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Abstract

The Octagonal Selection and Clustering Algorithm in Regression (OSCAR) pro-

posed by Bondell and Reich (2008) has the attractive feature that highly correlated

predictors can obtain exactly the same coe�cient yielding clustering of predictors.

Estimation methods are available for linear regression models. It is shown how

the OSCAR penalty can be used within the framework of generalized linear mod-

els. An algorithm that solves the corresponding maximization problem is given.

The estimation method is investigated in a simulation study and the usefulness is

demonstrated by an example from water engineering.

Keywords: Variable Selection, Clustering, OSCAR, LASSO, Generalized Linear Mod-
els.

1 Introduction

Within the last decades various regularization techniques for generalized linear models
(GLMs) have been developed. Most methods aim at stabilizing estimates and �nding
simpler models. In particular variable selection has been a major topic. One of the
oldest methods is ridge regression, which has been proposed by Hoerl and Kennard
(1970). In ridge regression the parameter space is restricted to a p-sphere around the
origin

∑p
j=1 β

2
j ≤ t, t ≥ 0. Another popular shrinkage methods is the LASSO for Least

Absolute Shrinkage and Selection Operator (Tibshirani, 1996), where the parameter
space is restricted to a p-crosspolytope

∑p
j=1 |βj| ≤ t, t ≥ 0. The restriction induces

shrinkage and variables selection. In general, restricted parameter spaces are called
penalty regions. For many penalty regions the problem can be transformed into a pe-
nalized likelihood problem by adding a penalty term to the log-likelihood. For ridge
regression the penalty term is λ

∑p
j=1 β

2
j and for the LASSO it is λ

∑p
j=1 |βj|, with λ ≥ 0
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in both cases. A combination of the ridge and the LASSO uses λ1
∑p

j=1 β
2
j +λ2

∑p
j=1 |βj|.

It is well known as the elastic net (Zou and Hastie, 2005).
Zou and Hastie (2005) showed that variable selection leads to unsatisfying results

in the case of multicollinearity, that is, if some of the covariates are highly correlated.
Then procedures like the LASSO tend to include only a few covariates from a group of
the highly correlated covariates. They show that for the elastic net a grouping property
holds, which means that the estimated parameters of highly correlated covariates are
similar up to sign. An alternative penalty region that enforces grouping of variables was
proposed by Bondell and Reich (2008) under the name OSCAR for Octagonal Selection
and Clustering Algorithm in Regression. For LASSO and the elastic net (EN) several
methods have been proposed to solve the penalized log-likelihood problem in generalized
linear models (GLMs); (see Park and Hastie, 2007b; Goeman, 2010a; Friedman et al.,
2010). For OSCAR it seems that algorithms are available only for the linear model. In
the following estimation methods for OSCAR are proposed that work within the more
general GLM framework.

In Section 2 we give a short overview on GLMs. In Section 3 the OSCAR penalty
region is discussed. In Section 4 we use the results of Section 3 and present an algorithm
for estimating the corresponding restricted regression problem based on the active set
method. A simulation study is presented in Section 5, which uses settings that are
similar to the settings used by Bondell and Reich (2008). A real data example with
water engineering background is given in Section 6.

2 Generalized Linear Models

We consider data (y, X) where y = (y1, ..., yn)
T is the response and X is the (n × p)

matrix of explanatory variables that contains n observations xTi = (xi1, ..., xip), i =
1, ..., n. In GLMs (McCullagh and Nelder, 1983) it is assumed that the distribution of
yi|xi is from a simple exponential family

f(yi|θi, φ) = exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
, (1)

where θi is the natural parameter and φ is a dispersion parameter; b(.) and c(.) are
speci�c functions corresponding to the type of the family. In addition, it is assumed
that the observations are (conditionally) independent. For given data the conditional
expectation of yi|xi, µi = E(yi|xi), is modeled by

g(µi) = ηi or µi = h(ηi),

where ηi = β0 + x
T
i β is the linear predictor, g(.) is the link function and h(.) = g−1(.)

is the response function. Let β0 = (β0, β
T )T denote the parameter vector that includes

the intercept. Then the corresponding design matrix is Z = (1n, X) and the linear
predictor is η = Zβ0. The maximum likelihood estimate (MLE) is given by

β̂0 = argmaxβ0

{
n∑

i=1

li(β0)

}

2



where li(β0) is the likelihood function of the ith observation. The maximum likelihood
problem can be iteratively solved by

β̂
(l+1)

0 = argminβ0

{
βT0Z

TŴ
(l)
Zβ0 − 2βT0Z

TŴ
(l)
ỹ(l)
}
, (2)

where

ỹ(l) = Zβ̂
(l)

0 + (D̂
(l)
)−1
(
y − µ̂(l)

)

is the working response vector,

Ŵ
(l)

= (D̂
(l)
)T (Σ̂

(l)
)−1D̂

(l)

is the weight matrix with the derivative matrix of the response function,

D̂
(l)

= diag

{
∂h(η̂

(l)
i )

∂η

}n

i=1

,

and the matrix of variances

Σ̂
(l)

= diag
{
φV (h(η̂

(l)
i ))

}n
i=1

,

all of them evaluated at the previous step. V (.) is the variance function, which is de-

termined by the distributional assumption and µ̂(l) is the estimated prediction of the

previous step. The update is repeated until ‖β̂(l+1)

0 − β̂(l)

0 ‖/‖β̂
(l)

0 ‖ < ε for small ε. The
re-weighted least square estimates

β̂
(l+1)

0 =
(
ZTŴ

(l)
Z
)−1

ZTŴ
(l)
ỹ(l)

is also known as Fisher scoring. The algorithm we will present uses a constrained Fisher
scoring combined with the active set method that uses the speci�c structure of the
OSCAR penalty.

3 The OSCAR Penalty Region

In the following we consider standardized covariates, that is,
∑n

i=1 xij = 0 and (n −
1)−1

∑n
i=1 x

2
ij = 1. When Bondell and Reich (2008) introduced the OSCAR for the

normal linear regression they also centered the responses by using
∑n

i=1 yi = 0. If all
covariates and the response are centered no intercept has to be estimated. Then the
OSCAR can be given as the constrained least-squares problem

β̂ = argmax
{
‖y −Xβ‖2, s.t. β ∈ Oc, t(β)

}
, (3)

with OSCAR penalty region given by

Oc, t(β) =
{
β :

p∑

j=1

|βj|+ c
∑

1≤j<k≤p
max {|βj|, |βk|} ≤ t

}
. (4)
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The �rst sum
∑p

j=1 |βj| is the LASSO penalty which induces variable selection. The
second sum c

∑
1≤j<k≤pmax {|βj|, |βk|} accounts for clustering of similar variables. With

c ≥ 0 and t > 0 an equivalent form of the OSCAR penalty (4) is

Oc, t(β) =
{
β :

p∑

j=1

{c(j − 1) + 1} |β(j)| ≤ t

}
, (5)

where |β(1)| ≤ |β(2)| ≤ ... ≤ |β(p)| and |β(j)| denotes the jth largest com-
ponent of |β| = (|β1|, ..., |βp|)T . The parameter c controls the clustering and
t the amount of shrinkage. Bondell and Reich (2008) gave a MatLab-code at
http://www4.stat.ncsu.edu/�bondell/software.html which solves the least square
problem under constraints

Oα, t(β) =

{
β : (1− α)

p∑

j=1

|βj|+ α
∑

1≤j<k≤p
max {|βj|, |βk|} ≤ t

}
(6)

=

{
β :

p∑

j=1

{α(j − 1) + (1− α)} |β(j)| ≤ t

}
(7)

where α ∈ [0, 1] and t > 0. If α = 0, respectively c = 0, the OSCAR is equivalent to
the LASSO. For appropriate values of c, α and t the penalty regions (4) and (6) are
equivalent. In the following we use Oα, t(β) from (6) and (7).

In contrast to the Elastic Net penalty the OSCAR enforces that parameters obtain
the same value. Bondell and Reich (2008) derived a relationship between the clustering
of covariates (which obtain the same value) and their correlation. The word octagonal
in OSCAR is motivated by the geometry of the penalty region. The projection of the
penalty region into each βi-βj-plane is an octagon. The octagonal shape accounts for the
estimation of identical parameters as well as variable selection because the coordinates
of the vertices have a very speci�c structure. In particular the absolute values of the
coordinates of a vertex on the surface are equal or zero. So each convex combination of
vertices on the surface describes an area with speci�c properties. If less than p vertices
are convexly combined one obtains variable selection and/or clustering. For illustration,
Figure 1 shows an OSCAR penalty region in IR3.

Figure 1: OSCAR penalty region from two di�erent perspectives. On the right it is the

projection on a βi-βj-plane.
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In Petry and Tutz (2011) it is shown that the OSCAR penalty is the intersection
of 2p · p! halfspaces. So Oα, t(β) can be rewritten into a system of inequations Aβ ≤ t
where A is the (2p · p!) × p-dimensional matrix A = (a1, ..., a2p·p!)T that contains the
normal vectors aq of each generating hyperplane. Each normal vector aq is characterized
by two attributes:

1. The vector of signs of the components of the normal vector,

sign(aq) = (sign(aq1), ..., sign(aqp))
T

This attribute is induced by the absolute value of the components of β (see (6) or
(7)).

2. The vector of ranks of the absolute value of the components of the normal vector

rank(|aq|) = (rank(|aq1|), .., rank(|aqp|))T ,

which is a p-dimensional vector. Its jth entry is the position of aqj in the or-
der |aq(1)| ≤ |aq(2)| ≤ ... ≤ |aq(p)| where |aq(j)| denotes the absolute value of the
jth largest component of |(|aq) = (|aq1|, ..., |aqp|)T . This attribute is induced by
using the pairwise maximum norm in (6) or the ordered components like in (7)
respectively.

Each row of A is given by signs and a permutation of the weights w =
{(1− α)(j − 1) + α : j = 1, ..., p} given in (7). Each half space refers to one constraint
of the restricted optimization problem that can be written as

aq = ((1− α) · (rank(|aq|)− 1) + α)T diag(sign(aq)) ≤ t. (8)

Already for small dimensional cases the dimension of A becomes very large, for example,
if p = 5 the matrix A is 3840× 5-dimensional.

4 The glmOSCAR Algorithm

For GLMs the least-squares problem (3) turns into the restricted maximum likelihood
problem

β̂0 = argmax

{
n∑

i=1

li(β0), s.t. β0 ∈ IR×Oα, t(β)
}
,

where li(.) is the log-likelihood of a GLM. In contrast to the linear normal regression,
where responses are easily centered, now an unrestricted intercept has to be included.
The new penalty region is IR×Oα, t, which can be rewritten as an system of inequations

(0, A)β0 ≤ t, (9)

where β0 = (β0, β
T )T . The region (9) is an unbounded intersection of subspaces called

polyhedron. Each row of (9) refers to one constraint. In general a constraint of a system
of inequations is called active if the equal sign holds in the corresponding row of the
system of inequations. If the equal sign holds the solution lies on the corresponding face
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of the polyhedron. Only the active constraints have an in�uence on the solution. The
remaining constraints are ful�lled but have no in�uence on the solution, and are called
inactive constraints. Removing inactive constraints has no in�uence on the solution of
the constrained log-likelihood problem. The solution is unique and each point in IRp

can be represented by the intersection of p hyperplanes of dimension p − 1. Therefore,
the number of constraints can be reduced from 2p · p! to p. Only by numerical reasons
sometimes in the algorithm more than p constraints are set active. Because of (8) and
(9) for an given parameter vector β0 an active constraint from (9) has the following form

a(β0)β0 = (0, ((1− α) · (rank(|β|)− 1) + α)T diag(sign(β)))β0 = t. (10)

It is important that rank(|β|) is a p-dimensional vector where all elements of {1, 2, ..., p}
are used as entries. If some elements of |β| are equal the assembly of their ranks is
arbitrary.

The following algorithm is an active set method combined with Fisher scoring. There
are two parts.

AS (Active Set): This step accounts for the creation of the active set and is indexed
by (k).

FS (Fisher Scoring): This step solves the restricted ML problem. It is indexed by (l)

in analogy to (2). The constraints are given by the active set that is determined
by the AS-step.

First we initialize k = 0 and choose an initial value β̂
(0)

0 , for instance, the MLE.

AS-step

We set k to k+1. With β̂
(k−1)
0 we determine a(β̂

(k−1)
0 ) = a(k) as given in (10). The new

active constraint a(k) is added as a new row to (0, A)(k−1)β0 ≤ t if a(k) is not a row of
(0, A)(k−1) (

(0, A)(k−1)

a(k)

)
β0 = (0, A)(k)β0 ≤ t. (11)

Finally we remove all inactive constraints from (0, A)(k)β0 ≤ t.

FS-step

We have to solve the constrained ML problem

β̂
(k)

0 = argminβ0

{
−

n∑

i=1

li(β0), s.t. (0, A)(k)β0 ≤ t
}
, (12)

which is a combination of the unconstrained least square problem (2) and the penalty
region (0, A)(k)β0 ≤ t from the AS. For clarity we do not use double indexing. For
solving (12) we use the following constrained Fisher scoring

β̂
(l+1)

0 = argminβ0

{
βT0Z

TŴ
(l)
Zβ0 − 2βT0Z

TŴ
(l)
ỹ(l),

s.t. (0, A)(k)β0 ≤ t
}
.

(13)
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It is solved iteratively with the quadprog package from R (see Turlach, 2009). The

constrained update (13) is repeated up to convergence δ2 = ‖β̂(l)

0 − β̂
(l+1)

0 ‖/‖β̂(l)

0 ‖ ≤ ε,

for small ε. After convergence β̂
(l+1)

0 is the solution of (12). With β̂
(k)

0 we start the
AS-step again.

The AS-step envelops the FS-step. Both loops are repeated until δ1 =

‖β̂(k)

0 − β̂
(k+1)

0 ‖/‖β̂(k)

0 ‖ ≤ ε, for small ε.

Algorithm: glmOSCAR

Step 1 (Initialization) Choose β̂
(0)

0 and set δ1 =∞.

Step 2 (Iteration)

AS: While δ1 > ε.

• Determine a(k) as described in (10).

• Determine (0, A)(k) as described in (11) and remove the inactive con-
straints.

FS: Set δ2 =∞.

• Solve β̂
(k+1)

0 = argmin
{
−∑n

i=1 li(β0), s.t. (0, A)(k)β0 ≤ t
}
using a con-

strained Fisher scoring from (13) up to convergence δ2 < ε.

• After converging the constrained Fisher scoring (13) compute δ1 =
‖β̂(k)

0 −β̂
(k+1)
0 ‖

‖β̂(k)
0 ‖

and go to AS.

This algorithm can be generalized to a wide class of linearly restricted GLMs if the
restricting halfspaces are de�ned by sign and rank.

5 Simulation Study

The settings of the simulation study are similar to the settings of Bondell and Reich
(2008). However, we adapt the true parameter vectors to GLMs with canonical link
function by scaling and changed the number of observations for some settings. We
compare the OSCAR penalty with the MLE and two established methods:

LASSO: The LASSO penalty, which uses the penalty λ
∑p

j=1 |βj|,

Elastic Net (EN): The EN, which uses a combination of the LASSO penalty term and
the ridge term λ

[
α
∑p

i=1 |βj|+ (1− α)∑p
i=1 β

2
j

]
.

Several program packages in R that �t the EN and the LASSO for GLMs are available (for
example Lokhorst et al., 2007; Park and Hastie, 2007a; Friedman et al., 2008; Goeman,
2010b). We use the R-package glmnet (see Friedman et al., 2008, 2010; Simon et al.,
2011).
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The predictive performance is measured by the predictive deviance

Dev(y, µ̂, φ) = −2φ
∑

i

(l(yi, µi)− l(yi, yi)),

where µ̂ is the estimated prediction based on data (y, X). First we �t the models
for di�erent tuning parameters on a training data set with ntrain observations to get

a set of parameter vector B = {β̂[1]

0 , ..., β̂
[q]

0 } where the superscript [q] indicates the
tuning parameter constellation. Then a validation data set with nvali observations is used
to determine the optimal tuning parameter constellation that minimizes the predictive
deviance on the validation data set

β̂
[opt]

0 = argminβ̂0∈B

{
Dev(yvali, h(Zvaliβ̂0), φ)

}
.

The test data is used to measure the predictive deviance

Dev(ytest, h(Ztestβ̂
[opt]

0 ), φ).

In addition we give the mean square error of β MSE = p−1‖βtrue − β̂
[opt]‖2. We will

consider the following settings.

Normal Case

For completeness we repeat the simulation study from Bondell and Reich (2008) with
small modi�cations as described above. The generationg model for all data sets is y =
Xβtrue + ε where ε ∼ N(0, σI).

Norm1 The true parameter vector is β1 = (3, 2, 1.5, 0, 0, 0, 0, 0)T and the covariates
are from N(0, Σ) where Σ = {σij}i, j with σij = 0.7|i−j|, i, j = 1, ..., 8. The
number of observations are ntrain = 20, nvali = 20, and ntest = 100. As Bondell
and Reich (2008) we choose σ = 3 for the standard deviation of the error term.

Norm2 This setting is the same as Norm1 but the true parameter vector is β2 =
(3, 0, 0, 1.5, 0, 0, 0, 2)T .

Norm3 This setting is the same as Norm1 and Norm2 but the true parameter vector is
β3 = 0.85 · 18.

Norm4 The true parameter vector is

β4 = (0, ..., 0︸ ︷︷ ︸
10

, 2, ..., 2︸ ︷︷ ︸
10

, 0, ..., 0︸ ︷︷ ︸
10

, 2, ..., 2︸ ︷︷ ︸
10

)T .

In each block of ten the covariates are from a N(0, Σ) where Σ = {σij}i, j with
σij = 0.5 if i 6= j and σii = 1, i, j = 1, ..., 10. Between the four blocks there
is no correlation. The number of observations are ntrain = 100, nvali = 100, and
ntest = 500. The standard devation of the error term is σ = 15 (compare Bondell
and Reich, 2008).
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Norm5 The true parameter vector is

β5 = (3, ..., 3︸ ︷︷ ︸
15

, 0, ..., 0︸ ︷︷ ︸
25

)T .

and the number of observations are ntrain = 50, nvali = 50, and ntest = 250.
The covariates are generated as follows. V1, V2, and V3 are iid from a univariate
N(0, 1) with Xi = V1 + εi, i = 1, ..., 5, Xi = V2 + εi, i = 6, ..., 10, Xi =
V3 + εi, i = 11, ..., 15, Xi ∼ N(0, 1), i = 16, ..., 40. where εi ∼ N(0, 0.16). So
only the in�uencial covariates are parted in three blocks of �ve. Inner each block
the covariates are correlated. Between these blocks there is no correlation. The
non in�uential covariates are uncorrelated and the standard deviation of the error
term is σ = 15 (compare Bondell and Reich, 2008).

The results of this part of the simulation study is shown in Figure 2.

Poisson case

In the �rst three settings we divide the true parameter vector of the �rst three setting
from Bondell and Reich (2008) by 4. The generating model of the Poisson setting has
the form yi ∼ Pois(xTi βtrue). The covariates are generated in the same way as in the
normal case NormX.

Pois1 The true parameter vector is β1 = (0.75, 0.5, 0.375, 0, 0, 0, 0, 0)T . The number
of observations are ntrain = 20, nvali = 20, and ntest = 100.

Pois2 This setting is the same as Pois1 apart from the true parameter vector which is
β2 = (0.75, 0, 0, 0.375, 0, 0, 0, 0.5)T .

Pois3 This setting is the same as Pois1 and Pois2 apart from the true parameter vector
β3 = 0.2125 · 18.

Pois4 For this setting we divide the true parameter vector from Bondell and Reich
(2008) by 20

β4 = (0, ..., 0︸ ︷︷ ︸
10

, 0.1, ..., 0.1︸ ︷︷ ︸
10

, 0, ..., 0︸ ︷︷ ︸
10

, 0.1, ..., 0.1︸ ︷︷ ︸
10

)T .

The number of observations are ntrain = 100, nvali = 100, and ntest = 500.

Pois5 The true parameter vector Bondell and Reich (2008) is divided by 30

β5 = (0.1, ..., 0.1︸ ︷︷ ︸
15

, 0, ..., 0︸ ︷︷ ︸
25

)T .

The number of observations are ntrain = 100, nvali = 100, and ntest = 500.

The result of this part of the simulation study is shown in Figure 3.
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Figure 2: Boxplots of MSE of β and the predictive deviance of the 5 settings in the

normal case (see Bondell and Reich, 2008).

Binomial case

In all setting covariates are generated in the same way as in the corresponding Poisson
setting PoisX. The generating model is yi ∼ Bin(xTi βtrue). For the �rst three settings
we divide the true parameter vector of the �rst three setting from Bondell and Reich
(2008) by 2.
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Figure 3: Boxplots of MSE of β and the predictive deviance of the 5 Poisson settings.

Bin1 The true parameter vector is β1 = (1.5, 1, 0.75, 0, 0, 0, 0, 0)T . The number of
observations are ntrain = 100, nvali = 100, and ntest = 500.

Bin2 This setting is the same as Bin1 but the true parameter vector is β2 =
(1.5, 0, 0, 0.75, 0, 0, 0, 1)T .
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Bin3 This setting is the same as Bin1 and Bin2 but the true parameter vector β3 =
0.425 · 18.

Bin4 We divide the true parameter vector from Bondell and Reich (2008) by 10

β4 = (0, ..., 0︸ ︷︷ ︸
10

, 0.2, ..., 0.2︸ ︷︷ ︸
10

, 0, ..., 0︸ ︷︷ ︸
10

, 0.2, ..., 0.2︸ ︷︷ ︸
10

)T .

and increase the number of observations to ntrain = 200, nvali = 200, and ntest =
1000

Bin5 The true parameter vector Bondell and Reich (2008) is divided by 15

β5 = (0.2, ..., 0.2︸ ︷︷ ︸
15

, 0, ..., 0︸ ︷︷ ︸
25

)T .

The number of observations is equal to Bin4.

In Figure 4 the results are illustrated by boxplots.
The results are summarized in Table 1. As a general tendency, it is seen that the pro-

cedures with clustering or grouping property outperform the LASSO, with the exception
of settings Norm2 and Bin2. In the third settings the exact clustering of OSCAR seems
to have an advantage over the non-exact grouping of the Elastic Net. Here the OSCAR
dominates the other estimates. In the fourth setting OSCAR and EN outperform the
LASSO, but the EN is the best for both criteria for all distributions. In the �fth setting
the di�erences of the predictive deviance are quite small. With the exception of setting
Bin2 the OSCAR is the best or second best for both criteria. In summary, the OSCAR
for GLMs is a strong competitor to the Elastic Net, which outperforms the LASSO.

6 Application

The data were collected in water engineering in Southern California and contain 43
years worth of precipitation measurements. They are available from the R-package alr3
(see Weisberg, 2011, 2005). The response variable is the stream runo� near Bishop
(CA) in acre-feet. There are six covariates which are the snowfall in inches at di�erent
measurement stations labeled by APMAM, APSAB, APSLAKE, OPBPC, OPRC, and OPSLAKE.
The covariates are grouped by its position. The covariates with labels that start with
the same letter are quite close to each other and are highly correlated. The correlation
structure is shown in Figure 5. We consider two cases: First we �t a linear normal model
to predict the stream runo�. Then we split the response variable in two parts by setting
the response yi = 0 if yi < median(y) and yi = 1 if yi ≥ median(y). With this binary
response we �t a GLM with binomial distribution and logit link. The tuning parameter
are determined by

AIC = 2
n∑

i=1

li(β0) + 2(df + 1).

Bondell and Reich (2008) proposed for df the number of coe�cients that are absolute
unique but non zero, or, in other words, the number of distinct non zero entries of |β|.
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Figure 4: Boxplots of MSE of β and the predictive deviance of the 5 binomial settings.

We use the AIC to determine the tuning parameters because the MLE exists, which is
necessary for using the quadprog procedure (see Turlach, 2009). Cross-validation does
not work, especially in the binomial case, because the MLE does not exist for all sub-
samples. For the binomial case c = 0.9 and for the normal case c = 0.2 was determined.
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OSCAR Elastic Net LASSO MLE

Normal Case (Results of predictive deviances are divided by 100)

β1
MSE 0.4095 (0.0754) 0.4303 (0.0667) 0.4724 (0.0781) 2.1195 (0.1283)

DEV 11.93 (0.270) 11.87 (0.321) 11.93 (0.328) 15.95 (0.531)

β2
MSE 0.5985 (0.0587) 0.6484 (0.0555) 0.5981 (0.0750) 1.5609 (0.3545)

DEV 12.48 (0.265) 12.58 (0.226) 12.64 (0.400) 15.44 (0.950)

β3
MSE 0.1212 (0.0610) 0.2272 (0.0333) 0.6321 (0.0733) 1.9654 (0.1888)

DEV 11.27 (0.371) 11.72 (0.495) 12.54 (0.268) 15.45 (0.936)

β4
MSE 0.9893 (0.0449) 0.7034 (0.0609) 1.7730 (0.0753) 6.7606 (0.4305)

DEV 1332.13 (15.919) 1293.09 (12.569) 1403.87 (23.670) 1912.99 (63.918)

β5
MSE 2.0738 (0.2089) 1.6770 (0.1335) 3.8346 (0.2317) 64.4542 (3.9849)

DEV 754.37 (26.295) 742.73 (21.561) 770.61 (18.180) 3053.32 (192.65)

Poisson Case

β1
MSE 0.0339 (0.0053) 0.0341 (0.0045) 0.0388 (0.0071) 0.2710 (0.0459)

DEV 160.01 (12.845) 159.17 (8.859) 170.15 (13.045) 354.85 (58.980)

β2
MSE 0.0422 (0.0055) 0.0370 (0.0050) 0.0391 (0.0049) 0.2116 (0.0534)

DEV 142.75 (4.031) 143.50 (4.108) 145.98 (4.727) 261.91 (42.965)

β3
MSE 0.0071 (0.0027) 0.0165 (0.0031) 0.0342 (0.0046) 0.3171 (0.0590)

DEV 126.84 (5.399) 131.85 (5.928) 139.03 (6.500) 302.63 (51.125)

β4
MSE 0.0027 (0.0003) 0.0018 (0.0002) 0.0049 (0.0002) 0.0333 (0.0032)

DEV 611.19 (8.774) 595.71 (9.000) 632.49 (7.975) 1295.12 (43.155)

β5
MSE 0.0028 (0.0004) 0.0022 (0.0002) 0.0050 (0.0002) 0.0515 (0.0035)

DEV 596.93 (7.479) 594.78 (6.857) 606.44 (6.359) 1192.28 (119.52)

Binomial Case

β1
MSE 0.0908 (0.0140) 0.0790 (0.0115) 0.0968 (0.0188) 0.3642 (0.0809)

DEV 398.41 (3.693) 397.71 (4.283) 400.76 (4.194) 428.32 (10.937)

β2
MSE 0.0883 (0.0134) 0.0875 (0.0152) 0.0800 (0.0096) 0.2504 (0.0194)

DEV 456.17 (5.394) 455.39 (6.554) 455.07 (6.657) 480.13 (7.296)

β3
MSE 0.0309 (0.0053) 0.0376 (0.0040) 0.0958 (0.0089) 0.3262 (0.0475)

DEV 432.73 (4.484) 430.86 (5.779) 445.72 (5.523) 469.44 (7.657)

β4
MSE 0.0104 (0.0005) 0.0095 (0.0005) 0.0155 (0.0009) 0.1921 (0.0136)

DEV 956.02 (7.059) 946.90 (7.069) 975.07 (6.156) 1354.75 (33.367)

β5
MSE 0.0119 (0.0009) 0.0093 (0.0008) 0.0155 (0.0010) 0.1806 (0.0221)

DEV 1052.56 (6.903) 1048.43 (6.005) 1051.21 (7.999) 1366.61 (25.889)

Table 1: Summary of the results of the Simulation study

The EN and the LASSO paths were calculated with the glmnet (see Friedman et al.,
2008, 2010; Simon et al., 2011). For the EN we determine α = 0.9 in the normal case and
α = 0.5 in the binomial case. The coe�cient buildups of standardized coe�cients for
the di�erent procedures are shown in Figure 6, OSCAR is in the �rst row, LASSO in the
second row, and the Elastic Net is in the third row of Figure 6. On the left the solution
paths of the normal distribution case and on the right of the binomial distribution case
are given. The dotted horizontal line show the optimal tuning parameter t.

The coe�cient buildups of the OSCAR show a strong in�uence of the measurement
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Figure 5: Correlation structure of the covariates of the water data.

stations that have names starting with �O�. Especially in the normal case the clustering
and the variable selection of OSCAR is quite impressive. All variables of the group
starting with �O� are estimated equal and the second group is shrunken to zero for AIC
optimal t. In the binary case clustering and variable selection is somewhat weaker, but
still impressive, in particular when compared to to the elastic net. For optimal t OPBPC
and OPSLAKE are clustered as well as two weaker correlated covariates (APMAM and OPRC).
Only the variable APSAB is shrunken to zero. In the normal case the clustering coe�cient
buildups of EN and LASSO are quite similar. In the binomial case the EN has at least a
tendency to cluster the covariates starting with �O�. The exact clustering of covariates is
easy to interpret, especially in the normal case. The snowfall at adjacent measurement
stations has the same in�uence on the stream runo�. But only the in�uence of the
snowfall at the measurement stations that have names starting with �O� have non-zero
in�uence. The remaining (starting with an �A�) are shrunk to zero.
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Figure 6: Coe�cient buildups for the water data. The left column shows the normal

case and the right column shows the binary distribution case. In the �rst row the solution

paths of the OSCAR are given, the second row shows the LASSO- and the third row the

EN-paths.

7 Conclusion and Remarks

We adapt the OSCAR penalty to GLMs. For solving the constrained log-likelihood
problem we present an algorithm which combines the active set method and Fisher
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scoring. It turns out that the OSCAR is quite competitive. In the simulation study it
is the best or second best (with the exception of one setting) in terms of the MSE and
the predictive deviance. Especially in the normal case the result of the data example is
good to interpret. The snowfall at closed measurement stations is quite similar and so
it can be assumed that their in�uence on the stream runo� is nearly equal. The data
example also illustrates that the LASSO picks only two highly correlated covariates out
of the group of three.
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