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Abstract

Generalized linear mixed models are a widely used tool for modeling longitudinal data. How-

ever, their use is typically restricted to few covariates, because the presence of many predictors

yields unstable estimates. The presented approach to the fitting of generalized linear mixed

models includes an L1-penalty term that enforces variable selection and shrinkage simultane-

ously. A gradient ascent algorithm is proposed that allows to maximize the penalized log-

likelihood yielding models with reduced complexity. In contrast to common procedures it can

be used in high-dimensional settings where a large number of potentially influential explana-

tory variables is available. The method is investigated in simulation studies and illustrated by

use of real data sets.
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1 Introduction

Generalized linear mixed models (GLMMs) are widely used to model correlated and clustered

responses. Various estimation methods have been proposed ranging from numerical integration

techniques (for example Booth and Hobert, 1999) over “joint maximization methods” (Breslow

and Clayton, 1993; Schall, 1991), in which parameters and random effects are estimated si-

multaneously, to fully Bayesian approaches (Fahrmeir and Lang, 1999). Overviews on current

methods are found in McCulloch and Searle (2001). Due to the heavy computational problems

in GLMMs modeling usually is restricted to few predictor variables. When many predictors are

available, estimates become very unstable. Therefore, procedures to select the relevant vari-

ables are important in modelling. Classical approaches to the selection of predictors are based

on test statistics with the usual stability problems of forward-backward algorithms, which are

due to the inherent discreteness of the method (for example Breiman, 1996).

A more timely approach to variable selection is based on boosting methods, which have

originally been developed within the machine learning community as a method to improve

classification. A first breakthrough was the AdaBoost algorithm proposed by Freund and

Schapire (1996). Breiman (1998) considered the AdaBoost algorithm as a gradient descent

optimization technique and Friedman (2001) extended boosting methods to include regression

problems. Bühlmann and Yu (2003) showed how to fit smoothing splines by boosting base

learners and introduced the concept of componentwise boosting, which may be exploited to

select predictors. For a detailed overview of componentwise boosting, see Bühlmann and

Yu (2003) and Bühlmann and Hothorn (2007). For linear mixed models the incorporation

of random effects has been considered by Tutz and Reithinger (2007), first attempts to fit

univariate GLMMs were proposed by Tutz and Groll (2010).

An alternative approach to variable selection that has received much attention is based on

penalized regression techniques. The Lasso proposed by Tibshirani (1996) has become a very

popular approach to regression that uses an L1-penalty on the regression coefficients. This has

the effect that all coefficients are shrunken towards zero and some are set exactly to zero. The

basic idea is to maximize the log-likelihood l(βββ) of the model while constraining the L1-norm

of the parameter vector βββ. Thus one obtains the Lasso estimate

β̂ββ = argmax
βββ

l(βββ), subject to ||βββ||1 ≤ s, (1)

with s ≥ 0 and with || · ||1 denoting the L1-norm. Equivalently the Lasso estimate β̂ββ can be
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derived by solving the optimization problem

β̂ββ = argmax
βββ

[l(βββ)− λ||βββ||1] , (2)

with λ ≥ 0. Both s and λ are tuning parameters that have to be determined, for example

by cross-validation. This can be very time-consuming, especially in high-dimensional data

settings. Thus, to get computation time under control, in general problems that involve a

complex log-likelihood, efficient algorithms are needed to derive the solutions of equations (1)

or (2).

For linear models the optimization problem of the Lasso can be solved by quadratic pro-

gramming (Tibshirani, 1996), whereas Osborne et al. (2000) recommend an algorithm con-

sidering simultaneously the primal problem and its dual, which is highly efficient and is also

applicable in high-dimensional cases. A substantial progress was achieved by the LARS algo-

rithm (Efron et al., 2004), which simultaneously produces the set of Lasso fits for all values of

the tuning parameters by following the exact, piecewise linear solution path of βββ as a function

of s or λ, respectively, and also inspired the regularization path algorithm for the support vec-

tor machine (Hastie et al., 2004). In the last decade several improvements have been designed

for the Lasso, e.g. the adaptive Lasso (Zou and Hastie, 2006), SCAD (Fan and Li, 2001), the

Elastic Net (Zou and Hastie, 2005), the Dantzig selector (Candes and Tao, 2007), the Double

Dantzig (James and Radchenko, 2009) and the VISA (Radchenko and James, 2008).

The Lasso has been extended to more general models, for example Tibshirani (1997) pro-

posed a new method to perform variable selection in the Cox model. He minimizes the partial

log-likelihood subject to the L1-norm of the parameters being bounded by a constant, which is

done by an iterative two-step estimation scheme, using alternately reweighted least squares and

adaption to the constraint through a quadratic programming procedure. This procedure was

improved by Gui and Li (2005), who suggested an iteratively reweighted estimation approach

based on the LARS algorithm, called the LARS-Cox procedure. But according to Segal (2006)

and Goeman (2010) both algorithms are computational so demanding, that they cannot be

used very well in high-dimensional scenarios.

For generalized linear models a flexible and efficient approach is the L1-regularized path

following algorithm by Park and Hastie (2007), who extended the concept of the LARS al-

gorithm (Efron et al., 2004) to generalized linear models. The exact solution coefficients β̂j

are computed at particular values of the smoothing parameter λ and then the coefficients are

connected in a piecewise linear manner. Another promising approach uses the componentwise

gradients, initiating from a starting value βββ(0) and then running through the single coordinates

of βββ, updating them accordant to the gradient of the penalized likelihood (see e.g. Shevade
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and Keerthi, 2003, Kim and Kim, 2004 or Genkin et al., 2007). Recently Goeman (2010)

presented another approach based on a combination of gradient ascent optimization with the

Newton-Raphson algorithm.

The use of penalization techniques for the selection of variables in mixed models is still in

the beginning. For Gaussian mixed models Ni et al. (2010) proposed SCAD penalty techniques.

Bondell et al. (2010) considered the iterative case of joint selection for fixed and random effects

in linear models. In the following we develop L1-penalty approaches for the generalized linear

mixed model. The method works by combining gradient ascent optimization with the Fisher

scoring algorithm and is based on the approach of Goeman (2010). The article is structured

as follows. In Section 2 we introduce the GLMM. In Section 3 we present the gradient ascent

algorithm with its computational details and give further information about starting values and

computation of tuning parameters. Then the performance of the gradient ascent algorithm is

investigated in two simulation studies. Applications are considered in Section 4.

2 Generalized Linear Mixed Models - GLMMs

Let yit denote observation t in cluster i, i = 1, . . . , n, t = 1, . . . , Ti, collected in yTi =

(yi1, . . . , yiTi). Let xTit = (1, xit1, . . . , xitp) be the covariate vector associated with fixed effects

and zTit = (zit1, . . . , zitq) be the covariate vector associated with random effects. It is assumed

that the observations yit are conditionally independent with means µit = E(yit|bi,xit, zit)
and variances var(yit|bi) = φυ(µit), where υ(.) is a known variance function and φ is a scale

parameter. The GLMM that we consider in the following has the form

g(µit) = xTitβββ + zTitbi = ηpar

it + ηrand

it , (3)

where g is a monotonic and continuously differentiable link function, ηpar

it = xTitβββ is a linear

parametric term with parameter vector βββT = (β0, β1, . . . , βp) including intercept and ηrand
it =

zTitbi contains the cluster-specific random effects bi ∼ N(0,Q), with q × q covariance matrix

Q. An alternative form that we also use is

µit = h(ηit), ηit = β0 + ηpar

it + ηrand

it ,

where h = g−1 is the inverse link function.

A closed representation of model (3) is obtained by using matrix notation. By collecting

observations within one cluster, the model has the form

g(µµµi) = Xiβββ + Zibi,
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where XT
i = (xi1, . . . ,xiTi) denotes the design matrix of the i-th cluster and ZTi = (zi1, . . . , ziTi).

For all observations one obtains

g(µµµ) = Xβββ + Zb,

with XT = [XT
1 , . . . ,X

T
n ] and block-diagonal matrix Z = Blockdiag(Z1, . . . ,Zn). For the

random effects vector bT = (bT1 , . . . ,b
T
n ) one has a normal distribution with block-diagonal

covariance matrix Qb = diag(Q, . . . ,Q).

Focusing on GLMMs we assume that the conditional density of yit, given explanatory

variables and the random effect bi, is of exponential family type

f(yit|xit,bi) = exp

{
(yitθit − κ(θit))

φ
+ c(yit, φ)

}
,

where θit = θ(µit) denotes the natural parameter, κ(θit) is a specific function corresponding

to the type of exponential family, c(.) the log normalization constant and φ the dispersion

parameter (compare Fahrmeir and Tutz, 2001).

One popular method to maximize GLMMs is penalized quasi-likelihood (PQL), which has

been suggested by Breslow and Clayton (1993), Lin and Breslow (1996) and Breslow and Lin

(1995). Typically the covariance matrix Q(%%%) of the random effects bi depends on an unknown

parameter vector %%%. In penalization-based concepts the joint likelihood-function is specified by

the parameter vector of the covariance structure %%% together with the dispersion parameter φ,

which are collected in γγγT = (φ,%%%T ), and parameter vector δδδT = (βββT ,bT ). The corresponding

log-likelihood is

l(δδδ,γγγ) =
n∑

i=1

log

(∫
f(yi|δδδ,γγγ)p(bi, γγγ)dbi

)
, (4)

where p(bi, γγγ) denotes the density of the random effects. Breslow and Clayton (1993) derived

the approximation

lapp(δδδ,γγγ) =
n∑

i=1

log(f(yi|δδδ,γγγ))− 1

2
bTQ(%%%)−1b, (5)

where the penalty term bTQ(%%%)−1b is due to the approximation based on the Laplace method.

PQL usually works within the profile likelihood concept. It is distinguished between the

estimation of δδδ, given the plugged-in estimate γ̂γγ, resulting in the profile-likelihood lapp(δδδ, γ̂γγ),

and the estimation of γγγ. The PQL method is implemented in the macro GLIMMIX and proc

GLMMIX in SAS (Wolfinger, 1994), in the glmmPQL and gamm functions of the R-packages MASS

(Venables and Ripley, 2002) and mgcv (Wood, 2006). Further notes were given by Wolfinger

and O’Connell (1993), Littell et al. (1996) and Vonesh (1996).
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3 Regularization in GLMMs

In the following the log-likelihood (4) is expanded to include the penalty term λ
∑p
i=1 |βi|.

Approximation along the lines of Breslow and Clayton (1993) yields the penalized log-likelihood

lpen(βββ,b, γγγ) = lpen(δδδ,γγγ) = lapp(δδδ,γγγ)− λ
p∑

i=1

|βi|. (6)

For given γ̂γγ the optimization problem reduces to

δ̂δδ = argmax
δδδ

lpen(δδδ, γ̂γγ) = argmax
δδδ

[
lapp(δδδ, γ̂γγ)− λ

p∑

i=1

|βi|
]
. (7)

We will use a full gradient algorithm that is based on the algorithm of Goeman (2010). As

Goeman (2010) already pointed out, the algorithm can easily be amended to situations in which

some parameters should not be penalized. In this case the penalty term from the optimization

problem of equation (2) is replaced by
∑p
i=1 λi|βi|, where λi = 0 is chosen for unpenalized

parameters. The penalty used in (6) and (7) can be seen as a partially penalized approach if

the whole parameter vector δδδT = (βββT ,bT ) is considered.

3.1 Gradient Ascent Algorithm - glmmLasso

In the following an algorithm is presented for maximizing the penalized log-likelihood lpen(δδδ,γγγ)

from equation (6). In contrast to the approaches of Shevade and Keerthi (2003), Kim and

Kim (2004) and Genkin et al. (2007), where only a single component is updated at a time, it

follows the gradient of the likelihood from a given starting value of δδδ and uses the full gradient

at each step. Similar to Goeman (2010) the algorithm can automatically switch to a Fisher

scoring procedure when it gets close to the optimum and therefore avoids the tendency to slow

convergence which is typical for gradient ascent algorithms. An additional step is needed to

estimate the variance-covariance components Q of the random effects. To keep the notation

simple, we omit the argument γγγ in the following description of the algorithm and write lapp(δδδ)

instead of lapp(δδδ,γγγ).

Algorithm glmmLasso

1. Initialization

Compute starting values β̂ββ
(0)
, b̂

(0)
, γ̂γγ(0) (see Section 3.2.1) and set η̂ηη(0) = Xβ̂ββ

(0)
+ Zb̂

(0)
.

2. Iteration

6



For l = 1, 2, . . . until convergence:

(a) Calculation of the log-likelihood gradient for given γ̂γγ(l−1)

With s(δδδ) = ∂lapp(δδδ)/∂δδδ derive:

spen

0 (δ̂δδ
(l−1)

) = s0(δ̂δδ
(l−1)

), spen

i (δ̂δδ
(l−1)

) = si(δ̂δδ
(l−1)

), i = p+ 1, . . . , p+ ns.

Furthermore, for i = 1, . . . , p derive:

spen

i (δ̂δδ
(l−1)

) =





si(δ̂δδ
(l−1)

)− λ sign (β̂
(l−1)
i ) if β̂

(l−1)
i 6= 0

si(δ̂δδ
(l−1)

)− λ sign (si(δ̂δδ
(l−1)

)) if β̂
(l−1)
i = 0 and |si(δ̂δδ

(l−1)
)| > λ

0 otherwise

,

where

sign(x) =





1 if x > 0

0 if x = 0

−1 if x < 0.

(b) Calculation of the dircetional second derivative

Let A := [X,Z] and K = diag(0, . . . , 0,Q−1, . . . ,Q−1) be a block-diagonal penalty

matrix with a diagonal of p+ 1 zeros corresponding to the fixed effects and then n

times the matrix Q−1. Then the Fisher matrix is given in closed form as Fpen(δδδ) =

ATW(δδδ)A + K, with W(δδδ) = D(δδδ)ΣΣΣ−1(δδδ)D(δδδ)T and D(δδδ) = ∂h(ηηη)/∂ηηη,ΣΣΣ(δδδ) =

cov(y|δδδ). The directional second derivative is given for every δδδ and every direction

vector v ∈ Rp+1+ns by

l′′pen(δδδ;v) = vTFpen(δδδ)v

(c) Optimum of Taylor approximation

Based on the Taylor approximation used in Goeman (2010), we derive

t
(l−1)
edge = min

i



−

δ̂
(l−1)
i

spen

i (δ̂δδ
(l−1)

)
: sign(δ̂

(l−1)
i ) = −sign[spen

i (δ̂δδ
(l−1)

)] 6= 0





and

t(l−1)opt =
||spen(δ̂δδ

(l−1)
)||2

l′′app(δ̂δδ
(l−1)

, spen(δ̂δδ
(l−1)

))
,

with || · ||2 denoting the L2 norm.
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(d) Update

δ̂δδ
(l)

=





δ̂δδ
(l−1)

+ t
(l−1)
edge spen(δ̂δδ

(l−1)
) if t

(l−1)
opt ≥ t(l−1)edge

δ̂δδ
(l−1)
NR if t

(l−1)
opt < t

(l−1)
edge and sign(δ̂δδ

(l)

NR) = sign(δ̂δδ
(l−1)

)

δ̂δδ
(l−1)

+ t
(l−1)
opt spen(δ̂δδ

(l−1)
) otherwise,

where δ̂δδ
(l)

NR denotes the Fisher scoring estimate as given in Section 3.2.2.

(e) Computation of variance-covariance components

Estimates Q̂
(l)

are obtained as approximate EM-type estimates or by alternative

methods (see Section 3.2.3) yielding the update %%%(l). If necessary, the whole vector

γ̂γγ(l) is completed by an estimate of the dispersion parameter.

3. Re-Estimation

In a final step a model that includes only the variables corresponding to non-zero pa-

rameters of β̂ββ is fitted. A simple Fisher scoring, resulting in the final estimates δ̂δδ, Q̂ is

used.

3.2 Computational Details of glmmLasso

In the following we give a more detailed description of the single steps of the glmmLasso

algorithm. First details of the computation of starting values are given and then two estimation

techniques for the variance-covariance components are described.

3.2.1 Starting Values for glmmLasso

We compute the starting values β̂ββ
(0)
, b̂

(0)
, Q̂

(0)
from step 1 of the glmmLasso algorithm by

fitting the simple global intercept model with random effects given by, g(µit) = β0 + zTitbi.

This can be done very easily, for example by using the R-function glmmPQL (Wood, 2006) from

the MASS library (Venables and Ripley, 2002).

3.2.2 Fisher Scoring

Similar to Goeman (2010) we combine gradient ascent optimization with the Fisher scoring

algorithm in the update step 2 (d) of the glmmLasso algorithm. Although gradient ascent

optimization is computationally simple, because no matrix inversion or other computationally

expensive calculations are involved, often a large number of steps is required for convergence.

By allowing the algorithm to switch to the Fisher scoring algorithm the algorithm becomes

much faster.

8



For an arbitrary iteration we define J = {j : sign(βj) 6= 0, j = 0, 1, . . . , p}, the index set

of the “active” covariates, corresponding to the m = #J ≤ p+1 non-zero coefficients. Further-

more, let δ̃δδ
T

= (βJ1 , . . . , βJm ,b
T ), and let s̃pen(δδδ) =

{
spen

J1
(δδδ), . . . , spen

Jm
(δδδ), spen

p+1(δδδ), . . . , spen

p+ns(δδδ)
}T

be the gradient in the constrained domain and F̃ the (m+ns)× (m+ns) Fisher matrix of the

constrained optimization, given by F̃(δδδ) = AT
JW(δδδ)AJ + KJ , with AJ := [XJ ,Z], whereas

XJ contains only those columns of X corresponding to J , and block-diagonal penalty matrix

KJ = diag(0, . . . , 0,Q−1, . . . ,Q−1) with a diagonal of m zeros corresponding to the non-zero

fixed effects and then n times the matrix Q−1.

One step of Fisher scoring in the current subdomain takes the form

ˆ̃
δδδ(l) =

ˆ̃
δδδ(l−1) +

(
F̃(δ̂δδ

(l−1)
)

)−1
s̃pen(δ̂δδ

(l−1)
).

This estimator can be mapped back to a (p + 1 + ns)-vector δ̂δδ
(l)

NR by augmenting
ˆ̃
δδδ(l) with

zeros for all non-active covariates. In order that the Taylor approximation which is underlying

such a step of Fisher scoring holds within the current subdomain, δ̂δδ
(l)

NR is accepted only when

sign(δ̂δδ
(l)

NR) = sign(δ̂δδ
(l−1)

).

As Goeman (2010) pointed out, it is often better to avoid the attempt of trying a Fisher

scoring step whenever it is likely to fail, because it can be computational expensive. Practical

experience with our glmmLasso algorithm has shown the same tendencies. We do not try a

Fisher scoring step at l = 0 and after a Fisher scoring step has failed we try another step of

Fisher scoring not until the active set has changed. Nevertheless the incorporation of Fisher

scoring into the procedure can greatly speed up convergence once the algorithm gets close to

the optimum.

3.2.3 Variance-Covariance Components

Variance estimates for the random effects can be derived as an approximate EM algorithm,

using the posterior mode estimates and posterior curvatures. One derives (Fpen(δ̂δδ
(l)

))−1, the

inverse of the penalized pseudo Fisher matrix, using the posterior mode estimates δ̂δδ
(l)

to obtain

the posterior curvatures V̂
(l)

ii . Now compute Q̂
(l)

by

Q̂
(l)

=
1

n

n∑

i=1

(V̂
(l)

ii + b̂
(l)

i (b̂
(l)

i )T ). (8)

In general, the Vii are derived via the formula

Vii = F−1ii + F−1ii Fiβββ(Fββββββ −
n∑

i=1

FβββiF
−1
ii Fiβββ)−1FβββiF

−1
ii ,
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where Fββββββ ,Fiβββ ,Fii are elements of the partitioned Fisher matrix, see Appendix A.

For an alternative estimation of variances (Breslow and Clayton, 1993) maximize the pro-

file likelihood that is associated with the normal theory model. By replacing βββ with β̂ββ one

maximizes

l(Qb) = −1

2
log(|V(δ̂δδ)|)− 1

2
log(|XTV−1(δ̂δδ)X|)

−1

2
(η̃ηη(δ̂δδ)−Xβ̂ββ)TV−1(δ̂δδ)(η̃ηη(δ̂δδ)−Xβ̂ββ) (9)

with respect to Qb, with the pseudo-observations η̃ηη(δδδ) = Aδδδ+D−1(δδδ)(y−µµµ(δδδ)) and with ma-

trices V(δδδ) = W−1(δδδ) +ZQbZ
T , Qb = Blockdiag(Q, . . . ,Q) and W(δδδ) = D(δδδ)ΣΣΣ−1(δδδ)D(δδδ)T .

Having calculated δ̂δδ
(l)

in the l-th iteration, we obtain the estimator Q̂
(l)

b , which is an approxi-

mate REML-type estimate for Qb.

3.3 Incorporation of Categorical Predictors

A frequently found type of structured regressors are categorical predictors (factors), which are

usually dummy-coded and hence result in groups of dummy variables. That means a one-

dimensional variable is transformed into a group of variables. By construction, the standard

Lasso solution is only able to select distinct dummy variables but not whole factors. Since

one wants variable selection the algorithm has to be modified in the spirit of the group Lasso,

which was proposed by Yuan and Lin (2006). It was explicitly designed for the selection of

grouped variables in the form of dummy-coded factors in the usual linear regression set-up and

represents an elegant combination of penalization within groups of variables and groupwise

selection by using a Lasso penalty at the factor level, and a Ridge-type penalization within

coefficient groups.

Meier et al. (2008) have extended the group Lasso to logistic regression and present an

efficient algorithm to solve the corresponding convex optimization problem. Their resulting

logistic group Lasso estimator is obtained by replacing the Lasso penalty term from equation

(2) by the penalty
∑G
g=1 λg||βββIg ||2, where Ig denotes the index set of to the g-th group of

variables, g = 1, . . . , G and λg = λ
√

dfg, with dfg representing the number of parameters of

group g, which is equal to the number of factor levels minus one for categorical predictors and

dfg=1 for continuous predictors.

Suppose that the p+1 columns of our design matrix X are now resulting from G predictors,

which may be categorical or continuous, plus intercept. Using the same notations as above, we

incorporate the penalization adjustment of Meier et al. (2008) into the glmmLasso algorithm

by simply modifying step 2 (a) in the following way:
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(a2) Calculation of the log-likelihood gradient

With s(δδδ) = ∂lapp(δδδ)/∂δδδ derive:

spen

0 (δ̂δδ
(l−1)

) = s0(δ̂δδ
(l−1)

), spen

i (δ̂δδ
(l−1)

) = si(δ̂δδ
(l−1)

), i = p+ 1, . . . , p+ ns.

Furthermore, for g = 1, . . . , G derive:

spen

Ig
(δ̂δδ

(l−1)
) =





sIg (δ̂δδ
(l−1)

)− λg sign (β̂ββ
(l−1)
Ig ) if ||β̂ββ(l−1)

Ig ||2 6= 0

sIg (δ̂δδ
(l−1)

)− λg sign (sIg (δ̂δδ
(l−1)

)) if ||β̂ββ(l−1)
Ig ||2 = 0 and ||sIg (δ̂δδ

(l−1)
)||2 > λg

000 otherwise.

3.4 Simulation Study

In the following small simulation study the performance of the glmmLasso algorithm is com-

pared to alternative approaches.

Poisson Link The underlying model is the random intercept Poisson model

ηit =

p∑

j=1

xitjβj + bi, i = 1, . . . , 40, t = 1, . . . , 10,

E[yit] = exp(ηit) := λit, yit ∼ Pois(λit),

with linear effects given by β1 = −4, β2 = −6, β3 = 10 and βj = 0, j = 4, . . . , 50. We chose

the different settings p = 3, 5, 10, 20, 50. For j = 1, . . . , 50 the vectors xTit = (xit1, . . . , xit50)

follow a uniform distribution within the interval [−0.14, 0.14]. The number of observations was

determined by n = 40, Ti := T = 10, i = 1, . . . , n. The random effect and the noise variable

have been specified by bi ∼ N(0, σ2
b ) with σ2

b = 0.4, 0.8, 1.6.

The performance of estimators was evaluated separately for the structural components and

the variance. We compare the results of our glmmLasso algorithm with the results obtained

by the R-functions glmmPQL (Venables and Ripley, 2002), glmmML (Broström, 2009) and glmer

(Bates and Maechler, 2010). The glmmPQL routine is supplied b¡ the MASS library. It operates

by iteratively calling the R-function lme from the nlme library and returns the fitted lme

model object for the working model at convergence. For more details about the lme function,

see Pinheiro and Bates (2000). The glmer function available in the lme4 package (Bates

and Maechler, 2010) features two different methods of approximating the integrals in the log-

likelihood function, Laplace and Gauss-Hermite. We focused on the Gauss-Hermite method

using 15 quadrature points. In some cases the glmer function did not converge (n.c.), see the

11



corresponding columns in Table 1 and 2.

Another function that is able to fit the underlying model is the glmmML function supplied

with the glmmML package (Broström, 2009). The function also features two different methods

of approximating the integrals in the log-likelihood function, Laplace and Gauss-Hermite. For

the first method the results coincide with the results of the glmmPQL routine, so we focused on

the Gauss-Hermite method in our simulations. Also the glmmML function had some convergence

problems, which is summarized in the “n.c.” columns in Table 1 and 2.

Furthermore we compare our results with two boosting functions, bGLMM (EM) and bGLMM

(REML), introduced in Tutz and Groll (2010), which perform variable selection by boosting

techniques. They differ in the computation of the covariance matrix components Q of the

random effects. The first one can be derived as an approximate EM algorithm, the second

one by maximizing the profile likelihood that is associated with the normal theory model and

therefore could be seen as an approximate REML-type estimate.

By averaging across 100 training data sets we consider mean squared errors for βββ and σb

given by mseβββ := ||βββ − β̂ββ||2, mseσb := ||σb − σ̂b||2. The means of both quantities are presented

in Table 1 and 2. The results of mseβββ are illustrated in Figure 1, which shows boxplots

of the ratios log(mseβββ(·)/mseβββ(glmmPQL)) for the different methods, for different numbers of

noise variables and the scenario σb = 0.4. Additionally, we present boxplots of the ratios

log(mseσb(·)/mseσb(glmmPQL)) corresponding to σb = 0.4 in Figure 4.

Additional information on the performance of the algorithm was collected in falseneg (f.n.),

the mean over all 100 simulations of the number of variables βj , j = 1, 2, 3, that were not

selected and in falsepos (f.p.), the mean over all 100 simulations of the number of variables

βj , j = 4, . . . , 50, that were selected. It should be noted that the three R-functions are not able

to perform variable selection and therefore always estimate all p parameters βj .

The results for varying number p of covariates xit1, . . . , xitp are summarized in Table 1 and

2. It is seen that Lasso estimates for βββ distinctly outperform the standard R functions when

redundant variables are present and are comparable to the boosting results. An advantage of

L1-penalization over boosting techniques is that it also performs well when all variables in the

predictor are influential. Also for the variance component σb the glmmLasso algorithm slightly

outperforms both boosting approaches.

Figure 1 compares the performance of the procedures with glmmPQL as the reference. It

shows the log(mseβββ(·)/mseβββ(glmmPQL)) over the simulations.

12



glmmPQL glmmML glmer glmmLasso bGLMM (EM) bGLMM (REML)
σb p mseβββ mseβββ n.c. mseβββ n.c. mseβββ f.p. f.n. mseβββ f.p. f.n. mseβββ f.p. f.n.
0.4 3 0.909 0.907 0 0.907 0 0.907 0 0 1.694 0 0.01 1.710 0 0
0.4 5 1.399 1.400 0 1.400 0 1.148 0.53 0 1.694 0 0.01 1.710 0 0
0.4 10 2.710 2.707 0 2.706 0 1.291 0.71 0 1.751 0.02 0.01 1.764 0.02 0
0.4 20 5.646 5.644 0 5.643 0 1.500 0.97 0 1.879 0.08 0.01 1.859 0.06 0
0.4 50 17.268 17.221 0 17.220 0 1.949 1.23 0 2.228 0.21 0.01 2.167 0.19 0
0.8 3 0.844 0.844 0 0.844 0 0.843 0 0 0.979 0 0 0.981 0 0
0.8 5 1.348 1.349 0 1.349 0 1.097 0.44 0 1.008 0.01 0 1.009 0.01 0
0.8 10 2.613 2.612 0 2.611 0 1.419 1.07 0 1.123 0.07 0 1.124 0.07 0
0.8 20 5.456 5.445 0 5.444 0 1.785 1.43 0 1.344 0.17 0 1.342 0.17 0
0.8 50 16.209 16.096 0 16.093 0 1.931 2.32 0 1.686 0.33 0 1.679 0.33 0
1.6 3 0.636 0.450 7 0.446 1 0.438 0 0 0.669 0 0 0.605 0 0
1.6 5 0.994 0.718 7 0.707 1 0.564 0.62 0 0.712 0.05 0 0.648 0.05 0
1.6 10 1.451 1.446 7 1.420 1 0.809 2.26 0 0.741 0.07 0 0.677 0.07 0
1.6 20 3.045 3.089 7 3.094 3 1.177 5.11 0 0.823 0.17 0 0.759 0.16 0
1.6 50 11.127 11.328 7 11.247 3 2.961 10.70 0.01 1.098 0.44 0 1.046 0.45 0

Table 1: Mean squared errors for βββ for the glmmLasso and alternative approaches on Poisson data

glmmPQL glmmML glmer glmmLasso bGLMM (EM) bGLMM (REML)
σb p mseσb mseσb n.c. mseσb n.c. mseσb mseσb mseσb
0.4 3 0.004 0.004 0 0.004 0 0.007 0.040 0.003
0.4 5 0.004 0.004 0 0.004 0 0.007 0.040 0.003
0.4 10 0.004 0.004 0 0.004 0 0.007 0.040 0.003
0.4 20 0.004 0.005 0 0.005 0 0.006 0.040 0.003
0.4 50 0.005 0.007 0 0.007 0 0.007 0.040 0.004
0.8 3 0.010 0.010 0 0.010 0 0.010 0.141 0.010
0.8 5 0.010 0.010 0 0.010 0 0.010 0.141 0.010
0.8 10 0.010 0.010 0 0.010 0 0.010 0.141 0.010
0.8 20 0.010 0.010 0 0.010 0 0.010 0.141 0.010
0.8 50 0.010 0.011 0 0.011 0 0.010 0.141 0.010
1.6 3 0.067 0.029 7 0.031 1 0.033 1.268 0.040
1.6 5 0.047 0.029 7 0.031 1 0.033 1.268 0.040
1.6 10 0.034 0.029 7 0.031 1 0.033 1.268 0.040
1.6 20 0.033 0.029 7 0.031 3 0.033 1.268 0.040
1.6 50 0.033 0.029 7 0.032 3 0.033 1.269 0.040

Table 2: Mean squared errors for σb for the glmmLasso and alternative approaches on Poisson data
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Figure 1: Boxplots of log(mseβββ(·)/mseβββ(glmmPQL)) for the glmmLasso and alternative approaches on
Poisson data

Bernoulli Link The underlying model is the random intercept Bernoulli model

ηit =

p∑

j=1

xitjβj + bi, i = 1, . . . , 40, t = 1, . . . , 10

E[yit] =
exp(ηit)

1 + exp(ηit)
:= πit yit ∼ B(1, πit)
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Figure 2: Boxplots of log(mseσb(·)/mseσb(glmmPQL)) for the glmmLasso and alternative approaches
on Poisson data

with linear effects given by β1 = −5, β2 = −10, β3 = 15 and βj = 0, j = 4, . . . , 50. Again

we choose the different settings p = 3, 5, 10, 20, 50. For j = 1, . . . , 50 the vectors xTit =

(xit1, . . . , xit50) have been drawn independently with components following a uniform distri-

bution within the interval [−0.1, 0.1]. The number of observations remains n = 40, Ti :=

T = 10,∀i = 1, . . . , n. The random effects and the noise variable have been specified by

bi ∼ N(0, σ2
b ) with σb = 0.4, 0.8, 1.6.

Again, we evaluate the performance of estimators separately for structural components and

variance and compare the results of our glmmLasso algorithm with the alternative approaches

mentioned for the Poisson case, based on the introduced goodness-of-fit criteria.

glmmPQL glmmML glmer glmmLasso bGLMM (EM) bGLMM (REML)
σb p mseβββ mseβββ mseβββ mseβββ f.p. f.n. mseβββ f.p. f.n. mseβββ f.p. f.n.
0.4 3 13.631 14.366 14.347 16.213 0 0.16 37.237 0 0.77 37.560 0 0.74
0.4 5 21.167 22.263 22.224 23.204 0.39 0.31 37.505 0.01 0.77 37.828 0.01 0.74
0.4 10 43.619 45.831 45.736 32.275 0.94 0.37 38.170 0.03 0.77 38.713 0.04 0.74
0.4 20 95.141 99.897 99.645 38.982 0.87 0.50 39.451 0.07 0.77 39.992 0.08 0.74
0.4 50 330.687 345.939 344.743 45.083 0.76 0.63 41.952 0.15 0.76 42.901 0.17 0.74
0.8 3 14.655 15.178 15.177 17.344 0 0.16 38.803 0 0.67 38.052 0 0.67
0.8 5 22.536 24.040 24.021 25.041 0.48 0.30 39.206 0.01 0.67 38.409 0.01 0.67
0.8 10 44.875 49.124 49.054 35.812 0.95 0.47 42.370 0.08 0.67 41.173 0.08 0.67
0.8 20 96.779 107.291 107.064 41.011 0.78 0.55 45.176 0.15 0.66 44.081 0.16 0.66
0.8 50 334.792 369.779 368.445 53.202 0.79 0.72 58.722 0.44 0.64 55.847 0.44 0.64
1.6 3 19.432 20.414 20.425 24.610 0 0.27 42.226 0 0.61 41.843 0 0.61
1.6 5 29.360 32.072 32074 29.565 0.54 0.27 42.805 0.01 0.61 42.363 0.01 0.61
1.6 10 56.144 63.519 63.515 42.283 1.26 0.39 44.694 0.05 0.61 44.159 0.05 0.61
1.6 20 125.207 143.594 143.415 48.668 0.81 0.50 49.666 0.15 0.61 48.524 0.14 0.61
1.6 50 488.798 542.524 538.381 60.148 0.93 0.60 58.913 0.35 0.60 56.880 0.33 0.60

Table 3: Mean squared errors for βββ for the glmmLasso and alternative approaches on Bernoulli data

The results for varying number p of covariates xit1, . . . , xitp and different random effects vari-

ances σσσ are summarized in Table 3 and 4. In general the results for the Bernoulli case have

deteriorated for all different approaches, in particular in terms of mseβββ . But the general trend,
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glmmPQL glmmML glmer glmmLasso bGLMM (EM) bGLMM (REML)
σb p mseσb mseσb mseσb mseσb mseσb mseσb
0.4 3 0.063 0.063 0.062 0.064 0.261 0.065
0.4 5 0.063 0.063 0.063 0.064 0.261 0.065
0.4 10 0.063 0.063 0.062 0.065 0.263 0.066
0.4 20 0.064 0.065 0.065 0.064 0.265 0.066
0.4 50 0.092 0.087 0.086 0.065 0.267 0.067
0.8 3 0.041 0.046 0.044 0.043 0.951 0.069
0.8 5 0.041 0.046 0.044 0.043 0.954 0.069
0.8 10 0.041 0.045 0.045 0.044 0.962 0.069
0.8 20 0.042 0.047 0.046 0.044 0.976 0.068
0.8 50 0.071 0.072 0.069 0.044 1.032 0.065
1.6 3 0.086 0.091 0.088 0.100 5.676 0.330
1.6 5 0.085 0.093 0.089 0.099 5.680 0.330
1.6 10 0.079 0.094 0.089 0.098 5.685 0.326
1.6 20 0.079 0.110 0.100 0.097 5.718 0.321
1.6 50 0.228 0.316 0.277 0.097 5.756 0.310

Table 4: Mean squared errors for σb for the glmmLasso and alternative approaches on Bernoulli data

that, in case of many covariates, the βββ-fit that is achieved using the glmmLasso algorithm

outperforms the fit obtained by the standard R functions, can still be observed.

Compared to Poisson case, the fit obtained by glmmLasso algorithm has even slightly

improved with regard to both boosting approaches.
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Figure 3: Boxplots of log(mseβββ(·)/mseβββ(glmmPQL)) for the glmmLasso and alternative approaches on
Bernoulli data

4 Applications to Real Data

In the following sections we will apply our lasso method on different real data sets and compare

the results with other approaches. The tuning parameters λ have been chosen via 5-fold cross

validation. Standard errors for fixed effects and random effects variance components can be

obtained by simulation-based parametric bootstrap evaluations, see Appendix B.
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Figure 4: Boxplots of log(mseσb(·)/mseσb(glmmPQL)) for the glmmLasso and alternative approaches
on Bernoulli data

4.1 The German Bundesliga

In the study the effect of team specific influence variables on the sportive success of the 18

soccer clubs of Germany’s first soccer division, the Bundesliga, has been investigated for the

last three seasons 2007/2008 to 2009/2010. The response variable is the number of points on

which the league’s form table is based. Each team gets three points for wins, one point for

every draw and no points for defeats. A brief description of the team specific covariates in the

data can be found in Table 9.

Covariate Description
ball possession average percentage of ball possession per game
tackle average percentage of tackles won per game
unfairness average number of unfairness points per game (1 point for yellow

card, 3 points for second yellow card, 5 points for red card)
transfer spendings money spent for new players during a season (in Euro)
transfer receipts money earned through player transfers during a season (in Euro)
attendance average attendance during a season
sold out number of ticket sold outs during a season

Table 5: Description of covariates for the German Bundesliga data

Earlier studies have shown that the effect of the variable “transfer spendings” is parabolic

(see Groll and Tutz, 2011). Therefore, we allowed “transfer spendings” to have a quadratic

effect. Due to the very different ranges of values covariates have been standardized. The
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Figure 5: 5-fold cross-validation scores for the glmmLasso as function of penalty parameter λ for the
German Bundesliga data

corresponding linear mixed model has the form

g(µit) = β0 + transfer spendingitβ1 + transfer spending2itβ2 + unfairnessitβ3

+ transfer receiptsitβ4 + ball possessionitβ5 + tacklesitβ6

+ attendanceitβ7 + sold outitβ8 + bi,

where µit denotes the expected number of points for soccer team i in season t and bi ∼ N(0, σ2
b )

are team-specific random intercepts.

We fit an over-dispersed Poisson model with natural link and estimate the over-dispersion

parameter Φ by use of Pearson residuals r̂it = yit − µ̂it/(v(µ̂it))
1
2 by

Φ̂ =
1

N − df

n∑

i=1

Ti∑

t=1

r̂2it, N =

n∑

i=1

Ti, (10)

where the degrees of freedom (df) correspond to the trace of the hat-matrix.

For selection of the penalty parameter λ for the glmmLasso 5-fold cross-validation was

employed. The corresponding validation scores of prediction errors, based on the deviance, can

be found in Figure 5. The cross-validation curve indicates that penalization clearly improves

over ordinary fitting procedures that are obtained for λ = 0.

The results for the estimation of fixed effects, over-dispersion parameter Φ̂ and σ̂b for the

glmmPQL function and for the glmmLasso algorithm are given in Table 6 and the correspond-

ing coefficient built-ups are illustrated in Figure 6. The glmmLasso algorithm suggests that

“unfairness”, “ball possession” and “tackles” are not needed in the predictor, which are all

three far away from significance concerning the standard errors of the glmmPQL function given

in brackets.
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glmmPQL glmmLasso

intercept 3.860 (0.029) 3.858 (0.031)
transfer spendings 0.179 (0.061) 0.174 (0.083)
transfer spendings2 -0.046 (0.015) -0.043 (0.023)
unfairness -0.022 (0.028) -
transfer receipts 0.043 (0.033) 0.047 (0.030)
ball possession 0.008 (0.043) -
tackles 0.015 (0.041) -
attendance 0.059 (0.031) 0.068 (0.031)
sold out 0.113 (0.033) 0.120 (0.031)
σ̂b 0.000 0.005 (0.012)

Φ̂ 1.637 1.394

Table 6: Estimates for the German Bundesliga data with glmmPQL function and glmmLasso algorithm
(standard errors in brackets)
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Figure 6: Coefficient built-ups for the glmmLasso for the German Bundesliga data; the optimal value
of the penalty parameter λ is shown by the vertical line

With variable selection the estimated dispersion parameter is not far away from one, so

that the Poisson model seems adequate. The glmmPQL function provides a very low standard

deviation (σ̂b=0.000002) of the random intercepts, while the glmmLasso model leads to results

that support the application of a random effects model, indicating that each soccer team has

an individual bases level of points. In Figure 7 the quadratic effect of the variable “transfer

spendings” is presented. Both approaches estimate very similar functions.

In addition we show the estimated random intercepts of the glmmLasso functions for the

23 different soccer teams, that played in the German Bundesliga during the seasons 2007/2008

to 2009/2010. They can be seen as representing the team-specific playing ability that is not

covered by the explanatory variables (see Table 7).
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Figure 7: Estimated smooth effects computed with the glmmPQL model (dashed line) and the
glmmLasso model (solid line) for the German Bundesliga data

For example the VfL Wolfsburg owns a small soccer stadium with a low number of ticket

sold outs and was nevertheless rather successful in the last three years, so as a consequence

its team-specific parameter is quite enhanced. The reverse effect could be observed e.g. for

the FC Bayern München. The club has earned by far the most points on average, but as it

exhibits a rather high average attendance, with the stadium being permanently sold out, it got

a relatively low random intercept, though being the most successful club in the league during

the last three seasons.

4.2 CD4 Aids Study

The data were collected within the Multicenter AIDS Cohort Study (MACS). In the study

about 5000 infected gay or bisexual men from Baltimore, Pittsburgh, Chicago and Los Angeles

have been observed since 1984 (see Kaslow et al., 1987; Zeger and Diggle, 1994). The human

immune deficiency virus (HIV) causes AIDS by attacking an immune cell called the CD4+

cell which coordinates the body’s immunoresponse to infectious viruses and hence reduces a

person’s resistance against infection. According to Diggle et al. (2002) an uninfected individual

has around 110 cells per milliliter of blood and since the number of CD4+ cells decreases with

time from infection, one can use an infected person’s CD4+ cell number to check disease

progression. Within the MACS, n = 369 seroconverters with a total of
∑n
i=1 Ti = 2376

measurements were included with the number of CD4+ cells being the interesting response

variable. Covariates include the time since seroconversion ranging from 3 years before to 6

years after seroconversion, packs of cigarettes a day, recreational drug use (yes/no), number

of sexual partners, age and a mental illness score (cesd). For observation t of individual i, the
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Team b̂i (glmmLasso) b̂i (glmmPQL)

VfL Wolfsburg 0.060 2.66·10−4

VfB Stuttgart 0.056 2.76·10−4

Bayer 04 Leverkusen 0.054 2.52·10−4

Werder Bremen 0.049 2.23·10−4

FSV Mainz 05 0.022 7.70·10−5

Hertha BSC 0.021 9.90·10−5

Karlsruher SC 0.019 7.41·10−5

Borussia Dortmund 0.016 1.08·10−4

FC Bayern München 0.011 5.72·10−5

Hannover 96 0.008 3.83·10−5

Energie Cottbus 0.007 1.79·10−5

FC Schalke 04 -0.002 -8.64·10−6

Eintracht Frankfurt -0.006 -2.18·10−5

Hansa Rostock -0.007 2.59·10−5

VfL Bochum -0.014 -7.22·10−5

SC Freiburg -0.015 -5.93·10−5

Arminia Bielefeld -0.018 -7.83·10−4

MSV Duisburg -0.020 7.31·10−5

1899 Hoffenheim -0.032 -1.67·10−4

Hamburger SV -0.037 -2.52·10−4

1. FC Nürnberg -0.051 -2.09·10−4

FC Köln -0.059 -2.54·10−4

Borussia M’gladbach -0.062 2.69·10−4

Table 7: Estimated random intercepts for German Bundesliga teams using glmmLasso.

model that is considered has the form

g(µit) = β0 + timeitβ1 + time2itβ2 + time3itβ3 + time4itβ4 + drugsitβ5

+ partnersitβ6 + cigarettesitβ7 + cesditβ8 + ageitβ9 + bi,

with bi ∼ N(0, σ2
b ). Again we fit an over-dispersed Poisson model with natural link while

the over-dispersion parameter Φ is estimated using (10). Our main objective is the typical

time course of CD4+ decay and the variability across subjects. Earlier studies (e.g. Tutz and

Reithinger, 2007, Groll and Tutz, 2011) have shown, that the time effect is nonlinear, so we

additionally considered some higher powers of “time”.

The chosen penalty parameter λ for the glmmLasso again was rather small, λopt = 21000,

and consequently almost all of the variables are included. The results for the glmmLasso al-

gorithm and for the glmmPQL function are given in Table 8 and the corresponding coefficient
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built-ups are illustrated in Figure 8. Both approaches yield very similar estimates. The incor-

porated selection procedure suggests that drug use and age are not needed in the predictor.

0 10000 20000 30000 40000 50000−
0.

20
−

0.
10

0.
00
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05
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β̂

Figure 8: Coefficient built-ups for the glmmLasso for the CD4 data; the optimal value of the penalty
parameter λ is shown by the vertical line

glmmPQL glmmLasso

Intercept 6.643 (0.028) 6.665 (0.026)
Time -0.199 (0.011) -0.200 (0.012)
Time2 -0.014 (0.004) -0.014 (0.004)
Time3 0.014 (0.003) 0.014 (0.002)
Time4 -0.002 (0.000) -0.002 (0.000)
Drugs 0.029 (0.023) -
Partners 0.004 (0.003) 0.004 (0.003)
Packs of Cigarettes 0.042 (0.009) 0.049 (0.007)
Mental illness score (cesd) -0.003 (0.010) -0.003 (0.001)
Age 0.000 (0.002) -
σ̂b 0.298 0.252 (0.091)

Φ̂ 63.439 76.943

Table 8: Estimates for the MACS with glmmPQL function and glmmLasso algorithm (standard devia-
tions in brackets)

The smooth effect of time on CD4+ cell decay for our over-dispersed Poisson model together

with the data is shown in Figure 9. Besides, we show the smooth effect obtained by a penalized

basis function approach which is implemented in the gamm function of the R-package mgcv

(Wood, 2006). All other variables have been kept constant at their means. Obviously the

variable time has a negative effect on the CD4+ cell number.
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Figure 9: Smoothed time effect (CD4+ number of cells versus time) from MACS for gamm (solid line)
and glmmLasso (dashed line).

4.3 Forest health Data

The forest health data has been considered in previous studies, for example in Kneib et al.

(2009) and Tutz and Groll (2011). In this application, the health status of beeches at 83

observation plots located in a northern Bavarian forest district has been assessed in visual

forest health inventories carried out between 1983 and 2004. Originally, the health status is

classified on an ordinal scale, where the nine possible categories denote different degrees of

defoliation. Figure 10 shows a histogram of the nine defoliation classes indicating that no

trees were observed in the last two categories. We are now only interested in wether a tree is

healthy or not, so we model the dichotomized response variable defoliation with categories 1

(not healthy; defoliation above or equal 12.5%) and 0 (healthy; no defoliation; 0.0%). In Kneib

et al. (2009) a brief description of the covariates in the data set is presented, which is found in

Table 9.

Covariate Description

age age of the tree in years (continuous, 7 ≤ age ≤ 234)
elevation elevation above sea level in meters (continuous, 250 ≤ elevation ≤ 480)
inclination inclination of slope in percent (continuous, 0 ≤ inclination ≤ 46)
soil depth of soil layer in centimeters (continuous, 9 ≤ soil ≤ 51)
canopy density of forest canopy in percent (continuous, 0 ≤ canopy ≤ 1)
stand type of stand (categorical, 1 = deciduous forest, -1 = mixed forest)
fertilisation fertilisation (categorical, 1 = yes, -1 = no)
humus thickness of humus layer in 5 categories (ordinal, higher categories

represent higher proportions)
moisture level of soil moisture (categorical, 1 = moderately dry, 2 = moderately

moist, 3 = moist or temporary wet)
saturation base saturation (ordinal, higher categories indicate higher base saturation)

Table 9: Description of covariates for the forest health data
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Figure 10: Relative frequencies of the nine defoliation classes for all observation plots and all time
points for the forest health data

As Kneib et al. (2009) identified a nonlinear effect of “age”, we again include some higher

powers of “age” into our model, which results in the following predictor:

g(πit) = β0 + ageitβ1 + age2itβ2 + age3itβ3 + age4itβ4 + elevationitβ5

+ inclinationitβ6 + soilitβ7 + canopyitβ8 + fertilisationitβ9 + standitβ10

+ humus0itβ11 + humus2itβ12 + humus3itβ13 + humus4itβ14 + saturation1itβ15

+ saturation3itβ16 + saturation4itβ17 + moisture1itβ18 + moisture3itβ19 + bi,

where πit = µit denotes the expected probability of defoliation for observation area i at time t

and bi ∼ N(0, σ2
b ) again represent cluster-specific random intercepts. We fit a binomial model

with logit-link, building groups for the categorial variables “humus”, “moisture” and “satura-

tion”. For this purpose we use the extended algorithm for categorical predictors from Section

3.3. The results for the parameter estimates can be found in Table 10 and the corresponding

coefficient built-ups are illustrated in Figure 11.

The penalty parameter λ for the glmmLasso again was determined by 5-fold cross-validation

on the interval [0; 300]. The chosen parameter was rather small, λopt = 10, indicating that

penalization only slightly improves the fit compared to ordinary fitting procedures which are

obtained for λ = 0 and consequently almost all of the variables are included. The smooth

effect of age on tree defoliation for our binomial model with logit-link is shown in Figure 12,

again compared to the smooth effect obtained by the penalized basis function approach using

the gamm function. Obviously with increasing age of the trees the probability of defoliation

increases in a non-linear fashion.
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Figure 11: Coefficient built-ups for the glmmLasso for the forest health data; the optimal value of
the penalty parameter λ is shown by the vertical line

glmmPQL glmmLasso

Intercept -7.226 (2.719) -5.353 (1.923)
age 0.401 (0.080) 0.391 (0.078)
age2 -0.007 (0.001) -0.006 (0.001)
age3 0.000 (0.000) 0.000 (0.000)
age4 0.000 (0.000) 0.000 (0.000)
elevation 0.006 (0.005) -
inclination 0.005 (0.025) -
soil -0.043 (0.024) -0.039 (0.026)
canopy -3.550 (0.539) -3.554 (0.568)
fertilisation -1.422 (0.828) -1.130 (0.773)
stand 0.934 (0.464) 0.889 (0.456)
humus0 -0.486 (0.155) -0.472 (0.180)
humus2 0.316 (0.131) 0.323 (0.147)
humus3 0.313 (0.155) 0.306 (0.169)
humus4 0.036 (0.218) 0.011 (0.238)
saturation1 0.471 (0.533) 0.658 (0.483)
saturation3 -0.254 (0.557) -0.422 (0.524)
saturation4 0.102 (0.699) 0.023 (0.652)
moisture1 -0.916 (0.522) -0.968 (0.498)
moisture3 1.112 (0.379) 1.011 (0.365)
σ̂b 1.816 1.845 (0.177)

Table 10: Estimates for the forest health data

4.4 Jimma Infant Survival Study

The Jimma Infant Survival Differential Longitudinal Study is a cohort study investigating the

live births which took place in the town of Jimma in Ethiopia during a one year period from

September 1992 until September 1993. An extensive description can be found in Lesaffre et al.

(1999). The study covers 8000 households with live births in the said period. Following Lesaffre
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Figure 12: Smoothed age effect for the forest health data with gamm (solid line) and glmmLasso

(dashed line).

et al. (1999) and Tutz and Reithinger (2007), 495 singleton live births have been considered

and monitored for a one year period in order to determine the risk factors for infant mortality.

A good indicator of a child’s health status is the body weight. Hence, to determine possible

influence factors on growth of the children, we use the (logarithmic) body weight (in kg) as

response variable together with some socio-economic and demographic as well as some prenatal

and delivery-related covariates. A brief description of all considered covariates can be found

in Table 11.

Covariate Description

age age of the child in days (continuous, 0 ≤ age ≤ 385)
ageM age of the mother in years (continuous, 14 ≤ ageM ≤ 50)
education educational level of the mother (categorical, 1 = illiterate, 2 = read and write,

3 = elementary school, 4 = junior high school, 5 = high school, 6 = college and above)
delivery place of delivery (categorical, 1 = hospital, 2 = health center, 3 = home)
visits number of antenatal visits (categorical, 0, ≥ 1)
month month of birth (categorical, 1 = Jan. - June, 0 = July - Dec.)
sex sex of the child (categorical, 1 = male, 0 = female)
marital marital status of mother (categorical, 1 = married, 2 = divorced,

3 = widowed, 4 = never married)
status occupational status of mother (categorical, 1 = unemployed, 0 = employed)

Table 11: Description of covariates for the Jimma data
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Tutz and Reithinger (2007) identified a nonlinear effect of “age”, therefore we include also

“age2” into our model, resulting in the following predictor:

g(µit) = β0 + ageitβ1 + age2itβ2 + ageMitβ3 + education1itβ4 + education2itβ5

+ education3itβ6 + education4itβ7 + education5itβ8 + delivery1itβ9

+ delivery2itβ10 + visitsitβ11 + monthitβ12 + sexitβ13 + marital1itβ14

+ marital2itβ15 + marital3itβ16 + statusitβ17 + b0i + ageitb1i + age2itb2i,

where µit denotes the expected body weight of child i at time t and bi = (b0i, b1i, b2i)
T ∼

N(000,Q) represent child-specific random intercepts and random slopes on age and squared age.

The continuous variables age, squared age and age of the mother have been standardized. We

fit a normal distribution model with log-link, building groups for the categorial variables “ed-

ucation”, “delivery” and “marital”. So again the extended algorithm for categorical predictors

from Section 3.3 is required. The estimates for the standard deviations of the random effects

for the standardized model are presented in Table 12.

glmmPQL glmmLasso

σ̂b0 0.121 0.153 (0.046)

σ̂b1 0.037 0.000 (0.051)

σ̂b2 0.000 0.069 (0.045)

Table 12: Estimates for the standard deviations of the random effects for the Jimma data with
glmmPQL function and glmmLasso algorithm (standard deviations in brackets)

The results for the estimated linear effects corresponding to the original scaling of the

variables can be found in Table 13 and the corresponding coefficient built-ups are illustrated in

Figure 14. The cross-validation score is plotted against the penalty parameter λ in Figure 13.

Again penalization improves ordinary fitting procedures obtained for λ = 0 and a rather sparse

model is chosen with a clearly non-linear influence of the child’s age and a linear influence of

the variables “delivery”, “visits” and “sex”.

Keeping all other variables constant at their means, the child-specific smooth effects of the

children’s age on the body weight is shown in Figure 15 and compared to the child-specific

smooth effects obtained by the unregularized approach using the glmmPQL function, see Figure

16. It seems that there is somewhat more variation between the glmmLasso curves which may

be due to the bigger variance estimate of the random intercept. As was to be expected, with

increasing age of the children their body weight increases, at first relatively fast, but slowing

down after the first 150 days. The main feature of the penalized approach is that variables

that also turn out to be non-influential are automatically selected.
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Figure 13: 5-fold cross-validation scores for the glmmLasso as function of penalty parameter λ for
the Jimma data
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Figure 14: Coefficient built-ups for the glmmLasso for the Jimma data; the optimal value of the
penalty parameter λ is shown by the vertical line

5 Concluding Remarks

Several procedures for variable selection based on L1-penalties have been proposed. The pro-

cedures yield stable estimates in cases where methods that do not include variable selection

typically fail because of the complexity of the fitting task. The method allows to include cat-

egorical predictors that are selected predictor or omitted as a whole predictor in the spirit of

the group lasso. It is straightforward to extend the approach to include more complex penalty

terms, for example, the elastic net penalty or hierarchical penalty terms as proposed by Zhao

et al. (2009).
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glmmPQL glmmLasso

Intercept 1.213 (0.052) 1.257 (0.045)
age 0.005 (0.000) 0.005 (0.000)
age2 -0.000 (0.000) -0.000 (0.000)
ageM 0.002 (0.001) -
education1 -0.077 (0.041) -
education2 -0.078 (0.042) -
education3 -0.032 (0.041) -
education4 -0.017 (0.041) -
education5 -0.018 (0.040) -
delivery1 0.021 (0.019) 0.028 (0.019)
delivery2 -0.024 (0.017) -0.026 (0.016)
visits -0.045 (0.013) -0.053 (0.010)
month -0.024 (0.012) -
sex 0.081 (0.012) 0.080 (0.013)
marital1 0.057 (0.025) -
marital2 0.104 (0.057) -
marital3 0.056 (0.038) -
occupational 0.001 (0.016) -

Table 13: Estimated linear effects for the Jimma data with glmmPQL function and glmmLasso algorithm
(standard deviations in brackets)
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Figure 15: Individual smoothed age effects for the Jimma data on the predictor level (upper) and
versus body weight (lower) for glmmLasso with slopes up to second potence of age.
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Figure 16: Individual smoothed age effects for the Jimma data on the predictor level (upper) and
versus body weight (lower) for glmmPQL with slopes up to second potence of age.
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Appendix

A Partition of Fisher Matrix

According to Fahrmeir and Tutz (2001) the penalized pseudo-Fisher matrix Fpen(δδδ) = ATW(δδδ)A+

K can be partitioned into

Fpen(δδδ) =




Fββββββ Fβββ1 Fβββ2 . . . Fβββn

F1βββ F11 0

F2βββ F22

...
. . .

Fnβββ 0 Fnn




,

with single components

Fββββββ = −E
(
∂2lpen(δδδ)

∂βββ∂βββT

)
= XTD(δδδ)ΣΣΣ(δδδ)−1D(δδδ)TX,

Fβββi = FTiβββ = −E
(
∂2lpen(δδδ)

∂βββ∂bTi

)
= XT

i Di(δδδ)ΣΣΣi(δδδ)
−1Di(δδδ)

TZi,

Fii = −E
(
∂2lpen(δδδ)

∂bi∂b
T
i

)
= ZTi Di(δδδ)ΣΣΣi(δδδ)

−1Di(δδδ)
TZi + Q−1,

and Di(δδδ) = ∂h(ηηηi)/∂ηηη, ΣΣΣi(δδδ) = cov(yi|βββ,bi).

B Two Bootstrap approaches for GLMMs

The general idea of bootstrapping has been developed by Efron (1983, 1986). An extensive

overview of the bootstrap and related methods for asserting statistical accuracy can be found in

Efron and Tibshirani (1993). For GLMMs two main approaches are found in the literature. The

first approach is to resample nonparametrically, which has been proposed e.g. by McCullagh

(2000) and Davison and Hinkley (1997). They randomly sample groups of observations with

replacement at the first stage and suggest various ways how to sample within the groups at the

second stage. They showed that sometimes it can be useful to randomly resample groups at the

first stage only and leave groups themselves unchanged, for example if there is a longitudinal

structure in the data, see e.g. Shang and Cavanaugh (2008).

The second approach, on which the standard errors in Section 4 are based on, is to simulate

parametric bootstrap samples following the parametric distribution family of the underlying

model (compare Efron, 1982). Booth (1996) has extended the parametric approach from Efron

(1982) to GLMMs to estimate standard errors for the fitted linear predictor η̂ηη = Xβ̂ββ+Zb̂ from
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Section 2.

Analogously we can derive standard errors for the fixed effects estimate β̂ββ and for the

estimated random effects variance components Q̂, respectively. Let {Fξξξ : ξξξ ∈ Ξ} denote

the parametric distribution family of the underlying model, where ξξξT = (βββT ,bT , vec(Q)T )

is unknown. Here vec(Q) denotes the column-wise vectorization of matrix Q to a column

vector. Let ξ̂ξξ = (β̂ββ
T
, b̂

T
, vec(Q̂)T ) denote the Lasso estimate of ξξξ for an already chosen penalty

parameter λ on a certain data set. Now we can simulate new bootstrap data sets (y∗,b∗) with

respect to the distribution Fξ̂ξξ, i.e. (y∗,b∗) ∼ Fξ̂ξξ. We repeat this procedure sufficiently often,

say B = 10.000, and fit every new bootstrap data set (y∗(r),X,W), r = 1, . . . , B, with our

glmmLasso algorithm. The new fits ξ̂ξξ
∗
(r) corresponding to the r-th new data set serve as

bootstrap estimates and can be used to derive standard errors.
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