus on this issue, we concentrate on the case of uniform distributions of

fundamentals and signals. For that speci¯c case, we analyze how increased variance

of private signals a®ects the probability of speculative attacks.

Assume that the fundamental state µ and private signals xi have uniform distribu-

tions, such that

h(µ jxi) =
(

1
2 ²

if xi ¡ ² · µ · xi + ²

0 otherwise
(16)

and

g(xi j µ) =
(

1
2 ²

if µ ¡ ² · xi · µ + ²

0 otherwise
(17)

This is the case for which Morris and Shin (1998a) proved that there is a unique

equilibrium with an associated switching point x¤ and a threshold µ¤ = µ̂(x¤) char-

acterized by two equations:

u(x¤; Ix¤) =
1

2 ²

Z µ¤

x¤¡²
R(µ) dµ ¡ t = 0; (18)

7Of course, ex post, once the true state is known, government may renege on its commitment,
but analyzing these incentives is left for future research.
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s(µ¤; Ix¤) =
x¤ ¡ µ¤ + ²

2 ²
= a(µ¤): (19)

Total di®erentiation of (18) and (19) and rearranging terms yields

dµ¤

d²
= 2

(1¡ a(µ¤))R(x¤ ¡ ²)¡ t
R(x¤ ¡ ²)¡R(µ¤) + 2 ² a0(µ¤)R(x¤ ¡ ²) : (20)

Since R is positive and non{increasing, the denominator is positive. The numerator

is positive if and only if

t < (1¡ a(µ¤))R(x¤ ¡ ²) (21)

Suppose R is constant around equilibrium. Then (18) and (19) imply 1¡ a(µ¤) =
t=R. Threshold µ¤ is determined by this equation and independent of ². Switching

point x¤ shifts upwards [downwards] accordingly if a(µ¤) > [<] 1=2. So if R is

constant, transparency has no e®ect on the probability of speculative attacks.

Now, suppose R0 < 0. Equilibrium condition (18) implies

1

2 ²

Z µ¤

x¤¡²
R(µ)dµ = t <

1

2 ²

Z µ¤

x¤¡²
R(x¤ ¡ ²)dµ = µ¤ ¡ x¤ + ²

2 ²
R(x¤ ¡ ²): (22)

Using (19), we ¯nd that µ¤¡x¤+²
2 ²

= 1 ¡ a(µ¤), so t < (1 ¡ a(µ¤))R(x¤ ¡ ²). Hence

@ µ¤=@² > 0 and transparancy decreases the probability of speculative attacks.

In Figure 3 we give a graphical illustration of this point. If dispersion increases

from ²1 to ²2, the equilibrium switching point x¤ must adjust in a way that gains

from those additional states where attacks are successful (on the left margin of

[x¤ ¡ ²; x¤+ ²]) equal losses from additional states in which attacks fail (on the right
margin of this interval). If x¤ would adjust in a way such that µ¤ remained constant

(see Figure 3) then expected gains from an attack given signal x¤ would exceed

expected losses. Because of R0 < 0, additional rewards on the left margin are ever

increasing, while additional losses are always of the same magnitude t. Hence, an

attack at x¤ is promising, and the equilibrium switching point has to move further

up and drags µ¤ in the same direction. This e®ect vanishes if R is constant.

Insert Figure 3 about here!
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An increase in the conditional variance of µ given some signal x puts a larger weight

on states that are further left and, given R0 < 0, associated with higher gains

from successful attacks. Higher weight on states to the right does not change the

expected payo® of an attack, because losses from a failed attack (transaction costs)

are constant.

If dispersion of individual signals ² shrinks to almost zero, threshold µ¤ approaches

µ¤0 2 (µ; ¹µ) uniquely de¯ned by

R(µ¤0) (1¡ a(µ¤0)) = t (23)

The l.h.s. of (23) are the gains from successful attacks weighted with the probability

of success, which is 1¡a. t are the costs that have to be borne with certainty. This
result is proven in Heinemann (2000) and corrects a faulty expression in Morris

and Shin (1998a). On the other hand, if dispersion ² is large, threshold µ¤ may

even exceed ¹µ which has been the upper bound on Nash equilibria under perfect

information.

Since µ is the information on which the government's decisions are based, these

results give us a ¯rst hint on how transparency might in°uence the probability of

speculative attacks. Assuming uniform distribution and R0 < 0 we ¯nd that µ¤

rises with rising variance of individual information about µ. Transparent policy may

reduce the dispersion of individual information at all states, i.e. the variance of g(¢jµ)
for all µ. This lowers µ¤ and thus, reduces the probability of speculative attacks.

Using the same example, Morris and Shin (1998a) claim that without common

knowledge, speculative attacks may be triggered even though everyone knows that

fundamentals are sound. They conclude that public announcements restoring com-

mon knowledge stabilize the market. This interpretation may be misleading. With

common knowledge, a range of fundamental states (µ; ¹µ] exists, for which an attack

occurs at some equilibria but fails to come about at others. If dispersion of indi-

vidual information approaches zero, the unique equilibrium threshold µ¤0 is in the

interior of this interval. Thus, a public announcement that restores common knowl-

edge of fundamentals opens the way for attacks at states above µ¤0 and may, instead

of preventing it, even trigger an attack.
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Transparency in the sense that common knowledge is restored, as advocated by

Morris and Shin, makes the onset of a currency crisis unpredictable. It may prevent

crises in relatively bad states in (µ; µ¤0), where they would happen with probability

one if the states were not common knowledge. But common knowledge bears the

danger that a crisis occurs at relatively good states in (µ¤0; ¹µ) at which it could

be prevented by an information policy that reveals fundamentals as precisely as

possible, but stops short of common knowledge. One way to achieve this is in giving

everybody reliable information on request without announcing it publicly. Then,

speculators can never be certain that other agents have the same information at any

given moment.

6 Conclusion and Outlook on Future Research

Building up on a reduced game developed by Morris and Shin (1998a) to model

currency attacks under noisy private information, we have proven that the set of

fundamental states for which currency attacks occur in some equilibria but not in

others is robust against the introduction of sunspots and diverse beliefs about strate-

gic behavior. Using the technique of iterated elimination of dominated strategies,

the paper characterized conditions under which equilibrium is unique when agents

receive noisy information about fundamentals. The noise in the signals imposes

an additional equilibrium condition which | for speci¯c distributions | leads to a

unique outcome, whereas multiple equilibria prevail under common knowledge about

fundamentals. In particular, the condition for uniqueness of equilibrium is the same

whether Nash or rationalizable expectations equilibria are considered.

For a speci¯c example, we showed that increased transparency reduces the proba-

bility of speculative attacks. It would be rash, however, to conclude from the model

that policy should unambiguously aim for more transparency.

First, we should note that this result does depend on the assumption of uniform

distributions. For the case of normal distributions of state and signals, Morris

and Shin (1999) have shown that a decreasing variance of private signals need not

monotonically reduce the probability of speculative attacks.
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Second, it is an open question how government could commit to transparency. In the

model, µ represents the government's information about fundamentals. It may have

strong incentives to misrepresent and distort information in some states, whereas it

may be inclined to give very precise signals for other states. In general, the authority

may wish to minimize µ¤ by choosing g, which may be interpreted as information

policy of the government. This optimization might lead to di®erent conditional

variances of xi for di®erent states µ. The result of such an optimization problem

depends on various assumptions about the shape of the functions used here, and the

optimization problem itself is plagued by the multiplicity of equilibrium strategies

for some information policies. In addition one should consider rational expectations

about information policy. A more general analysis of optimal information policy is

a promising task for future research.

Third, the model is not suitable to answer the question under what conditions spec-

ulative attacks should indeed be prevented. Based on Krugman (1979), the single

objective of the government is to prevent currency attacks. The better the funda-

mentals, the more resources are available to defend the currency and the higher the

hurdle for a successful attack. Both an increase in transactions costs (such as a To-

bin tax) and the imposition of capital controls will reduce the likelihood of attacks.

The model can be seen as a reduced form without specifying government objec-

tives explicitly. Preventing attacks may not necessarily be good for the economy.

When fundamentals are bad enough, a surrender of an unsustainable peg could be

welfare improving. Obstfeld (1996) gave an explicit structure modeling government

objectives. To analyse welfare implications of transparency by introducing lack of

common knowledge in such a set up could be a promising extension of the current

analysis.

Appendix

First, we show that u(x; Ik) is decreasing in x for all k. Since R(µ) is non{increasing

in µ, we can de¯ne an \inverse" function R¡1(p) := supfµ jR(µ) ¸ pg, and then we
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have

u(x; Ik) =
Z µ̂(k)

¡1
R(µ) h(µ jx) dµ ¡ t: (24)

= R(µ̂(k))H(µ̂(k) jx) +
Z R(¡1)

R(µ̂(k))
H(R¡1(y) jx) dy ¡ t: (25)

From this we get

@u

@x
= R(µ̂(k))

@H(µ̂(k) jx)
@x

+
Z R(¡1)

R(µ̂(k))

@H(R¡1(y) j x)
@x

dy: (26)

Since R(¢) > 0 and H(¢jx) is decreasing in x whenever 0 < H < 1, this derivative is

negative for u(¢) > ¡t.

Now, consider u(x; 0) and u(x; 1) as de¯ned by (5) and (6). Here, we can use the

same argument if we replace µ̂(k) by µ and 1 respectively.
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Figure 1 The bold graph ¼ is a Nash equilibrium under perfect information. There

are four arbitrary switching points in (µ; ¹µ). ² stands for the dispersion of individual

signals. The fraction of agents getting a signal at which ¼(x) = 1 is given by

s(µ; ¼). Expected gains from a successful attack at x1 or x2, given by areas A and

D respectively, exceed expected losses of B and C. A point like x4 cannot occur in

an equilibrium under uncertainty, because it leads to loss t with probability one. x¤

is the only possible switching point, characterized by the equality of expected gains E

and losses F.
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Figure 2 Compare two signals x < x0. Conditional probabilities for the success of

an attack given strategies Ix and Ix0 , respectively, are H(µ̂(x)jx) < H(µ̂(x0)jx0).
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Figure 3 Areas A and B are of equal size, so that x¤(²1) and µ¤(²1) are the equi-

librium switching point and threshold for signals distributed uniformly in an ²1 sur-

rounding of the true state. If dispersion is increased to ²2 and strategies are ad-

justed to I~x, such that the threshold remains µ¤(²1), then expected gains are given by

A+C +E and exceed expected losses B+D by the triangular area E. Note that for

²2 = 2 ²1, area C = A and D = B.
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Footnotes

1 See Krugman (1979) for the ¯rst model of speculative attacks with a unique

equilibrium.

2 This procedure has ¯rst been described by Morgenstern (1935). Brandenburger

(1992) gives an overview over its relation to other equilibrium concepts and their

decision theoretic foundations. The close relationship to sunspot equilibria has been

analyzed by Heinemann (1997).

3 For an application of this method to a game of similar structure see Carlsson and

van Damme (1993).

4 This can also be shown by application of a result by Milgrom and Roberts (1990),

who proved that for supermodular games as ours the sets of pure Nash equilibria

and rationalizable strategies have identical bounds.

5 except for ¹µ, at which agents may be indi®erent.

6 See, for instance, recent calls by IMF (1998a,b) and BIS (1998) for more trans-

parency.

7 Of course, ex post, once the true state is known, government may renege on its

commitment, but analyzing these incentives is left for future research.
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