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High-dimensional binary classification tasks, e.g. the classification of mi-
croarray samples into normal and cancer tissues, usually involve a tuning
parameter adjusting the complexity of the applied method to the examined
data set. By reporting the performance of the best tuning parameter value
only, over-optimistic prediction errors are published. The contribution of
this paper is two-fold. Firstly, we develop a new method for tuning bias
correction which can be motivated by decision theoretic considerations. The
method is based on the decomposition of the unconditional error rate involv-
ing the tuning procedure. Our corrected error estimator can be written as
a weighted mean of the errors obtained using the different tuning parameter
values. It can be interpreted as a smooth version of nested cross-validation
(NCV) which is the standard approach for avoiding tuning bias. In contrast
to NCV, the weighting scheme of our method guarantees intuitive bounds
for the corrected error. Secondly, we suggest to use bias correction methods
also to address the bias resulting from the optimal choice of the classifi-
cation method among several competitors. This method selection bias is
particularly relevant to prediction problems in high-dimensional data. In the
absence of standards, it is common practice to try several methods succes-
sively, which can lead to an optimistic bias similar to the tuning bias. We
demonstrate the performance of our method to address both types of bias
based on microarray data sets and compare it to existing methods. This
study confirms that our approach yields estimates competitive to NCV at a
much lower computational price.
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1 Introduction

Resampling-based procedures are routinely applied in order to assess the performance
of statistical learning methods by estimating their prediction error. If the available data
set were large enough, it would be recommended to partition the data into learning
and validation data, to fit a model using the learning data, and to estimate its error
based on the validation data. In the common case of small sample high-dimensional
data considered in the present paper, however, the available data set is usually too small
for such a partitioning. Resampling-based procedures are thus particularly useful in the
context of “n ≪ p” data analysis, i.e. when the number of predictors exceeds the number
of observations.
In practice, most common classification methods for high-dimensional data involve a

tuning parameter, e.g. the cost parameter in linear Support Vector Machines (SVM)
or the number of neighbors in k-nearest-neighbors (kNN). If the error of a classification
method is estimated by a resampling method several times with different values of the
tuning parameter successively, each parameter value possibly yields a different estimated
error. The approach consisting in selecting the parameter value yielding the smallest
resampling error estimate and only reporting this resampling estimate is biased [5]. That
is because the minimal resampling error can be seen as the result of an optimal selection.
As such, it is a biased estimate of the generalization error rate, i.e. of the error that
would be obtained with this parameter value on independent data. This bias, that was
quantitatively assessed by [16] in the “n ≪ p” setting, is often denoted as tuning bias.
Note that the term “tuning” may be ambiguous since researchers from different fields
might have different understandings of tuning. In this paper, we consider a parameter
as a tuning parameter if it is not optimized by an analytical method (like the least
squares criterion for the coefficients in linear regression) but rather by trying several
values successively and using the value yielding the best prediction performance on test
data. When choosing the parameter value based on the performance yielded by different
candidate values, one indirectly uses the test data for learning the decision function,
leading to an optimistic bias.
The same type of bias occurs if a researcher tries out several classification methods

successively and reports only the results of the method yielding the minimal error rate.
For instance, suppose we compute the resampling error rate of Support Vector Machines
(SVM), Random Forests (RF), k-nearest-neighbors (kNN), and L1-penalized regression
for a particular data set. Suppose further that kNN yields the smallest error rate in the
resampling approach. This error rate is likely to be smaller than the error rate of kNN
on independent data, because it was optimally selected across four error estimates that
all show some variability. The resulting bias which we denote as method selection bias
in this paper may be considerable, as illustrated by [3, 9]. In an empirical study based
on real microarray data sets, [3] show that systematically selecting the method with the
smallest cross-validation (CV) error rate can result in an error estimate as low as 30%
[3] even after permutation of the class labels (i.e. with fully uninformative predictors).
In the context of microarray-based classification, [16] suggest to apply nested cross-

validation (NCV) to correct for the tuning bias outlined above. NCV is based on an
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additional internal CV loop performed for tuning purposes – in contrast to the external
CV performed to estimate the error. In this approach, internal CV is performed within
each learning set. The value yielding the smallest error in internal CV is then selected
and used to predict test observations in external CV. In this way, for each external CV
iteration the choice of the parameter value is performed without using information from
the test set, thus addressing the tuning bias outlined above.
A similar procedure might also be used to address the method selection bias induced

by the optimal choice of the classification method. However, the NCV technique is com-
putationally expensive, since it requires an additional CV loop on each learning set. The
computational burden might rapidly become intractable, especially if the considered clas-
sification methods themselves involve tuning parameters that also have to be optimized
using internal CV. Moreover, three embedded CVs are not only a computational chal-
lenge. The size of the learning sets decreasing with each CV loop, one finally has to work
with substantially smaller learning sets which are not representative of the larger total
sample. Furthermore, NCV tends to yield highly variable results, sometimes leading to
absurd “corrected” errors outside the range of the original errors of the considered meth-
ods. In the context of tuning bias correction, [14] suggest a computationally effective
alternative to NCV that does not rely on internal CV. Like NCV, this method could also
be generalized to the correction of the method selection bias considered here. However,
it tends to strongly over-estimate the bias in some settings, as already acknowledged by
the authors themselves.
In this paper, we suggest an alternative bias correction approach which also does not

rely on an internal cross-validation loop and can be applied to address both the tuning
and the method selection bias. We decompose the unconditional error rate in such
a way that the corrected error estimate is given as a weighted mean of the resampling
errors obtained using the different parameter values/methods. The weight of a particular
parameter value/method is the unconditional probability that it yields the minimal error
estimate. In a broad sense, NCV can also be seen as a weighted procedure, where the
weights are empirically determined in internal CV. On the contrary, we estimate the
weights using an analytical approach based on the results of the external CV only.
Our method can be interpreted as a smooth version of NCV that builds the average
of the global error estimates instead of averaging iteration-wise errors like NCV. This
procedure guarantees intuitive bounds, increases stability compared to NCV, and reduces
the computation time drastically since it does not rely on internal CV.
The rest of the paper is structured as follows. Section 2 introduces the settings and

notations and recalls the different types of error rates in this framework. This section also
revisits existing approaches in the perspective of bias correction. Section 3 presents our
new correction method. In section 4, this method is illustrated and compared to existing
approaches based on four cancer microarray data sets as well as modified versions of these
data sets with completely randomly generated class labels. This comparison focuses on
tuning bias correction as well as method selection bias. Finally, section 5 summarizes
and discusses some characteristics of our method.
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2 Error rate of the best method and nested cross validation

2.1 Settings and notations

From a statistical point of view, binary supervised classification can be described in
the following way. On the one hand we have a response variable taking values in Y
= {1, 2}. On the other hand we have predictors taking values in X ⊂ Rp that will be
used for constructing a classification rule. Predictors and response follow an unknown
joint distribution on X × Y denoted by P (x, y). The observed i.i.d. sample of size n is
denoted by s0 = (x1, y1)...(xn, yn). The classification task consists in building a decision
function f̂ that maps elements of the predictor space X into the response space Y:

f̂S : X 7→ Y , x 7→ f̂S(x),

where the superscript S indicates that the decision function is built using the sample S.
From now on, we denote by method k (with k ∈ 1, . . . ,K) the considered combination
of method and tuning parameter values. As an example, method 1 may stand for SVM
with cost= 1, method 2 for kNN with k= 10, and so on. As a special case, 1, . . . ,K
might represent different parameter values of the same method. The decision function
obtained by fitting the prediction method k to the sample s0 is denoted as f̂s0

k .

2.2 Estimating the error

Suppose we have estimated a decision function f̂S . The true prediction error that has
to be estimated can be written as

ε[f̂s0
k ] = EP

[
L
(
f̂S(x), y

)]
=

∫

X×Y
L
(
f̂S(x), y

)
dP (x, y), (1)

where EP stands for the mean over the joint distribution P and L(., .) is an adequate
loss function, e.g. the indicator loss yielding the error rate considered in this paper.
The true error ε[f̂s0

k ] of method k constructed using sample s0 is denoted by ε[f̂s0
k ] =

ε(k ‖ s0). This error is commonly referred to as conditional error since it corresponds to
the decision function constructed on the specific sample s0. In this perspective, ε(k ‖ S)
should be seen as a random variable, where S stands for a random sample that follows
the distribution Pn. The mean

εn(k) = EPn [ε(k ‖ S)] (2)

of the random variable ε(k ‖ S) is usually referred to as the unconditional true error
rate of method k. It depends only on the method k, on the size n of the sample S and
on the joint distribution P , and can be seen as a fixed quantity.
Since the joint distribution P (x, y) is unknown, the conditional errors ε(1 ‖ s0), . . . , ε(K ‖

s0) and the unconditional errors εn(1), . . . , εn(K) have to be estimated. Standard esti-
mation approaches are based on CV or repeated subsampling, see e.g. [4] for an overview.
We focus on the repeated subsampling method in this paper because our new correction
method involves the estimation of the unconditional variance of the estimated error.
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To our knowledge the estimator proposed by [11] – which is used here – works for re-
peated subsampling only, and we are not aware of any convincing alternative estimator
applicable to CV.
In repeated subsampling the whole data set is randomly split into learning and test

sets several times. Each learning set Lb, b = {1, . . . , B} of size nL (with nL < n) is used
to estimate a decision function that is subsequently evaluated on the corresponding test
set S \ Lb. For each iteration b = {1, . . . , B} and each method k, k = {1, . . . ,K}, one
obtains an estimated error e(k ‖ Lb, S \ Lb), where the term “Lb, S \ Lb” means that
method k is fitted to the learning set Lb and evaluated on the test set S \Lb. Note that
we use the notation e for estimators and ε for true errors. In contrast to the conditional
true error ε(k ‖ S), the estimated error e(k ‖ Lb, S \Lb) is conditional on the considered
sample not only with regard to the estimation of the decision function but also with
regard to the estimation of the error. For each method k, the iteration-wise test errors
are eventually combined into an error rate estimate by averaging over the iterations
b = 1, . . . , B, yielding

e(k ‖ S) =
1

B

B∑

b=1

e(k ‖ Lb, S \ Lb), (3)

which obviously may depend on the random choices of the partitions {Lb, Tb}, b =
1, . . . , B, a fact that however is supressed in the notation.

2.3 The “best” method

Let us further denote the method yielding the smallest error rate based on S as k∗(S),
i.e. k∗(S) = argmink e(k ‖ S). Note that the random variable k∗(S) depends not only on
the sample S but also on the considered learning sets Lb, b = 1, . . . , B. In our notation
we will again ignore this dependence on the specific learning sets.
For a given sample s0, the error estimate e(k∗(s0) ‖ s0) obtained by repeated resam-

pling incorporates a source of a downward bias because k∗(s0) is chosen based on s0,
i.e. such that e(k∗(s0) ‖ s0) is minimal. If one simply chooses the method yielding
the minimal error rate e(k∗(s0) ‖ s0), this minimal error rate underestimates the true
conditional error rate ε(k∗(s0) ‖ s0) of the chosen method. The problem is that the same
sample s0 is used both for error estimation and for the choice of the optimal classifica-
tion method (k∗(s0)). The corresponding classification rule f̂s0

k is expected to perform
worse on an independent sample s1 which was not used for choosing the method. This
bias is related to the problem of multiple comparisons. The minimal error rate out of K
methods decreases with increasing K. The resulting bias can also be seen as the result
of the variability of the estimates e(k||S).
In this paper, we aim at correcting the bias of e(k∗(s0) ‖ s0) as an estimator of

ε(k∗(s0) ‖ s0), because, roughly speaking, we are interested in the expected performance
of the “best method” k∗(s0) on independent data. Since the only available data are
s0, ε(k

∗(s0) ‖ s0) can obviously not be estimated directly. Thus, we reformulate the
problem as the estimation of

Err = EPn(ε(k
∗(S) ‖ S)) = εn(k∗(S)). (4)
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The error ε(k∗(s0) ‖ s0), that we want to estimate, is a realization of the random
variable ε(k∗(S) ‖ S) whose mean over Pn is Err. We show in Section 2.4 that the
well-known NCV estimator can be reformulated as an estimator of Err, and we suggest
an alternative estimator in Section 3.

2.4 Revisiting Nested Cross-Validation

In this section, we propose an interpretation of the well-known NCV method as a nat-
ural estimator of Err = EPn(ε(k

∗(S) ‖ S) from Eq. (4). Note that, strictly speaking,
the term “NCV” implies that CV is used both in internal CV (to choose the tuning
parameter/method) and in external CV (to estimate the error rate). However, the idea
of NCV can be directly generalized to other evaluation schemes such as repeated sub-
sampling. In this paper, we stick to the standard terminology “NCV” but use repeated
subsampling to estimate the error in the external loop. In our notation, the NCV error
estimate can be written as

ÊrrNCV =
1

B

B∑

b=1

e(k∗b(Lb) ‖ Lb, S \ Lb). (5)

This formula, which is at first view very similar to formula (3), can be interpreted as
follows. For each iteration b (b = 1, . . . , B), the following procedure is repeated. Firstly,
the “Lb-best method” k∗b(Lb) is determined in internal CV within Lb. Secondly, the
classification rule fitted on Lb using the best method k∗b(Lb) is evaluated on S \ Lb,
yielding e(k∗b(Lb) ‖ Lb, S \ Lb).
The difference to Eq. (3) is that NCV builds the average error of the best methods

k∗b(Lb) (as assessed in internal CV) instead of averaging the error rates of a specific
method k. Note that these Lb-best methods again vary with the choice of the internal
learning sets which means that one may not obtain the same final results when repeating
the same procedure twice – even if the outer learning sets Lb are fixed. Roughly speaking,
in NCV the parameter Err = EPn(ε(k

∗(S) ‖ S)) is estimated through averaging over
B subsets of s0. Each term e(k∗b(Lb) ‖ Lb, S \ Lb) can be seen as an estimator of
ε(k∗b(Lb) ‖ Lb), which roughly plays the role of a realization of ε(k∗(S) ‖ S). Note,
however, that the Lb subsets are smaller than s0, which implies over-estimation of the
error rate.
Most importantly, the determination of k∗b(Lb) within each iteration is computation-

ally expensive, which makes NCV very difficult to apply in practice when the prediction
methods are time consuming, especially when they involve a tuning step that itself has
to be performed through internal CV. As a consequence, the determination of k∗b(Lb) is
in practice often based on a fast procedure such as 3-fold-CV, yielding even more vari-
able results than other resampling approaches. In extreme cases, this high variability
may lead to estimates ÊrrNCV larger than maxk e(k ‖ s0) or lower than mink e(k ‖ s0),
which is very unintuitive. Motivated by these inconveniences, we suggest an alternative
computational effective estimator of Err in the Section 3.
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2.5 Method proposed by [14]

[14] recognize the inconveniences of NCV in this context and suggest an alternative fast
and simple method. Their basic idea is to estimate the tuning bias in each resampling
iteration and then build the average over the B iterations. Although the method is
originally presented in a CV framework, it can also directly be applied to repeated
subsampling. The corrected error rate estimate ÊrrTT suggested by [14] is obtained
as the sum of the minimal estimated error rate e(k∗(S) ‖ S) and the average of the
differences e(k∗(S) ‖ Lb, S \Lb)− e(k♯b(S \Lb) ‖ Lb, S \Lb) which can be interpreted as
the counterpart of the tuning bias on the repective folds:

ÊrrTT =
1

B

B∑

1=b

e(k∗(S) ‖ Lb, S \ Lb)

+
1

B

B∑

1=b

[
e(k∗(S) ‖ Lb, S \ Lb)− e(k♯b(S \ Lb) ‖ Lb, S \ Lb)

]
, (6)

where k♯b(S \Lb) denotes the method/tuning parameter performing best on the bth test
fold S \ Lb corresponding to the bth resampling iteration. This approach is computa-
tionally efficient, since it is based on the K × B estimated error rates e(k ‖ Lb, S \ Lb).
It does not require any additional computations. However, a major problem is that the
error rates e(k ‖ Lb, S \Lb) obtained on the single test sets are much more variable than
the error rates e(k ‖ S) that are averaged over B ≫ 1 test sets. Therefore the method
proposed by [14] often overestimates the bias and the corrected error, as already noticed
in their simulation study with non-informative data.

3 A smooth analytical alternative to NCV

3.1 Principle

The rationale behind NCV is that the construction of the decision function and the tun-
ing/ method selection process, which are normally applied to the whole sample S = s0,
are mimicked on each learning set Lb of the external CV. In this way the tuning/method
selection process is empirically incorporated into the estimation procedure. In practice,
the best method k∗b(Lb) is typically not the same for all iterations b = 1, . . . , B. Hence,
NCV builds a hard-weighted average of error estimates obtained with different methods
or tuning parameters. By hard-weighted, we mean that for each resampling iteration b
only one of the e(k ‖ Lb, S \Lb) (k = 1, . . . ,K) is chosen (by internal CV) to be included
in the average. The weight of e(k∗b(Lb) ‖ Lb, S \ Lb) is 1, while the weight of all other
e(k ‖ Lb, S \Lb) (for k 6= k∗b(Lb)) is 0. It is important to note that this way results from
different tuning parameters are eventually combined.
Our new method is also based on a combination of error estimates of different param-

eter values/methods, though in a completely different and more direct way. While NCV
combines errors of different parameter values/methods e(k ‖ L(b), S \ Lb) computed for
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different test sets, the new procedure combines the global error estimates e(k ‖ s0) of
the different parameter value/methods k. Furthermore, the way these average errors
are combined does not depend on an empirical experiment as performed in the internal
CV. Our main idea is to decompose the unconditional error rate EPn [ε(k

∗(S) ‖ S)] with
regard to the random variable k∗(S), i.e. the index of the best method:

EPn [ε(k
∗(S) ‖ S] =

K∑

k=1

P (k∗(S) = k) ·E [ε(k ‖ S)|k∗(S) = k] . (7)

As argued below, in most cases, it is reasonable to assume that, for a fixed method k,

ε(k ‖ S) ⊥ k∗(S), (8)

i.e. the conditional error rate of method k constructed on S is independent from k∗(S).
It follows from Eq. (8) that the conditional expectations in Eq. (7), which cannot be
estimated easily, can be replaced by the respective unconditional expectations:

EPn(ε(k
∗(S) ‖ S) ≈

K∑

k=1

P (k∗(S) = k) ·EPn [ε(k ‖ S)] . (9)

In order to perform this approximation of EPn(ε(k
∗(S) ‖ S) we only have to estimate

the quantities in Eq. (9). The terms EPn (ε(k ‖ S)) can be estimated by e(k ‖ s0). The
probabilities P(k∗(S) = k) are more difficult to estimate, see Section 3.2 for details.
Before that, let us come back to the crucial assumption (8). It means that the true

error rate ε(k ‖ s0) of method k fitted on s0 does not depend on which method performed
best in repeated subsampling based on s0 – the unconditional error rates ε

n(1), . . . , εn(K)
being fixed. Note that this assumption, of course, should not be misinterpreted in
the sense that parameter tuning with CV is useless. Even if assumption (8) holds,
tuning is useful to identify which method may have the smallest unconditional error
rate εn(k). A counter-example for which assumption (8) does not completely hold is
support vector machines (SVM) – denoted as k1 here – in the case of a sample with a
mislabeled observation. The error rate ε(1 ‖ s0) of SVM is likely to be large, because
SVM classifiers are strongly affected by mislabeled observations that often take the role
of support vectors. Hence, k∗(s0) = 1 is not likely. Thus, in this case, we obviously do
not have ε(k ‖ S) ⊥ k∗(S). However, especially in the presence of variable selection,
assumption (8) holds in most cases, as illustrated by [8] based on an extensive empirical
study.

3.2 Estimating P (k∗(S) = k)

The most complicated task in our approximation is to derive appropriate estimates for
P (k∗(S) = k), k = 1, . . . ,K. A pragmatic solution to this problem is suggested in the
rest of this section. We assume continuous distributions of the errors and |Cor(e(k1 ‖
S), e(k2 ‖ S))| 6= 1, k1 6= k2. The latter includes the restriction that the methods
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1, . . . ,K have to be truly different. Together these assumptions imply P(e(k1 ‖ S) =
e(k2 ‖ S)) = 0, k1 6= k2. Now P(k∗(S) = k) can be reformulated as

P(k∗(S) = k) = P(e(k ‖ S) < e(k′ ‖ S) ∀k′ 6= k). (10)

We suggest a procedure based on a parametric modeling of this distribution. More
precisely, we assume a multivariate normal distribution and estimate its mean and co-
variance. The mean µ of vector e is simply estimated as µ̂ = (e(1‖s0), . . . , e(K ‖ s0))

⊤.
The correlation coefficients Cor(e(k1 ‖ S), e(k2 ‖ S)) (for k1, k2 = 1, . . . ,K, k1 6= k2)
are estimated as the corresponding sample correlation between e(k1 ‖ Lb, S \ Lb) and
e(k2 ‖ Lb, S \Lb), b = 1, . . . , B. The most delicate task is the estimation of the variances
of the estimators e(k ‖ S), k = 1, . . . , K. [11] suggest two estimators in this context.
One of them involves repeated random splitting of the data sets into two equally sized
subsets, which is impossible in our case both for computational reasons and because the
resulting sample size would be too small. The other estimator proposed by [11] is given
through

(
1

B
+

ρ̂

1− ρ̂

)
· 1

B − 1

B∑

b=1

(e(k ‖ Lb, s0 \ Lb)− e(k ‖ s0))
2 , (11)

where ρ is the correlation between the errors e(k ‖ Lb, s0 \ Lb) (b = 1, . . . , B) obtained
in different iterations from the same sample s0, and ρ̂ is its estimator. [11] suggest to
use the simple estimator ρ̂ = n−nL

n , which we also adopt here. This estimator works for
repeated subsampling only, which is also the reason why we use repeated subsampling
in our simulations.
Using these estimates of the mean, the correlation matrix and the respective variances

of the random vector e = (e(1 ‖ S), . . . , e(K ‖ S))⊤ and assuming a multivariate normal
distribution, we can easily estimate the probability at which each method k performs
best on independent test data, i.e. P(k∗(S) = k). For each k this probability can be
reformulated in the following way:

P(k∗(S) = k) = P(e(k ‖ S) ≤ e(j ‖ S), ∀j : j 6= k)
= P(e(k ‖ S)− e(j ‖ S) ≤ 0, ∀j : j 6= k).

Consequently, if we consider all the K − 1 differences δj = e(k ‖ S)− e(j ‖ S) for j 6= k,
which are simple linear combinations of the original random vector e(1 ‖ S), . . . , e(K ‖
S), the probability P(k∗(S) = k) can be estimated from the density of the multivariate
normal distribution of the random vector of differences δ as the integral

P(e(k ‖ S)− e(j ‖ S) ≤ 0, ∀j : j 6= k) ≈
∫ 0

−∞
. . .

∫ 0

−∞

1

(2π)
K−1

2

√
TΣ̂T⊤

exp

(
(δ −Tµ̂)⊤

(
TΣ̂T⊤

)−1
(δ −Tµ̂)

)
Πjdδj ,

where the (K − 1) × K matrix T contains the linear combinations yielding the corre-
sponding differences, i.e. such that δ = Te. These integrals can be approximated very
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precisely by usual statistical software like the function pmvnorm from the R-package
mvtnorm [6]. Computation times of this function are marginally small in comparison
with computation times of other steps of the analysis. Of course, the normality assump-
tion can not hold exactly since the considered errors are averages of binary variables. In
order to assess the deviation from the normal distribution we provide normal quantile
plots for the distribution of the average errors for all classifiers and all simulation setups
in the web-based supplementary materials (Web Appendix E). These distributions de-
pend on the respective data set and method. In many cases the assumption seems to
hold whereas some plots indicate that these distributions tend to more extreme values
than expected under normality assumptions.

3.3 A weighted mean approach

Eventually, our novel estimator ErrWMC of EPn [ε(k
∗(S) ‖ S)] is given as

ÊrrWMC =
K∑

k=1

P̂ (k∗(S) = k) · e(k ‖ s0). (12)

The estimator in Eq. (12) can be interpreted as a weighted mean of the average re-
sampling errors of the different tuning parameters/methods. The terms P̂ (k∗(S) = k)
represent the weights. This is the reason why we refer to our approach as Weighted
Mean Correction (WMC).
A natural question is whether different weights may also be appropriate. A naive

approach consists in giving equal weights to all parameters/methods, i.e. in replacing
P̂ (k∗(S) = k) by 1/K in Eq. (12). Note that this equal weight approach can be
considered as a sensible upper bound for the corrected error because it corresponds to
a random choice of the parameter/method. By definition, a random choice cannot lead
to a tuning or method selection bias. That is why we do not expect any corrected error
to be higher than

ErrRawMean =
K∑

k=1

1

K
· e(k ‖ s0). (13)

Regardless of the way these weights are chosen, there is a strong relationship between
our approach and NCV. Our new estimator can be paralleled to the NCV estimator
through a reformulation as

ÊrrWMC =
1

B

K∑

k=1

B∑

b=1

P̂ (k∗(S) = k) · e(k ‖ Lb, S \ Lb). (14)

Similarly, the estimator ÊrrNCV can also be reformulated as

ÊrrNCV =
1

B

K∑

k=1

B∑

b=1

I(k∗b(Lb) = k) · e(k ‖ Lb, S \ Lb). (15)
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Figure 1: Comparison of the weighted approach and nested cross-validation. The mis-
classification rate (MCR) obtained by the weighted approach (compare to Eq.
(14)) can be interpreted as a smoothed variant of the one obtained by nested
cross-validation (compare to Eq. (15)).

Finally, the two estimators ÊrrNCV and ÊrrWMC have a similar form. The crucial
difference is that ÊrrWMC smoothly weights the errors e(k ‖ Lb, S \Lb) with the proba-
bilities P̂ (k∗(S) = k) estimated from an analytical parametric model (whose parameters

are estimated from the quantities e(k ‖ Lb, S\Lb) only). On the contrary, in ÊrrNCV the
weights are empirical, discrete and depend on the results of a computationally intensive
internal CV. Figure 1 illustrates the similarities and differences of the two methods.

3.4 Detour: Decision theoretic motivation

In this context we would like to provide a decision theoretic motivation of the tuning
or method selection procedure. In decision theory one has to choose among different
actions (the tuning parameters or methods) in dependence of certain states of nature.
The goal is to minimize the global risk which is the unconditional error rate in our tuning
setup. There are two options for the definition of the states of nature. Principally, the
states of nature are specific characteristics of the data which indicate the use of a specific
method/tuning parameter. These characteristics may refer either to the specific sample
drawn from a data generating process (DGP) or to the DGP itself. Assuming the first
definition, one can introduce an experiment in order to obtain information on the actual
characteristics of the particular sample. This experiment corresponds to the resampling
procedure in which we try to estimate the risks of the different actions. Using the

11



experiment one can define a strategy, e.g. that one always uses the action with minimal
estimated risk. Looking at NCV, we see that it actually estimates the risk of such a
sample-based strategy (k∗(S)) because it reselects the tuning parameter/method on each
training fold of the outer loop according to the inner CV loop. As far as the estimation of
a strategy is concerned, an inconsistency occurs with NCV at this point. NCV performs
only one experiment although we know that the inner CV strongly depends on the
specific partitioning. Due to this partitioning variability one could rather speak of a
probabilistic strategy, since even for fixed states of nature one has certain probabilities
at which each tuning parameter/method gets chosen. This is exactly the point where
our method tries to improve NCV. We take into account that the tuning procedure in
the inner loop could have decided differently depending on the specific partitioning and
we estimate the probabilities P(k∗(S) = k) in order to mimic the probabilistic strategy.
Please note that NCV is introduced as an intuitive approach for tuning bias correction
and [16] do not exactly define the quantity they want to estimate.
The difference between both definitions for the states of nature manifests itself in the

crucial assumption ε(k ‖ S) ⊥ k∗(S). Basically, this assumption means that resampling
can be a useful tool for finding suitable tuning parameters/methods for a certain DGP
but not for the particular samples inside a DGP, i.e. now we are dealing with DGP-based
strategies in contrast to the sample-based strategies mentioned before. If we assume that
the P(k∗(S) = k) are equal for all possible samples of the DGP, k∗(S) actually becomes a
combined action once the DGP is fixed. In decision theory a combined action is a random
strategy that does not use an additional experiment to collect further information but
simply chooses certain actions according to specific weights. Please note that in this
broader context the unconditional error rate in Eq. (2), that we are estimating, can
actually be interpreted as a conditional error rate, conditioned on the fixed DGP. Of
course, any resampling method can also define such a DGP based strategy if one takes
into account that it is an experiment which can choose actions on any DGP that might
exist. In this sense the independence assumption formulated above can be interpreted
as the presumption that usually resampling is not such a precise tool that it is really
able to detect “bad” samples produced by a fixed DGP.

3.5 Implementation

The weighted mean correction method is implemented in the R-function weighted.mcr
included in a new version of the Bioconductor package CMA [13] that can be downloaded
from the companion website (http://www.ibe.med.uni-muenchen.de/
organisation/mitarbeiter/070 drittmittel/bernau/cvbias/index.html). The codes
implementing our analyses are also provided there.

4 Empirical results and comparison of the three estimators

The goal of the study is to compare our estimator ÊrrWMC (Eq. (12)) to the existing

estimators ÊrrNCV (Eq. (5)) and ÊrrTT (Eq. (6)) and to the naive raw mean estimator
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ÊrrRawMean (Eq. (13)). Additionally, we also compare these estimates to the minimal
error mink e(k ‖ s0) and the maximal error max e(k ‖ s0), which can be considered as
natural bounds for corrected errors.

4.1 Study design

This study is based on four microarray data sets: a colon cancer data set [1] included
in Bioconductor package colonCA with n = 62 diseased or healthy tissues and p = 1991
variables, a prostate cancer data set [12] with n = 102 diseased or healthy patients and
p = 12625 variables, a leukemia data set [7] included in Bioconductor package CMA
with n = 38 patients with two different leukemia subtypes and p = 3051 variables, and
an ALL-leukemia data set included in Bioconductor package ALL [10] with n = 100
patients with and without relapse and p = 12625 variables. Additionally, we consider
modified versions of these four data sets obtained by replacing the response Y by a
randomly generated Bernoulli distributed variable Y ′ ∼ B(1, 0.5). These modified data
sets are denoted as “non-informative” setup, in contrast to the original version of the
data sets including “informative” predictors.
In the whole study, error rate estimation is performed through repeated subsampling

into learning and test sets with B = 100 subsampling iterations. The proportion of
observations included in the learning sets is set to 80% and 63.2% successively. In
contrast to the three other estimators, ÊrrNCV involves another parameter, the number
of folds in internal CV. There are no commonly accepted guidelines to choose the number
of folds in internal CV, which can be seen as a further inconvenience of NCV. In this
study, it is chosen such that each internal test set contains approximately 5 observations.
In each setup, the whole procedure is repeated T = 50 times in order to analyze the
variability of the results. By “repeated”, we mean that T = 50 different sets of partitions
(Lb, Tb)b=1,...,B are considered successively for the original data sets, and that T = 50
different randomly generated responses Y ′ are considered successively for the modified
data sets.
As outlined in the introduction and in Section 2, our methodology can both be ap-

plied to the correction of the tuning bias or to the correction of the method selection
bias. To illustrate these two powerful features, we successively consider two setups. In
the first setup (illustrating the correction of the tuning bias and denoted as “tuning
setup”, methods 1, . . . ,K stand for different parameter values of a unique classification
method. Two classifiers are considered successively. The first classifier is k-nearest-
neighbors (kNN), where methods 1, . . . ,K correspond to different values (1, . . . , 15) of
the parameter “number of neighbors”. The second classifier is Partial Least Squares
dimension reduction followed by Linear Discriminant Analysis (PLS-LDA) as described
in [2] where methods 1, . . . ,K correspond to different numbers (1, . . . , 10) of PLS com-
ponents. In both cases, a preliminary variable selection is performed by selecting the
variables yielding the lowest p-values with the two-sample t-test (50 variables for kNN,
250 variables for PLS-LDA). Note that, in all resampling iterations, variable selection is
performed using the learning set only. With NCV, this holds for the outer as well as for
the inner loop.
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Table 1: Average corrected errors (over 50 replications) for informative pls and selection
(sel) setups with training set portion 80%.

Setup NCV WMC TT Raw Min Max

pls-alon 0.176 0.168 0.194 0.186 0.149 0.21

pls-singh 0.087 0.08 0.099 0.091 0.075 0.18

pls-golub 0.048 0.03 0.045 0.035 0.024 0.041

pls-allrel 0.431 0.417 0.461 0.441 0.398 0.459

sel-alon 0.164 0.163 0.182 0.19 0.142 0.257

sel-singh 0.097 0.092 0.111 0.133 0.083 0.319

sel-golub 0.026 0.018 0.008 0.061 0.004 0.226

sel-allrel 0.398 0.383 0.414 0.42 0.365 0.452

In the second setup (illustrating the correction of method selection bias and denoted as
“selection setup” (sel)), methods 1, . . . ,K correspond to different combinations of classi-
fication methods and parameter values. The parameters are fixed, because tuning them
with internal CV would imply three embedded CVs for ÊrrNCV , which is computation-
ally intractable. The following classification methods are considered: nearest shrunken
centroids [15] with ∆ = 0.5, linear SVM with cost = 50, kNN with k = 1 neighbor
based on the 20 top-variables, kNN with k = 18 neighbors based on the 50 top-variables,
Diagonal Linear Discriminant Analysis (DLDA) based on the 20 top-variables, PLS-
LDA with 3 PLS components based on the 100 top-variables) and L2-penalized logistic
regression with penalty λ = 0.01.

4.2 Study results

Table 1 gives a representative overview of the results for the setups using the original
response whereas results for the non-informative setups can be found in Table 2. More
results on each specific setup are given in the web-based supplementary materials (Web
Appendices A–D, Web Tables 1–4). Tables 1 and 2 provide the averages over the 50

replications for the three error rates ÊrrWMC , ÊrrNCV and ÊrrTT as well as for the
raw mean ÊrrRawMean, and the minimal and the maximal error rates mink e(k ‖ s0) and
max e(k ‖ s0).
As can be seen from Table 1, in most informative setups the new weighted approach

yields corrected errors that do not differ from the NCV approach by more than 1.5%
in average. When differences are observed, the corrected error estimated by the new
approach is most often lower than its NCV counterpart. However, these differences
can be considered as negligible considering the variability of the estimates across the
50 replications, and we also find setups, especially with the Alon data, where the new
weighted mean approach produces slightly higher estimates.
In most setups the NCV errors range between the new weighted mean errors and

the raw mean errors. As pointed out before, the raw mean error is another sensible
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upper bound for the corrected error because it corresponds to a random choice of the
parameter/method which obviously cannot lead to a tuning or method selection bias. We
do not expect a good correction method to produce estimates higher than the raw mean
approach. Corrected errors estimated by NCV or the method suggested by [14], however,
fall beyond this upper bound in some of the investigated setups, which makes poor sense
in most situations and may be considered as an important disadvantage. Note, however,
that in some hypothetical scenarios our method may also yield estimates higher than the
raw mean. If several parameter values/methods perform similarly and another one yields

a large but highly variable error, the latter may have a weight larger than 1
K in ÊrrWMC .

Its unconditional probability to yield the minimal error may exceed 1
K even though it

yields the maximal error in the present sample. Consequently, in particular situations
we might have ÊrrWMC > ÊrrRawMean. However, such scenarios are quite unlikely
hypothetical constructs. In our setups, our method indeed never produces estimates
substantially higher than the raw mean.
In comparison with the approach by [14], the weighted mean approach provides less

variable results which remain within intuitive bounds. On the one hand, the approach by
[14] yields estimates close to those of NCV in many cases. On the other hand, it some-
times produces overly pessimistic corrected error estimates, for example on the Alon or
ALL data set, where they sometimes noticeably exceed the raw mean error and even the
worst error rate maxk e(k ‖ S) (results not shown here). In some non-informative setups
Tibshirani’s method yields corrected error estimates of 65% or 70%. The average cor-
rected error is higher than the average maximal error rate in almost all non-informative
setups. Corrected error rates exceeding the error rate of the worst classifier can be
considered as obvious failures of this correction method. In this context, it is worth
mentioning that NCV-corrected errors are also not upper-bounded by maxk e(k ‖ S).
However, NCV-corrected errors higher than maxk e(k ‖ S) occur rarely and only with
the Golub data – which is characterized by extremely small errors.
While our new weighted mean approach for error correction yields similar results to

NCV in most informative setups, it tends to produce slightly over-optimistic results,
i.e. to underestimate the error, in non-informative setups where the corrected error
should approximately equal 50%. A representative example is displayed in Figure 2
representing the corrected errors obtained for 50 different sets of learning and test sets
(Lb, Tb)b=1,...,B with the four considered approaches using the Alon data set (with 80%
observations in the training sets, non-informative selection setup). According to Table
2, the average corrected error over the 50 replications differs from NCV by at most 3.8%
in the non-informative setups. This problem primarily occurs with the selection setups
which are the most challenging setups for our new method due to the heterogeneity of
the candidate methods. In our normal quantile plots (Web Figures 49–96) we can also
observe the largest deviations from the normal distribution in these setups, especially
for the error rates obtained by support vector machines. Quite generally, the selection
setup seems to be more problematic for all correction methods, because the differences
between the lowest and the highest errors are usually larger than in the tuning setups.
Nonetheless, even in this difficult setup the new weighted mean approach produces results
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Figure 2: Comparison of NCV, the new weighting based method and the approach pro-
posed by [14] for the non-informative selection setup on the Alon data set
(proportion of observations in the training data: 80%).

Table 2: Average corrected errors (over 50 replications) for non-informative pls and se-
lection (sel) setups with training set portion 80%.

Setup NCV WMC TT Raw Min Max

pls-alon 0.502 0.483 0.558 0.504 0.465 0.538

pls-singh 0.494 0.482 0.546 0.492 0.468 0.524

pls-golub 0.5 0.479 0.534 0.495 0.463 0.533

pls-allrel 0.495 0.482 0.54 0.498 0.469 0.523

sel-alon 0.492 0.462 0.532 0.488 0.44 0.531

sel-singh 0.504 0.479 0.535 0.503 0.463 0.541

sel-golub 0.498 0.466 0.543 0.493 0.443 0.536

sel-allrel 0.505 0.484 0.542 0.501 0.468 0.532

close to those of NCV, although there was room for large deviations as can be seen from
an example in Figure 3.

5 Discussion and concluding remarks

We have proposed a new weighting-based method for tuning bias correction which avoids
the additional computational costs of nested cross-validation while producing comparable
results. In addition our method cannot only be applied in the well-known context of
parameter tuning but also to address the method selection bias resulting from the optimal
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Figure 3: Comparison of NCV, the new weighting based method and the approach pro-
posed by [14] for the informative selection setup on the Singh data set (pro-
portion of observations in the training data: 63%).

choice of the method. To our knowledge, correction of the latter bias has never been
addressed explicitly in the literature, neither with NCV nor with any other approach. In
such selection setups our method performs slightly worse than in the tuning setups in the
sense that it tends to under-correction. This is probably due to the high heterogeneity
of the considered methods which complicates the estimation of the unconditional mean
and variance of the estimated errors e(k ‖ S). The estimation of these quantities in
resampling setups is still subject of current research in the fields of statistics and machine
learning. Our method might benefit from these researches, including a possible extension
to cross-validation and bootstrap resampling.
Besides the lower computational effort, an important advantage of our method over

NCV is that the obtained corrected error remains within sensible bounds defined by
the minimal and maximal errors. As shown in the results section, NCV may produce
estimates outside this interval. Regardless of whether the NCV-estimates fall above
the highest error or below the lowest error, such a “correction” makes poor sense. Our
correction method is clearly superior in such cases. Another extreme situation where our
method yields more plausible results is when all tuning parameter values/methods lead
to the approximately the same error estimate (e(1 ‖ s) ≈ · · · ≈ e(K ‖ s)). In this case
our correction method does not perform any correction, which is intuitively reasonable.
On the contrary, NCV may produce a different corrected error. This is essentially due to
the additional variability component induced by NCV. Whereas the results of the new
weighted mean correction are deterministic (once the outer learning sets are fixed), NCV
depends on the specific choice of the internal learning sets when selecting the Lb-best
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method k∗(Lb). This aspect of NCV is consistent with its main idea of mimicking the
selection or tuning process on each learning set of the resampling approach. Nevertheless,
by this dependence, NCV suffers from another source of variability which is difficult
to correct within a reasonable time. This variability may be addressed by increasing
the number of internal CV iterations. However, a huge number of iterations would be
necessary to reach a stable estimate, i.e. an estimate that does not noticeably depend
on the partitions used in internal CV. In this context it is also worth mentioning that
the resampling technique and the number of iterations or folds used in internal CV are
additional parameters for which no precise guidelines exist.
The natural bounds of our correction method are certainly also a crucial advantage

over the competing method proposed by [14]. Their method performs reasonably well
in many cases but fails in a non-negligible proportion of (realistic) setups producing
overly pessimistic results. As pointed out before, there exist extreme situations in which
our method can also yield corrected errors estimates higher than the raw mean. We
mentioned the case with many highly correlated classifiers and an additional uncorrelated
one with large but highly variable error. This is in agreement with our estimation task
since we aim at estimating EPn(ε(k

∗(S) ‖ S)), the expectation of the error of strategy
k∗(S) when fitted on S. If a classifier is highly instable, it might often get selected as
k∗(S) although its average performance is bad. In this sense, selecting k∗(S) may in this
extreme case be worse than a random choice as far as the expected error is concerned.
This example also highlights an important feature of our new correction method. In

contrast to any other correction method it directly uses the information on the correlation
between the errors of different parameter values/methods, which allows an assessment
of the “effective cardinality” of the pool of parameter values/methods. Obviously, the
potential for tuning or method selection bias increases with the number K of parameter
values/methods that are tried out. However, if they are all very similar the bias is
not expected to increase dramatically. Our method automatically takes into account
correlation between errors including such highly correlated “blocks” of similar parameter
values/methods.
Another practical advantage over NCV is that our approach can be applied “a pos-

teriori” as long as one has used the same training sets for all classifiers and saved all
fold errors (e(k||Lb, S \Lb), ∀b, k). With NCV the whole procedure has to be performed
again if the classifier pool or the tuning grid is changed or enlarged.
Finally, let us discuss the small optimistic bias of our method observed in the non-

informative setups. Our new method is based on a number of assumptions and possibly
biased estimation steps. On the one hand, if assumption (8) is violated we would expect
our method to be conservative i.e. to over-correct the error, because a method chosen by
internal CV based on a specific data set is expected to perform better rather than worse
when applied to this data set, yielding EPn [ε(k ‖ S)|k∗(S) = k] ≤ EPn [ε(k ‖ S)]. On the
other hand, the estimation of µ needed for the estimation of the weights P̂ (k∗(S) = k)
may introduce a bias in the opposite direction, i.e. lead to under-estimation. That is
because the estimator (e(1 ‖ S), . . . , e(K ‖ S))⊤ of the vector of means µ is directly
obtained from the sample at hand and thus biased. Recursive estimation of the weights
or shrinkage-based procedures might be useful to address the slight bias of our new
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method in the non-informative setups.

Supplementary Materials

Web Figures and Tables, referenced in Section 3 and 4 are available under
http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/

070 drittmittel/bernau/cvbias/index.html.
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