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Abstract

The proportional odds model is commonly used in regression analysis to predict the

outcome for an ordinal response variable. The maximum likelihood approach be-

comes unstable or even fails in small samples with relatively large number of pre-

dictors.The ML estimates also do not exist with complete separation in the data. An

estimation method is developed to address these problems with MLE. The proposed

method uses pseudo observations to regularize the observed responses by sharpening

them so that they become close to the underlying probabilities. The estimates can be

computed easily with all commonly used statistical packages supporting the fitting

of proportional odds models with weights. Estimates are compared with MLE in a

simulation study and two real life data sets.
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1 Introduction

The maximum likelihood approach with favourable asymptotic properties, plays a key
role to fit the proportional odds models. The maximum likelihood estimation is sensitive
to large number of predictors with small samples. The MLE does not respond with p > n

and/or complete separation in proportional odds models (POM). Penalized likelihood es-
timation is used to obtain the estimates in high-dimensional settings and/or ill-conditioned
design space. Regularization techniques based on penalization typically maximize a pe-
nalized log-likelihood. Ridge regression, one of the oldest penalization methods for linear
models was defined for logistic regression by Schaefer et al. (1984) and Schaefer (1986).
Later on Nyquist (1991) and Segerstedt (1992) extended the concepts of ridge estimation
for GLM type models. Different alternatives of MLE have been proposed in the literature
for univariate GLMs e.g., the Lasso (Tibshirani (1996)), which was adapted to GLMs by
Park and Hastie (2007), the Dantzig selector (James and Radchenko (2009)), SCAD (Fan
and Li (2001)) and the boosting approach (Bühlmann and Hothorn (2007), Tutz and Binder
(2006)). However, few approaches have been proposed for multi-categories response mod-
els. For example, Zhu and Hastie (2004) used ridge type penalization, Krishnapuram et al.
(2005) considered multinomial logistic regression with lasso type estimates and Friedman
et al. (2010) provided an efficient algorithm for the complete regularization path using L1

penalty. Rousseeuw and Christmann (2003) proposed robust estimates for binary regres-
sion which always exist and are based on the responses which are closely related to the
unobservable true responses. Tutz and Leitenstorfer (2006) considered a shrinkage type
estimator for binary regression that has an improved existence than the usual MLE in dif-
ferent situations.
In this paper we are shrinking the parameter estimates without using any penalty term. We
are exploiting the discreteness of the responses for regularization rather than restricting
the range of parameters. The proposed technique is an extended version of the shrinkage
estimates by Tutz and Leitenstorfer (2006), for proportional odds models. The shrinkage
estimates are simple and easy to compute and interpret. We are downgrading the observed
multinomial response yij = 1 and shrinking it towards the underlying probability by intro-
ducing q = k − 1 shadow (pseudo) data sets for a k−categories POM. For example, if the
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observed response results in the jth category among category labels 1, . . . , j, . . . , k, then
the corresponding k−1 shadow responses have the category labels 1, . . . , j−1, j+1, . . . , k.

So each of k − 1 categories other than the jth category in original data gets the represen-
tation against the ith response with same predictor vector but with different weights. As
a result we are working with weighted log-likelihood for a data with k · n observations
instead of usual log-likelihood (unweighted) for n observations of the original data. The
estimates obtained with the use of shadow responses are more stable and have improved
existence than the usual MLE. The estimates can be computed with any statistical soft-
ware/package that fits the POM with weights. The layout of the paper is as follows:
In Section 2, the basic idea of regularizing the observed responses is described. In Section
3, three different approaches for regularization are discussed. The first simplest approach
is based on some optimal values of the tuning parameters that are used for deciding the
weights and are linked with the outcome category of each response. The second approach
takes the fit into account and uses a weighting scheme associated with leverage measures
where the weights are linked with the individual responses rather than the observed cat-
egories. The third approach is different from the second in the sense that it is based on
the the diagnostic measures for logistic regression proposed by Pregibon (1981). The per-
formance of all of these approaches is investigated and compared with the usual MLE in
Section 4. An expression for the standard errors of shrinkage estimates is derived in Sec-
tion 5. In Section 6, the estimates are computed for two real data sets. Section 7 completes
the discussion with some concluding remarks.

2 Regularization of observed responses

For the ordinal responses, there are several models discussed in the literature. Ananth and
Kleinbaum (1997) described these models with interpretation of the models’ parameters
(also see Agresti (1999)). Proportional odds model (also called cumulative logit model
by McCullagh (1980)) is commonly used to model the ordinal responses. In this text,
for regularization we are considering POM, however the proposed technique(s) can be
applied in the same way to the other models available for ordinal responses. Let for a
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given predictor vector x, there is an observable variable Y ∈ {1, . . . , k} that is connected
with an unobservable latent variable Z as Y = r ⇔ γ0,r−1 < Z ≤ γ0r, r = 1, . . . , k

where −∞ = γ00 < γ01 < . . . < γ0k =∞. This indicates that Y is a categorized version
of Z determined by γ01, . . . , γ0q (for q = k − 1). The cumulative logistic model has the
form

P (Y ≤ r|xi) = P (Z ≤ γ0r|xi) =
exp(γ0r − xTi γγγr)

1 + exp(γ0r − xTi γγγr)
r = 1, . . . , q = k − 1, (1)

or alternatively

log
[

φir(xi)

1− φir(xi)

]
= γ0r − xTi γγγ r = 1, . . . , k − 1, (2)

where φir(xi) = P (Y ≤ r|xi) is the cumulative probability up to and including the
category r for the covariate vector xi. In (2), each cumulative logit is increasing in r with
its own intercept γ0r and a global parameter vector γγγ . The parameters {γ0r} and γγγ are
unknown and {γ0r} must satisfy γ01 < . . . < γ0q, to ensure that the fitted probabilities
are positive. For the estimation of parameters in POM with k response categories and p
covariates, let the cumulative logit model has the form

logit(φir) = Xiβββ.

Here (q × p∗)-matrix Xi (with p∗ = p+ q) given by

Xi =




1 xTi

1 xTi
. . . ...

1 xTi



,
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is a component of the complete design matrix X of order nq × p∗ which is given by

X =




X1

X2

...
Xn



.

The parameter vector βββ has length p∗ with components βββT = (γ01, . . . , γ0q, γ1, . . . , γp).

For obtaining a regularized version of the responses, we generate q shadow/pseudo data
sets of the original data. Each response yij in the original data with design point xi has
q shadow responses with identical value of the design point. In a simple case, let the
category 1 is observed in a three category POM (with category labels 1, 2 and 3) with
predictor vector x. For this response, we have two shadow responses with category labels
2 and 3 with the same predictor vector x. In other words, using the vector of dummies, the
response (0, 0) has two shadow responses (1, 0) and (0, 1). In general, with k−categories
response model we are generating q = k − 1 shadow responses corresponding to each
response in the original data and the original sample of size n is increased to k ·n.Different
weights are assigned to the ith original response and the corresponding shadow responses
in such a way that sum of these weights equals one. If αis (s = 1, . . . , q) for αis ∈ [0, 1

k
] is

the weight assigned to the ith observation of the sth shadow data then αi0 = 1−∑q
s=1 αis

is the corresponding weight for the ith observation in the original data. The weighted log
likelihood function with the original and shadow data is given by

lw(βββ) =

q∑

s=0

n∑

i=1

wislis(βββ), (3)

where

lis(βββ) =
k∑

r=1

log(πirs)
yirs =

k∑

r=1

log
[
φirs − φi,r−1,s

]yirs ,

with yirs as the ith response with category r in the sth data set (s = 0 represents the
original data and s = 1, . . . , q represent each of q shadow data sets). The weights wis can
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be given as

wis =

{
αi0 for s = 0

αis ∀ s = 1, . . . , q.

For the shadow data sets if we have αis = 0, ∀i, we are left with the usual (unweighted)
log-likelihood function for the original observations. With increasing values of αis (s =

1, . . . , q), shadow data will get more weights and small weights are assigned to the original
responses.
We define the weighted log-likelihood function with original and shadow responses in the
simplest case of a response variable with three (ordered) categories labeled 1, 2 and 3. The
weights for the ith observation of two shadow data sets are αi1 and αi2 respectively and
the corresponding weight for the original response is αi0 = 1 −∑2

s=1 αis. The weighted
log-likelihood function in this case is given by

lw(βββ) =
n∑

i=1

[
αi0

{
yi1log(πi1) + yi2log(πi2) + yi3log(πi3)

}

+αi1

{
yi3log(πi1) + yi1log(πi2) + yi2log(πi3)

}

+αi2

{
yi2log(πi1) + yi3log(πi2) + yi1log(πi3)

}]

=
n∑

i=1

[{
yi1 + (yi3 − yi1)αi1 + (yi2 − yi1)αi2

}
log(πi1)

+

{
yi2 + (yi1 − yi2)αi1 + (yi3 − yi2)αi2

}
log(πi2)

+

{
yi3 + (yi2 − yi3)αi1 + (yi1 − yi3)αi2

}
log(πi3)

]

=
n∑

i=1

ỹi1log(πi1) + ỹi2log(πi2) + ỹi3log(πi3) =
n∑

i=1

3∑

j=1

ỹijlog(πij).

The final expression for lw(βββ) indicates that the use of shadow responses with different
weights transform the original response yij into ỹij.As a result the weighted log-likelihood
with shadow data simplifies to an un-weighted log-likelihood of transformed responses ỹij
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with probabilities πij. We can say that the shadow responses with different weights are
used to process the exaggerated value of the original response yij = 1 to transform it
into a more regularized version with a value smaller than 1. The log-likelihood function
with the transformed responses (or weighted log-likelihood with shadow data sets) for a
k−categories response model can be given as

lw(βββ) =
n∑

i=1

k∑

j=1

ỹijlog(πij) (4)

where the ith transformed observation for the jth category is given by

ỹij =





yij +
k∑

r=2

(yir − yij)αi,k−(r−1) if j = 1,

yij +
k−1∑

r=1

(yir − yij)αi,j−r if j = k,

yij +

j−1∑

r=1

(yir − yij)αi,j−r +
k∑

r=j+1

(yir − yij)αi,(k+j)−r otherwise.

We can proceed with the log-likelihood function given in (4) instead of working with
weighted log-likelihood given in (3), but working with the weighted version is easy and
simple using any statistical software that fits the proportional odds models using weights.
Also in the weighted version the sample size is artificially increased with shadow data
which not only improves the existence of estimates but also the estimates become more
stable than the usual MLE. The weighted score function for k · n observations comprised
of original and shadow responses is given by

sw(βββ) =
∂lw(βββ)

∂βββ
=

k·n∑

i=1

swi(βββ),
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with the ith component as

swi(βββ) = XT
i diag(wi)Di(βββ)ΣΣΣ−1

i (βββ)[yi − h(ηηηi)],

where wi are the weights associated with the ith observation, Di(βββ) = ∂h(ηηηi)
∂ηηη

is the
derivative of h(ηηη) evaluated at ηηηi = Xiβββ and ΣΣΣi(βββ) = cov(yi) is the covariance ma-
trix of yi given the parameter vector βββ. Alternatively the score function can be written
as swi(βββ) = XT

i diag(wi)Wi(βββ)∂g(µµµi)
∂µµµT

[yi − h(ηηηi)] with Wi(βββ) = Di(βββ)ΣΣΣ−1
i DT

i (βββ) ={
∂g(µµµi)
∂µµµT

ΣΣΣi(βββ)∂g(µµµi)
∂µµµ

}−1

. In matrix notation

sw(βββ) =
n∑

i=1

XT
i diag(wi)Di(βββ)ΣΣΣ−1

i (βββ)[yi − h(ηηηi)]

=
n∑

i=1

XT
i Di(βββ)ΣΣΣ−1

i (βββ)[ỹi − h(ηηηi)] (5)

= XTD(βββ)Σ−1(βββ)[ỹ − h(ηηη)]

where y and h(ηηη) are given by yT = (yT1 , . . . ,y
T
n ), and h(ηηη) = (h(ηηη1), . . . , h(ηηηn))T

respectively. The matrices have block diagonal form as ΣΣΣ(βββ) = diag(ΣΣΣi(βββ)), W(βββ) =

diag(Wi(βββ)), D(βββ) = diag(Di(βββ)). The general form of the score equations with trans-
formed (regularized) responses can be written as

∂lw(βββ)

∂βββ
=

n∑

i=1

xi(ỹi − h(ηηηi)) = 0 (6)

Score equations in (6) use a regularized version of the original responses yij such that if
yij = 1, the regularized version ỹij assumes the value 1 −∑q

s=1 αs, which is less than 1.

If we use the equal weights i.e., αis = 1
k

(∀s = 1, . . . , q), the score equations in (6) lead
to a solution with βββ = 0.
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3 Regularization techniques

3.1 Category specific regularization (CSR)

The basic idea behind the regularization of the observed responses is that instead of using
the exaggerated values of yij = 1, a smoothed version (where yij assumes a value less than
1) of these responses should be used. The use of shadow data helps to downgrade yij = 1

using different weights for shadow responses. In the simplest situation, the weights for
each shadow response can be chosen in the interval [0, 1

k
]. In this section we are introducing

a weighting scheme that assigns the same weight to each response in the shadow data with
same category. We are exploiting the property of MLE for the proportional odds models
(with intercept) given by

1

n

n∑

i=1

π̂ij = ȳ.j, j = 1, . . . , k (7)

Here ȳ.j is the mean of responses corresponding to the jth category. Different weights
should be assigned to each of yij (j = 1, . . . , k) to hold the property (7). From (6) we
have k − 1 score equations corresponding to the intercept terms which are of the form

n∑

i=1

ỹij =
n∑

i=1

π̂̂π̂πij. (8)

For category specific weights (i.e., the same weight to all responses resulting in the jth
category in the sahdow data), let α̃j be the weight associated with category j. From (8),
while holding (7) we obtain (k − 1) equations as

k∑

j=1
j 6=r

ȳ.jα̃j − (k − 1)ȳ.rα̃r = 0 r = 1, . . . , k − 1. (9)
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solving this system of k − 1 equations for α̃’s, we get

α̃j =
ȳ.k
ȳ.j

α̃k, j = 1, . . . , k − 1. (10)

If α̃k = ȳ.j, we have α̃j = ȳ.k ∀j, i.e., each response yij = 1 is shrunk towards ȳ.k.
The optimal value of the tuning parameter α̃j that minimizes the prediction error can be
searched in the interval [0, ȳ.j]. But if all the tuning parameters assumes the same value
i.e., 1

k
, the solution for the estimates will be β̂ββ = 0. If ȳ.j > 1

k
, it is intuitive to search for

optimal value of the weight α̃j in the interval [0, 1
k
]. Since for α̃j = ȳ.j, each response with

yij = 1 (j = 1, . . . , q) shrinks towards ȳ.k, it is sensible to shrink the response yik = 1

towards the mean of the rest of k − 1 response categories i.e., shrinking yik = 1 towards
1

k−1

∑k−1
j=1 ȳ.j . The resulting weighting scheme for the original data (s = 0) and the sth

(s = 1, . . . , q) shadow data set is given by

wi =

{
1−∑k−1

s=1 wis for s = 0

wis ∀s = 1, . . . , q,
(11)

where

wis =

{
ȳ.k
ȳ.j
· αj for yij = 1 (j ∈ {1, . . . , q})

1
k−1

∑k−1
j=1 αj for yik = 1.

For the optimal values of q tuning parameters αj (j = 1, . . . , q), we are using the leave-
one-out cross-validation with the following distance measures:
Kullback-Leibler discrepancy given by

LKL =
k∑

j=1

n∑

i=1

πijlog
(
πij
π̂ij

)
,

with a convention that 0.log(0) = 0. The averaged squared error computed as

ASE =
1

k · n
k∑

j=1

n∑

i=1

(πij − π̂ij)2,
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and the averaged L1-distances given by

AL1 =
1

k · n
k∑

j=1

n∑

i=1

|πij − π̂ij|.

For the leave-one-out cross-validation, the fit is computed using all the data except the ith
observation. However to save the time and reduce the computational burden one can use
k-fold cross-validation for searching optimal values of the tuning parameters.

3.2 Response specific regularization (RSR1)

The weighting scheme discussed in Section 3.1 is category dependent because it assigns
the same weight to each response resulting in the jth category. These weights are based
on some optimal values of q tuning parameters. The category specific weights have some
drawbacks as: (i) We have to perform a grid search for searching the optimal values of the
tuning parameters. The grid search increases the computational burden with the increase
of number of response categories and making the approach less efficient regarding the time
required for computing the estimates. (ii) Each response resulting in the jth category gets
the same weight in the data irrespective of the residual value corresponding to a particular
observation. We can overcome these problems by using a weighting scheme that does
not depend on the tuning parameters and assigns the weights to the responses which are
response dependant rather than the category dependant. To have such weights we exploit
the information available in the hat matrix. The hat matrix provides a measure of leverage
of the data and is a building block of the regression diagnostics. In case of multinomial
response, iteratively reweighted least squares estimation is linked with the iterative fitting
of pseudo observations z = Xβ̂̂β̂β+D−1(y−µ̂µµ) (e.g., McCullagh and Nelder 1989; Fahrmeir
and Tutz 2001). At convergence the maximum likelihood estimate is given by

β̂̂β̂β = (XTWX)−1XTWz.
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The estimate β̂̂β̂β is a weighted least square solution for the linear problem z̃ = Xβββ + εεε,

or alternatively we can say that β̂̂β̂β is an unweighted least squares solution of the linear
problem z̃0 = X0βββ + ε̃̃ε̃ε with z̃0 = WT/2z̃ and X0 = WT/2X. For this model the hat
matrix is given by

H = X0(XT
0 X0)−1XT

0

= WT/2X(XTWX)−1XTW1/2 (12)

The same form of the hat matrix for multinomial response models was used by Lesaffre
and Albert (1989). Here W = DΣΣΣ−1DT with D = diag(Di) = diag(∂h(ηηηi)

∂ηηη
). In the

context of linear models diagonal elements hii(0 ≤ hii ≤ 1) of the hat matrix H provide
the information about the extreme design points corresponding to the high values (close to
one) of hii. In contrast to the classical linear models, the hat matrix here not only depends
on the design matrix X but also on the fit and we may have extreme points in the design
space even for a smaller value of hii. In case of multi-category response the (nq×nq)-hat
matrix H has n diagonal matrices Hii of order (q×q) on its diagonal. The measures tr(Hii)

or det(Hii) of the block diagonal matrix Hii can be used as an indicator of the leverage
of yi. In this section we use these measures to construct our weighting scheme. Like the
category specific regularization one can shrink all yij = 1 (in the shadow data) towards
1
k

by selecting wi = 1
k
tr(Hii) or wi = 1

k
det(Hii), which will give maximum shrinkage

when the leverage measure i.e., tr(Hii) or det(Hii) assumes the value 1. But here we opt a
little different approach and shrinking each yij = 1 (j = 1, . . . , k) towards the average
of means of the rest of (k − 1) categories. The weights for original data (s = 0) and sth
shadow data (s = 1, . . . , q) with this approach are given as:

wi =





1−
k−1∑

s=1

wis for s = 0,

wis ∀s = 1, . . . , q,

(13)

with
wis =

1

k − 1
(1− ȳ.j) (det/tr(Hii)) for yij = 1.
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3.3 Regularization with Pregibon’s Hat Matrix (RSR2)

Pregibon (1981) developed some diagnostic measures for the logistic models to measure
the effect of outlying responses and extreme design points on the maximum likelihood
fit. The (nq × nq)-matrix H given in (12) is a symmetric and idempotent matrix. Since
X0β̂̂β̂β = Hz̃0, the matrix H is a projection matrix mapping the observations z̃0 into the
fitted values WT/2Xβ̂̂β̂β. Pregibon (1981) considered another symmetric and idempotent
matrix H∗ given by

H∗ = WT/2X∗(X∗TWX∗)−1X∗TW1/2, X∗ = (X, z) (14)

In Section 3.2, for regularization we used the information contained in the block diagonal
matrices Hii of the hat matrix H given by (12). We used there the trace and determinant
of matrices Hii. If we consider the trace of sub-diagonal matrices Hii and H∗ii as the
diagnostic measure then after some algebraic derivation, it can be shown that the usual hat
matrix H and that one given by Pregibon are connected with each other by the relation

tr(H∗ii) = tr(Hii) +
χ2
i

χ2
, (15)

where χ2 =
∑n

i=1 χ
2
i , with the ith component χ2

i = (yi− µ̂̂µ̂µi)TΣΣΣ−1
i (yi− µ̂̂µ̂µi). The extreme

points in the design space are reflected by the large values of tr(Hii) and χ2
i /χ

2 shows the
relative poor fit. So the large values of tr(H∗ii) indicate extreme points in the design space,
poorly fitted observations or both. The value of tr(H∗ii) provides a measure of influence of
the observation yi like tr(Hii) of the usual hat matrix, so we can shrink the responses using
tr(H∗ii). The weighting scheme for original data (s = 0) and sth shadow data (s = 1, . . . , q)
is similar to (13) and is given by

w∗i =





1−
k−1∑

s=1

w∗is for s = 0,

w∗is ∀s = 1, . . . , q,

(16)
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with
w∗is =

1

k − 1
(1− ȳ.j) tr(H∗ii) for yij = 1,

Although H and H∗ have connection given in (15) only in terms of trace of sub-diagonal
matrices, but the determinant may also be used as the leverage measure as in the case of
usual hat matrix. In the simulation study we also use det(H∗ii) along with tr(H∗ii) as a
leverage measure.
The RSR1 and RSR2 have certain advantages over CSR as: (i) each response observation
gets different weight on the basis of some leverage measure whereas CSR assigns weights
to the observations subject to the outcome category without considering the corresponding
fit. (ii) no grid search is to be performed as in CSR for the selection of optimal values of
tuning parameters and processing time for grid search and cross-validation is saved. As
a result it makes the fitting procedure more efficient with respect to processing time es-
pecially with increasing number of response categories. (iii) simulation study shows that
RSR1 and RSR2 perform excellently in terms of MSE(β̂ββ) and MSE(π̂ππ). In response spe-
cific regularization (RSR) we need the hat matrix based on maximum likelihood fit, which
will be missing in case of non-existence of usual MLE. This problem can be overcome
with CSR approach. We can compute the response shrinkage estimates with smallest pos-
sible values of the tuning parameters that the numerical procedures allow and from this fit
we can get the hat matrix to proceed to the response specific regularization.

4 Simulation Study

In a simulation study, we generated Gaussian data with n observations and p covari-
ates. We used different number of combinations of n (n = 30, 50 and 100) and p (p =

2, 5, 10, 15 and 20). The values of the global parameters γj = (−1)j exp(−2(j − 1)/20)

for j = 1, . . . , p and the intercept values γ01 = −0.3 and γ02 = 0.8 are used. The co-
variates are drawn from N(0, 1). In each combination of n and p, S = 200 data sets are
generated. The function polr of the package MASS in statistical environment/ language
R is used to compute the usual MLE and the estimates with CSR, RSR1 and RSR2. To

14



compare our estimates with usual MLE, only those samples are considered in the study for
which the usual MLE exists. The likelihood estimates for the setting n = 30 & p = 20 are
not given in Table 1 because we could not get S = 200 samples in this setting for which
MLE exist. For this setting we get the estimates for RSR1 and RSR2 on the basis of hat
matrix obtained from CSR with smallest possible values of the tuning parameters allowed
by the numerical procedure.
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In Table 1, regularization techniques CSR (with weights given in (11)) and RSR (with
weights given in (13) and (16)) are compared with the usual MLE in terms of MSE(β̂ββ) and
MSE(π̂ππ). For the CSR, optimal values of tuning parameters are chosen by cross validation
based on error measures described in section (3.1) and the corresponding results are de-
noted by CV(KL), CV(SE) and CV(L1) for Kullback-Leibler, squared error loss and the
L1 distance respectively. MSE(β̂ββ) and MSE(π̂ππ) are computed as:

MSE(π̂ππ) = 1
S

∑
s MSEs(π̂ππ) with MSEs(π̂ππ) = 1

k·n

n∑

i=1

k∑

r=1

(π̂ir − πir)2 for the sth sample

and

MSE(β̂ββ) = 1
S

∑
s ||β̂ββs − βββ||2,

where π̂ππ is a vector of length k ·n and β̂ββ and βββ are of length p+k−1. Let MSEs is the MSE
of π̂ππ (or β̂ββ) for a particular regularization approach and MSEML

s is the corresponding MSE
for the maximum likelihood estimate. The ratio MSEs/MSEML

s for the sth simulation will
provide a measure of improvement of a particular regularization method over MLE. The
distribution of the ratios MSEs/MSEML

s is skewed and therefore the logarithms of these
ratios are considered. In Table 1 along with the MSE, the means of log(MSEs/MSEML

s )

denoted by lRML(π̂) and lRML(β̂ββ) are considered for comparing the regularization tech-
niques with the usual MLE. The negative values of these log-ratios refer to an improvement
of regularized estimates over the usual ML estiamtes. Our main focus is to develop an es-
timation technique that assures the existence of parameter estimates especially in case of
large number of covariates with small samples or with no overlapping observations in the
data. However we also consider a simple case of only two covariates even with a large
sample size to observe the behaviour of our regularized estimates. As the asymptotic the-
ory behaves well with increasing sample size and one can expect better performance of
usual ML estimates relative to our estimates in a weighted fashion. An overall view of
Table 1 reflects a better performance of our estimates in every situation not only with re-
spect to the parameter estimates but also the fit. The use of L1 distance although provides
better results than MLE but they are close to the usual MLE. According to our experience
when L1 distances are used as a distance measure, some of the optimal values of α’s are
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Figure 1: Illustration of the simulation study: Box plots for comparing different methods
with different number of predictors for n = 30 in terms of MSE(β̂ββ).

chosen as zero which provides the estimates close to the MLE. For the case p = 20 and
n = 30, MLE is not existing but the estimates do exist with regularization approaches.
The use of determinant as the influence measure in RSR approach does not provide as
good results as can be obtained with tr(H) or tr(H∗) as a leverage measure. The reason
is that when determinant is used in RSR approach, maximum possible weights (almost
1) are assigned to the original responses and minimum (almost 0) weights are assigned
to the shadow responses which results in estimates very close to the usual ML estimates.
But using the L1 distance in CSR and using determinant as leverage measure in RSR can
still provide the results close to MLE (actually little improved results) in the case where
MLE does not exist. These results are also included in Table 1 to reflect this aspect of
regularization approach. Table 1 also shows that with RSR, the use of matrix H∗ given
by Pregibon i.e., RSR2 approach gives more better results as compared to RSR1 which
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uses the usual hat matrix. Although results of regularization techniques are always better
than usual MLE but in particular, in terms of π̂ππ, CSR approach taking edge over RSR with
increasing sample size for larger number of covariates. In terms of MSE(β̂ββ), RSR2 (using
trace) almost knocked out the other approaches. All approaches shown in Table 1 are com-
pared in terms of box plots with respect to MSE(β̂ββ) in Fig. 1 for the most interesting case
of small samples, i.e., n = 30. The bullets (solid circles) within the boxes are the mean of
200 values for which the box plots are drawn. The results of some simulation studies (not
shown here) with more than three response categories also showed better performance of
regularization techniques than usual MLE.

5 Estimation of standard errors

The score function of weighted log-likelihood function given in (5) can be written as

sweighted(βββ) =
n∑

i=1

XT
i Di(βββ)ΣΣΣ−1

i (βββ)[ỹi − h(ηηηi)]

=
n∑

i=1

XT
i Di(βββ)ΣΣΣ−1

i (βββ)[yi − h(ηηηi) + y∗i ] (17)

with y∗i = ỹi − yi. The first order approximation yields

β̂ββ − βββ ≈
(−∂sweighted(βββ)

∂βββT

)−1

sweighted(βββ).

From (17) the weighted score function can be written as

sweighted(βββ) = s(βββ) + sw(βββ),
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where

s(βββ) =
n∑

i=1

XT
i Di(βββ)ΣΣΣ−1

i (βββ)[yi − h(ηηηi)] and

sw(βββ) =
n∑

i=1

XT
i Di(βββ)ΣΣΣ−1

i (βββ)y∗i

The derivatives needed here are

− ∂s

∂βββT
= F +

n∑

i=1

XiX
T
i

∂2h

∂ηηη∂ηηηT
{yi − πππi},

where F is the weighted Fisher matrix,

F =
n∑

i=1

XiX
T
i ΣΣΣ−1

i

(
∂h

∂ηηη

)(
∂h

∂ηηη

)T
, (18)

and

− ∂sw
∂βββT

=
n∑

i=1

XiX
T
i ΣΣΣ−1

i

∂2h

∂ηηη∂ηηηT
y∗i .

The property of score function that E(s(βββ)) = 0 is not fulfilled for our weighted score
function because E(sw(βββ)) 6= 0. Using the basic definition of covariance, after some
laborious derivation for the covariance of weighted score function we get

cov(sweighted(βββ)) =
n∑

i=1

ΓΓΓTi ΣΣΣiΓΓΓi,

where ΓΓΓi = AT
i ΣΣΣ−1

i DT
i Xi. Ai is a q × q matrix given as

Ai =




wi(0) − wi(1) wi(k−1) − wi(1) wi(k−2) − wi(1) · · · wi(2) − wi(1)

wi(1) − wi(2) wi(0) − wi(2) wi(k−1) − wi(2) · · · wi(3) − wi(2)

wi(2) − wi(3) wi(1) − wi(3) wi(0) − wi(3) · · · wi(4) − wi(3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wi(k−2) − wi(k−1) wi(k−3) − wi(k−1) wi(k−4) − wi(k−1) · · · wi(0) − wi(k−1)



,
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where wi(s) is the weight corresponding to the ith observation in the original data (s =

0) or sth (s = 1, . . . , q) shadow data sets. The term ∂sw/∂βββ
T in the expression for

cov(sweighted(βββ)) may be neglected asymptotically as wi(s) → 0,∀i, s = 1, . . . , q with
increasing sample size and one obtains as approximation the sandwich matrix

cov(β̂ββ) = F (βββ)−1cov(sweighted(βββ))F (βββ)−1. (19)

With wi(s) = 0 for ∀i, s, the expression for covariance coincides with that of usual MLE.
The accuracy of approximation of standard errors for such type of estimates has been
investigated by Tutz and Leitenstorfer (2006) for binary responses.

6 Application

In this section we are using two real data sets from the medical field to compare our regu-
larized estimates with the usual MLE.
Knee Injuries Data:
The first data being considered in this section was used by Fahrmeir et al. (1999). The
data is aobut a clinical study focusing on the healing of sports related knee injuries, where
140 patients took part in the study but 13 patients with missing values were eliminated and
127 patients were used in the analysis. The patients visited the physician before treatment
(baseline) and 3, 7 and 10 days after the treatment. By random design one of the two ther-
apies were chosen. In the treatment group, an anti-inflammatory spray was used while in
the placebo group a spray without active ingredients was used. In each visit of the patient,
the severity of injuries and the healing process were assessed by different indicators. The
variable of primary interest was "pain from pressure". The pain Y occurring during the
movement was assessed on a five point scale ranging from 1 (no pain) to 5 (severe pain).
In addition to the treatment (1 : treatment; 0 : placebo), the covariates sex (1 : male; 0 : fe-
male) and age are considered. As the covariates assume the same values for the responses
at different time points, we are using the data of 127 patients for the last time point i.e.,
responses after 10 days treatment.
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Retinopathy Data:
The second data set that we are using for the computation of regularized estimates, is taken
from Bender and Grouven (1998). In a 6-year follow up study on diabetes and retinopathy,
613 diabetic patients were reported by Bender and Grouven (1998). The objective was to
investigate how the retinopathy status is associated with the risk factors. The considered
risk factor is a binary variable "smoking (SM)" 1 : if the patients smoked during the study
period; 0 : otherwise) adjusted for the known risk factors "diabetes duration (DIAB)"
(measured in years), "glycosylated hemoglobin (GH)" (measured in percent), and "dias-
tolic blood pressure (BP)" (measured in mmHg). The "retinopathy status" is a response
variable with three response categories (1 : no retinopathy; 2 : non-proliferative retinopa-
thy; 3 : advanced retinopathy or blind).

Table 2: Estimates and standard errors for "Knee Injuries" data

Method of Estimation Intercept 1 Intercept 2 Intercept 3 Intercept 4 Therapy Age Sex

MLE −0.9861 0.1988 1.1538 3.1409 −0.9438 0.0159 −0.0499
(0.6290) (0.6276) (0.6399) (0.7307) (0.3355) (0.0170) (0.3731)

CSR, CV(KL)a −1.0147 0.1498 1.0773 2.7864 −0.8916 0.0150 −0.0388
(0.5857) (0.5794) (0.5870) (0.6553) (0.3160) (0.0160) (0.3384)

CSR, CV(SE)b −1.0470 0.1011 0.9967 2.6388 −0.8655 0.0147 −0.0276
(0.5735) (0.5666) (0.5731) (0.6316) (0.3088) (0.0156) (0.3314)

RSR1, (using trace) −1.0120 0.1584 1.0971 2.9214 −0.8888 0.0143 −0.0211
(0.5631) (0.5569) (0.5647) (0.6420) (0.3068) (0.0153) (0.3256)

RSR2, (using trace) −1.0257 0.1478 1.0848 2.8884 −0.8666 0.0137 −0.0110
(0.5630) (0.5565) (0.5642) (0.6392) (0.3063) (0.0153) (0.3254)

a Results are based on optimal values of tuning parametersαααT = (0.02222222, 0.02187227, 0.02222222, 0.01049869).
b Results are based on optimal values of tuning parametersαααT = (0.02222222, 0.02187227, 0.02222222, 0.04724409).

We are using the proportional odds model in both examples under the assumption that
proportional odds assumption is fulfilled. The results for the parameter estimates and
their standard error (within brackets) for usual MLE and the regularization techniques are
presented in Table 2 and 3 for the "knee injury" and "retinopathy" data sets respectively.
For CSR approach, the optimal values of α’s are decided on the basis of leave-one-out
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Table 3: Estimates and standard errors for "Retinopathy" data

Method of Estimation Intercept 1 Intercept 2 SM DIAB GH BP

MLE 12.3025 13.6733 −0.2549 −0.1398 −0.4597 −0.0724
(1.2923) (1.3197) (0.1931) (0.0139) (0.0758) (0.0136)

CSR a 11.1014 12.4013 −0.2189 −0.1274 −0.4156 −0.0656
(1.1852) (1.2077) (0.1790) (0.0124) (0.0693) (0.0126)

RSR1, (using trace) 12.1241 13.4944 −0.2486 −0.1382 −0.4554 −0.0712
(1.2602) (1.2867) (0.1883) (0.0132) (0.0727) (0.0132)

RSR2, (using trace) 11.9793 13.3457 −0.2428 −0.1371 −0.4499 −0.0703
(1.2540) (1.2802) (0.1878) (0.0131) (0.0725) (0.0132)

a Results are based on the same optimal vector αααT = (0.02749942, 0.01246796) of tuning parameters
for Kullback-Leibler discrepancy and the squared error loss.

cross-validation and are given as the table footnotes. The results of Tables 2 and 3 show
that regularization not only shrinks the parameter estimates but also provides improved
estimates of standard errors than the corresponding maximum likelihood estimates. For the
RSR approach, we do not consider the determinant as a measure of influence to formulate
the weighting scheme because it gives the results which are almost similar to usual MLE.

7 Conclusion

The proposed regularization technique aims at securing the existence of estimates by
sharpening the responses to shrink them towards the underlying probabilities. Shadow
responses with different weights are used as a tool to compute the estimates. The weight-
ing scheme is designed in such a way that the weights associated with an original response
and its corresponding shadow responses add to one. The use of q shadow responses for
each observed yij with the same predictor vector xi also resolves the problem of complete
separation in the data. In case of CSR approach, selection of positive values for the tuning
parameters 0 < αj ≤ ȳ.j (for j = 1, . . . , q) assures the existence of unique estimates. The
use of L1-distance as a distance measure for the selection of optimal tuning parameters
is not a good choice because it selects zero as the optimal value for most of the tuning
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parameters. The squared error loss and Kullback-Leibler distance provide good results
especially in terms of fit. The regularization technique based on the unique weights for
each response i.e., RSR is more efficient than CSR not only in terms of processing time
but also in terms of MSE’s for the parameter estimates and the fit. For using the diagnostic
measures it is recommended to use Pregibon’s hat matrix rather than the usual hat matrix
because it provides much better results. The proposed technique shrinks the parameter
estimates without using any penalty term and does not require any special treatment for
the categorical predictors which is required in case of penalized likelihood (see Zahid and
Tutz (2010)). In sum, our regularized estimates are easy to compute, have better perfor-
mance than MLE and have improved existence i.e., they also exist with no overlapping
observation in the data and in the situations where MLE does not exist with large number
of predictors relative to the sample size.
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